

MachXO4 EFB Module IP

IP Version: v1.2.0

User Guide

FPGA-IPUG-02287-1.1

December 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	3
Abbreviations in This Document	8
1. Introduction	g
1.1. Overview of the IP	g
1.2. Quick Facts	g
1.3. IP Support Summary	g
1.4. Features	
1.5. Licensing and Ordering Information	
1.6. Minimum Device Requirements	10
1.7. Naming Conventions	10
1.7.1. Nomenclature	10
1.7.2. Signal Names	10
1.7.3. Attribute Names	10
2. Functional Description	11
2.1. IP Architecture Overview	11
2.2. Clocking	12
2.2.1. Clocking Overview	12
2.3. Reset	13
2.3.1. Reset Overview	13
2.4. User Interfaces	14
2.4.1. WISHBONE Bus Interface (Register Access)	14
2.4.2. I2C IP Cores	15
2.4.3. SPI IP Core	16
2.4.4. WISHBONE Controller (for PLL)	17
2.5. Flash Access Interface	17
3. IP Parameter Description	19
3.1. EFB Enables	19
3.2. I2C	19
3.3. SPI	20
3.4. Timer/Counter	22
3.4.1. Watchdog Timer Mode	23
3.4.2. Clear Timer on Compare Match Mode	23
3.4.3. Fast PWM Mode	24
3.4.4. Phase and Frequency Correct PWM Mode	24
3.5. UFM	25
4. Signal Description	26
5. Register Description	29
5.1. I2C Registers	29
5.2. SPI Registers	34
5.3. Timer/Counter Registers	42
5.4. Flash Access Registers	48
6. Command and Data Transfers to Flash Space	53
6.1. Command Summary by Application	53
6.2. Command Descriptions by Command Code	55
6.3. Command Framing	65
6.3.1. I2C Framing	65
6.3.2. SPI Framing	66
6.3.3. WISHBONE Framing	67
7. Designing with the IP	69
7.1. Generating and Instantiating the IP	69
7.1.1. Generated Files and File Structure	72
7.2. Design Implementation	72

7.3. Timing Constraints	72
7.4. Physical Constraints	72
7.5. Specifying the Strategy	
7.6. Running Functional Simulation	
7.6.1. Simulation Results	
7.7. Example Designs (Simulation)	77
7.7.1. I2C Core Transaction Example	
7.7.2. Flash Write and Read Example	
7.7.3. SPI Core Transaction Example	83
8. Design Considerations	
Appendix A. Resource Utilization	
References	88
Technical Support Assistance	
Revision History	

Figures

Figure 2.1. EFB Module IP Block Diagram	11
Figure 2.2. EFB Module IP Clock Overview	
Figure 2.3. EFB Module IP Reset Overview	
Figure 2.4. EFB Module WISHBONE Interface	
Figure 2.5. EFB Module I2C Core Interface	15
Figure 2.6. EFB Module SPI Core Interface	16
Figure 2.7. EFB Interface to Dynamic PLL	
Figure 2.8. EFB Module Flash Interface	
Figure 3.1. Timer/Counter CTCM Output Waveform	24
Figure 3.2. Fast PWM Mode Waveform Generation	24
Figure 3.3. Phase/Frequency Correct PWM Mode Waveform Generation	25
Figure 5.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)	37
Figure 5.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)	
Figure 5.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)	
Figure 5.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)	38
Figure 5.5. Target SPI Dummy Byte Response (SPICR2[SDBRE]) Timing	38
Figure 6.1. I2C Read Device ID Example	
Figure 6.2. SSPI Read Device ID Example	67
Figure 6.3. WISHBONE Read Device ID Example	
Figure 7.1. Module/IP Block Wizard	
Figure 7.2. IP Configuration	
Figure 7.3. Check Generated Result	
Figure 7.4. Simulation Wizard	
Figure 7.5. Add and Reorder Source	
Figure 7.6. Simulation Waveform	
Figure 7.7. Sample Testbench Overview	76
Figure 7.8. Sample Testbench Output	77
Figure 7.9. I2C Controller Read/Write Example (through WISHBONE)	
Figure 7.10. I2C Target Read/Write Example (through WISHBONE)	
Figure 7.11. I2C Sample Configuration (Primary and Secondary I2C Enabled)	
Figure 7.12. UFM Access Sample Configuration (through Wishbone and I2C Access)	
Figure 7.13. SPI Controller Read/Write Example (through WISHBONE)	84
Figure 7.14. SPI Sample Configuration	85

Tables

Table 1.1. Summary of the EFB Module IP	
Table 1.2. EFB Module IP Support Readiness	
Table 2.1. User Interfaces and Supported Protocols	14
Table 2.2. Hardened SPI Functionality	16
Table 3.1. EFB Enables Attributes	19
Table 3.2. I2C Attributes	19
Table 3.3. SPI Attributes	20
Table 3.4. Timer/Counter Attributes	22
Table 3.5. UFM Attributes	25
Table 4.1. EFB Module IP Ports	
Table 5.1. I2C Functions Register Map	29
Table 5.2. I2C Control (Primary/Secondary)	29
Table 5.3. I2C Command (Primary/Secondary)	30
Table 5.4. I2C Clock Prescale 0 (Primary/Secondary)	
Table 5.5. I2C Clock Prescale 1 (Primary/Secondary)	31
Table 5.6. I2C Transmit Data Register (Primary/Secondary)	
Table 5.7. I2C Status (Primary/Secondary)	31
Table 5.8. I2C General Call Data Register (Primary/Secondary)	32
Table 5.9. I2C Receive Data Register (Primary/Secondary)	33
Table 5.10. I2C Interrupt Status (Primary/Secondary)	33
Table 5.11. I2C Interrupt Enable (Primary/Secondary)	33
Table 5.12. SPI Functions Register Map	34
Table 5.13. SPI Control 0	34
Table 5.14. SPI Control 1	35
Table 5.15. SPI Control 2	35
Table 5.16. SPI Clock Pre-scale	
Table 5.17. SPI Controller Chip Select	39
Table 5.18. SPI Transmit Data Register	
Table 5.19. SPI Status	40
Table 5.20. SPI Receive Data Register	
Table 5.21. SPI Interrupt Status	
Table 5.22. SPI Interrupt Enable	
Table 5.23. Timer/Counter Functions Register Map	
Table 5.24. Timer/Counter Control	
Table 5.25. Timer/Counter Control 1	
Table 5.26. Timer/Counter Set Top Counter Value 0	
Table 5.27. Timer/Counter Set Top Counter Value 1	
Table 5.28. Timer/Counter Set Compare Counter Value 0	
Table 5.29. Timer/Counter Set Compare Counter Value 1	
Table 5.30. Timer/Counter Control 2	
Table 5.31. Timer/Counter Value 0	
Table 5.32. Timer/Counter Value 1	
Table 5.33. Timer/Counter Current Top Counter Value 0	
Table 5.34. Timer/Counter Current Top Counter Value 1	
Table 5.35. Timer/Counter Current Compare Counter Value 0	
Table 5.36. Timer/Counter Current Compare Counter Value 1	
Table 5.37. Timer/Counter Current Capture Counter Value 0	
Table 5.38. Timer/Counter Current Capture Counter Value 1	46
Table 5.39. Timer/Counter Status Register	
Table 5.40. Timer/Counter Interrupt Status	47
Table 5.41. Timer/Counter Interrupt Enable	
Table 5.42. Flash Memory Functions Register Map	48

Table 5.43. Flash Memory Control	
Table 5.44. Flash Memory Transmit Data	49
Table 5.45. Flash Memory Status	49
Table 5.46. Flash Memory Receive Data	50
Table 5.47. Flash Memory Interrupt Status	
Table 5.48. Flash Memory Interrupt Enable	51
Table 5.49. Unused (Reserved) Register	51
Table 5.50. EFB Interrupt Source	52
Table 6.1. UFM (Sector 1) Commands	53
Table 6.2. Configuration Flash (Sector 0) Commands	53
Table 6.3. Non-Volatile Register (NVR) Commands	54
Table 6.4. Erase Flash (0x0E)	55
Table 6.5. Read TraceID Code (0x19)	55
Table 6.6. Disable Configuration Interface (0x26)	55
Table 6.7. Read Status Register (0x3C)	56
Table 6.8. Reset Flash Address (0x46)	56
Table 6.9. Reset UFM Address (0x47)	57
Table 6.10. Program DONE (0x5E)	57
Table 6.11. Program Configuration Flash (0x70)	57
Table 6.12. Read Configuration Flash (0x73) (I2C)	57
Table 6.13. Read Configuration Flash (0x73) (WISHBONE)	58
Table 6.14. Enable Configuration Interface (Transparent) (0x74)	58
Table 6.15. Refresh (0x79)	59
Table 6.16. STANDBY (0x7D)	59
Table 6.17. Set Address (0xB4)	59
Table 6.18. Read USERCODE (0xC0)	59
Table 6.19. Program USERCODE (0xC2)	60
Table 6.20. Enable Configuration Interface (Offline) (0xC6)	60
Table 6.21. Program UFM (0xC9)	60
Table 6.22. Read UFM (0xCA) (I2C)	60
Table 6.23. Read UFM (0xCA) (WISHBONE)	61
Table 6.24. Erase UFM (0xCB)	
Table 6.25. Program SECURITY (0xCE)	62
Table 6.26. Program SECURITY PLUS (0xCF)	62
Table 6.27. Read Device ID Code (0xE0)	62
Table 6.28. Device ID	62
Table 6.29. Verify Device ID Code (0xE2)	62
Table 6.30. Program Feature (0xE4)	63
Table 6.31. Read Feature Row (0xE7)	63
Table 6.32. Check Busy Flag (0xF0)	63
Table 6.33. Program FEABITs (0xF8)	63
Table 6.34. Read FEABITs (0xFB)	64
Table 6.35. Bypass (Null Operation) (0xFF)	65
Table 6.36. Command Framing Protocol by Interface	65
Table 6.37. Command Framing Protocol by Interface	67
Table 7.1. Generated File List	72
Table 7.2. Write Two UFM Pages (WISHBONE)	80
Table 7.3. Read One UFM Page (WISHBONE)	81
Table 7.4. Read Two UFM Pages (WISHBONE)	82
Table A.1. LFMXO4-110HE-6BBG484I Device Resource Utilization	87

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation	Definition	
ACK	Acknowledgement	
APB	Advanced Peripheral Bus	
CFG	Configuration	
CTCM	Clear Timer on Compare Match	
DUT	Device Under Test	
EFB	Embedded Functional Block	
FIFO	First In, First Out	
FPGA	Field Programmable Gate Array	
GUI	Graphical User Interface	
GPIO	General Purpose Input/Output	
1/0	Input/Output	
I2C	Inter-Integrated Circuit	
ID	Identification	
IP	Intellectual Property	
IRQ	Interrupt Request	
JTAG	Joint Test Action Group	
LSE	Lattice Synthesis Engine	
LSB	Least Significant Bit	
LUT	Look-Up Table	
MDF	Mode Fault	
MSB	Most Significant Bit	
NACK	No Acknowledgement	
NVR	Non-Volatile Registers	
OEM	Original Equipment Manufacturer	
PFCPWM	Phase/Frequency Correct Pulse Width Modulation	
PLL	Phase-Locked Loop	
PWM	Pulse Width Modulation	
RO	Read-Only	
RW	Read-Write	
SPI	Serial Peripheral Interface	
SRAM	Static Random Access Memory	
UFM	User Flash Memory	
WO	Write-Only	

1. Introduction

1.1. Overview of the IP

The embedded functional block (EFB) module provides a soft-IP implementation of the hardened control functions in the MachXO4™ FPGA devices. These hardened control functions ease design implementation and conserve general-purpose resources like LUTs, registers, clocks, and routing. The hardened control functions are physically located in the EFB.

The EFB includes the following control functions:

- Two I2C cores
- One SPI core
- One 16-bit Timer/Counter
- Interface to flash memory
- Interface to the dynamic PLL configuration settings
- Interface to the on-chip power controller through I2C and SPI

1.2. Quick Facts

Table 1.1. Summary of the EFB Module IP

	Supported Devices	MachXO4™
IP Requirements IP Changes		For a list of changes to the IP, refer to the MachXO4 EFB Module IP Release Notes (FPGA-RN-02079).
Resource Utilization	Supported User Interface	WISHBONE, APB, I2C, and SPI
Resource Offitzation	Resources	Refer to Appendix A. Resource Utilization
	Lattice Implementation	IP Core v1.2.0 – Lattice Radiant™ software 2025.2
Desire Teel Comment	Countile a sign	Lattice Synthesis Engine (LSE)
Design Tool Support	Synthesis	Synplify Pro®
	Simulation	Questa Lattice OEM

Note

1.3. IP Support Summary

Table 1.2. EFB Module IP Support Readiness

Device Family	Feature	Radiant Timing Model	Hardware Validated
MachXO4	I2C	Final	No
	SPI	Final	No
	Timer/Counter	Final	No
	PLL (dynamic config)	Final	No
	UFM	Final	No

^{1.} In some instances, the IP may be updated without changes to the user guide. This user guide may reflect an earlier IP version but remains fully compatible with the later IP version. Refer to the IP Release Notes for the latest updates.

1.4. **Features**

Key features of the EFB Module IP include:

- Provides an interface to user logic through the WISHBONE interface.
- Two I2C cores:
 - Operate as both controller and target.
 - Support configurable 7-bit and 10-bit addressing.
 - Support 50 kHz, 100 kHz, and 400 kHz data transfer speed.
 - The primary I2C core can access either flash memory or user logic.
- One SPI core:
 - Configurable as either SPI controller/target or SPI target.
 - When configured as controller/target, the IP core can control up to eight other SPI target devices.
 - Provides an interface to flash memory or user logic through the WISHBONE interface.
 - Includes a Mode Fault Error flag with CPU interrupt.
 - Features a double-buffered data register for increased throughput.
 - Supports serial clock with programmable polarity and phase.
 - Supports both LSB-first and MSB-first data transfers.
- Various Timer/Counter modes of operation:
 - Clear Timer on Compare Match (CTCM)
 - Watchdog Timer
 - Fast PWM
 - Phase and Frequency Correct PWM
- Dynamic PLL configuration.
- Interface to flash memory, which includes:
 - User flash memory
 - Configuration logic
- APB interface for bridging to the WISHBONE user interface.

Licensing and Ordering Information 1.5.

The EFB Module IP is provided at no additional cost with the Lattice Radiant software.

1.6. Minimum Device Requirements

There is no limitation in device speed grade for EFB Module IP. See Appendix A. Resource Utilization for minimum required resources to instantiate this IP and maximum clock frequency supported.

1.7. **Naming Conventions**

1.7.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.7.2. Signal Names

- _n are active low (asserted when value is logic 0)
- _i are input signals
- _o are output signals

1.7.3. Attribute Names

Attribute names in this document are formatted in title case and italicized (Attribute Name).

2. Functional Description

2.1. IP Architecture Overview

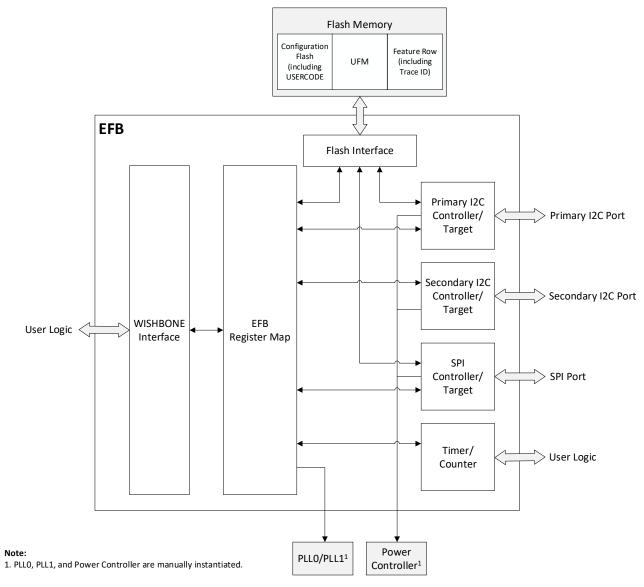


Figure 2.1. EFB Module IP Block Diagram

The hardened control function of MachXO4 devices is contained inside the EFB. You can interface with the logic through the WISHBONE interface to the EFB register map. Each hardened function can be controlled through these registers.

2.2. Clocking

2.2.1. Clocking Overview

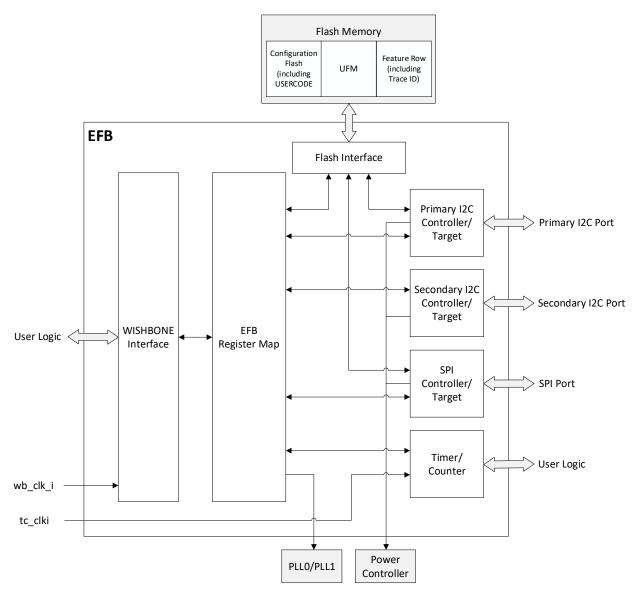


Figure 2.2. EFB Module IP Clock Overview

The WISHBONE interface clock is used by the WISHBONE interface logic and control registers.

2.3. Reset

2.3.1. Reset Overview

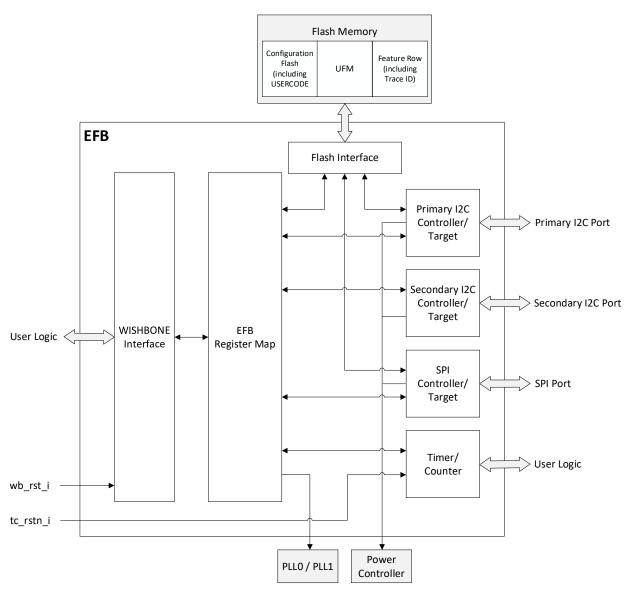


Figure 2.3. EFB Module IP Reset Overview

The WISHBONE interface reset signal only resets the WISHBONE interface logic.

2.4. User Interfaces

Table 2.1. User Interfaces and Supported Protocols

User Interface	Supported Protocol	Description	
Data/Control	WISHBONE (Target)	Provides connectivity between user logic and the EFB functional blocks. The user logic must include a WISHBONE initiator interface to communicate with the WISHBONE target of the EFB.	
	I2C	Each MachXO4 device contains two hardened I2C IP cores, designated as primary and secondary. Both can operate as an I2C controller or target.	
	SPI	Hardened SPI core, which can operate as both SPI controller and target, or solely as an SPI target device.	
	АРВ	AMBA APB 3 protocol-compliant interface can be enabled to bridge transactions from a system bus to the WISHBONE target of the EFB.	
	WISHBONE (Initiator)	Provides WISHBONE transactions for the dynamic reconfiguration of PLL configurations.	

