



# QSPI Flash Controller IP

IP Version: v1.5.0

## User Guide

FPGA-IPUG-02248-1.3

June 2025

## Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

## Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language [FAQ 6878](#) for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

# Contents

|                                                             |    |
|-------------------------------------------------------------|----|
| Contents .....                                              | 3  |
| Abbreviations in This Document.....                         | 8  |
| 1. Introduction .....                                       | 9  |
| 1.1. Overview of the IP .....                               | 9  |
| 1.2. Quick Facts .....                                      | 9  |
| 1.3. IP Support Summary .....                               | 10 |
| 1.4. Features .....                                         | 13 |
| 1.5. Licensing and Ordering Information .....               | 14 |
| 1.5.1. Ordering Part Number.....                            | 14 |
| 1.6. Hardware Support.....                                  | 14 |
| 1.7. Minimum Device Requirements .....                      | 14 |
| 1.8. Naming Conventions .....                               | 14 |
| 1.8.1. Nomenclature.....                                    | 14 |
| 1.8.2. Signal Names .....                                   | 14 |
| 1.8.3. Attribute Names.....                                 | 14 |
| 2. Functional Description.....                              | 15 |
| 2.1. IP Architecture Overview .....                         | 15 |
| 2.2. Clocking .....                                         | 15 |
| 2.2.1. Clocking Overview .....                              | 15 |
| 2.3. Reset .....                                            | 16 |
| 2.3.1. Reset Overview .....                                 | 16 |
| 2.4. User Interfaces .....                                  | 16 |
| 2.5. Other IP Specific Blocks/Layers/Interfaces .....       | 16 |
| 2.5.1. IP Core Operation .....                              | 16 |
| 2.5.2. User Packet Frame Structure .....                    | 19 |
| 3. IP Parameter Description.....                            | 23 |
| 3.1. General.....                                           | 23 |
| 3.2. IP Parameter Settings for Example Use Cases.....       | 26 |
| 3.2.1. SPI Protocols.....                                   | 26 |
| 3.2.2. SPI Clock Phase and Polarity.....                    | 27 |
| 3.2.3. Big and Little Endian.....                           | 28 |
| 3.2.4. MSB or LSB First Transmitted Bit Transaction .....   | 28 |
| 3.2.5. Multiple SPI Targets .....                           | 28 |
| 3.2.6. Transmit and Receive FIFO .....                      | 28 |
| 4. Signal Description .....                                 | 29 |
| 5. Register Description .....                               | 34 |
| 5.1. Overview .....                                         | 34 |
| 5.2. Configuration Registers.....                           | 35 |
| 5.2.1. QSPI Configuration Register 0 .....                  | 35 |
| 5.2.2. QSPI Configuration Register 1 .....                  | 37 |
| 5.2.3. Flash Command Code 0 Register.....                   | 37 |
| 5.2.4. Flash Command Code 1 Register.....                   | 37 |
| 5.2.5. Flash Command Code 2 Register.....                   | 38 |
| 5.2.6. Flash Command Code 3 Register.....                   | 38 |
| 5.2.7. Flash Command Code 4 Register.....                   | 38 |
| 5.2.8. Flash Command Code 5 Register.....                   | 39 |
| 5.2.9. Flash Command Code 6 Register.....                   | 39 |
| 5.2.10. Flash Command Code 7 Register.....                  | 39 |
| 5.2.11. Minimum Flash Address Alignment Register .....      | 40 |
| 5.2.12. Starting Flash Address Space Mapping Register ..... | 40 |
| 5.2.13. Flash Memory Map Size Register .....                | 41 |
| 5.2.14. AXI/AHB-L Address Map Register .....                | 41 |