2.4.1. WISHBONE Bus Interface (Register Access)

The WISHBONE bus in this IP is compliant with the WISHBONE standard from OpenCores. The bus provides connectivity between the FPGA user logic and EFB functional blocks. You can implement a WISHBONE controller interface to interact with the EFB WISHBONE target interface. Table 4.1 provides a detailed definition of the WISHBONE signals.

The EFB WISHBONE bus supports the classic version of the WISHBONE standard. Given that the WISHBONE bus is an open-source standard, not all features of the standard are implemented or required:

- Tags are not supported in the WISHBONE target interface of the EFB module. Given that the EFB is a hardened block, you cannot add these signals.
- The target WISHBONE bus interface of the EFB module does not require the byte select signals (sel_i or sel_o), since the data bus is only a single byte wide.
- The EFB WISHBONE target interface does not support the optional error and retry access termination signals. The IP does not guarantee the behavior if it receives access to an invalid register. You need to stay within the valid address range detailed in the Register Description section.
- If the EFB WISHBONE input signals are not used, they must be connected to 0.
- To ensure correct operation, wb_cyc_i must be asserted for the entire WISHBONE transaction. For the EFB WISHBONE interface, wb_cyc_i and wb_stb_i may be connected together.

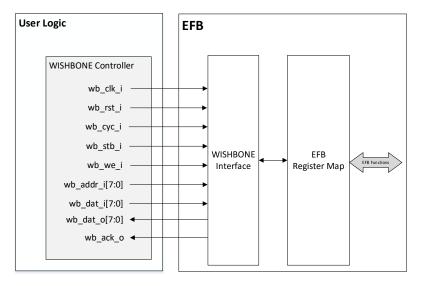


Figure 2.4. EFB Module WISHBONE Interface

2.4.2. I2C IP Cores

The I2C is a widely used two-wire serial bus for communication between devices on the same board. Every MachXO4 device contains two hardened I2C IP cores, designated as the primary and secondary I2C IP cores. Either of the two cores can operate as an I2C controller or I2C target. The difference between the two cores is that the primary core has pre-assigned I/O pins, while the ports of the secondary core can be assigned to any general purpose I/O.

In addition, the primary I2C core can be used for accessing the flash memory. However, the primary I2C port cannot be used for both flash access and user functions in the same design. When instantiating the hardened I2C IP cores for target operations, the EFB wb_clk_i input must be connected to a valid clock source of at least 7.5 × the I2C bus rate. For example, >3.0 MHz when I2C rate = 400 kHz.

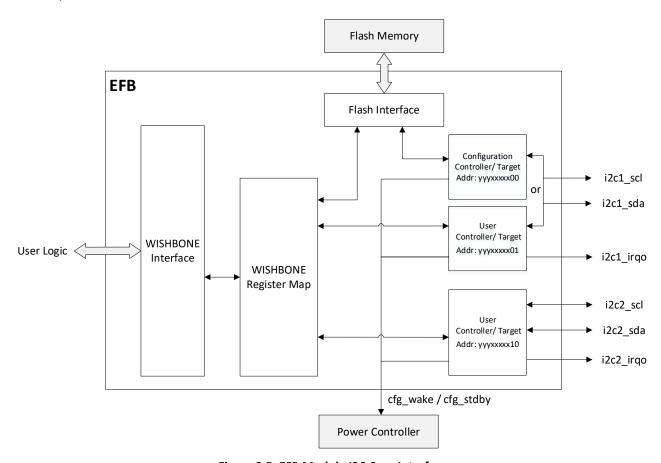


Figure 2.5. EFB Module I2C Core Interface

2.4.2.1. Primary I2C

The main functions of the primary controller are:

- Either:
 - I2C configuration target provides access to the flash; or
 - I2C user target provides access to the user logic.
- I2C user controller provides access to peripherals attached to the MachXO4 device.

The primary I2C core can be used for accessing the flash memory. However, the primary I2C port cannot be used for both flash access and user functions in the same design. Figure 2.5 shows an interface between the I2C block and the flash access.

Target I2C peripherals on a bus are accessed by the controller I2C calling the unique addresses of the target. The primary configuration address is yyyxxxxx00 and the primary user address is yyyxxxxx01, where y and x are user-programmable from IP generation.

2.4.2.2. Secondary I2C

The secondary I2C controller in a MachXO4 device provides the same functionality as the primary I2C controller with the exception of access to the flash memory. The i2c2_scl and i2c2_sda ports are routed through the general purpose routing of the FPGA fabric and you can assign them to any general purpose I/O (GPIO).

Target I2C peripherals on a bus are accessed by the user controller I2C calling the unique addresses of the target. The secondary user address is yyyxxxxx10, where y and x are user-programmable from IP generation.

2.4.3. SPI IP Core

SPI is a widely used four-wire serial bus that operates in full duplex mode for communication between devices. The MachXO4 EFB includes an SPI controller that can be configured either as both an SPI controller/target, or solely as an SPI target.

When configured as a controller/target, the IP core can control up to eight other devices with SPI target interfaces. When configured as a target, the IP core can interface to an external SPI controller device.

The SPI core interfaces with either the configuration logic of the MachXO4 device or other user logic. The functionality and block diagram of the hardened SPI IP core are shown below.

Table 2.2. Hardened SPI Functionality

Feature	Configuration SPI	User SPI
SPI target port	Yes	Yes
SPI controller port	No	Yes
Access to Flash memory	Yes	No
Requires dedicated I/O	Yes	Yes
Wake Power Controller from Standby Mode	Yes	Yes
Enter Power Controller Standby Mode	No	Yes

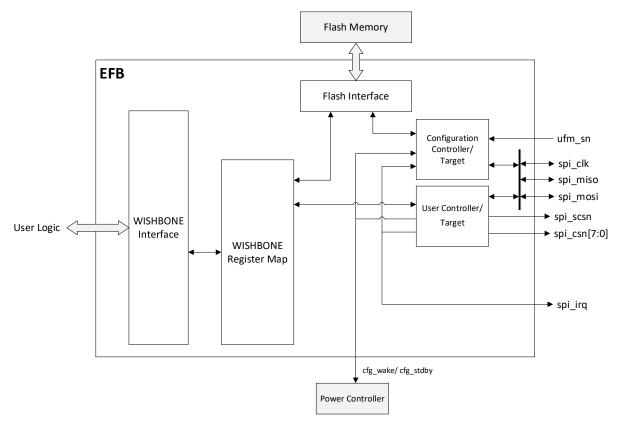


Figure 2.6. EFB Module SPI Core Interface

2.4.4. WISHBONE Controller (for PLL)

The WISHBONE interface of the EFB module can be used to dynamically update the configurable settings of the phase locked loop (PLL) IPs in MachXO4 devices. Each MachXO4 device supports up to two PLLs.

By connecting the EFB WISHBONE interface to the PLL interface, PLLO has an address range from 0x00 to 0x1F, while PLL1 (if applicable) has an address range from 0x20 to 0x3F in the EFB register map.

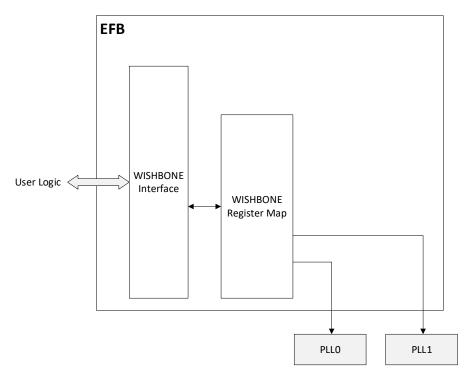


Figure 2.7. EFB Interface to Dynamic PLL

2.5. Flash Access Interface

You can access the flash logic interface using the JTAG, SPI, I2C, or WISHBONE interfaces. The MachXO4 flash memory consists of three sectors:

- Configuration flash (includes USERCODE)
- UFM
- Feature Row

The flash memory is organized in pages and is not byte addressable. Each page has 128 bits (16 bytes).

The configuration logic arbitrates access from the interfaces according to the following priority. When higher priority ports are enabled, flash access by lower priority ports is blocked:

- JTAG port All MachXO4 devices include a JTAG port that supports read/write operations to Flash. The JTAG port complies with IEEE 1149.1 and IEEE 1532 specifications. JTAG port has the highest priority for Flash operations.
- SPI target port All MachXO4 devices include an SPI target port that supports read/ write operations to Flash. Asserting the UFM/Flash target chip select (ufm_sn) enables access.
- I2C primary port All MachXO4 devices include an I2C port that supports read/write operations to Flash. The primary configuration I2C address is yyyxxxxx00, where y and x are user-programmable bits.
- WISHBONE target interface The WISHBONE interface of the EFB module enables designers to access the UFM/Flash from FPGA user logic by creating a WISHBONE controller.



Figure 2.8. EFB Module Flash Interface

The WISHBONE interface of the EFB module allows a WISHBONE host to access the configuration resources of MachXO4 devices. This is useful for reading data from configuration resources such as USERCODE and TraceID. Most importantly, this feature allows you to update the flash array of the devices while the device is in operation mode. This is a self-configuration operation. Upon power-up or a configuration refresh operation, the new content of the CFG flash is loaded into the configuration SRAM, and the device continues operation with the new configuration.

3. IP Parameter Description

The configurable attributes of the EFB Module IP are shown in the following tables. You can configure the IP by setting the attributes accordingly in the IP Catalog's Module/IP wizard of the Lattice Radiant software.

Wherever applicable, default values are in **bold**.

3.1. EFB Enables

Table 3.1. EFB Enables Attributes

Attribute	Selectable Values	Description		
User Interface Options				
Enable User Interface	Checked, Unchecked	Enables the selected user interface for user logic.		
		Some EFB features require a user interface to be enabled.		
User Interface	WISHBONE, APB	Configures either the default WISHBONE interface or the AMBA APB-compliant protocol interface to bridge WISHBONE transactions.		
User Interface Clock	1 MHz – 133 MHz, 50	Specifies the input value for the WISHBONE interface clock frequency.		
Frequency	MHz	This value also affects the required clock pre-scale, depending on the selected I2C bus performance.		
I2C Options				
Primary I2C	Checked, Unchecked	Enables access to the primary I2C (I2C1) ports.		
Primary I2C Access Type (if Primary I2C Enabled)	User Function, Flash Access	Configures whether primary I2C (I2C1) access is assigned to user functions/logic or to UFM/configuration.		
		This setting affects the primary I2C target address.		
Secondary I2C	Checked, Unchecked	Enables access to the secondary I2C (I2C2) ports.		
SPI Options				
SPI	Checked, Unchecked	Enables access to the SPI core ports.		
Timer/Counter Options				
Timer/Counter	Checked, Unchecked	Enables the Timer/Counter features.		
Allow Dynamic Register Changes (via User Interface)	Checked, Unchecked	Enables dynamic control of the Timer/Counter registers.		
PLL Options				
PLL (Dynamic Access)	Checked, Unchecked	Enables the WISHBONE ports for dynamic control of the PLL registers.		
		PLL must be included in the design, and WISHBONE ports must be enabled.		
Number of PLLs for	1,2	Configures the number of PLL for dynamic access.		
dynamic access		The number of available PLL depends on the specific MachXO4 device.		
UFM Options				
User Flash Memory	Checked, Unchecked	Enables the user flash memory access through WISHBONE or primary I2C flash access commands.		

3.2. I2C

Table 3.2. I2C Attributes

Attribute	Selectable Values	Description
Primary I2C (Primary I2C = Enabled)		
General Call Enable	Checked, Unchecked Enables general call response for the primary I2C target.	
		The general call address is 0000000 for both 7-bit or 10-bit
		addressing.

Attribute	Selectable Values	Description				
Wakeup Enable	Checked, Unchecked	Enables the Wake-up (cfg_wake) and Standby (cfg_stdby) signals from the primary I2C for the Power Controller.				
I2C Bus Performance	50 kHz, 100 kHz, 400 kHz	Specifies the input configuration for the primary I2C clock frequency as the controller.				
Clock Pre-scale Value	(Display only) 125	Displays the initial configuration of the clock pre-scale based on the set user interface (WISHBONE) clock frequency and primary I2C bus performance. The WISHBONE clock frequency is divided by the pre-scale value × 4 to produce the primary I2C controller clock frequency.				
I2C Addressing	7-bit, 10-bit	Configures whether the primary I2C uses a 7-bit or 10-bit addressing scheme on the bus.				
I2C Device Address	10000	The input address (in binary) for the primary I2C target.				
Primary I2C/ Flash Access Device Address	(Display only) 0b1000001 (User)/ 0b1000000 (Flash)	Displays the address of the primary I2C based on the input device address and the primary I2C access type.				
Secondary I2C (Secondary I2C	= Enabled)					
General Call Enable	Checked, Unchecked	Enables general call response for the secondary I2C target. The general call address is 0000000 for both 7-bit or 10-bit addressing.				
Wakeup Enable	Checked, Unchecked	Enables the Wake-up (cfg_wake) and Standby (cfg_stdby) signals from the secondary I2C for the Power Controller.				
I2C Bus Performance	50 kHz, 100 kHz, 400 kHz	Specifies the input configuration for the secondary I2C clock frequency as the controller.				
Clock Pre-scale Value (Display only) 125		Displays the initial configuration of the clock pre-scale based on the set user interface (WISHBONE) clock frequency and secondary I2C bus performance. The WISHBONE clock frequency is divided by the pre-scale value × to produce the secondary I2C controller clock frequency.				
I2C Addressing	7-bit, 10-bit	Configures whether the secondary I2C uses a 7-bit or 10-bit addressing scheme on the bus.				
I2C Device Address (shows only if Primary I2C is Disabled)	10000	The input address (in binary) for the secondary I2C target.				
Secondary I2C Device Address	evice (Display only) Displays the address of the secondary I2C based on the input address.					

3.3. SPI

Table 3.3. SPI Attributes

Attribute	Selectable Values	Description			
General (SPI = Enable	d)				
SPI Mode	Target , Controller and Target	Selects between target, or both controller and target modes for the initial mode of the SPI core. Selecting controller and target modes enables SPI Controller settings, which include Controller Clock Rate and Controller Chip Selects. This option can be updated dynamically by modifying the MSTR bit in the SPICR2 register.			

Attribute	Selectable Values	Description			
Wakeup Enable	Checked, Unchecked	Enables the SPI core to send wake-up signals (cfg_wake and cfg_stby) to the Power Controller, allowing the device to exit standby mode when the user target SPI chip select (spi_csn[0]) is driven low. This option can be updated dynamically by modifying the			
		WKUPEN_USER bit in the SPICR1 register.			
Controller Clock Rate (SPI =	Enabled AND SPI Mode = Con	ntroller and Target)			
Desired (MHz)	1-45	Specifies the input configuration for the SPI core clock when operating as a controller.			
Actual (MHz)	(Display only) 1	Displays the actual SPI core clock based on the desired input frequency. The actual clock frequency is determined by the nearest whole pre-scale value.			
Clock Pre-scale Value	(Display only) 50	Displays the initial pre-scale value configuration set in the registers, based on the actual SPI core clock.			
Controller Chip Selects (SPI	= Enabled AND SPI Mode = Co	ontroller and Target)			
Number of Chip Selects	1-8	Configures the number of SPI targets than can be connected to the SPI core when operating as a controller. This setting affects the bit width of the spi_csn signal.			
Protocol Options (SPI = Ena	bled)				
LSB First	Checked, Unchecked	Specifies the order of the serial shift of a byte of data. The data order (MSB-first or LSB-first) is programmable within the SPI core. This option can be updated dynamically by modifying the LSBF bit in the SPICR2 register.			
Inverted Clock	Checked, Unchecked	When enabled, the clock edge changes from rising to falling edge. This option can be updated dynamically by accessing the CPOL bit of the SPICR2 register.			
Phase Adjust	Checked, Unchecked	Specifies the phase change to match the application. This option can be updated dynamically by accessing the CPHA bit in the SPICR2 register.			
Target Handshake Mode Checked, Unchecked		Enables Lattice proprietary extension to the SPI protocol. This option is used when internal support circuit (such as a WISHBONE host) cannot respond with initial data within required time, and ensure SPI target read out data predictably available at high SPI clock rates. This option can be updated dynamically by accessing the SDBRE bit in the SPICR2 register.			
SPI – Interrupts					
Enable Port	Checked, Unchecked	Enables the interrupt request output signal (spi_irq) from the SPI core. This signal is intended to be connected to a WISHBONE controller and to request an interrupt when a specific condition is met.			
Tx Ready	Checked, Unchecked	An interrupt that indicates the SPI transmit data register (SPITXDR) is empty. When enabled, indicates TRDY is asserted. This option can be changed dynamically by modifying the IRQTRDYEN bit in the SPICSR register.			
Rx Ready	Checked, Unchecked	An interrupt that indicates the receive data register (SPIRXDR) contains valid receive data. When enabled, indicates RRDY is asserted. This option can be changed dynamically by modifying the IRQRRDYEN bit in the SPICSR register.			

Attribute	Selectable Values	Description				
Tx Overrun	Checked, Unchecked	An interrupt that indicates the target SPI chip select (spi_scsn) is driven low while being transacted by the SPI Controller. When enabled, indicates MDF (Mode Fault) is asserted. This option can be changed dynamically by modifying the IRQMDFEN bit in the SPICSR register.				
Rx Overrun	Checked, Unchecked	An interrupt that indicates SPIRXDR received new data before the previous data is captured. When enabled, indicates ROE is asserted. This option can be changed dynamically by modifying the IRQROEEN bit in the SPICSR register.				

3.4. Timer/Counter

Table 3.4. Timer/Counter Attributes

Attribute	Selectable Values Description					
Mode Selection						
Timer/Counter Mode	Watchdog Timer, Clear Timer on Compare (CTCM), Fast PWM, Phase/Freq Correct PWM (PFCPWM)	Configures between different Timer/Counter modes of operation. Refer to the following subsections for a detailed discussion of each mode.				
Output Function	Static, Toggle , Wave Generator, Inverted Wave Generator	Configures the function of the output signal (tc_oc) of the Timer/Counter IP. The available functions are: Static – output is static low. Toggle – output toggles based on conditions defined by the Timer/Counter settings. Wave Generator –generates a waveform based on Set/Clear conditions defined by the Timer/Counter settings. Inverted Wave Generator – generates an inverted waveform.				
Clock Selection		Benefates an intercea waveform.				
Clock Edge Selection	Positive, Negative	Selects the edge of the input clock source.				
Use On-chip Oscillator	Checked, Unchecked	Enables the use of the on-chip oscillator.				
Prescale Divider Value 0, 1 , 8, 64, 256, 1024		Configures the pre-scale value to divide the input clock prior to reaching the 16-bit counter. This option can be updated dynamically by modifying the PRESCALE[2:0] bits of the TCCR1 register.				
Enable Interrupt Register						
Overflow Checked, Unchecked		Enables an interrupt that indicates the counter matches the TCTOPO/1 register value. When enabled, indicates OVF is asserted. This option can be updated dynamically by modifying the IRQOVF bit of the TCIRQEN register. Available if Allow Dynamic Register Changes (via User Interface) i enabled.				
Output Compare Match	Checked, Unchecked	Enables an interrupt which indicates when counter matches the TCOCR0/1 register value. When enabled, indicates OCRF is asserted. This option can be updated dynamically by modifying the IRQOCRFEN bit of the TCIRQEN register. Available if Allow Dynamic Register Changes (via User Interface) is enabled.				

Attribute	Selectable Values	Description			
Input Compare Checked, Unchecked		Enables an interrupt that indicates the TC_IC input signal is asserted. When enabled, indicates ICRF is asserted. This option can be updated dynamically by modifying the IRQICRFEN bit of the TCIRQEN register. Available if Allow Dynamic Register Changes (via User Interface) is enabled.			
Standalone Overflow (no User Interface)	Checked, Unchecked	Enables the overflow interrupt without the user interface and serves as the only available interrupt request. Available only if Allow Dynamic Register Changes (via User Interface) is disabled.			
Counter Values					
Set Top Counter Value	Checked, Unchecked	Enables setting a specific Timer/Counter top value, other than the maximum.			
Timer/Counter Top	0-65535	Configures the top value of the Timer/Counter.			
Output Compare Value	0-65535	Configures the compare value of the Timer/Counter for PWM modes.			

3.4.1. Watchdog Timer Mode

Watchdog timers monitor operating behavior of a system and provide a reset or interrupt when the microcontroller of the system or embedded state machine is no longer operational.

One use case is for a microcontroller to reset the Watchdog Timer to 0x0000 before starting a process. The microcontroller must complete the process and reset the Watchdog Timer again before the timer reaches its terminal count. If the microcontroller fails to clear the timer in time, the Watchdog Timer asserts a strobe signal indicating that the time has expired. The system uses this strobe to gracefully recover the system.

Another use case is to periodically turn off system modules to save power. The Watchdog Timer can also be used to interact with the on-chip power controller of a MachXO4 device.

The most commonly used ports of the Timer/Counter in Watchdog Timer mode are the clock, reset, and interrupt.

Optionally, the user interface can be used to read time stamps from the TCICR register and update the top value of the counter.

3.4.2. Clear Timer on Compare Match Mode

CTCM (Clear Timer on Compare Match) operates as a basic counter with interrupt capability. The counter automatically clears to 0x0000 when the counter value in the TCCNT register, matches the value in the TCTOP register.

The TCTOP register value can be dynamically updated through the WISHBONE interface or assigned as a static value during IP generation. By default, the TCTOP register holds the value 0xFFFF.

The data loaded into the timer counter to define the top counter value is double-registered. The user interface controller writes the data to the TCTOPSET register, which is then automatically loaded into the TCTOP register at the moment of auto-clear. Therefore, a new top value can be written to the TCTOPSET register after the overflow flag and during the counting-up to the top value.

Updating the value of the TCTOP register changes the frequency of the Timer/Counter output signal.

Refer to the following figure for the Timer/Counter CTCM output waveform.

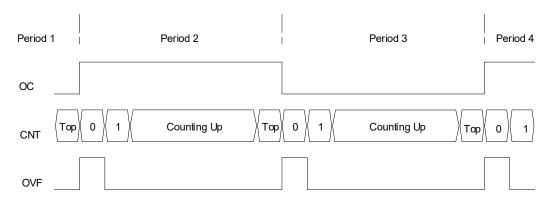


Figure 3.1. Timer/Counter CTCM Output Waveform

3.4.3. Fast PWM Mode

Pulse-Width Modulation (PWM) is a widely used technique to digitally control analog circuits. PWM uses a rectangular pulse wave whose pulse width is modulated, resulting in the variation of the average value of the waveform.

The period and the duty cycle of the waveform can be varied by loading 16-bit digital values into:

- the TCTOP register to define the top value of the counter, and
- the TCOCR register to provide a compare value for the output of the counter.

The Timer/Counter output is cleared when the counter value matches the top value that is loaded into the TCTOP register. The output is set when the value of the counter matches the compare value that is loaded into the TCOCR register. These clear/set functions can be inverted, allowing the output of the Timer/Counter to be set when the counter value matches the top value and cleared when the value of the counter matches the compare value.

The interrupt line can be used for Overflow Flag (OVF) and Output Compare Flag (OCRF).

Refer to the following figure for the PWM waveform generation, where the Timer/Counter output is configured to be set when the counter matches the top value and cleared when the counter matches the compare value.

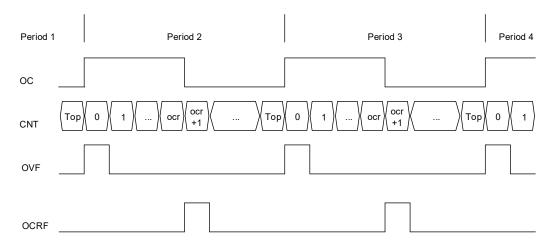


Figure 3.2. Fast PWM Mode Waveform Generation

3.4.4. Phase and Frequency Correct PWM Mode

In phase and frequency correct PWM mode, the counting direction changes from up to down when the counter is incrementing to the top value (top value minus 1). When the counter is decrementing from 0x0001 to 0x0000, the following occurs:

- The TCTOP register is updated with the value loaded in the TCTOPSET register.
- The TCOCR register is updated with the value loaded in the TCOCRSET register
- The Overflow Flag TCSR[OVF] is asserted for one clock cycle.

The output of the Timer/Counter is updated only when the counter value matches the compare value in the TCOCR register. This match occurs twice within one period:

- The first match occurs when the counter is counting up.
- The second match occurs when the counter is counting down.

The Output Compare Flag TCSR[OCRF] is asserted when both matches occur.

The output of the Timer/Counter is set on the first compare match and cleared on the second compare match.

The order of set and clear can be inverted.

This mode allows you to adjust the frequency (based on the top value) and phase (based on the compare value) of the generated waveform.

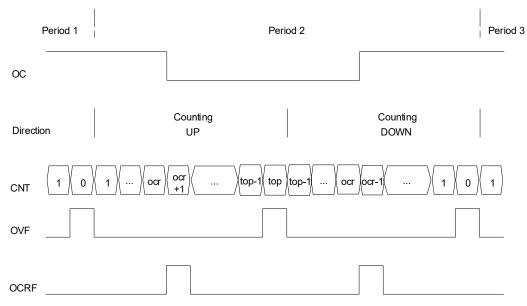


Figure 3.3. Phase/Frequency Correct PWM Mode Waveform Generation

3.5. UFM

Table 3.5. UFM Attributes

Attribute	Selectable Values	Description				
User Flash Memory (User Flas	h Memory = Enabled)					
Number of Pages	1	The input value to indicate the start page of the flash memory initialization.				
		The range is calculated based on the available device UFM resource.				
Initialization Data Start Page	(Display only)	Calculated based on the available device UFM resource.				
Initialize Flash Memory with All 0s	Checked, Unchecked	Enables initialization of the flash memory to all zeroes.				
UFM Initialization Data File	<file></file>	Specifies the input file containing initialization data for the flash memory.				
UFM Initialization Data File	Hexadecimal, Binary	Configures whether the input file format is hexadecimal or binary.				

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Signal Description

This section describes the EFB Module IP ports.

Table 4.1. EFB Module IP Ports

Port	Туре	Description
Clock and Rese		
wb_clk_i	Input	The positive-edged clock used by the WISHBONE interface register and hardened functions, supporting speeds up to 133 MHz.
wb_rst_i	Input	The synchronous reset signal of the WISHBONE interface. This reset terminates the active bus cycle. Wait 1 μ s after de-assertion before starting a WISHBONE transaction. This reset does not reset the contents of any register.
Flash Memory		
wbc_ufm_irq	Output	The interrupt request output of the user flash memory.
Wishbone Inte	erface	
wb_cyc_i	Input	Indicates a valid bus cycle on the WISHBONE interface.
wb_stb_i	Input	The strobe signal indicating the WISHBONE is the target for the current transaction on the bus. The wb_ack_o signal asserts an acknowledgment in response to the assertion of the strobe.
wb_we_i	Input	The write/read control signal. Logic low indicates a read operation, while logic high indicates a write operation.
wb_adr_i	Input	The address signal for the WISHBONE interface, which is used to select a specific EFB register during write cycles.
wb_dat_i	Input	The data signal for the WISHBONE interface, which writes data to the addressed EFB register during write cycles.
wb_dat_o	Output	The read data signal for the WISHBONE interface, which outputs the data from the addressed EFB register during read cycles.
wb_ack_o	Output	Signals that the WISHBONE cycle is complete; data written to the EFB is accepted, and data read from the EFB is valid.
I2C Interface		
i2c1_scl	Input/Output	The open-drain serial clock of the primary I2C core. This signal is an output if the I2C core is performing a controller operation and an input during target operations. This signal must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).
i2c1_sda	Input/Output	The open-drain serial data line of the primary I2C core. The signal is an output when data is transmitted from the I2C core and an input when data is received into the I2C core. This signal must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).
i2c1_irqo	Output	The interrupt request output signal of the primary I2C core. The use of this signal is for it to be connected to a WISHBONE controller and request an interrupt when a specific condition is met. These conditions are described in the Flash Access Registers section.
i2c2_scl	Input/Output	The open-drain serial clock line of the secondary I2C core. This signal is an output if the I2C core is performing a controller operation and an input during target operations. This signal can be routed to any GPIO of the MachXO4 device.
i2c2_sda	Input/Output	The open-drain data line of the secondary I2C core. This signal is an output when data is transmitted from the I2C core and an input when data is received into the I2C core. This signal can be routed to any GPIO of the MachXO4 device.
i2c2_irqo	Output	The interrupt request output signal of the secondary I2C core. The use of this signal is for it to be connected to a WISHBONE controller and request an interrupt when a specific condition is met. These conditions are described in the Flash Access Registers section.
SPI Interface		
spi_clk	Input/Output	Serial Clock of the SPI core. The signal is an output if the SPI core is a controller (MCLK) and an input if the SPI core is a target (CCLK). This signal must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).

Port	Туре	Description			
spi_miso	Input/Output	The signal is an output if the SPI core is a controller (SPISO) and an input if the SPI core is a target (SO). This signal must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).			
spi_mosi	Input/Output	The signal is an output if the SPI core is a controller (SISPI) and an input if the SPI core is a target (SI). This signal must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).			
spi_scsn	Input	User Target Chip Select (Active Low). An external SPI controller asserts this signal to transfer data to/from the SPI Controllers Transmit Data/Receive Data registers. The signal can be routed to any GPIO of MachXO4 device.			
ufm_sn	Input	Configuration Logic Chip Select (Active Low). It is dedicated for selecting the UFM/ Flash sectors. Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary).			
spi_csn	Output	Controller Chip Select (Active Low). Up to eight independent Target SPI devices can be accessed using the SPI Controller when it is in controller/target SPI mode. The signal spi_csn[0] must be brought to the top level of the user RTL design. The Radiant software automatically routes this signal to its pre-assigned pin (no user pin location constraint is necessary). The other bits (spi_csn[7:1]) can be routed to any GPIO of the MachXO4 device.			
spi_irq	Output	Interrupt request output signal of the SPI core. This signal is connected to a WISHBONE controller. It is asserted when specific conditions are met. These conditions controlled using the SPI register settings.			
Timer/Counte	er				
tc_clki	Input	Timer/Counter input clock signal. Can be connected to the on-chip oscillator. The clock signal is limited to 133 MHz.			
tc_rstn	Input	Active-low reset signal, which resets the 16-bit counter.			
tc_ic	Input	Active-high input capture trigger event, applicable for non-PWM modes with WISHBONE interface. If enabled, a rising edge of this signal is detected and synchronized to capture the counter value (TCCNT Register) and make the value accessible to the WISHBONE interface by loading it into TCICR register. The common usage is to perform a time-stamp operation with the counter.			
tc_int	Output	Interrupt signal, indicating the occurrence of a specific event such as Overflow, Output Compare Match, or Input Capture.			
tc_oc	Output	Timer/Counter output signal.			
PLL0 (Wishbo	ne)				
pll0_ack_i	Input	Acknowledgement signal from the WISHBONE target.			
		You must connect only to a PLL component that is instantiated in the design.			
pll0_dati_i	Input	Data output bus from the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_clk_o	Output	Generated clock by the WISHBONE Controller for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_rst_o	Output	Generated reset output by the WISHBONE Controller for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_addr_o	Output	Address bus from the WISHBONE Controller for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_dato_o	Output	Data bus from the WISHBONE Controller for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_we_o	Output	Generated write/read control signal for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			
pll0_stb_o	Output	Generated strobe signal for the WISHBONE target. You must connect only to a PLL component that is instantiated in the design.			

Port	Туре	Description
PLL1 (Wishbo	ne)	
pll1_ack_i	Input	Acknowledgement signal from the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_dati_i	Input	Data output bus from the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_clk_o	Output	Generated clock by the WISHBONE controller for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_rst_o	Output	Generated reset output by the WISHBONE controller for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_addr_o	Output	Address bus from the WISHBONE controller for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_dato_o	Output	Data bus from the WISHBONE controller for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_we_o	Output	Generated write/read control signal for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
pll1_stb_o	Output	Generated strobe signal for the WISHBONE target.
		You must connect only to a PLL component that is instantiated in the design.
Power Contro	ller	
cfg_wake	Output	Wake-up signal – Hardwired signal to be connected ONLY to the Power Controller of the
		MachXO4 device for functional simulation support. This signal is enabled only if the Wakeup Enable feature has been set by the I2C or SPI core settings.
cfg_stdby	Output	Stand-by signal – Hardwired signal to be connected ONLY to the Power Controller of the MachXO4 device for functional simulation support. This signal is enabled only if the Wakeup Enable feature has been set by the I2C or SPI core settings.

5. Register Description

5.1. I2C Registers

Both I2C cores communicate with the EFB WISHBONE interface through a set of control, command, status, and data registers. The following tables show the register names and their functions.

Table 5.1. I2C Functions Register Map

Offset	Register Name	Description	Access	Default
0x40	I2C_1_CR	Primary I2C Control	RW	0x00
0x41	I2C_1_CMDR	Primary I2C Command	RW	0x00
0x42	I2C_1_BR0	Primary I2C Clock Pre-scale 0	RW	0x00 ¹
0x43	I2C_2_BR1	Primary I2C Clock Pre-scale 1	RW	0x00 ¹
0x44	I2C_1_TXDR	Primary I2C Transmit Data	WO	_
0x45	I2C_1_SR	Primary I2C Status	RO	0x00
0x46	I2C_1_GCDR	Primary I2C General Call	RO	_
0x47	I2C_1_RXDR	Primary I2C Receive Data	RO	_
0x48	I2C_1_IRQ	Primary I2C IRQ	RW	_
0x49	I2C_1_IRQEN	Primary I2C IRQ Enable	RW	0x00
0x4A	12C_2_CR	Secondary I2C Control	RW	0x00
0x4B	I2C_2_CMDR	Secondary I2C Command	RW	0x00
0x4C	I2C_2_BR0	Secondary I2C Clock Pre-scale 0	RW	0x00 ¹
0x4D	I2C_2_BR1	Secondary I2C Clock Pre-scale 1	RW	0x00 ¹
0x4E	I2C_2_TXDR	Secondary I2C Transmit Data	WO	_
0x4F	I2C_2_SR	Secondary I2C Status	RO	0x00
0x50	I2C_2_GCDR	Secondary I2C General Call	RO	_
0x51	I2C_2_RXDR	Secondary I2C Receive Data	RO	_
0x52	I2C_2_IRQ	Secondary I2C IRQ	RW	_
0x53	I2C_2_IRQEN	Secondary I2C IRQ Enable	RW	0x00

Note:

Table 5.2. I2C Control (Primary/Secondary)

12C_1_CR / I2C_2_CR 0								0x40/0x4A	
Bit	7	6	5	4	3	2	1	0	
Name	I2CEN	GCEN	WKUPEN	(Reserved)	SDA_DEL_SEL[1:0]		(Rese	(Reserved)	
Default	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	_	R/W	R/W	_	_	

Note: A write to this register causes the I2C core to reset.

I2CEN

I2C System Enable Bit – This bit enables the I2C core functions. If I2CEN is cleared, the I2C core is disabled and forced into idle state.

0: I2C function is disabled

1: I2C function is enabled

GCEN

Enable bit for General Call Response – Enables the general call response in target mode.

0: Disable1: Enable

The General Call address is defined as 0000000 and works with either 7-bit or 10-bit addressing.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02287-1.1

^{1.} The hardware default is overridden by parameter configurations.

WKUPEN Wake-up from Standby/Sleep (by Target Address matching) Enable Bit – When this bit is

enabled the I2C core can send a wake-up signal to the on-chip power manager to wake the

device up from standby/sleep. Currently not supported by this IP.

0: Disable1: Enable

SDA_DEL_SEL[1:0] SDA Output Delay (Tdel) Selection.

300 ns (min) 300 ns + 2000 / [wb_clk_i frequency in MHz] (max)
 150 ns (min) 150 ns + 2000 / [wb_clk_i frequency in MHz] (max)
 75 ns (min) 75 ns + 2000 / [wb_clk_i frequency in MHz] (max)
 0 ns (min) 0 ns + 2000 / [wb_clk_i frequency in MHz] (max)

Table 5.3. I2C Command (Primary/Secondary)

I2C_1_CMDR	12C_1_CMDR / 12C_2_CMDR 0x									
Bit	7	6	5	4	3	2	1	0		
Name	STA	STO	RD	WR	ACK	CKSDIS	(Rese	erved)		
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	_	_		

STA Generate START (or Repeated START) condition (Controller operation).

STO Generate STOP condition (Controller operation).

RD Indicate Read from target (Controller operation).

WR Indicate Write to target (Controller operation).

ACK Acknowledge Option – when receiving, ACK transmission selection.

0: Send ACK1: Send NACK

CKSDIS Clock Stretching Disable. The I2C cores support a wait state or clock stretching from the

target, meaning the target can enforce a wait state if it needs time to finish the task. If desired, the CKSDIS bit can be used to disable the clock stretching. In this case, the overflow flag must be monitored. For Controller operations, set this bit to 0. Clock stretching is used by the EFB I2C Target during both *read* and *write* operations (from the Controller

perspective) when I2C Command Register bit CKSDIS = 0.

During a read operation (Target transmitting), clock stretching occurs when TXDR is empty (under-run condition). During a write operation (Target receiving) clock stretching occurs when RXDR is full (over-run condition).

Translated into I2C Status register bits, the I2C clock-stretches if TRRDY = 1. The decision to enable clock stretching is done on the 8TH SCL + 2 WISHBONE clocks.

0: Enabled1: Disabled

Table 5.4. I2C Clock Prescale 0 (Primary/Secondary)

I2C_1_BR0 / I	I2C_1_BR0 / I2C_2_BR0									
Bit	7	6	5	4	3	2	1	0		
Name		I2C_PRESCALE[7:0]								
Default	0	0 0 0 0 0 0 0								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note: The hardware default value may be overridden by EFB component instantiation parameters. See the description below.

Table 5.5. I2C Clock Prescale 1 (Primary/Secondary)

I2C_1_BR1 / I2C_2_BR1									
Bit	7	6	5	4	3	2	1	0	
Name		(Reserved) I2C_PRESCALE[9:							
Default	0	0	0	0					
Access	_	_	_	_	_	_	R/W	R/W	

Note: The hardware default value may be overridden by EFB component instantiation parameters. See the description below.

I2C_PRESCALE[9:0]

I2C Clock Prescale value. A write operation to I2C_PRESCALE [9:8] causes an I2C core reset. The WISHBONE clock frequency is divided by (I2C PRESCALE × 4) to produce the Controller I2C clock frequency supported by the I2C bus (50 kHz, 100 kHz, 400 kHz).

Notes:

- Different from transmitting a Controller, the practical limit for Target I2C bus speed support is (WISHBONE clock) / 2048. For example, the maximum WISHBONE clock frequency to support a 50 kHz Target I2C operation is 102 MHz.
- The digital value is pre-calculated during IP Generation in the GUI. The calculation is based on the WISHBONE Clock Frequency and the I2C Frequency, both of which are user-entered values. The digital value of the divider is programmed in the MachXO4 device during device programming. After power-up or device reconfiguration, the data is loaded onto the I2C 1 BR1/0 and I2C 2 BR1/0 registers.

Registers I2C 1 BR1/0 and I2C 2 BR1/0 have Read/Write access from the WISHBONE interface. You can update these clock pre-scale registers dynamically during device operation; however, care must be taken to not violate the I2C bus frequencies.