|                                                                                      |    |
|--------------------------------------------------------------------------------------|----|
| 5.3. Status and Interrupt Registers .....                                            | 42 |
| 5.3.1. Transaction Status Register .....                                             | 42 |
| 5.3.2. Interrupt Status Register .....                                               | 42 |
| 5.3.3. Interrupt Enable Register .....                                               | 45 |
| 5.3.4. Interrupt Set Register .....                                                  | 46 |
| 5.3.5. Supported Flash Command Packet Header and Data Transfer Status Register ..... | 47 |
| 5.3.6. Generic SPI Transaction Packet Header and Data Transfer Status Register ..... | 47 |
| 5.4. Control Registers .....                                                         | 47 |
| 5.4.1. TX FIFO Mapping .....                                                         | 47 |
| 5.4.2. RX FIFO Mapping .....                                                         | 48 |
| 5.4.3. Packet Header 0 Register .....                                                | 48 |
| 5.4.4. Packet Header 1 Register .....                                                | 51 |
| 5.4.5. Packet Header 2 Register .....                                                | 52 |
| 5.4.6. Packet Header 3 Register .....                                                | 52 |
| 5.4.7. Packet Data 0 Register .....                                                  | 52 |
| 5.4.8. Packet Data 1 Register .....                                                  | 53 |
| 5.4.9. Start Transaction Register .....                                              | 53 |
| 5.5. Operation Details/Programming Flow .....                                        | 54 |
| 5.5.1. Flash Write/Erase Supported Commands with FIFO Enabled .....                  | 54 |
| 5.5.2. Flash Read Supported Commands with FIFO Enabled .....                         | 59 |
| 5.5.3. Flash Supported Commands using Packet Header and Data Registers .....         | 61 |
| 5.5.4. Generic Flash Write Operation .....                                           | 63 |
| 5.5.5. Generic Flash Read Operation .....                                            | 65 |
| 5.5.6. Non-XiP Access (Direct Write/Read Access) through Flash Memory Map .....      | 66 |
| 5.5.7. XiP Access (Direct Read Access) through Flash Memory Map .....                | 69 |
| 5.5.8. Polling Mode .....                                                            | 72 |
| 6. Example Design .....                                                              | 73 |
| 6.1. Example Design Supported Configuration .....                                    | 73 |
| 6.2. Overview of the Example Design and Features .....                               | 74 |
| 6.3. Example Design Components .....                                                 | 75 |
| 6.4. Generating the Example Design .....                                             | 75 |
| 6.5. Simulating the Example Design .....                                             | 79 |
| 6.6. Hardware Testing .....                                                          | 81 |
| 7. Designing with the IP .....                                                       | 82 |
| 7.1. Generating and Instantiating the IP .....                                       | 82 |
| 7.1.1. Generated Files and File Structure .....                                      | 84 |
| 7.2. Running Functional Simulation .....                                             | 85 |
| 7.3. Constraining the IP .....                                                       | 86 |
| Appendix A. Resource Utilization .....                                               | 87 |
| References .....                                                                     | 91 |
| Technical Support Assistance .....                                                   | 92 |
| Revision History .....                                                               | 93 |

## Figures

|                                                                                         |    |
|-----------------------------------------------------------------------------------------|----|
| Figure 2.1. QSPI Flash Controller IP Block Diagram .....                                | 15 |
| Figure 2.2. Write Enable Command 06h Supported Command Sequence on SPI Mode .....       | 17 |
| Figure 2.3. Read Data Command 03h Supported Command Sequence on SPI Mode .....          | 17 |
| Figure 2.4. Block Erase Type 1 Command 20h Supported Command Sequence on SPI Mode ..... | 17 |
| Figure 2.5. Page Program Command 02h Supported Command Sequence on SPI Mode .....       | 18 |
| Figure 2.6. Supported Flash Command Packet with 2DW Header .....                        | 19 |
| Figure 2.7. Supported Flash Command Packet with 3DW Header .....                        | 20 |
| Figure 2.8. Supported Flash Command Packet with 4DW Header .....                        | 21 |
| Figure 2.9. Generic Command Packet with 1DW Header .....                                | 22 |
| Figure 3.1. Standard SPI Timing Diagram .....                                           | 26 |
| Figure 3.2. Extended SPI Timing Diagram .....                                           | 26 |
| Figure 3.3. Dual SPI Timing Diagram .....                                               | 26 |
| Figure 3.4. Quad SPI Timing Diagram .....                                               | 27 |
| Figure 3.5. Clocking Mode 0 (SPI Clock Polarity=0, SPI Clock Phase=0) Waveforms .....   | 27 |
| Figure 3.6. Clocking Mode 3 (SPI Clock Polarity=1, SPI Clock Phase=1) Waveforms .....   | 27 |
| Figure 6.1. QSPI Flash Controller IP Example Design in SoC Project .....                | 74 |
| Figure 6.2. QSPI Flash Controller Example Design Block Diagram .....                    | 75 |
| Figure 6.3. Lattice Propel Launcher .....                                               | 76 |
| Figure 6.4. Create SoC Project .....                                                    | 76 |
| Figure 6.5. Define Instance .....                                                       | 77 |
| Figure 6.6. Address Tab .....                                                           | 77 |
| Figure 6.7. Build SoC Project Result .....                                              | 78 |
| Figure 6.8. C/C++ Project Load System and BSP .....                                     | 78 |
| Figure 6.9. Build C/C++ Project Result .....                                            | 79 |
| Figure 6.10. Reload sbx .....                                                           | 79 |
| Figure 6.11. Verification Project Schematic .....                                       | 79 |
| Figure 6.12. Edited Testbench File .....                                                | 80 |
| Figure 6.13. Simulation Waveform .....                                                  | 80 |
| Figure 7.1. Module/IP Block Wizard .....                                                | 82 |
| Figure 7.2. IP Configuration – View 1 .....                                             | 83 |
| Figure 7.3. IP Configuration – View 2 .....                                             | 83 |
| Figure 7.4. Check Generating Results .....                                              | 84 |
| Figure 7.5. Simulation Wizard .....                                                     | 85 |
| Figure 7.6: Adding Re-Ordering Source .....                                             | 85 |
| Figure 7.7. Simulation Waveform .....                                                   | 86 |