Table 5.6. I2C Transmit Data Register (Primary/Secondary)

12C_1_TXDR / I2C_2_TXDR 0x										
Bit	7	7 6 5 4 3 2 1								
Name		I2C_Transmit[7:0]								
Default	0	0 0 0 0 0 0 0								
Access	W	W	W	W	W	W	W	W		

I2C_Transmit_Data[7:0] I2C Transmit Data. This register holds the byte to be transmitted on the I2C bus during the Write Data phase. Bit 0 is the LSB and is transmitted last. When transmitting the target address, Bit 0 represents the Read/Write bit.

Table 5.7. I2C Status (Primary/Secondary)

I2C_1_SR / I2	I2C_1_SR / I2C_2_SR									
Bit	7	6	5	4	3	2	1	0		
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC		
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

TIP

Transmit In Progress. The current data byte is being transferred. Note that the TIP flag suffers one-half SCL cycle latency right after the START condition because of the signal synchronization. Also, note that this bit could be high after configuration wake-up and before the first valid I2C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

1: Byte transfer in progress

0: Byte transfer complete

BUSY

I2C Bus busy. The I2C bus is involved in transaction. This is set at START condition and cleared at STOP. Note only when this bit is set should all other I2C SR bits be treated as valid indicators for a valid transfer.

1: I2C bus busy

0: I2C bus not busy

RARC

Received Acknowledge. An acknowledge response was received by the acknowledge bit monitor. All ACK/NACK bits are monitored and reported, regardless of Controller/Target source or Read/Write mode.

1: No acknowledgement received

0: Acknowledgement received

SRW

Target Read/Write. Indicates transmit or receive mode.

Controller receiving/target transmitting

0: Controller transmitting/target receiving

Note: SRW is valid after TRRDY = 1 following a synchronization delay of up to four WISHBONE clock cycles. Do not test both SRW and TRRDY in the same WISHBONE transaction, but test SRW at least four WISHBONE clock cycles after TRRDY is tested true.

ARBL

Arbitration Lost. The core has lost arbitration in Controller mode. This bit can generate an interrupt.

1: Arbitration Lost

0: Normal

TRRDY

Transmitter or Receiver Ready. The I2C Transmit Data register is ready to receive transmit data, or the I2C Receive Data Register contains receive data (dependent upon controller/target mode and SRW status). This bit is capable of generating an interrupt.

1: Transmitter or Receiver is ready

0: Transmitter of Receiver is not ready

TROE

Transmitter/Receiver Overrun Error. A transmit or receive overrun error has occurred (dependent upon controller /target mode and SRW status).

Note: When acting as a transmitter (Controller Write or Target Read) a No Acknowledge received asserts TROE indicating a possible orphan data byte exists in TXDR. This bit can generate an interrupt.

1: Transmitter or Receiver Overrun detected or NACK received

0: Normal

HGC

Hardware General Call Received. A hardware general call has been received in target mode. The corresponding command byte will be available in the General Call Data Register. This bit can generate an interrupt.

1: General Call Received in target mode

0: Normal

Table 5.8. I2C General Call Data Register (Primary/Secondary)

I2C_1_GCDR	I2C_1_GCDR / I2C_2_GCDR									
Bit	7	7 6 5 4 3 2 1								
Name		I2C_GC_Data[7:0]								
Default	_									
Access	R	R	R	R	R	R	R	R		

I2C_GC _Data[7:0]

I2C General Call Data. This register holds the second (command) byte of the General Call transaction on the I2C bus.

Table 5.9. I2C Receive Data Register (Primary/Secondary)

I2C_1_RXDR	1_RXDR / I2C_2_RXDR										
Bit	7	7 6 5 4 3 2 1									
Name		I2C_Receive_Data[7:0]									
Default	_										
Access	R	R	R	R	R	R	R	R			

12C_ Receive _Data[7:0] I2C Receive Data. This register holds the byte captured from the I2C bus during the Read Data phase. Bit 0 is the LSB and is received last.

Table 5.10. I2C Interrupt Status (Primary/Secondary)

I2C_1_IRQ / I	I2C_1_IRQ / I2C_2_IRQ								
Bit	7	6	5	4	3	2	1	0	
Name		(Rese	rved)		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC	
Default	_	_	_	_	_	_	_	_	
Access	_	_	_	_	R/W	R/W	R/W	R/W	

IRQARBL Interrupt Status for Arbitration Lost. When enabled, indicates ARBL is asserted. Write a 1 to

this bit to clear the interrupt.

1: Arbitration Lost Interrupt

0: No interrupt

IRQTRRDY Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY is

asserted. Write a $\emph{1}$ to this bit to clear the interrupt.

1: Transmitter or Receiver Ready Interrupt

0: No interrupt

IRQTROE Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled,

indicates TROE is asserted. Write a 1 to this bit to clear the interrupt.

1: Transmitter or Receiver Overrun or NACK received Interrupt

0: No interrupt

IRQHGC Interrupt Status for Hardware General Call Received. When enabled, indicates HGC is

asserted. Write a 1 to this bit to clear the interrupt.

1: General Call Received in target mode Interrupt

0: No interrupt

Table 5.11. I2C Interrupt Enable (Primary/Secondary)

I2C_1_IRQEN		0x49/0x53						
Bit	7	6	5	4	3	2	1	0
Name		(Rese	rved)		IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	R/W	R/W	R/W	R/W

IRQARBLEN Interrupt Enable for Arbitration Lost.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready.

1: Interrupt generation enabled

0: Interrupt generation disabled

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02287-1.1

IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received.

Interrupt generation enabled
 Interrupt generation disabled

IRQHGCEN Interrupt Enable for Hardware General Call Received.

Interrupt generation enabled
 Interrupt generation disabled

5.2. SPI Registers

Table 5.12. SPI Functions Register Map

Offset	Register Name	Description	Access	Default
0x54	SPICR0	Control Register 0	RW	0x00
0x55	SPICR1	Control Register 1	RW	0x00 ¹
0x56	SPICR2	Control Register 2	RW	0x00 ¹
0x57	SPIBR	Clock Pre-scale	RW	0x00 ¹
0x58	SPICSR	Controller Chip Select	RW	0x00
0x59	SPITXDR	Transmit Data	WO	_
0x5A	SPISR	Status	RO	_
0x5B	SPIRXDR	Receive Data	RO	_
0x5C	SPIIRQ	Interrupt Request	RW	_
0x5D	SPIIRQEN	Interrupt Request Enable	RW	0x00

Note:

Table 5.13. SPI Control 0

SPICR0								0x54
Bit	7	6	5	4	3	2	1	0
Name	TIdle_X0	CNT[1:0]	Т	TTrail_XCNT[2:0] TLead_XCNT[2:0)]
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: A write to this register causes the SPI core to reset.

Tidle_XCNT[1:0] Idle Delay Count. Specifies

Idle Delay Count. Specifies the minimum interval prior to the Controller Chip Select low assertion (controller mode only), in SCK periods.

00: ½
01: 1
10: 1.5
11: 2

TTrail_XCNT[2:0]

Trail Delay Count. Specifies the minimum interval between the last edge of SCK and the high deassertion of Controller Chip Select (controller mode only), in SCK periods.

000: ½
001: 1
010: 1.5

111: 4

^{1.} The hardware default is overridden by parameter configurations.

TLead XCNT[2:0]

Lead Delay Count. Specifies the minimum interval between the Controller Chip Select low assertion and the first edge of SCK (controller mode only), in SCK periods.

000: ½
001: 1
010: 1.5

111: 4

...

Table 5.14. SPI Control 1

SPICR1								0x55
Bit	7	6	5	4	3	2	1	0
Name	SPE	WKUPEN_USER	WKUPEN_CFG	TXEDGE	(Reserved)			
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	_	_	_	_

Note: A write to this register causes the SPI core to reset.

SPE

This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state.

0: SPI disabled

1: SPI enabled, port pins are dedicated to SPI functions

WKUPEN_USER

Wake-up Enable through User. Enables the SPI core to send a wake-up signal to the on-chip Power Controller to wake the part from Standby mode when the target SPI chip select (spi_scsn) is driven low.

0: Wakeup disabled

1: Wakeup enabled

WKUPEN_CFG

Wake-up Enable Configuration. Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration target SPI chip select (ufm_sn) is driven low.

0: Wakeup disabled

1: Wakeup enabled

TXEDGE

Data Transmit Edge. Enables Lattice proprietary extension to the SPI protocol. Selects which clock edge to transmit SPI data.

0: Transmit data on the MCLK/CCLK edge defined by SPICR2[CPOL] and SPICR2[CPHA].

1: Transmit data ½ MCLK/CCLK earlier than defined by SPICR2[CPOL] and SPICR2[CPHA].

Table 5.15. SPI Control 2

SPICR2								0x56
Bit	7	6	5	4	3	2	1	0
Name	MSTR	MCSH	SDBRE	(Reserved)	(Reserved)	CPOL	СРНА	LSBF
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	_	_	1	_	_

Note: A write to this register causes the SPI core to reset.

MSTR

SPI Controller/Target Mode. Selects the controller/target operation mode of the SPI core. Changing this bit forces the SPI system into idle state.

0: SPI is in target mode

1: SPI is in controller mode

MCSH

SPI Controller CSSPIN Hold. Holds the Controller chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the WISHBONE clock has been divided by a value greater than four (4).

- 0: Controller running as normal
- 1: Controller holds chip select low even if there is no data to be transmitted

SDBRE

Target Dummy Byte Response Enable. Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (for example, WISHBONE host) cannot respond with initial data within the required time, and ensure the target read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes are transmitted in response to a SPI target read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the WISHBONE host, a single byte of 0x00 is transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI controller should scan for the initial 0x00 byte when reading the SPI target to indicate the beginning of actual data.

- 0: Normal target SPI operation.
- 1: Lattice proprietary target dummy byte response enabled

Note: This mechanism only applies to the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

CPOL

SPI Clock Polarity. Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In controller mode, a change of this bit aborts a transmission in progress and forces the SPI system into idle state.

- 0: Active-high clocks selected
- 1: Active-low clocks selected

CPHA

SPI Clock Phase. Selects the SPI clock format. In controller mode, a change of this bit aborts a transmission in progress and forces the SPI system into idle state.

- O: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.
- 1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge.

Note: When CPHA=1, you must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily.

Target SPI Configuration mode supports default setting only for CPOL and CPHA.

LSBF

LSB-First. LSB appears first on the SPI interface. In controller mode, a change of this bit aborts a transmission in progress and forced the SPI system into idle state.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7.

- 0: Data is transferred, most significant bit (MSB) first.
- 1: Data is transferred, least significant bit (LSB) first.

Refer to the following timing diagrams for the behaviors of the SPI Control registers.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPLIG-02287-1 1

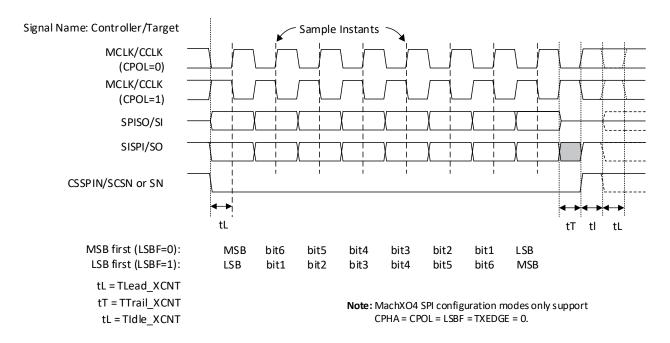


Figure 5.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

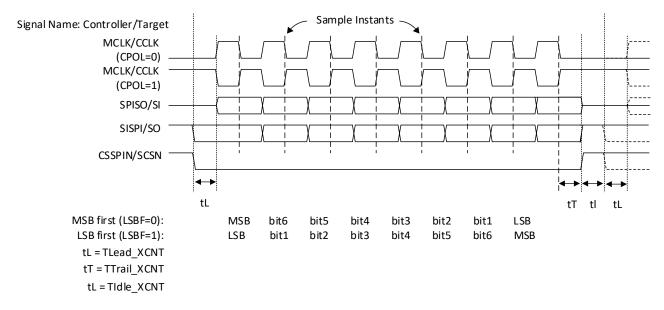


Figure 5.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)

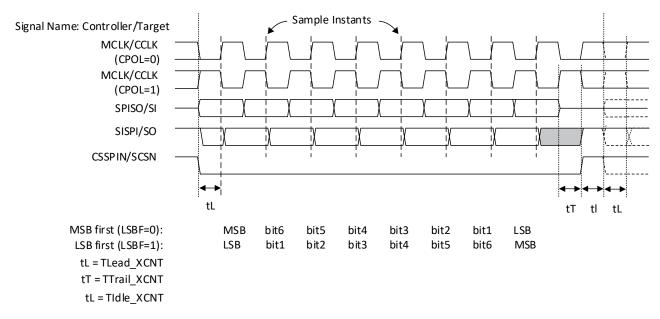


Figure 5.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)

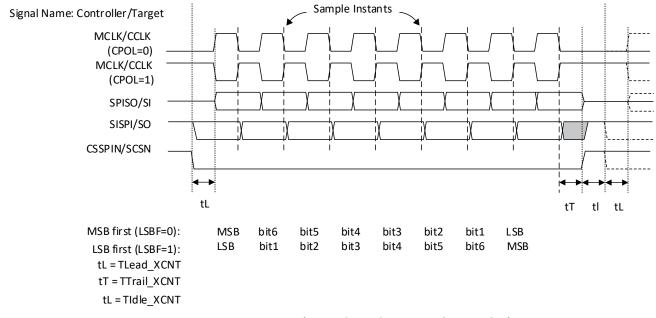


Figure 5.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)

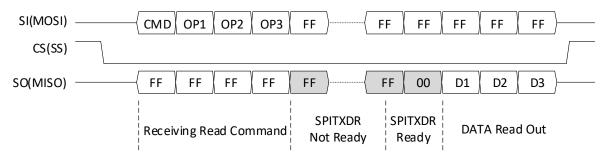


Figure 5.5. Target SPI Dummy Byte Response (SPICR2[SDBRE]) Timing

Table 5.16. SPI Clock Pre-scale

SPIBR	SPIBR 0x57									
Bit	7	6	5	4	3	2	1	0		
Name	(Rese	erved)		DIVIDER[5:0]						
Default ¹	0	0	0	0	0	0	0	0		
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters. See the discussion below.

DIVIDER[5:0]

SPI Clock Pre-scale value. The WISHBONE clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register causes an SPI core reset. The DIVIDER value must be greater than 1.

Note: The digital value is calculated by IP Catalog when the SPI core is configured in the SPI tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the SPI Frequency, both of which are user-entered values. The digital value of the divider is programmed in the MachXO4 device during device programming. After power-up or device reconfiguration, the data is loaded into the SPIBR register.

Register SPIBR has read/write access from the WISHBONE interface. The clock pre-scale register can be dynamically updated during device operation.

Table 5.17. SPI Controller Chip Select

SPICSR 0x5									
Bit	7	6	5	4	3	2	1	0	
Name	CSN_7	CSN_6	CSN_5	CSN_4	CSN_3	CSN_2	CSN_1	CSN_0	
Default	0	0	0	0	0	0	0	0	
Access	R/W								

CSN [7:0]

SPI Controller Chip Selects. Used in controller mode for asserting a specific Controller Chip Select line. The register has eight bits, enabling the SPI core to control up to eight external SPI target devices. Each bit represents one controller chip select line (Active-Low). Bits [7:1] may be connected to any I/O pin through the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has read/write access from the WISHBONE interface. A write operation on this register causes the SPI core to reset.

Table 5.18. SPI Transmit Data Register

SPITXDR	SPITXDR 0x5									
Bit	7	6	5	4	3	2	1	0		
Name		SPI_Transmit_Data[7:0]								
Default	_	_	_	_	_	_	_	_		
Access	W	W	W	W	W	W	W	W		

SPI_Transmit_Data[7:0] SPI Transmit Data. This register holds the byte to be transmitted on the SPI bus. Bit 0 in this register is LSB, and is transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1. Note: When operating as a target, SPITXDR must be written when SPISR[TRDY] is 1 and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. This timing requires at least one protocol dummy byte be included for all target SPI read operations.

Table 5.19. SPI Status

SPISR 0x5A										
Bit	7	6	5	4	3	2	1	0		
Name	TIP	(Rese	(Reserved)		RRDY	(Reserved)	ROE	MDF		
Default	0	_	_	0	0	_	0	0		
Access	R	_	_	R	R	_	R	R		

TIP SPI Transmitting In Progress. Indicates the SPI port is actively transmitting/receiving data.

0: SPI Transmitting completed

1: SPI Transmitting in progress

TRDY SPI Transmit Ready. Indicates the SPI transmit data register (SPITXDR) is empty. This bit is

cleared by a write to SPITXDR. This bit is capable of generating an interrupt.

0: SPITXDR is not empty

1: SPITXDR is empty

RRDY SPI Receive Ready. Indicates the receive data register (SPIRXDR) contains valid receive data.

This bit is cleared by a read access to SPIRXDR. This bit is capable of generating an interrupt.

0: SPIRXDR does not contain data

1: SPIRXDR contains valid receive data

ROE Receive Overrun Error. Indicates SPIRXDR receives new data before the previous data is

read. The previous data is lost. This bit is capable of generating an interrupt.

0: Normal

1: Receiver Overrun detected

MDF Mode Fault. Indicates the Target SPI chip select (spi_scsn) is driven low while

SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1, or SPICR2. This bit is

capable of generating an interrupt.

0: Normal

1: Mode Fault detected

Table 5.20. SPI Receive Data Register

SPIRXDR	SPIRXDR 02									
Bit	7	6	5	4	3	2	1	0		
Name		SPI_Receive_Data[7:0]								
Default	0	0 0 0 0 0 0 0								
Access	R	R	R	R	R	R	R	R		

SPI_Receive_Data[7:0] SPI Receive Data. This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and is received last when LSBF=0 or first when LSBF=1.

Table 5.21. SPI Interrupt Status

SPIIRQ 0x50										
Bit	7	6	5	4	3	2	1	0		
Name		(Reserved)			IRQRRDY	(Reserved)	IRQROE	IRQMDF		
Default	_	_	_	0	0	_	0	0		
Access	_	_	_	R/W	R/W	_	R/W	R/W		

IRQTRDY Interrupt Status for SPI Transmit Ready. When enabled, indicates SPISR[TRDY] is asserted.

Write a 1 to this bit to clear the interrupt.

1: SPI Transmit Ready Interrupt

0: No interrupt

IRQRRDY Interrupt Status for SPI Receive Ready. When enabled, indicates SPISR[RRDY] is asserted.

Write a 1 to this bit to clear the interrupt.

1: SPI Receive Ready Interrupt

0: No interrupt

IRQROE Interrupt Status for Receive Overrun Error. When enabled, indicates ROE is asserted. Write a

1 to this bit to clear the interrupt.

1: Receive Overrun Error Interrupt

0: No interrupt

IRQMDF Interrupt Status for Mode Fault. When enabled, indicates MDF is asserted. Write a 1 to this

bit to clear the interrupt.

1: Mode Fault Interrupt

0: No interrupt

Table 5.22. SPI Interrupt Enable

SPIIRQEN	SPIIRQEN 0x5D										
Bit	7	6	5	4	3	2	1	0			
Name		(Reserved)			IRQRRDYEN	(Reserved)	IRQROEEN	IRQMDFEN			
Default	_	_	_	0	0	_	0	0			
Access	_	1	1	R/W	R/W	1	R/W	R/W			

IRQTRDYEN Interrupt Enable for SPI Transmit Ready.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRRDYEN Interrupt Enable for SPI Receive Ready.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQROEEN Interrupt Enable for Receive Overrun Error.

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQMDFEN Interrupt Enable for Mode Fault.

1: Interrupt generation enabled

0: Interrupt generation disabled

5.3. Timer/Counter Registers

Table 5.23. Timer/Counter Functions Register Map

Offset	Register Name	Description	Access	Default
0x5E	TCCR0	Control Register 0	RW	0x00 ¹
0x5F	TCCR1	Control Register 1	RW	0x00 ¹
0x60	TCTOPSET0	Set Top Counter Value [7:0]	WO	0x00 ¹
0x61	TCTOPSET1	Set Top Counter Value [15:8]	WO	0x00 ¹
0x62	TCOCRSET0	Set Compare Counter Value [7:0]	WO	0x00 ¹
0x63	TCOCRSET1	Set Compare Counter Value [15:8]	WO	0x00 ¹
0x64	TCCR2	Control Register 2	RW	0x00 ¹
0x65	TCCNT0	Counter Value [7:0]	RO	_
0x66	TCCNT1	Counter Value [15:8]	RO	_
0x67	ТСТОРО	Current Top Counter Value [7:0]	RO	_
0x68	TCTOP1	Current Top Counter Value [15:8]	RO	_
0x69	TCOCR0	Current Compare Counter Value [7:0]	RO	_
0x6A	TCOCR1	Current Compare Top Counter Value [15:8]	RO	_
0x6B	TCICR0	Current Capture Counter Value [7:0]	RO	_
0x6C	TCICR1	Current Capture Counter Value [15:8]	RO	_
0x6D	TCSR0	Status Register	RW	_
0x6E	TCIRQ	Interrupt Request	RW	_
0x6F	TCIRQEN	Interrupt Request Enable	RW	0x00¹

Note:

Table 5.24. Timer/Counter Control

TCCRO 0x5E											
Bit	7	6	6 5 4 3 2 1								
Name	RSTEN	(Reserved)	F	PRESCALE[2:0]		CLKEDGE	CLKSEL	(Reserved)			
Default	0	0		0			0	0			
Access	R/W	_		R/W		R/W	R/W	R/W			

RSTEN Enables the reset signal (tc rstn) to enter the Timer/Counter core from the PLD logic.

1: External reset enabled

0: External reset disabled

PRESCALE[2:0] Used to divide the clock input to the Timer/Counter.

000: Static (clock disabled)

001: Divide by 1
010: Divide by 8
011: Divide by 64
100: Divide by 256
101: Divide by 1024
110: (Reserved setting)
111: (Reserved setting)

CLKEDGE Used to select the edge of the input clock source. The Timer/Counter updates states on

the edge of the input clock source.

0: Rising Edge

1: Falling Edge

^{1.} The hardware default is overridden by parameter configurations.

CLKSEL Defines the source of the input clock.

0: Clock Tree

1: On-chip Oscillator

Table 5.25. Timer/Counter Control 1

TCCR1 0x5F											
Bit	7	6	5	4	3	2	1	0			
Name	(Reserved)	SOVFEN	ICEN	TSEL	OCM	1[1:0]	TCM	[1:0]			
Default	0	0	0	0	0 0)				
Access	_	R/W	R/W	R/W	R,	R/W R/W		W			

SOVFEN

Enables the overflow flag to be used with the interrupt output signal. It is set when the Timer/Counter is standalone, with no WISHBONE interface.

0: Disabled1: Enabled

Note: When this bit is set, other flags such as the OCRF and ICRF is not routed to the interrupt output signal.

ICEN

Enables the ability to perform a capture operation of the counter value. You can assert the tc_ic signal and load the counter value onto the TCICRO/1 registers. The captured value can serve as a timer stamp for a specific event.

0: Disabled1: Enabled

TSEL

Enables the auto-load of the counter with the value from TCTOPSETO/1. When disabled, the value 0xFFFF is auto-loaded.

0: Disabled1: Enabled

OCM[1:0]

Select the function of the output signal of the Timer/Counter. The available functions are Static, Toggle, Set/Clear and Clear/Set.

All Timer/Counter modes:

00: The output is static low

In non-PWM modes:

01: Toggle on TOP match

In Fast PWM mode:

10: Clear on TOP match, Set on OCR match.

11: Set on TOP match, Clear on OCR match.

In Phase and Frequency Correct PWM mode:

10: Clear on OCR match when the counter is incrementing.

Set on OCR match when counter is decrementing.

11: Set on OCR match when the counter is incrementing.

Clear on OCR match when the counter is decrementing.

TCM[1:0]

Timer Counter Mode. Defines the mode of operation for the Timer/Counter.

00: Watchdog Timer Mode

01: Clear Timer on Compare Match Mode

10: Fast PWM Mode

11: Phase and Frequency Correct PWM Mode

Table 5.26. Timer/Counter Set Top Counter Value 0

TCTOPSET0 0x60										
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[7:0]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

Table 5.27. Timer/Counter Set Top Counter Value 1

TCTOPSET1	TCTOPSET1 0x61									
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[15:8]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCTOPSET0/1 is loaded to the TCTOP0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter section for more details.

TCTOPSET0 register holds the lower eight bits [7:0] of the top value. TCTOPSET1 register holds the upper eight bits [15:8] of the top value.

Table 5.28. Timer/Counter Set Compare Counter Value 0

TCOCRSET0	0 Oxi								
Bit	7	6	5	4	3	2	1	0	
Name		TCOCRSET[7:0]							
Default ¹	1	1	1	1	1	1	1	1	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

Table 5.29. Timer/Counter Set Compare Counter Value 1

TCOCRSET1	TCOCRSET1 C									
Bit	7	6	5	4	3	2	1	0		
Name		TCOCRSET[15:8]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCOCRSETO/1 is loaded to the TCOCRO/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter section for more details.

TCOCRSET0 register holds the lower 8-bit value [7:0] of the compare value. TCOCRSET1 register holds the upper 8-bit value[15:8] of the compare value.

Table 5.30. Timer/Counter Control 2

14016 3.30. 11	iner/Counter	Control 2						
TCCR2								
Bit	7	6	5	4	3	2	1	0
Name			(Reserved)			WBFORCE	WBRESETE	WBPAUSE
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	_	R/W	R/W	R/W

WBFORCE In non-PWM modes, forces the output of the counter, as if the counter value matches the

compare (TCOCR) value or it matches the top value (TCTOP).

0: Disabled

1: Enabled

WBRESET Reset the counter from the WISH

Reset the counter from the WISHBONE interface by writing a 1 to this bit. Manually reset to 0. The rising edge is detected in the WISHBONE clock domain, and the counter is reset synchronously on the next tc_clki. Due to the clock domain crossing, there is a one-clock uncertainty when the reset is effective. This bit has higher priority than WBPAUSE.

0: Disabled1: Enabled

WBPAUSE Pause the 16-bit counter

1: Pause0: Normal

Table 5.31. Timer/Counter Counter Value 0

TCCNT0										
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[7:0]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Table 5.32. Timer/Counter Counter Value 1

TCCNT1									
Bit	7	6	5	4	3	2	1	0	
Name		TCCNT[15:8]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold the counter value. The WISHBONE host has read-only access to these registers.

TCCNT0 register holds the lower 8-bit value [7:0] of the counter value. TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

Table 5.33. Timer/Counter Current Top Counter Value 0

тсторо										
Bit	7	6	5	4	3	2	1	0		
Name		TCTOP[7:0]								
Default	1	1	1	1	1	1	1	1		
Access	R	R	R	R	R	R	R	R		

Table 5.34. Timer/Counter Current Top Counter Value 1

тсторо									
Bit	7	6	5	4	3	2	1	0	
Name		TCTOP[15:8]							
Default	1	1	1	1	1	1	1	1	
Access	R	R	R	R	R	R	R	R	

Registers TCTOP0 and TCTOP1 are 8-bit registers, which combined, receive a 16-bit value from the TCTOP-SET0/1. The data stored in these registers represents the top value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter section for more details.

TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1 register holds the upper 8-bit value [15:8] of the top value.

Table 5.35. Timer/Counter Current Compare Counter Value 0

TCOCR0									
Bit	7	6	5	4	3	2	1	0	
Name		TCOCR[7:0]							
Default	1	1	1	1	1	1	1	1	
Access	R	R	R	R	R	R	R	R	

Table 5.36. Timer/Counter Current Compare Counter Value 1

TCOCR1		0								
Bit	7	6	5	4	3	2	1	0		
Name		TCOCR[15:8]								
Default	1	1	1	1	1	1	1	1		
Access	R	R	R	R	R	R	R	R		

Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined, receive a 16-bit value from the TCO-CRSET0/1. The data stored in these registers represents the compare value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter section for more details.

TCOCR0 register holds the lower 8-bit value [7:0] of the compare value. TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Table 5.37. Timer/Counter Current Capture Counter Value 0

TCICR0									
Bit	7	6	5	4	3	2	1	0	
Name		TCICR[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Table 5.38. Timer/Counter Current Capture Counter Value 1

TCICR1									
Bit	7	6	5	4	3	2	1	0	
Name		TCICR[15:8]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Registers TCICRO and TCICR1 are 8-bit registers, and when combined, they can hold the counter value. The counter value is loaded onto these registers once a trigger event, tc_ic IP signal, is asserted. The capture value is commonly used as a timestamp for a specific system event. The WISHBONE host has read-only access to these registers.

TCICRO register holds the lower 8-bit value [7:0] of the counter value. TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Table 5.39. Timer/Counter Status Register

TCSR0							0x6D	
Bit	7	6	5	4	3	2	1	0
Name		(Res	erved)		BTF	ICRF	OCRF	OVF
Default	_					0	0	0
Access	_	_	_	_	R	R	R	R

BTF Bottom Flag. Asserted when the counter reaches the value of zero. A write operation to this

register clears this flag.

Counter has reached zero 1:

0: Counter has not reached zero

ICRF Capture Counter Flag. Asserted when the TC_IC input signal is asserted. The counter value is

captured into the TCICRO/1 registers. A write operation to this register clears this flag. This

bit is capable of generating an interrupt. TC_IC signal asserted

0: Normal

1:

OCRF Compare Match Flag. Asserted when counter matches the TCOCRO/1 register value. A write

operation to this register clears this flag. This bit is capable of generating an interrupt.

1: Counter match

0: Normal

OVF Overflow Flag. Asserted when the counter matches the TCTOP0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

> 1: Counter match

0: Normal

Table 5.40. Timer/Counter Interrupt Status

TCIRQ	0x6									
Bit	7	6	5	4	3	2	1	0		
Name			(Reserved)			IRQICRF	IRQOCRF	IRQOVF		
Default	0	0 0 0 0 0					0	0		
Access	_	_	_	_	_	R/W	R/W	R/W		

IRQICRF Interrupt Status for Capture Counter Flag. When enabled, indicates ICRF is asserted. Write a 1 to this bit to clear the interrupt.

> 1: Capture Counter Flag Interrupt

0: No interrupt

IRQOCRF Interrupt Status for Compare Match Flag. When enabled, indicates OCRF is asserted. Write a

1 to this bit to clear the interrupt.

1: Compare Match Flag Interrupt

0: No interrupt

IRQOVF Interrupt Status for Overflow Flag. When enabled, indicates OVF is asserted. Write a 1 to this

bit to clear the interrupt.

1: Overflow Flag Interrupt

0: No interrupt

Table 5.41. Timer/Counter Interrupt Enable

TCIRQEN	RQEN 0x6F									
Bit	7	6	5	4	3	2	1	0		
Name			(Reserved)			IRQICRFEN	IRQOCRFEN	IRQOVFEN		
Default	0	0	0	0	0	0				
Access	_	_	_	_	_	R/W	R/W	R/W		

IRQICRFEN Interrupt Enable for Capture Counter Flag.

> 1: Interrupt generation enabled 0: Interrupt generation disabled

IRQOCRFEN Interrupt Enable for Compare Match Flag.

> 1: Interrupt generation enabled 0: Interrupt generation disabled

Interrupt Enable for Overflow Flag. **IRQOVFEN**

> 1: Interrupt generation enabled 0: Interrupt generation disabled

5.4. **Flash Access Registers**

The WISHBONE target interface of the EFB module enables you to access the flash interface directly from the FPGA core logic. The WISHBONE bus signals are utilized by a WISHBONE host that you can implement using the general-purpose FPGA resources.

The WISHBONE interface communicates to the configuration logic through a set of data, control, and status registers. The following tables show the register names and their functions.

Table 5.42. Flash Memory Functions Register Map

Offset	Register Name	Description	Access	Default
0x70	CFGCR	Control	RW	0x00
0x71	CFGTXDR	Transmit Data	WO	0x00
0x72	CFGSR	Status	RO	0x00
0x73	CFGRXDR	Receive Data	RO	0x00
0x74	CFGIRQ	Interrupt Request	RW	0x00
0x75	CFGIRQEN	Interrupt Request Enable	RW	0x00

Table 5.43. Flash Memory Control

CFGCR								0x70
Bit	7	6	5	4	3	2	1	0
Name	WBCE	RSTE			(Rese	rved)		
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	_	-	1	_	_	_

WBCE WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write

> connection to the Flash logic. This bit must be set prior to executing any command through the WISHBONE port. Likewise, this bit must be cleared to terminate the command. For more information on framing WISHBONE commands, see the Command and Data Transfers to Flash Space section.

Enabled

0: Disabled

1:

48

RSTE

WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is level sensitive. After setting this bit to 1, it must be cleared to 0 for normal operation.

1: Reset

0: Normal operation

Table 5.44. Flash Memory Transmit Data

CFGTXDR	C								
Bit	7	6	5	4	3	2	1	0	
Name		CFG_Transmit_Data[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	

CFG_Transmit_Data[7:0] CFG Transmit Data. This register holds the byte to be written to the Flash logic. Bit 0 is the LSB.

Table 5.45. Flash Memory Status

CFGSR 0x72									
Bit	7	6	5	4	3	2	1	0	
Name	WBCACT	(Reserved)	TXFE	TXFF	RXFE	RXFF	SSPIACT	12CACT	
Default	0	0	0	0	0	0	0	0	
Access	R	_	R	R	R	R	R	R	

WBCACT

WISHBONE Bus to Configuration Logic Active. Indicates that the WISHBONE to configuration interface is active and the connection is established.

1: WISHBONE Active

0: WISHBONE not Active

TXFE

Transmit FIFO Empty. Indicates that the Transmit Data register is empty. This bit can generate an interrupt.

1: FIFO empty

0: FIFO not empty

TXFF

Transmit FIFO Full. Indicates that the Transmit Data register is full. This bit can generate an interrupt.

1: FIFO full

0: FIFO not full

RXFE

Receive FIFO Empty. Indicates that the Receive Data register is empty. This bit can generate an interrupt.

1: FIFO empty

0: FIFO not empty

RXFF

Receive FIFO Full. Indicates that the Transmit Data register is full. This bit can generate an

interrupt.

1: FIFO full

0: FIFO not full

SSPIACT

Target SPI Active. Indicates the Target SPI port has started actively communicating with the Configuration Logic while WBCE is enabled. This port has priority over the I2C and WISHBONE ports. It pre-empts any existing, and prohibits any new, lower priority transaction. This bit can generate an interrupt. SPI Access is currently not supported in this IP.

1: Target SPI port active

0: Target SPI port not active

I2CACT

I2C Active. Indicates the I2C port has started actively communicating with the Configuration Logic while WBCE is enabled. This port has priority over the WISHBONE ports. It pre-empts any existing, and prohibits any new WISHBONE transaction. This bit can generate an interrupt.

1: I2C port active

0: I2C port not active

Table 5.46. Flash Memory Receive Data

CFGRXDR								0x73	
Bit	7	6	5	4	3	2	1	0	
Name		CFG_Receive_Data[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

CFG_Receive_Data[7:0] CFG Receive Data. This register holds the byte read from the Flash logic. Bit 0 in this register is the LSB.

Table 5.47. Flash Memory Interrupt Status

CFGIRQ								0x74
Bit	7	6	5	4	3	2	1	0
Name	(Rese	rved)	IRQTXFE	IRQTXFF	IRQRXFE	IRQRXFF	IRQSSPIACT	IRQI2CACT
Default	0	0	0	0	0	0	0	0
Access	_	-	R/W	R/W	R/W	R/W	R/W	R/W

IRQTXFE

Interrupt Status for Transmit FIFO Empty. When enabled, indicates TXFE is asserted. Write a 1 to this bit to clear the interrupt.

1: Transmit FIFO Empty Interrupt

0: No interrupt

IRQTXFF

Interrupt Status for Transmit FIFO Full. When enabled, indicates TXFF is asserted. Write a 1 to this bit to clear the interrupt.

1: Transmit FIFO Full Interrupt

0: No interrupt

IRQRXFE

Interrupt Status for Receive FIFO Empty. When enabled, indicates RXFE is asserted. Write a 1 to this bit to clear the interrupt.

1: Receive FIFO Empty Interrupt

0: No interrupt

IRQRXFF

Interrupt Status for Receive FIFO Full. When enabled, indicates RXFF is asserted. Write a 1 to this bit to clear the interrupt.

1: Receive FIFO Full Interrupt

0: No interrupt

IRQSSPIACT Interrupt Status for Target SPI Active. When enabled, indicates SSPIACT is asserted. Write a 1

to this bit to clear the interrupt. SPI Access is currently not supported in this IP.

1: Target SPI Active Interrupt

0: No interrupt

IRQI2CACT Interrupt Status for I2C Active. When enabled, indicates I2CACT is asserted. Write a 1 to this

bit to clear the interrupt.

1: I2C Active Interrupt

0: No interrupt

Table 5.48. Flash Memory Interrupt Enable

CFGIRQEN	CFGIRQEN 0x75								
Bit	7	6	5	4	3	2	1	0	
Name	(Rese	erved)	IRQTXFEEN	IRQTXFFEN	IRQRXFEEN	IRQRXFFEN	IRQSSPIACTEN	IRQI2CACTEN	
Default	0	0	0	0	0	0	0	0	
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

IRQTXFEEN Interrupt Enable for Transmit FIFO Empty.

Interrupt generation enabled
 Interrupt generation disabled

IRQTXFFEN Interrupt Enable for Transmit FIFO Full.

Interrupt generation enabled
 Interrupt generation disabled

IRQRXFEEN Interrupt Enable for Receive FIFO Empty.

Interrupt generation enabled
 Interrupt generation disabled

IRQRXFFEN Interrupt Enable for Receive FIFO Full.

Interrupt generation enabled
 Interrupt generation disabled

IRQSSPIACTEN Interrupt Enable for Target SPI Active.

Interrupt generation enabled
 Interrupt generation disabled

IRQI2CACTEN Interrupt Enable for I2C Active.

Interrupt generation enabled
 Interrupt generation disabled

Table 5.49. Unused (Reserved) Register

UNUSED	0x7(
Bit	7	6	5	4	3	2	1	0	
Name		(Reserved)							
Default	0	0	0	0	0	0	0	0	
Access	_	_	_	_	_	_	_	_	

Table 5.50. EFB Interrupt Source

EFBIRQ 0x								
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)			CFG_INT	TC_INT	SPI_INT	I2C2_INT	I2C1_INT
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

CFG_INT

Flash Interrupt Source. Indicates EFB interrupt source is from the Flash Block. Use CFGIRQ for further source resolution.

1: A bit is set in register CFGIRQ

0: No interrupt

TC_INT

Timer/Counter Interrupt Source. Indicates EFB interrupt source is from the Timer/Counter Block. Use TCIRQ for further source resolution.

1: A bit is set in register TCIRQ

0: No interrupt

SPI_INT

SPI Interrupt Source. Indicates EFB interrupt source is from the SPI Block. Use SPI-IRQ for further source resolution. SPI Access is currently not supported in this IP.

1: A bit is set in register SPIIRQ

0: No interrupt

I2C2_INT

I2C2 Interrupt Source. Indicates EFB interrupt source is from the Secondary I2C Block. Use I2C 2 IRQ for further source resolution.