## Tables

|                                                                                                                  |    |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 1.1. Summary of the QSPI Flash Controller IP .....                                                         | 9  |
| Table 1.2. QSPI Flash Controller IP Support Readiness.....                                                       | 10 |
| Table 1.3. Minimum Device Requirements for QSPI Flash Controller IP .....                                        | 14 |
| Table 2.1. User Interfaces and Supported Protocols .....                                                         | 16 |
| Table 3.1. General Attributes .....                                                                              | 23 |
| Table 3.2. Clocking Modes .....                                                                                  | 27 |
| Table 3.3. Bus Interface Data Endianness.....                                                                    | 28 |
| Table 4.1. Top-Level Ports .....                                                                                 | 29 |
| Table 5.1. Register Access Types .....                                                                           | 34 |
| Table 5.2. Summary of QSPI Flash Controller IP Core Registers .....                                              | 34 |
| Table 5.3. QSPI Configuration Register 0.....                                                                    | 35 |
| Table 5.4. QSPI Configuration Register 1.....                                                                    | 37 |
| Table 5.5. Flash Command Code 0 Register .....                                                                   | 37 |
| Table 5.6. Flash Command Code 1 Register .....                                                                   | 37 |
| Table 5.7. Flash Command Code 2 Register .....                                                                   | 38 |
| Table 5.8. Flash Command Code 3 Register .....                                                                   | 38 |
| Table 5.9. Flash Command Code 4 Register .....                                                                   | 38 |
| Table 5.10. Flash Command Code 5 Register .....                                                                  | 39 |
| Table 5.11. Flash Command Code 6 Register .....                                                                  | 39 |
| Table 5.12. Flash Command Code 7 Register .....                                                                  | 39 |
| Table 5.13. Minimum Flash Address Alignment Register .....                                                       | 40 |
| Table 5.14. Starting Flash Address Space Mapping Register .....                                                  | 40 |
| Table 5.15. Flash Memory Map Size Register .....                                                                 | 41 |
| Table 5.16. AXI/AHB-L Address Map Register .....                                                                 | 41 |
| Table 5.17. Transaction Status Register .....                                                                    | 42 |
| Table 5.18. Interrupt Status Register when FIFO is Enabled .....                                                 | 42 |
| Table 5.19. Interrupt Status Register when FIFO is Disabled.....                                                 | 44 |
| Table 5.20. Interrupt Enable Register when FIFO is Enabled.....                                                  | 45 |
| Table 5.21. Interrupt Enable Register when FIFO is Disabled.....                                                 | 45 |
| Table 5.22. Interrupt Set Register when FIFO is Enabled .....                                                    | 46 |
| Table 5.23. Interrupt Set Register when FIFO is Disabled .....                                                   | 46 |
| Table 5.24. Supported Flash Command Transaction Status Register .....                                            | 47 |
| Table 5.25. Generic SPI Transaction Status Register .....                                                        | 47 |
| Table 5.26. TX FIFO Mapping Register .....                                                                       | 47 |
| Table 5.27. RX FIFO Mapping Register.....                                                                        | 48 |
| Table 5.28. Packet Header 0 Register – Supported Flash Commands.....                                             | 48 |
| Table 5.29. Supported Flash Commands .....                                                                       | 49 |
| Table 5.30. Packet Header 0 Register – Generic SPI Transactions.....                                             | 50 |
| Table 5.31. Packet Header 1 Register .....                                                                       | 51 |
| Table 5.32. Packet Header 2 Register .....                                                                       | 52 |
| Table 5.33. Packet Header 3 Register .....                                                                       | 52 |
| Table 5.34. Packet Data 0 Register .....                                                                         | 52 |
| Table 5.35. Packet Data 1 Register .....                                                                         | 53 |
| Table 5.36. Start Transaction Register .....                                                                     | 53 |
| Table 5.37. Programming Flow: Enter Quad Input/Output Mode, Without Payload, Standard SPI .....                  | 54 |
| Table 5.38. Programming Flow: Block Erase Type 1, Without Payload, Big Endian, Standard SPI .....                | 55 |
| Table 5.39. Programming Flow: Write Status/Configuration Register, With Payload, Big Endian, Standard SPI .....  | 56 |
| Table 5.40. Programming Flow: 256-bytes Page Program, FIFO Enabled, Big Endian, Standard SPI .....               | 57 |
| Table 5.41. Programming Flow: 256-bytes Extended Quad Input Fast Program, FIFO Enabled, Little Endian .....      | 57 |
| Table 5.42. Programming Flow: Read Status Register, FIFO Enabled, Standard SPI.....                              | 59 |
| Table 5.43. Programming Flow: 256-bytes Quad Input/Output Fast Read, FIFO Enabled, Big Endian, Extended SPI..... | 59 |
| Table 5.44. Programming Flow: 256-bytes Page Program, FIFO Disabled, Big Endian, Standard SPI.....               | 61 |