1: A bit is set in register I2C_2_IRQ

0: No interrupt

I2C1_INT

I2C1 Interrupt Source. Indicates EFB interrupt source is from the Primary I2C Block. Use I2C 1 IRQ for further source resolution.

1: A bit is set in register I2C_1_IRQ

0: No interrupt

6. Command and Data Transfers to Flash Space

The command and data transferred to the flash memory are identical for all the access ports, regardless of their different physical interfaces. The flash memory is organized in pages. Therefore, you address a specific page for read or write operations to that page. Each page has 128 bits (16 bytes). Transfers are based on a set of instructions and page addresses. Erase operations are sector based (Configuration Flash, UFM, and/or Feature Row).

6.1. Command Summary by Application

Table 6.1. UFM (Sector 1) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status register.
Check Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent UFM access – All user I/Os (except the primary user ports) are governed by the user logic. The device remains in user mode. The subsequent commands in this table require the interface to be enabled.
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable offline access – All user I/O (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, UFM remains accessible, and the device enters <i>Offline</i> access mode. The subsequent commands in this table require the interface to be enabled.
Disable Configuration Interface	0x26	ISC_DISABLE	Disable the configuration UFM access.
Set Address	0xB4	LSC_WRITE_ADDRESS	Set the UFM sector 14-bit Address register.
Reset UFM Address	0x47	LSC_INIT_ADDR_UFM	Reset the address to point to Sector 1, Page 0 of the UFM.
Read UFM	0xCA	LSC_READ_TAG	Read the UFM data. Operand specifies the number of pages to read. Address Register is post-incremented.
Erase UFM	0xCB	LSC_ERASE_TAG	Erase the UFM sector only.
Program UFM Page	0xC9	LSC_PROG_TAG	Write one page of data to the UFM. Address register is post-incremented.

Table 6.2. Configuration Flash (Sector 0) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Device ID	0xE0	IDCODE_PUB	Read the 4-byte Device ID. See Table 6.28 for the expected Device IDs.
Read USERCODE	0xC0	USERCODE	Read the 32-bit USERCODE.
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status register.
Read Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Refresh1	0x79	LSC_REFRESH	Launch boot sequence.
STANDBY	0x7D	LSC_DEVICE_CTRL	Trigger the Power Controller to enter or wake from standby mode.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent Configuration Flash access – All user I/O (except hardened primary user I2C ports) are governed by the user logic; the device remains in user mode.

Command Name	Command MSB LSB	SVF Command Name	Description
			The subsequent commands in this table require the interface to be enabled.
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline Configuration Flash access – All user I/O (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, and the device enters <i>Offline</i> access mode. The subsequent commands in this table require the interface to be enabled.
Disable Configuration Interface	0x26	ISC_DISABLE	Exit access mode.
Set Configuration Flash Address	0xB4	LSC_WRITE_ADDRESS	Set the Configuration Flash 14-bit Page Address.
Verify Device ID	0xE2	VERIFY_ID	Verify device ID with 32-bit input, set Fail flag if mismatched.
Reset Configuration Flash Address	0x46	LSC_INIT_ADDRESS	Reset the address to point to Sector 0, Page 0 of the Configuration Flash.
Read Flash	0x73	LSC_READ_INCR_NV	Read the flash data. Operand specifies number of the pages to read. Address Register is post-incremented.
Erase	0x0E	ISC_ERASE	Erase the Config Flash, FEATURE Row, FEABITs, Done bit, Security bits, and USERCODE.
Program Page	0x70	LSC_PROG_INCR_NV	Write one page of data to the Flash. Address Register is post-incremented.
Program DONE	0x5E	ISC_PROGRAM_DONE	Program the Done bit.
Program SECURITY	0xCE	ISC_PROGRAM_SECURITY	Program the Security bit (Secures Configuration Flash sector).
Program SECURITY PLUS	0xCF	ISC_PROGRAM_SECPLUS	Program the Security Plus bit (Secures Configuration Flash and UFM Sectors). Note: SECURITY and SECURITY PLUS commands are mutually exclusive.
Program USERCODE	0xC2	ISC_PROGRAM_USERCODE	Program 32-bit USERCODE.
Read Feature Row	0xE7	LSC_READ_FEATURE	Read Feature Row.
Program Feature Row	0xE4	LSC_PROG_FEATURE	Program Feature Row.
Read FEABITS	0xFB	LSC_READ_FEABITS	Read FEA bits.
Program FEABITs	0xF8	LSC_PROG_FEABITS	Program the FEA bits.

Table 6.3. Non-Volatile Register (NVR) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Trace ID code	0x19	UIDCODE_PUB	Read 64-bit TraceID.

When using the WISHBONE bus interface, the commands, operand, and data are written to the CFGTXDR register. The target SPI or I2C interface shifts the most significant bit (MSB) first into the MachXO4 device. This is required only when communicating with the configuration logic inside the MachXO4 device.

Command Descriptions by Command Code

Table 6.4. Erase Flash (0x0E)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)		Data Mode	Data Size	Data Format
х	х	_	Υ	0E	See below	_	_	_

0000 ucfs 0000 0000 0000 0000(binary) Operand

where: **Erase UFM sector**

> 0: No action 1: Erase

Erase CFG Flash sector (Configuration Flash, DONE, security bits, USERCODE)

0: No action 1: Erase

Erase Feature sector (Target I2C address, sysCONFIG port persistence, Boot

mode, and others)

0: No action

1: Erase

Erase SRAM

0: No action

1: Erase

Poll the BUSY bit after issuing this command for erasure to complete before issuing a Notes:

subsequent command other than Read Status or Check Busy.

Erased condition for Flash bits = 0.

Examples: 0x0E 04 00 00

> Erase Flash sector. 0x0E 08 00 00 Erase UFM sector. 0x0E 0C 00 00

Erase UFM and Flash sectors.

Table 6.5. Read TraceID Code (0x19)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	CMD (Hex) Operands (Hex)		Data Size	Data Format
_	_	х	N	19	00 00 00	R	8B	ı

Example: 0x19 00 00 00

Read 8-byte TraceID.

Note: First byte read is user portion. Next seven bytes are unique to each silicon die.

Table 6.6. Disable Configuration Interface (0x26)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	x	_	_	26	00 00	1	1	_

Example: 0x26 00 00

Disable Flash interface for change access.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-IPUG-02287-1.1

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Note: Must have only two operands.

> The interface cannot be disabled while the Configuration Status Register Busy bit is asserted. After commands (for example, Erase, Program) verify Busy is clear before issuing the Disable command.

This command should be followed by Command 0xFF (BYPASS) to complete the Disable operation. The BYPASS command is required to restore Power Controller, GSR, Hardened User I2C port operation.

SRAM must be erased before exiting Offline (0xC6) Mode.

Table 6.7. Read Status Register (0x3C)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	_	N	3C	00 00 00	R	4B	xxxx lxEE Exxx xxxx xxFB xxCD xxxx xxxx

Data Format: The most significant byte of SR is received first, the LSB last.

> D Bit 8 Flash or SRAM Done Flag

> > When C = 0 SRAM Done bit has been programmed

- D = 1 Successful Flash to SRAM transfer
- D = 0 Failure in the Flash to SRAM transfer

When C=1 CFG Flash Done bit has been programed

- D = 1 Programmed
- D = 0 Not Programmed
- C Bit 9 Enable Configuration Interface (1=Enable, 0=Disable)
- В Bit 12: Busy Flag (1 = busy)
- F Bit 13: Fail Flag (1 = operation failed)
- I = 0 Device verified correct; I = 1 Device failed to verify

EEE bits[25:23]: Configuration Check Status

> 000: No Error 001: ID ERR 010: CMD ERR 011: CRC ERR 100: Preamble ERR 101: Abort ERR 110: Overflow ERR 111: SDM EOF

(all other bits reserved)

Usage: The BUSY bit should be checked following all Enable, Erase or Program operations. Wait at least 1us after power-up or asserting wb rst i before accessing the EFB. Note:

Example: 0x3C 00 00 00

Read 4-byte Status Register for example, 0x00 00 20 00 (fail flag set).

Table 6.8. Reset Flash Address (0x46)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	46	00 00 00	1	1	_

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-IPUG-02287-1.1

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Example: 0x46 00 00 00

Set Address register to Configuration Sector 0, page 0.

Table 6.9. Reset UFM Address (0x47)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	_	_	Υ	47	00 00 00	_	-	_

Example: 0x47 00 00 00

Set Address register to Flash Sector 1, page 0.

Table 6.10. Program DONE (0x5E)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
1	Х	_	Υ	5E	00 00 00	_	_	_

Example: 0x5E 00 00 00

Set the DONE bit.

Note: Poll the BUSY bit (or wait 200 µs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

Table 6.11. Program Configuration Flash (0x70)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	x	1	Υ	70	00 00 00	W	16B	16 bytes UFM write data

Example: 0x70 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Write one page of data, pointed to by the Address Register.

Note: 16 data bytes must be written following the command and operand bytes to ensure proper data

alignment. The Address Register is auto-incremented following the page write.

Use 0x0E to erase CFG Flash sector prior to executing this command.

Poll the BUSY bit (or wait 200 μs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

Table 6.12. Read Configuration Flash (0x73) (I2C)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	0x73	(below)1	R	(below) ²	(below) ³

Note: This applies when Configuration Flash is read through I2C.

1. Operand: 0000 0000 00pp pppp pppp pppp (binary)

Number of CFG Flash pages to read + 1 when num_pages > 1

2. Data Size: (num_pages × 16) bytes when num_pages = 1

32 bytes + (num_pages) × (16 + 4) bytes when num_pages > 1

Note: Read CFG Flash may be aborted at any time. Any data remaining in the read FIFO will be

discarded. Any read data beyond the prescribed read size will be indeterminate. The Address

Register is auto-incremented after each page read.

Examples: 0x73 00 00 01

0-byte dummy followed by one page CFG Flash data (16 bytes total)

0x73 00 00 04

Read 2-pages dummy, followed by three sets – 1 page CFG Flash data, followed by four bytes

dummy (five pages and 12 dummy bytes total).

Table 6.13. Read Configuration Flash (0x73) (WISHBONE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	73	(below)¹	R	(below) ²	(below) ³

Note: This applies when Configuration Flash is read through WISHBONE.

1. Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

pp..pp: num pages Number of CFG Flash pages to read when num pages = 1

Number of CFG Flash pages to read + 1 when $1 < \text{num pages} \le 12$

Set to 0x3FFF when num_pages > 12

2. Data Size: (num pages \times 16) bytes when num pages = 1

> 32 bytes + (num pages) \times (16 + 4) bytes when num pages > 1

Note: When reading more than 12 pages, the num pages argument is intentionally oversized. It is not

> necessary to read the extra pages. Read CFG Flash may be aborted at any time. Any data remaining in the read FIFO is discarded. Any read data beyond the prescribed read size is

indeterminate. The Address Register is auto-incremented after each page read.

Examples: 0x73 00 00 01

0-byte dummy followed by one page CFG Flash data (16 bytes in total).

0x73 10 00 04

Read one page dummy followed by three pages of CFG data (four pages in total).

0x73 00 00 04

Read two pages dummy, followed by three sets – one page CFG Flash data, followed by four

bytes dummy (five pages and 12 dummy bytes total).

Note: The maximum speed which one page of data (num page = 1) can be read using WISHBONE and

no wait state is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait

states to observe the retrieval delay timing requirement.

Table 6.14. Enable Configuration Interface (Transparent) (0x74)

terminated.

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	х	_	_	74	08 00 00 or 08 00	_	_	_

Note: The I2C interface uses only two operands all other interfaces use three operands. This command

> is required to enable modification of the UFM, configuration Flash, or non-volatile registers (NVR). Terminate this command with the command 0x26 followed by the command 0xFF. Exercising this command temporarily disables certain features of the device, notably GSR, primary user I2C port and Power Controller. These features are restored when the command is

Poll the BUSY bit (or wait 5 µs) after issuing this command for the Flash pumps to fully charge.

Examples: 0x74 08 00 00

Enable Flash interface for change access through a non-I2C interface.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-IPUG-02287-1.1

Table 6.15. Refresh (0x79)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	_	_	_	79	00 00	_	_	_

Example: 0x79 00 00

Issue Refresh command

Note: The Refresh command launches Boot sequence

Must have only two operands

After completing the Refresh command (for example, I2C stop), further bus accesses are prohibited for the duration of tREFRESH. Violating this requirement causes the Refresh process to abort and leaves the MachXO4 device in an unprogrammed state.

Occasionally, following a device REFRESH or PROGRAMN pin toggle, the secondary I2C port may be left in an undefined (non-idle) state. The likelihood of this condition is design and route dependent. To positively return the Secondary I2C port to the idle state, write a value of 0x44 to register I2C_2_CMDR through WISHBONE immediately after device reset is released. This causes a short low-pulse on SCK as the hard-block signals a STOP on the bus then returns to the idle state. Failure to manually return the Secondary I2C port to the idle state may result in an I2C bus lock-up condition. Normal I2C activity can be commenced without additional delay.

Table 6.16. STANDBY (0x7D)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
1	Х	_	N	7D	0y 00	_	_	_

Notes: Power Controller is currently not supported in this IP

Table 6.17. Set Address (0xB4)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
x	х	_	Υ	B4	00 00 00	W	4B	0s00 0000 0000 0000 00aa aaaa aaaa aaaa

Data Format: sector

> 0: CFG Flash **UFM**

aa..aa:address14-bit page address

Example: 0xB4 00 00 00 40 00 00 0A

Set Address register to UFM sector, page 10 decimal

Table 6.18. Read USERCODE (0xC0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	Х	_	Y/N	CO	00 00 00	R	4B	_

Example: 0xC0 00 00 00

> EN Required = Y Read 4-byte USERCODE from CFG sector EN Required = N Read 4-byte USERCODE from SRAM

Table 6.19. Program USERCODE (0xC2)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	C2	00 00 00	W	4B	_

Example: 0xC2 00 00 00 10 20 30 40

Sets USERCODE with 32-bit input 0x10 20 30 40.

Note: Poll the BUSY bit (or wait 200 μs) after issuing this command for programming to complete before

issuing a subsequent command other than Read Status or Check Busy.

Table 6.20. Enable Configuration Interface (Offline) (0xC6)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	_	C6	0y 00 00	ı	1	_

Operand: 08 00 00 – Enable Flash Normal mode. Normal edit mode for Offline configuration. Used for all

offline commands described in this document, including Erase SRAM.

00 00 00 - Enable SRAM mode. Optional edit mode. Supports Erase SRAM command only.

Example: 0xC6 08 00 00 Enable Flash interface for offline change access.

Notes: Use this command to enable offline modification of the Flash, or non-volatile registers (NVR). SRAM

must be erased exiting Offline mode. When exiting Offline mode follow the command 0x26 with the command 0xFF. Exercising this command will tristate all user I/O (except persisted sysCONFIG

ports). User logic ceases to function. UFM remains accessible.

Poll the BUSY bit (or wait 5 μs) after issuing this command for the Flash pumps to fully charge.

Table 6.21. Program UFM (0xC9)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	-	_	Υ	C9	00 00 01	W	16B	16 bytes UFM write data

Example: 0xC9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Write one page of data, pointed to

by Address Register.

Notes: 16 data bytes must be written following the command and operand bytes to ensure proper data

alignment. The Address Register is auto-incremented following the page write.

Use 0x0E or 0xCB to erase UFM sector prior to executing this command.

Poll the BUSY bit (or wait 200 µs) after issuing this command for programming to complete before

issuing a subsequent command other than Read Status or Check Busy.

Table 6.22. Read UFM (0xCA) (I2C)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	ı	Υ	CA	(below) ¹	R	(below) ²	(below) ³

1. Operand: 0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of UFM pages to read when num_pages = 1

Number of UFM pages to read +1 when num_pages > 1

2. Data Size: (num_pages × 16) bytes when num_pages = 1

32 bytes + (num_pages × 16 + 4) bytes when num_pages > 1

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02287-1.1

60

Note: Read UFM may be aborted at any time. Any data remaining in the read FIFO is discarded. Any

read data beyond the prescribed read size is indeterminate. The Address Register is

auto-incremented after each page read.

3. Examples: 0xCA 00 00 01

Read 0-byte dummy followed by one page UFM data (16 bytes total).

0xCA 00 00 04

Read two-page dummy followed by three sets - one page UFM data, followed by four bytes

dummy (five pages total and 12 dummy bytes).

Table 6.23. Read UFM (0xCA) (WISHBONE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	_	Υ	CA	(below) ¹	R	(below) ²	(below) ³

1. Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of UFM pages to read when num_pages = 1

Number of UFM pages to read +1 when 1 < num_pages ≤ 12

Set to 0x3FFF when num pages > 12

2. Data Size: (num pages \times 16) bytes when num pages = 1

32 bytes + (num_pages × 16 + 4) bytes when num_pages > 1

Note: When reading more than 12 pages, the num_pages argument is intentionally oversized. It is not

necessary to read the extra pages. Read UFM may be aborted at any time. Any data remaining in the read fifo is discarded. Any read data beyond the prescribed read size is indeterminate. The

Address Register is auto-incremented after each page read.

3. Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page UFM data (16 bytes total).

0xCA 10 00 04

Read 1 page dummy followed by three pages of CFG data (four pages total).

0xCA 00 00 04

Read two-page dummy followed by three sets - one page UFM data, followed by four bytes

dummy (five pages total and 12 dummy bytes).

Note: The maximum WISHBONE clock speed with which one page of data (num_page = 1) can be read

using WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are supported

by inserting WB wait states to observe the retrieval delay timing requirement.

Table 6.24. Erase UFM (0xCB)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	_	Υ	СВ	00 00 00	1	_	_

Notes: Erased condition for UFM bits = 0.

Poll the BUSY bit after issuing this command for erasure to complete before issuing a

subsequent command other than Read Status or Check Busy.

Example: 0xCB 00 00 00

Erase UFM sector.

Table 6.25. Program SECURITY (0xCE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	CE	00 00 00	_	_	

Example: 0xCE 00 00 00

Set the SECURITY bit.

Note: Poll the BUSY bit (or wait 200 µs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 6.26. Program SECURITY PLUS (0xCF)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	CF	00 00 00	_	_	_

Example: 0xCF 00 00 00

Set the SECURITY PLUS bit.

Note: Poll the BUSY bit (or wait 200 µs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 6.27. Read Device ID Code (0xE0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	N	E0	00 00 00	R	4B	See Table 6.28

Example: 0xE0 00 00 00

Read 4-byte device ID.

Table 6.28. Device ID

Device Name	E Devices	C Devices
LFMXO4-010	0x61 2B 20 43	0xE1 2B B0 43
LFMXO4-015	0x61 2B 20 43	0xE1 2B B0 43
LFMXO4-025	0x61 2B 30 43	0x61 2B B0 43
LFMXO4-050	0x61 2B 40 43	0x61 2B CO 43
LFMXO4-050 (256-Ball)	0x61 2B 50 43	0x61 2B D0 43
LFMXO4-080	0x61 2B 50 43	0x61 2B D0 43
LFMXO4-110	0x61 2B 60 43	0x61 2B E0 43

Example: 0xE0 00 00 00

Read 4-byte device ID.

Table 6.29. Verify Device ID Code (0xE2)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	E2	00 00 00	W	4B	See Table 6.28

Example: 0xE2 00 00 00 01 2B 20 43

Verify device ID with 32-bit input, sets ID Error bit 27 in SR if mismatched.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-IPUG-02287-1.1

Table 6.30. Program Feature (0xE4)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	_	Υ	E4	00 00 00	_	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I2C Target Address uu: 8 bits for the user

programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Note: It is not recommended to reprogram the Feature Row in system as it should be programmed

ideally during manufacturing.

Example: 0xE4 00 00 00 00 01 00 00 00 12 34

Program Feature Row with User I2C address set to 1, default user TraceID string, Custom ID code

of 12 34.

Table 6.31. Read Feature Row (0xE7)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	E7	00 00 00	R	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I2C Target Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Example: 0xE7 00 00 00

Reads the Feature Row.

Table 6.32. Check Busy Flag (0xF0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	_	N	F0	00 00 00	R	1B	Bxxx xxxx

Data Format: b: bit 7: Busy Flag (1 = busy)

(all other bits reserved)

Example: 0xF0 00 00 00

Read one byte, for example, 0x80 (busy flag set)

Table 6.33. Program FEABITs (0xF8)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	F8	00 00 00	W	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b = 00 (Default) and m = 0 then Single Boot from Flash.

2. If b = 00 and m = 1 then Dual Boot from Flash then External, if there is a failure.

3. If b = 01 and m = 1 then Single Boot from External Flash.

4. If b = 10 and m = 1 then Dual Boot from External then NVMC/Flash, if there is a failure.

m: Controller SPI Port Persistence

0 = Disabled (Default), 1 = Enabled

i: I2C Port Persistence

0 = Enabled (Default), 1 = Disabled

s: Target SPI Port Persistence

0 = Enabled (Default), 1 = Disabled

j: JTAG Port Persistence

0 = Enabled (Default), 1 = Disabled

d: DONE Persistence

0 = Disabled (Default), 1 = Enabled

i: INITN Persistence

0 = Disabled (Default), 1 = Enabled

p: PROGRAMN Persistence

0 = Enabled (Default), 1 = Disabled

a: my ASSP Enabled

0 = Disabled (Default), 1 = Enabled

w: Password (Flash Protect Key) Protect All Enabled

0 = Disabled (Default), 1 = Enabled

v: Password (Flash Protect Key) Enabled

0 = Disabled (Default), 1 = Enabled

Note: It is not recommended to reprogram the FEABITs in system as it should be programmed ideally

during manufacturing.

Example: 0xF8 00 00 00 0D 20

Programs the FEABITs

Table 6.34. Read FEABITs (0xFB)

UI	М	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
-	_	_	х	Υ	FB	00 00 00	R	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b = 00 (Default) and m=0 then Single Boot from Flash.

2. If b = 00 and m = 1 then Dual Boot from Flash then External, if there is a failure.

3. If b = 01 and m = 1 then Single Boot from External Flash.

4. If b = 10 and m = 1 then Dual Boot from External then NVMC/Flash, if there is a failure.

m: Controller SPI Port Persistence

0 = Disabled (Default), 1 = Enabled

i: INITN Persistence

0 = Disabled (Default), 1 = Enabled

s: Target SPI Port Persistence

0 = Enabled (Default), 1 = Disabled

j: JTAG Port Persistence

0 = Enabled (Default), 1 = Disabled

d: DONE Persistence

0 = Disabled (Default), 1 = Enabled

i: INITN Persistence

0 = Disabled (Default), 1 = Enabled

p: PROGRAMN Persistence

0 = Enabled (Default), 1 = Disabled

a: my_ASSP Enabled

0 = Disabled (Default), 1 = Enabled

w: Password (Flash Protect Key) Protect All Enabled

0 = Disabled (Default), 1 = Enabled

v: Password (Flash Protect Key) Enabled

0 = Disabled (Default), 1 = Enabled

Table 6.35. Bypass (Null Operation) (0xFF)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	Х	х	N	FF	FF FF FF	_	_	_

Note: Operands are optional. Example: 0xFF FF FF Bypass

6.3. Command Framing

6.3.1. I2C Framing

Each command string sent to the I2C EFB port must be correctly framed using the protocol defined for each interface. In the case of I2C, the protocol is well known and defined by the industry as shown below.

Table 6.36. Command Framing Protocol by Interface

Interface	Pre-op (+)	Command String	Post-op (–)
12C	Start	(Command/Operands/Data)	Stop

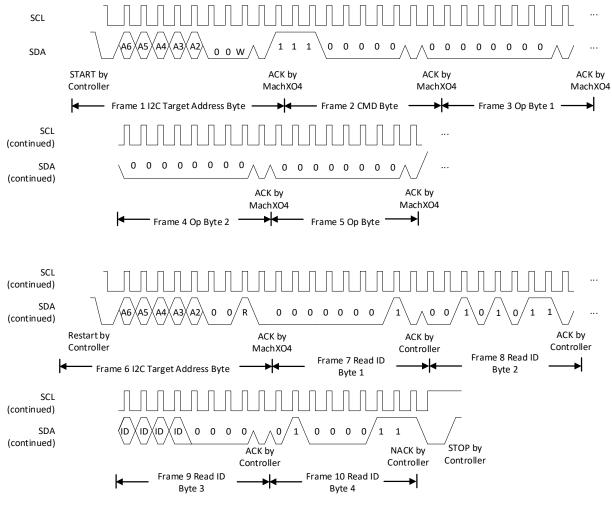


Figure 6.1. I2C Read Device ID Example

6.3.2. SPI Framing

Each command string sent to the SPI EFB port must be correctly framed using the protocol defined for each interface. For SSPI, the protocol is well known and defined by the industry, as shown below.

Table 6.37. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
SPI	Assert CS	(Command/Operands/Data)	De-assert CS

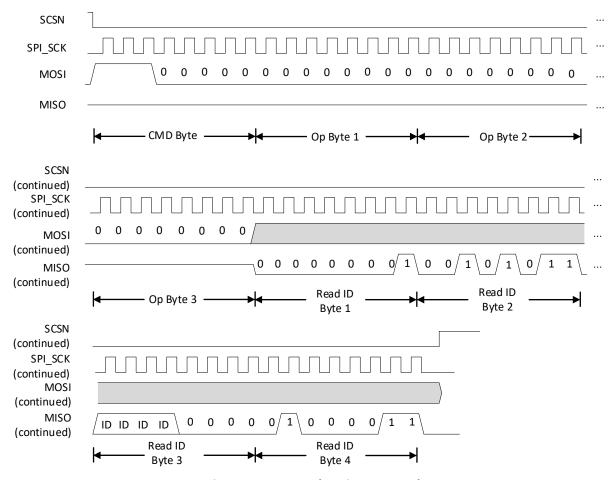


Figure 6.2. SSPI Read Device ID Example

6.3.3. WISHBONE Framing

To access the flash memory, each command string sent to the WISHBONE EFB ports must be correctly framed using the protocol defined for each interface. For the internal WISHBONE port, each command string is preceded by setting CFGCR[WBCE]. Similarly, each command string is followed by clearing the CFGCR[WBCE] bit.

Table 6.37. Command Framing Protocol by Interface

Interface	Pre-op (+)	Command String	Post-op (–)
WISHBONE	Assert CFGCR[WBCE]	(Command/Operands/Data)	De-assert CFGCR[WBCE]

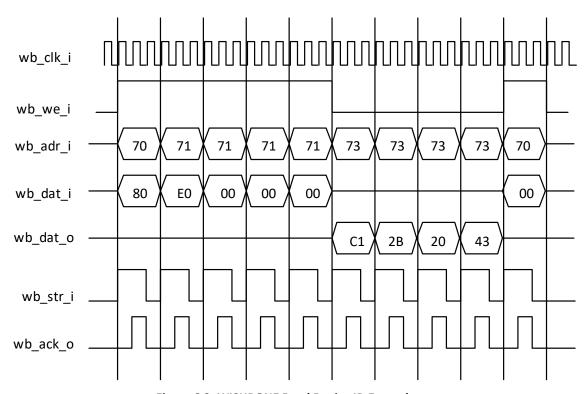


Figure 6.3. WISHBONE Read Device ID Example

7. Designing with the IP

This section provides information on how to generate the IP core using the Lattice Radiant software and how to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software User Guide.

Note: The screenshots provided are for reference only. Details may vary depending on the version of the IP or software being used. If there have been no significant changes to the GUI, a screenshot may reflect an earlier version of the IP.

7.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device architecture. The steps below describe how to generate the EFB Module IP in the Lattice Radiant software.

To generate the EFB Module IP:

- 1. Create a new Lattice Radiant software project or open an existing project.
- In the IP Catalog tab, double-click Embedded Functional Block under IP, Architecture Modules category. The Module/IP Block Wizard opens as shown in Figure 7.1. Enter values in the Component name and the Create in fields and click Next.

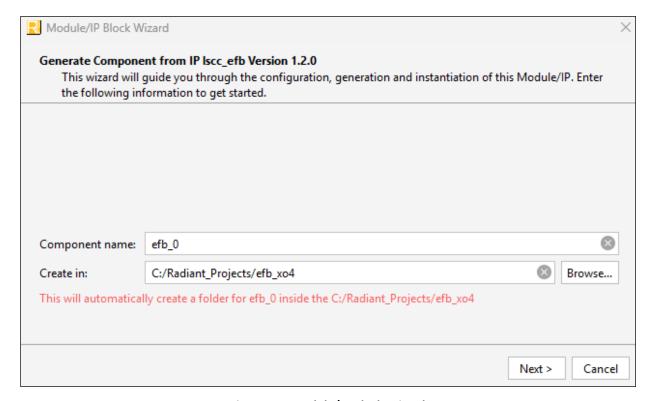


Figure 7.1. Module/IP Block Wizard

3. In the next Module/IP Block Wizard window, customize the selected EFB Module IP using drop-down lists and check boxes. Figure 7.2 shows an example configuration of the EFB Module IP. For details on the configuration options, refer to the IP Parameter Description section. For sample configurations relating to the EFB features, specifically for I2C and UFM functionality, refer to the I2C Core Transaction Example and Flash Write and Read Example sections.

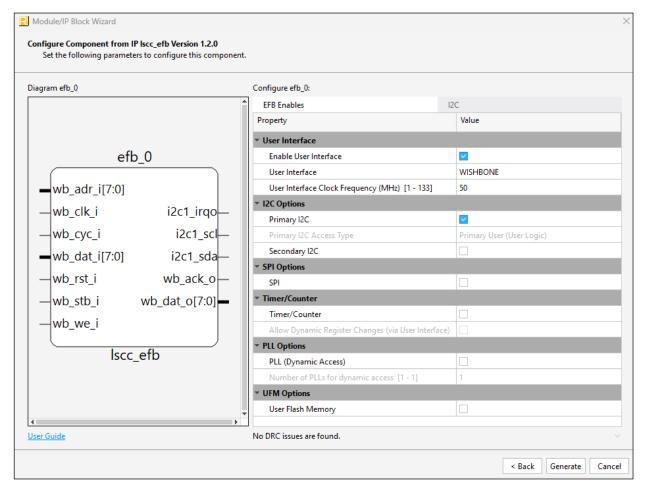


Figure 7.2. IP Configuration

4. Click **Generate**. The **Check Generated Result** dialog box opens, showing design block messages and results as shown in Figure 7.3.

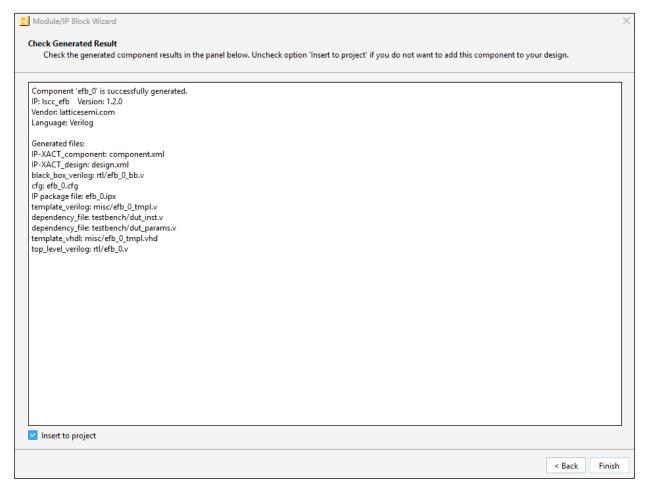


Figure 7.3. Check Generated Result

5. Click **Finish**. All the generated files are placed under the directory paths in the **Create in** and the **Component name** fields shown in Figure 7.1.

71

7.1.1. Generated Files and File Structure

The generated EFB module package includes the closed-box (<Component name>_bb.v) and instance templates (<Component name>_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file (<Component name>.v) that can be used as an instantiation template for the module is also provided. You may also use this top-level reference as the starting template for the top-level for their complete design. The generated files are listed in Table 7.1.

Table 7.1. Generated File List

Attribute	Description	
<component name="">.ipx</component>	This file contains the information on the files associated to the generated IP.	
<component name="">.cfg</component>	This file contains the parameter values used in IP configuration.	
component.xml	Contains the ipxact: component information of the IP.	
design.xml	Documents the configuration parameters of the IP in IP-XACT 2014 format.	
rtl/ <component name="">.v</component>	This file provides an example RTL top file that instantiates the module.	
rtl/ <component name="">_bb.v</component>	This file provides the synthesis closed-box.	
misc/ <component name="">_tmpl.v misc /<component name="">_tmpl.vhd</component></component>	These files provide instance templates for the module.	

7.2. Design Implementation

Completing your design includes additional steps to specify analog properties, pin assignments, and timing and physical constraints. You can add and edit the constraints using the Device Constraint Editor or by manually creating a PDC File.

Post-Synthesis constraint files (.pdc) contain both timing and non-timing constraint.pdc source files for storing logical timing/physical constraints. Constraints that are added using the Device Constraint Editor are saved to the active .pdc file. The active post-synthesis design constraint file is then used as input for post-synthesis processes.

Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to create or edit constraints and how to use the Device Constraint Editor.

7.3. Timing Constraints

The timing constraints are based on the clock frequency used. The timing constraints for the IP are defined in relevant constraint files. The example below shows the IP timing constraints generated for the EFB Module IP.

create_clock -name {wb_clk_i} -period 20 [get_ports wb_clk_i]

7.4. Physical Constraints

For the primary I2C core signals (i2c1_scl and i2c1_sda), the Radiant software tool automatically routes these signals to their pre-assigned pins (no user pin location constraint is necessary). However, for the secondary I2C core signals (i2c2_scl and i2c2_sda), these can be routed to any GPIO of the MachXO4 device.

The SPI core signals (spi_clk, spi_miso, spi_mosi, spi_csn[0], and ufm_sn) are automatically routed by the Radiant software tool to their pre-assigned pins. The remaining SPI signals (spi_csn[7:1]) can be routed to any GPIO on the MachXO4 device.

7.5. Specifying the Strategy

The Radiant software provides two predefined strategies: Area and Timing. It also enables you to create customized strategies. For details on how to create a new strategy, refer to the *Strategies* section in the Lattice Radiant Software user guide.

7.6. Running Functional Simulation

You can run functional simulation after the IP is generated.

To run functional simulation:

1. Click the button located on the **Toolbar** to initiate the **Simulation Wizard** shown in Figure 7.4.

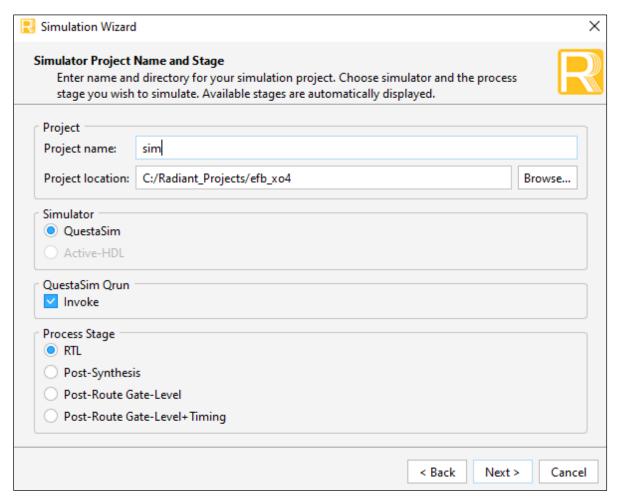


Figure 7.4. Simulation Wizard

2. Click **Next** to open the **Add and Reorder Source** window as shown in Figure 7.5.

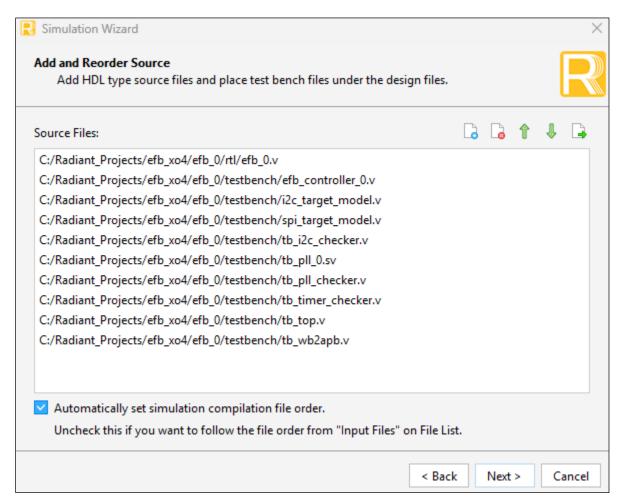


Figure 7.5. Add and Reorder Source

- 3. Click **Next**. The **Summary** window is shown.
- 4. Click Finish to run the simulation.

The waveform in Figure 7.6 shows an example simulation result.

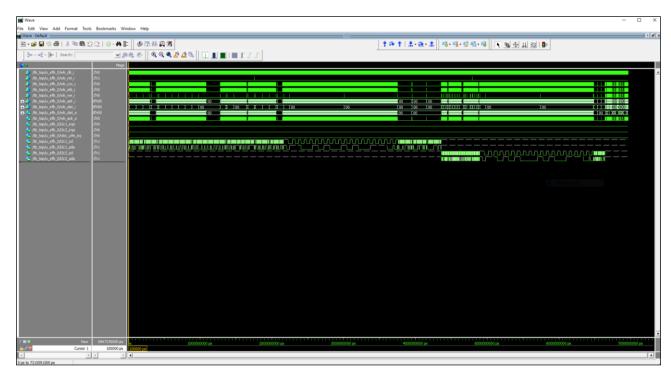


Figure 7.6. Simulation Waveform

7.6.1. Simulation Results

The provided testbench includes basic functional tests for all EFB features. A WISHBONE controller is used to access registers and generate the required sequences. If APB support is enabled, a WISHBONE-to-APB bridge is included to interface with the EFB.

The following describe how each EFB feature is exercised and checked through simulation using the provided testbench:

- I2C Core Simulation:
 - Controller Mode A custom I2C target module with simple memory is used to confirm basic write and read behavior.
 - Target Mode An EFB instance with I2C enabled acts as the controller to exercise target functionality.
- SPI Core Simulation:
 - Controller Mode A custom SPI target module is connected to observe basic controller behavior.
 - Target Mode An EFB instance with SPI enabled is used to simulate a controller and check target-side operation.
- Timer/Counter Simulation:
 - Timer/Counter functionality is exercised by:
 - Observing output timing and interrupt signals.
 - Accessing Timer/Counter registers to adjust and monitor behavior dynamically.
- PLL Interface Simulation:
 - The PLL interface is exercised by:
 - Instantiating a PLL IP in the testbench.
 - Observing clock timing behavior.

Note: Only basic PLL configuration changes are included in the simulation.

UFM Access:

- Basic flash memory operations are performed using WISHBONE register access:
 - Initialization
 - Erase operation
 - Status flag polling
 - Write and read operations
- Additionally, read/write operations through I2C and SPI interfaces are included if those interfaces are enabled.

The following figure provides an overview of a sample testbench.