|                                                                                                                   |    |
|-------------------------------------------------------------------------------------------------------------------|----|
| Table 5.45. Programming Flow: 256-bytes Quad Input/Output Fast Read, FIFO Disabled, Big Endian, Extended SPI..... | 62 |
| Table 5.46. Programming Flow: Sending a Command, FIFO Disabled, Big Endian .....                                  | 63 |
| Table 5.47. Programming Flow: Sending Command and Data, FIFO Disabled, Big Endian.....                            | 63 |
| Table 5.48. Programming Flow: Sending Command then Read Data, FIFO Disabled, Big Endian .....                     | 65 |
| Table 5.49. Programming Flow: Enter 4-byte Address Mode, FIFO Disabled, Big Endian .....                          | 66 |
| Table 5.50. Programming Flow: Write Status Register, FIFO Disabled, Big Endian .....                              | 67 |
| Table 5.51. Programming Flow: Direct Write Access, Big Endian.....                                                | 68 |
| Table 5.52. Programming Flow: 1-Byte Quad Input/Output Fast Read, FIFO Disabled, Big Endian .....                 | 69 |
| Table 5.53. Programming Flow: 4-Byte Address, FIFO Disabled, Big Endian .....                                     | 70 |
| Table 5.54. Programming Flow: XiP Pattern and Dummy, FIFO Disabled, Big Endian .....                              | 70 |
| Table 5.55. Programming Flow: Read 4-bytes Data, FIFO Disabled, Big Endian.....                                   | 71 |
| Table 6.1. QSPI Flash Controller IP Configuration Used on Example Design .....                                    | 73 |
| Table 7.1. Generated File List .....                                                                              | 84 |
| Table A.1. Resource Utilization using LAV-AT-E70-3LFG1156I .....                                                  | 87 |
| Table A.2. Resource Utilization using LAV-AT-E70-1LFG1156I .....                                                  | 87 |
| Table A.3. Resource Utilization using LFCPNX-100-9LFG672I.....                                                    | 88 |
| Table A.4. Resource Utilization using LFCPNX-100-7LFG672I.....                                                    | 89 |
| Table A.5. Resource Utilization using LFD2NX-40-9BG256I.....                                                      | 89 |
| Table A.6. Resource Utilization using LFD2NX-40-7BG256I.....                                                      | 90 |

## Abbreviations in This Document

A list of abbreviations used in this document.

| Abbreviation      | Definition                                |
|-------------------|-------------------------------------------|
| AHB               | Advanced High-performance Bus             |
| AHB-L, AHB-Lite   | Advanced High-performance Bus Lite        |
| AMBA              | Advanced Microcontroller Bus Architecture |
| AXI4              | Advanced eXtensible Interface 4           |
| AXI4-L, AXI4-Lite | Advanced eXtensible Interface 4 Lite      |
| CLINT             | Core Local Interrupter                    |
| CPHA              | SPI Clock Phase                           |
| CPOL              | SPI Clock Polarity                        |
| CPU               | Central Processing Unit                   |
| CSR               | Configuration Status Register             |
| DRC               | Design Rule Checking                      |
| DSPI              | Dual Serial Peripheral Interface          |
| FIFO              | First In, First Out                       |
| FPGA              | Field-Programmable Gate Array             |
| HDL               | Hardware Description Language             |
| INCR              | Incrementing                              |
| LSB               | Least Significant Bit                     |
| MSB               | Most Significant Bit                      |
| PFR               | Platform Firmware Resiliency              |
| PLIC              | Platform Level Interrupt Controller       |
| QSPI              | Quad Serial Peripheral Interface          |
| SPI               | Serial Peripheral Interface               |
| TCM               | Tightly-Coupled Memory                    |
| XiP               | eXecute-in-Place                          |