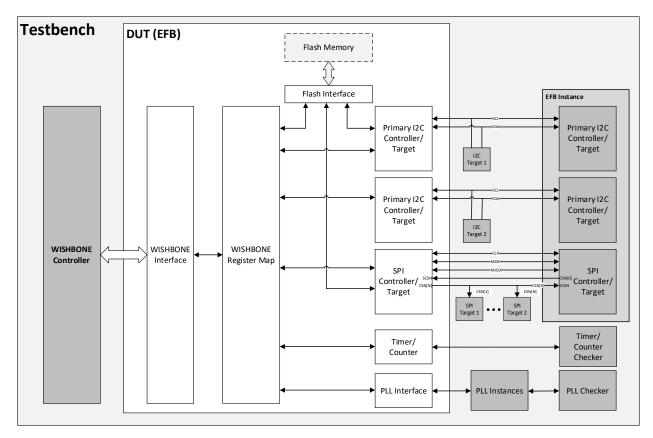


Figure 7.7. Sample Testbench Overview

Depending on the features enabled during IP configuration, the corresponding test is included in the simulation. The simulation logs are expected to indicate **SIMULATION PASSED**, along with the corresponding waveform behavior.

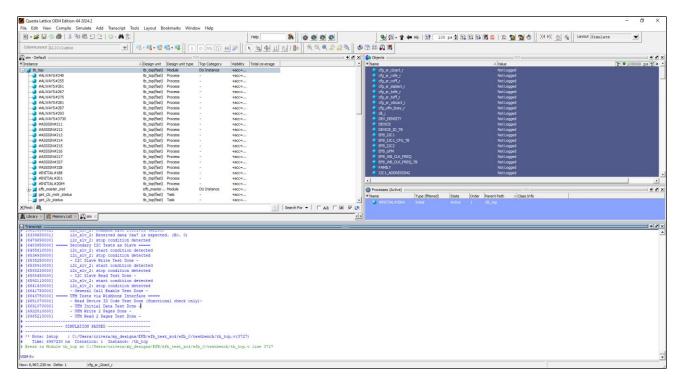


Figure 7.8. Sample Testbench Output

7.7. Example Designs (Simulation)

7.7.1. I2C Core Transaction Example

Figure 7.9 and Figure 7.10 show flow diagrams for controlling and receiving I2C reads and writes initiated through the WISHBONE interface. The following sequence is for the primary I2C, but the same sequence applies to the secondary I2C. This sequence is implemented in the included sample testbench to confirm the basic operations of the Primary and Secondary I2C. Figure 7.11 shows an example configuration to enable both Primary and Secondary I2C.

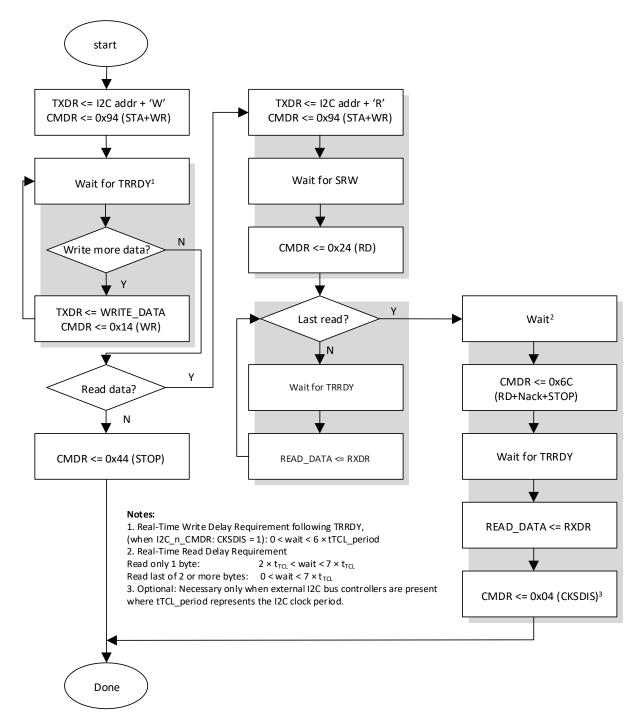


Figure 7.9. I2C Controller Read/Write Example (through WISHBONE)

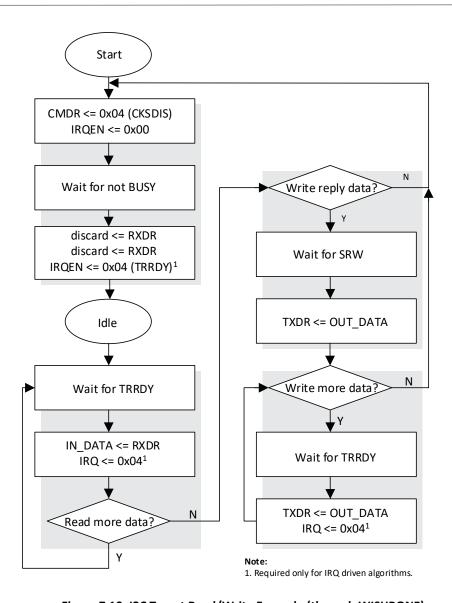


Figure 7.10. I2C Target Read/Write Example (through WISHBONE)

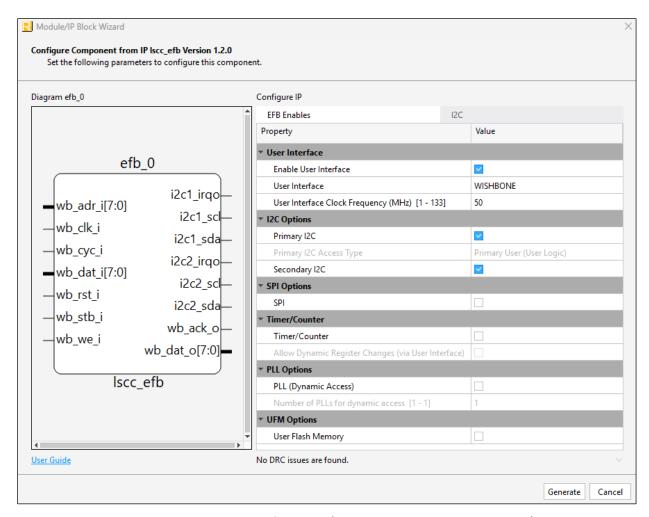


Figure 7.11. I2C Sample Configuration (Primary and Secondary I2C Enabled)

7.7.2. Flash Write and Read Example

Table 7.2, Table 7.3, and Table 7.4 show example write, erase, and read operations on a flash sector. The following sequence is for UFM access, but similar sequences can be followed for other sectors using their corresponding commands. This was implemented in the included sample testbench to confirm the basic operations of the UFM.

Table 7.2. Write Two UFM Pages (WISHBONE)

Instruction Number	R/W1	CMD2	Operand	Data	Comment	
_	_	_	_	_	Open frame	
1	W	74	08 00 00	_	Enable Configuration Interface	
_	_	-	_	_	Close frame	
_	_	+	_	_	_	
2	W	3C	00 00 00	_	Poll Configuration Status Register	
_	R	_	_	xx xx bx xx	_	
_	_	-	_	_	(Repeat until Busy Flag not set, or wait 5 μs if not polling.)	
_	_	+	_	_	_	
3	W	47	00 00 00	_	Init UFM Address to 0000	
_	_	_	_	_	_	
_		+	_	_	_	
4	W	С9	00 00 01	00 01 02 03	Write UFM Page 0 Data	

FPGA-IPUG-02287-1.1

Instruction Number	R/W1	CMD2	Operand	Data	Comment
				04 05 06 07	
				08 09 0A 0B	
				0C 0D 0E 0F	
1	1	_	_	_	_
1	1	+	_	_	_
5	W	3C	00 00 00	_	Poll Configuration Status Register
	R	_	_	xx xx bx xx	_
-	_	_	_	_	(Repeat until Busy Flag not set)
_	_	+	_	_	_
				10 11 12 13	
C	W	C9	00 00 01	14 15 16 17	Write UFM Page 1 Data
6	VV	C9	00 00 01	18 19 1A 1B	Note: Address automatically incremented
				1C 1D 1E 1F	
1	1	_	_	_	_
1	_	+	_	_	_
7	W	3C	00 00 00	_	Poll Configuration Status Register
_	R	_	_	xx xx bx xx	_
					(poll until Busy Flag clear)
1	1	_	_	_	
		+	_	_	_
8	W	26	00 00	_	Disable Configuration Interface
_		-	_	_	_
_	_	+	_	_	_
9	W	FF	_	_	Bypass (NOP)
_	_	_	_	_	_

Notes:

- When accessing the flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- + and refer to the command framing protocol appropriate for the interface discussed in the Command Framing section.

Table 7.3. Read One UFM Page (WISHBONE)

Instruction Number	R/W1	CMD2	Operand	Data	Comment	
_	_	+	_	_	Open frame	
1	W	74	08 00 00	_	Enable Configuration Interface	
_	_	_	_	_	Close frame	
_	1	+	_	ı	_	
2	W	3C	00 00 00	ı	Poll Configuration Status Register	
_	R	ı	_	xx xx bx xx	_	
_	1	ı	_	ı	(Repeat until Busy Flag not set)	
_	1	+	_	ı	_	
3	W	B4	00 00 00	40 00 00 01	Set UFM Address to 0001	
_	ı	ı	_	1	_	
_	1	+	_	ı	_	
4	W	CA	10 00 01	1	Read one page UFM (page 1) data	
_	R	_	_	10 11 12 13 14 15 16 17 18 19 1A 1B	_	
				1C 1D 1E 1F		
_	_	_	_	_	_	
_	_	+	_	_	_	

FPGA-IPUG-02287-1.1

Instruction Number	R/W1	CMD2	Operand	Data	Comment
5	W	26	00 00	_	Disable Configuration Interface
_	1	-	ı	_	_
_	-	+	-	_	_
6	W	FF	_	_	Bypass (NOP)
_	-	_	_	_	_

Notes:

- When accessing the Flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- + and refer to the command framing protocol appropriate for the interface discussed in the Command Framing section.

Table 7.4. Read Two UFM Pages (WISHBONE)

Instruction Number	R/W1	CMD2	Operand	Data	Comment	
_	_	+	_	_	Open frame	
1	W	74	08 00 00	_	Enable Configuration Interface	
_	_	-	_	_	Close frame	
_	_	+	_	_	_	
2	W	3C	00 00 00	_	Poll Configuration Status Register	
_	R	_	_	xx xx bx xx	_	
_		_	_	-	(Repeat until Busy Flag not set, or wait 5 μ s if not polling.)	
_	1	+	_	1	_	
3	W	47	00 00 00	_	Init UFM address to 0000	
_	1	_	_	1	_	
_	1	+	_	1	_	
4	W	CA	10 00 03	-	Read two pages of UFM data, after one page of dummy bytes.3.	
_	R	_	_	XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX	_	
_		_	_	-	_	
_	1	+	_		_	
5	W	26	00 00		Disable Configuration Interface	
	ı	_	_	ı	_	
_	_	+	_		_	
6	W	FF	_	_	Bypass (NOP)	
_	_	_	_	_	_	

Notes:

- When accessing the Flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- + and refer to the command framing protocol appropriate for the interface.
- num_pages count must include dummy page.

FPGA-IPUG-02287-1.1

To use the I2C ports to access the flash memory, both *Primary I2C* and *User Flash Memory* must be enabled. Then, select *Primary Config (Flash Access)* as the *Primary I2C Access Type*. This sets the Primary I2C Address to *Obxxxxx00*. Figure 7.12 shows an example configuration to enable Flash Access, through both Wishbone Access and Primary I2C ports.

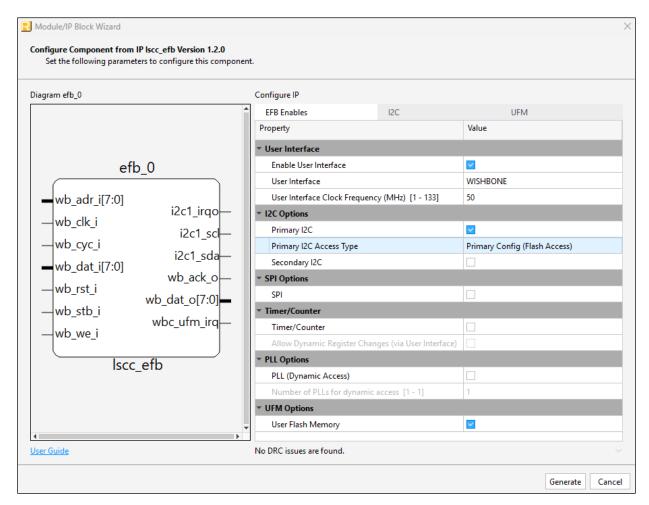


Figure 7.12. UFM Access Sample Configuration (through Wishbone and I2C Access)

7.7.3. SPI Core Transaction Example

Figure 7.13 shows flow diagrams for controlling and receiving SPI reads and writes initiated through the WISHBONE interface. This sequence is implemented in the sample testbench to confirm the basic operations of the SPI core.

Figure 7.14 shows an SPI example configuration.

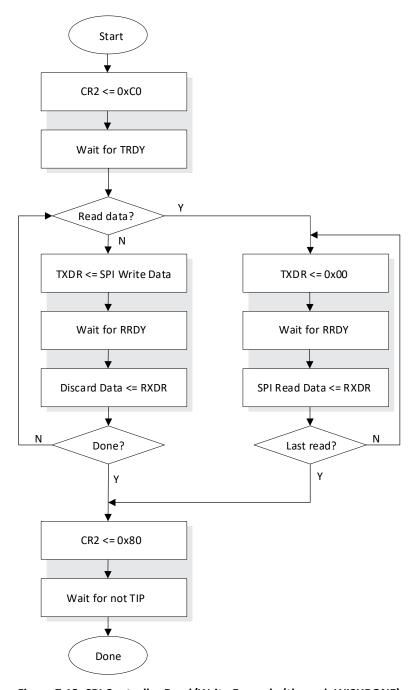


Figure 7.13. SPI Controller Read/Write Example (through WISHBONE)

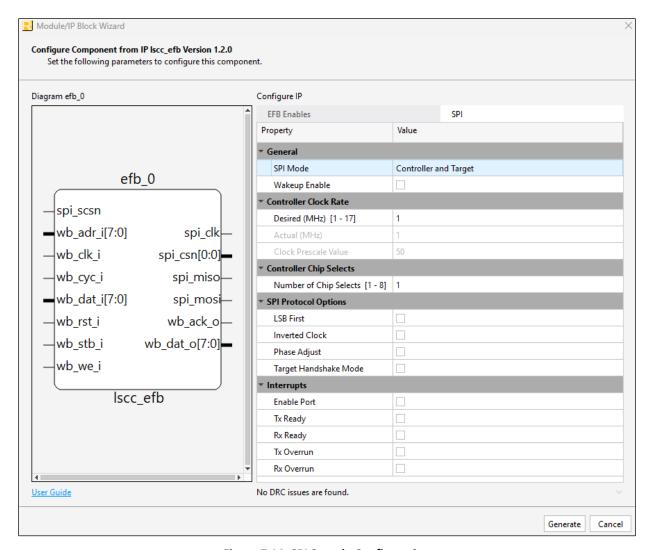


Figure 7.14. SPI Sample Configuration

8. Design Considerations

Refer to the design tips in the MachXO4 Hardened Control Functions User Guide (FPGA-TN-02403) for suggestions on using the various MachXO4 EFB functions.

Appendix A. Resource Utilization

Table A.1 shows a sample resource utilization of the EFB Module IP core on the LFMXO4-110HE-6BBG484I device.

Table A.1. LFMXO4-110HE-6BBG484I Device Resource Utilization

IP Configuration	Registers	LUTs	EFB	Fmax (MHz)1
(Default)	0	0	1	133.014
User Interface Enabled (WISHBONE)				(wb_clk_i)
Interface Clock: 133 MHz				
I2C Cores Enabled (Primary I2C: Flash Access)				
User Flash Memory Enabled				
User Interface Enabled (WISHBONE)	0	0	1	133.014
Interface Clock: 133 MHz				(wb_clk_i)
SPI Core Enabled (Controller and Target)				
SPI Clock: 45 MHz				
CS Pins: 8				
User Flash Memory Enabled				
User Interface Disabled	0	0	1	133.014 (tc_clki)
Timer/Counter Enabled				
Pre-scale Divider Value: 8				

Note:

1. The maximum WISHBONE clock that can be configured is 133 MHz. Fmax is generated when the FPGA design contains only the EFB Module IP core and the target frequency is 133 MHz. These values may be reduced when user logic is added to the FPGA design.

References

- MachXO4 EFB Module IP Release Notes (FPGA-RN-02079)
- MachXO4 Hardened Control Functions User Guide (FPGA-TN-02403)
- MachXO4 Hardened Control Functions Reference Guide (FPGA-TN-02404)
- Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
- MachXO4 web page
- Lattice Radiant Software web page
- Lattice Solutions IP Cores web page
- Lattice Solutions Reference Designs web page
- Lattice Insights web page for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, refer to the Lattice Answer Database at

www.latticesemi.com/Support/AnswerDatabase.

Revision History

Note: In some instances, the IP may be updated without changes to the user guide. The user guide may reflect an earlier IP version but remains fully compatible with the later IP version. Refer to the IP Release Notes for the latest updates.

Revision 1.1, IP v1.2.0, December 2025

Section	Change Summary
Register Description	Updated the <i>DIVIDER</i> description for Table 5.16. SPI Clock Pre-scale.

Revision 1.0, IP v1.2.0, December 2025

Section	Change Summary				
All	Updated the IP version information on the cover page.				
	Added a note on the IP version in the <i>Quick Facts</i> and <i>Revision History</i> sections.				
	Made editorial fixes.				
Abbreviations in This Document	Added ACK, APB, CTCM, GUI, GPIO, LSE, MDF, NACK, PFCPWM, PLL, and PWM.				
Introduction	In the Overview of the IP section, added the following control functions:				
	One SPI core				
	One 16-bit Timer/Counter				
	Interface to the dynamic PLL configuration settings				
	Interface to the on-chip power controller through I2C and SPI				
	Updated <i>Resource Utilization</i> and <i>Lattice Implementation</i> in Table 1.1. Summary of the EFB Module IP.				
	Updated Table 1.2. EFB Module IP Support Readiness.				
	Updated the Features section and added the Attribute Names section.				
Functional Description	Updated Figure 2.1. EFB Module IP Block Diagram – Figure 2.5. EFB Module I2C Core Interface and Figure 2.8. EFB Module Flash Interface.				
	Updated Table 2.1. User Interfaces and Supported Protocols.				
	Added Register Access to the WISHBONE Bus Interface (Register Access) section title.				
	Added SPI IP Core and WISHBONE Controller (for PLL) sections.				
	Updated the Flash Access Interface section.				
IP Parameter Description	Updated this section.				
Signal Description	Replaced the Interrupt Ports subtable header with Flash Memory.				
	Added SPI Interface, Timer/Counter, PLL0 (WISHBONE), PLL1 (WISHBONE), and Power				
	Controller ports.				
Register Description	Added the SPI Registers and Timer/Counter Registers sections.				
Command and Data Transfers to Flash Space	Added the SPI Framing section.				
Designing with the IP	Added a note on screenshots in this section.				
	Updated the Simulation Results section.				
	Added SPI core signals description to the Physical Constraints section.				
	Add the SPI Core Transaction Example section.				
	Updated the following figures:				
	Figure 7.1. Module/IP Block Wizard				
	Figure 7.2. IP Configuration				
	Figure 7.3. Check Generated Result				
	Figure 7.5. Add and Reorder Source				
	Figure 7.7. Sample Testbench Overview				
	Figure 7.11. I2C Sample Configuration (Primary and Secondary I2C Enabled)				
	Figure 7.12. UFM Access Sample Configuration (through Wishbone and I2C Access)				
Design Considerations	Added this section.				

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary
Resource Utilization	Updated this section.
References	Added MachXO4 EFB Module IP Release Notes (FPGA-RN-02079), MachXO4 Hardened Control Functions User Guide (FPGA-TN-02403), MachXO4 Hardened Control Functions Reference Guide (FPGA-TN-02404), and MachXO4 web page.

Revision 0.80, IP v1.0.0, June 2025

Section	Change Summary
All	Initial release.

www.latticesemi.com