# 1. Introduction

## 1.1. Overview of the IP

The Lattice QSPI Flash Controller IP core supports the SPI, DSPI, and QSPI protocols to perform operations on the target flash device.

A Quad Serial Peripheral Interface (QSPI) uses four tri-state data lines and is commonly used to program, erase, and read SPI flash memories. QSPI enhances the throughput of a standard SPI by four times since four bits are transferred with every clock cycle.

A Dual Serial Peripheral Interface (DSPI) uses two tri-state data lines and is used to program, erase, and read SPI flash memories. DSPI transfers two bits with every clock cycle.

A Standard Serial Peripheral Interface (SPI) uses separate data lines for input and output to perform flash operations.

## 1.2. Quick Facts

Table 1.1. Summary of the QSPI Flash Controller IP

|                             |                                     |                                                                                                                                                                                               |
|-----------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>IP Requirements</b>      | Supported Devices                   | Lattice CrossLink™-NX, Certus™-NX (LFD2NX-17, LFD2NX-40), CertusPro™-NX, MachXO5™-NX (LFMXO5-25, LFMXO5-55T, LFMXO5-100T), Avant™ (LAV-AT-E70, LAV-AT-G70, LAV-AT-X70), Certus-N2 (LN2-CT-20) |
|                             | IP Changes                          | Refer to the <a href="#">QSPI Flash Controller IP Release Notes (FPGA-RN-02016)</a> .                                                                                                         |
| <b>Resource Utilization</b> | Supported User Interface            | Advanced High-performance Bus Lite (AHB-Lite), Advanced eXtensible Interface 4 Lite (AXI4-Lite), Advanced eXtensible Interface 4 (AXI4)                                                       |
|                             | Resources                           | Refer to <a href="#">Appendix A. Resource Utilization</a> .                                                                                                                                   |
| <b>Design Tool Support</b>  | Lattice Implementation <sup>1</sup> | IP Core v1.4.0 – Lattice Radiant™ Software 2024.2<br>IP Core v1.5.0 – Lattice Radiant Software 2025.1                                                                                         |
|                             | Synthesis                           | Synopsys® Synplify Pro®, Lattice Synthesis Engine                                                                                                                                             |
|                             | Simulation                          | Refer to the Lattice Radiant Software User Guide for the list of supported simulators.                                                                                                        |

**Note:**

1. Lattice Implementation indicates the IP version release coinciding with the software version release. Check the software for IP version compatibility with earlier or later software versions.

## 1.3. IP Support Summary

Table 1.2. QSPI Flash Controller IP Support Readiness

| Device Family | IP Configuration and Settings                                                                                                                             | On-board Flash                           | Clock Frequency                                                                                           | Flash Settings                                                                    | Flash Commands                                                                                                                                                                                                                                                        | Radiant Timing Model | Hardware Validated |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
| CertusPro-NX  | AHB-L and AXI4L interface, Disabled Transmit and Receive FIFO, Supported Commands                                                                         | Micron 128 Mbit SPI Flash (MT25QU128ABA) | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Quad SPI, Clock mode 3, 3-byte address mode                                       | Read Configuration Register, Read ID, Multiple I/O Read ID, Fast Read, Dual Input/Output Fast Read, Quad Input/Output Fast Read, Block Erase Type 1, Block Erase Type 3, Write Configuration Register, Page Program, Dual Input Fast Program, Quad Input Fast Program | Final                | Yes                |
|               | AHB-L and AXI4L interface, Disabled Transmit and Receive FIFO, Direct Write and Read Access, Generic Command Packet (To enable/disable XiP Mode of Flash) |                                          | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Extended SPI Mode, XiP and non-XiP modes, Clock mode 0 and 3, 3-byte address mode | Page Program, Dual Input Fast Program, Extended Dual Input Fast Program, Quad Input Fast Program, Extended Quad Input Fast Program, Read Data, Fast Read, Dual Output Fast Read, Dual Input/Output Fast Read, Quad Output Fast Read, Quad Input/Output Fast Read      | Final                | Yes                |

| Device Family | IP Configuration and Settings                                                                                                                             | On-board Flash                            | Clock Frequency                                                                                           | Flash Settings                                                                       | Flash Commands                                                                                                                                                                                                         | Radiant Timing Model | Hardware Validated |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
| CertusPro-NX  | AXI4 and AXI4L interface, Disabled Transmit and Receive FIFO, Direct Write and Read Access, Generic Command Packet (To enable/disable XiP Mode of Flash)  | Winbond 512 Mbit SPI Flash (W25Q512JV)    | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Quad SPI, XiP and non-XiP modes, Clock mode 0 and 3, 3-byte and 4-byte address modes | Page Program, Quad Input Page Program, Read Data, Fast Read, Dual Output Fast Read, Dual Input/Output Fast Read, Quad Output Fast Read, Quad Input/Output Fast Read                                                    | Final                | Yes                |
|               | AXI4 and AXI4L interface, Disabled Transmit and Receive FIFO, Supported Commands                                                                          |                                           |                                                                                                           | Quad SPI, Clock mode 0 and 3, 3-byte and 4-byte address modes                        | Read ID (Read JEDEC ID), Read Manufacturer and Device ID (Read Device ID), Read Manufacturer and Device ID - Dual SPI, Read Manufacturer and Device ID - Quad SPI, Enter 4-byte address mode, Exit 4-byte address mode | Final                | Yes                |
|               | AHB-L and AXI4L interface, Disabled Transmit and Receive FIFO, Supported Commands                                                                         | Macronix 512 Mbit SPI Flash (MX25L51245G) | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Standard SPI, Clock mode 0 and 3,                                                    | Read ID, Read Electronic ID, Read Manufacturer and Device ID, Write Status Register, Read Status Register, Enter Quad Mode, Exit Quad Mode                                                                             | Final                | Yes                |
|               | AHB-L and AXI4L interface, Disabled Transmit and Receive FIFO, Direct Write and Read Access, Generic Command Packet (To enable/disable XiP Mode of Flash) |                                           | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Quad SPI, XiP and non-XiP modes, Clock mode 0 and 3, 3-byte and 4-byte address modes | Page Program (QPI Mode), Quad Input/Output Fast Read (QPI Mode)                                                                                                                                                        | Final                | Yes                |

| Device Family | IP Configuration and Settings                                                    | On-board Flash                        | Clock Frequency                                                                                           | Flash Settings                                         | Flash Commands                                                                                                                                                                                                                                                             | Radiant Timing Model | Hardware Validated |
|---------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
| Avant         | AXI4 interface, Disabled Transmit and Receive FIFO, Supported Commands           | Winbond 512Mbit SPI Flash (W25Q512JV) | System Clock Frequency: 125 MHz SPI Clock Frequency (max): 31.25 MHz (System Clock Frequency divide by 4) | Quad SPI, Clock mode 3, 3-byte address mode            | Read ID, Quad Input/Output Fast Read, Block Erase Type 1, Block Erase Type 3, Write Status Register, Quad Input Fast Program                                                                                                                                               | Advance              | Yes                |
|               | AXI4 and AXI4L interface, Disabled Transmit and Receive FIFO, Supported Commands |                                       | System Clock Frequency: 100 MHz SPI Clock Frequency (max): 25 MHz (System Clock Frequency divide by 4)    | Quad SPI, Clock mode 3, 3-byte and 4-byte address mode | Read Manufacturer and Device ID Dual I/O, Read Manufacturer and Device ID Quad I/O, Read Status Register-1, Dual Input/Output Fast Read, Quad Input/Output Fast Read, Block Erase Type 1, Block Erase Type 3, Write Status Register, Page Program, Quad Input Fast Program | Advance              | Yes                |

## 1.4. Features

Key features of the QSPI Flash Controller IP include:

- Different bus interfaces:
  - AMBA 3 AHB-Lite Protocol v1.0
    - 32-bit data and 32-bit address
    - Single and burst transfers. Burst transfer is only supported on direct access – non-XiP and XiP.
    - For non-XiP and XiP accesses, only a 32-bit data size is supported.
  - AMBA AXI4-Lite Protocol (for CSR access only)
    - 32-bit data and 32-bit address
    - Single transfer only
  - AMBA AXI4 Protocol
    - 32-bit data and 32-bit address
    - Single and multiple burst transfers. Burst transfer is only supported on direct access – non-XiP and XiP.
    - For non-XiP and XiP accesses, only a 32-bit data size is supported.
- Scalable performance: 1X, 2X, 4X I/O widths
- Programmable SPI clock mode of 0 or 3
- Programmable serial clock frequency
- Optional use of transmit and receive FIFOs with configurable FIFO depth for register-based access only
- RISC V QSPI code little endian and code execution
- Big- and little-endian support
- Supports flash commands that allow access and control to configuration, function, and other write registers
- Internal decoding of SPI flash instructions for supported flash commands
- Generic command packet to perform user-defined SPI transactions
- eXecute In Place (XiP) for read access
- Configurable SPI mode/protocols with the following interfaces:
  - Standard SPI – SCK, CS, SI, SO
  - Dual SPI – SCK, CS, IO0, IO1
  - Quad SPI – SCK, CS, IO0, IO1, IO2, IO3
- Standard SPI mode:
  - Controller mode only
  - MSB or LSB first transaction
  - Multiple-target environment
- Dual and Quad SPI modes:
  - Controller mode only
  - MSB first transaction
  - SPI transfer length of 8-bits only
  - Multiple-target environment
- Interrupt capability
- Supported system clock frequency up to 200 MHz. The maximum frequencies for supported Avant and Nexus devices are 200 MHz and 125 MHz, respectively. Refer to [Appendix A](#) for sample  $f_{MAX}$  values.

## 1.5. Licensing and Ordering Information

The QSPI Flash Controller IP is provided at no additional cost with the Lattice Radiant software.

### 1.5.1. Ordering Part Number

The QSPI Flash Controller IP does not require an ordering part number.

## 1.6. Hardware Support

Refer to the [Example Design](#) section for more information on the boards used.

## 1.7. Minimum Device Requirements

The minimum device requirements for the QSPI Flash Controller IP are as follows:

**Table 1.3. Minimum Device Requirements for QSPI Flash Controller IP**

| Device                             | Speed Grades |
|------------------------------------|--------------|
| LAV-AT-E70, LAV-AT-G70, LAV-AT-X70 | 1, 2, 3      |
| LFD2NX-17, LFD2NX-40               | 7, 8, 9      |
| LFCPNX-50, LFCPNX-100              | 7, 8, 9      |
| LIFCL-17, LIFCL-33, LIFCL-40       | 7, 8, 9      |
| LFMXO5-25, LFMXO5-55T, LFMXO5-100T | 7, 8, 9      |
| LN2-CT-20                          | 1, 2, 3      |

## 1.8. Naming Conventions

### 1.8.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

### 1.8.2. Signal Names

Signal names that end with:

- `_n` are active low (asserted when value is logic 0)
- `_i` are input signals
- `_o` are output signals
- `_io` are bi-directional input/output signals

### 1.8.3. Attribute Names

Attribute names in this document are formatted in title case and italicized (*Attribute Name*).

## 2. Functional Description

### 2.1. IP Architecture Overview

The QSPI Flash Controller IP core allows the host inside the FPGA to communicate with multiple external SPI flash devices using either standard, extended dual/quad, dual, or quad SPI protocols.

Figure 2.1 shows the block diagram of the QSPI Flash Controller IP.

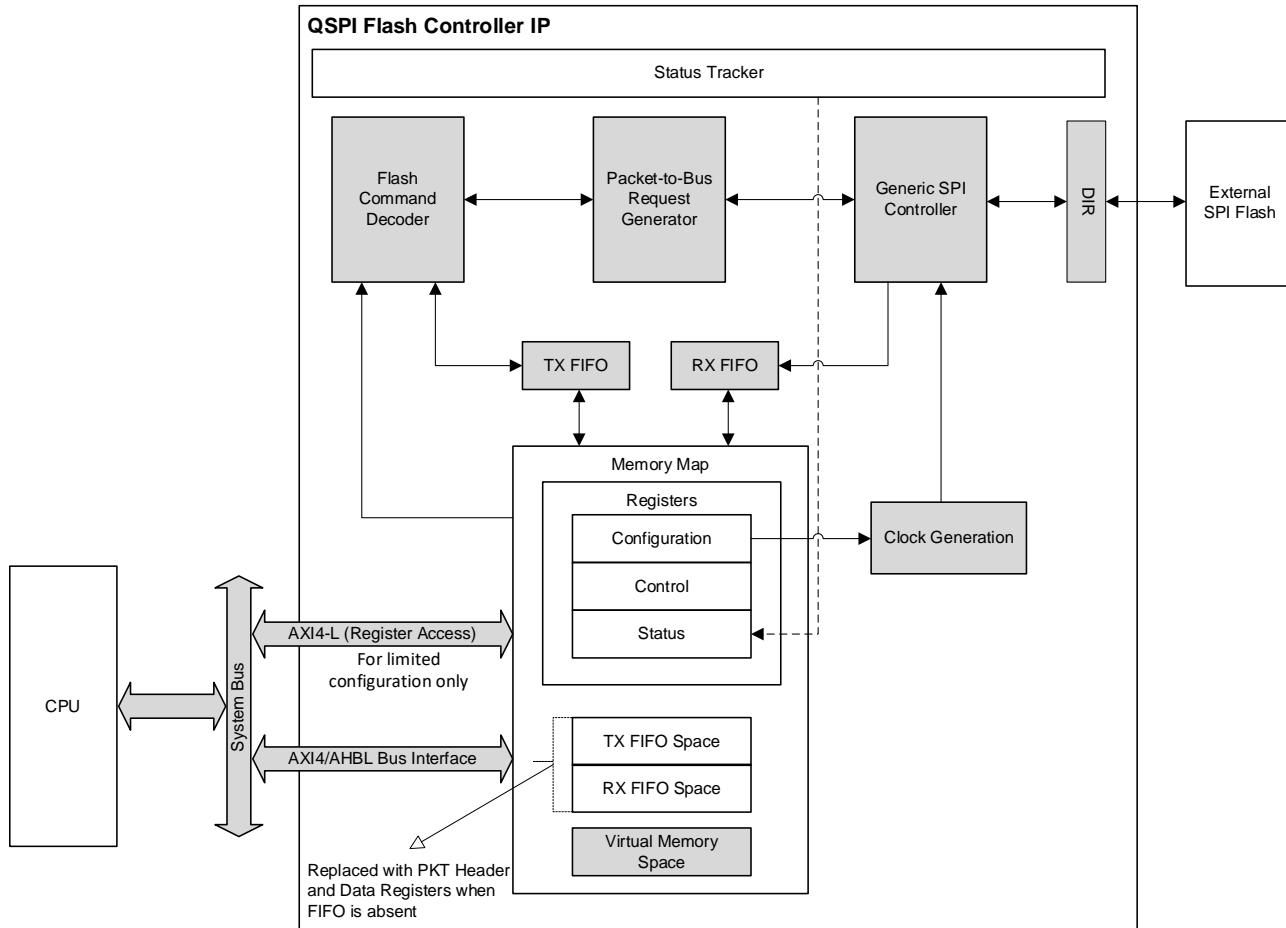



Figure 2.1. QSPI Flash Controller IP Block Diagram

### 2.2. Clocking

There are two clocks for this IP.

#### 2.2.1. Clocking Overview

`a_clk_i` is the system clock that is also used as the AHB-Lite, AXI4-Lite, or AXI4 input clock. `sclk_o` is the serial clock to SPI flash.

## 2.3. Reset

There is only one reset for this IP.

### 2.3.1. Reset Overview

`a_reset_n_i` is an asynchronous active low reset. When low, output ports and registers are forced to their reset values.

## 2.4. User Interfaces

**Table 2.1. User Interfaces and Supported Protocols**

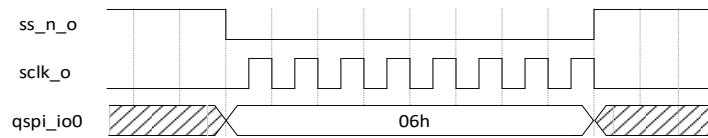
| User Interface                          | Supported Protocols          | Description                                                                                                                                                                                                              |
|-----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced eXtensible Interface 4         | AXI4                         | The AXI4 bus interface can be used as the main interface for all IP operations. When flash address mapping is enabled, this interface can only be used for non-XiP direct write/read access and XiP direct read access.  |
| Advanced eXtensible Interface 4         | AXI4-Lite                    | This interface is used when flash address mapping is enabled. Configuration, control and status register, and supported command transactions can use this interface.                                                     |
| Advanced High-performance Bus Interface | AHB-Lite                     | The AHB-L bus interface can be used as the main interface for all IP operations. When flash address mapping is enabled, this interface can only be used for non-XiP direct write/read access and XiP direct read access. |
| Serial Peripheral Interface             | Standard, dual, and quad SPI | The Serial Peripheral Interface enables communication between the QSPI Flash Controller IP and target SPI flash device.                                                                                                  |

## 2.5. Other IP Specific Blocks/Layers/Interfaces

### 2.5.1. IP Core Operation

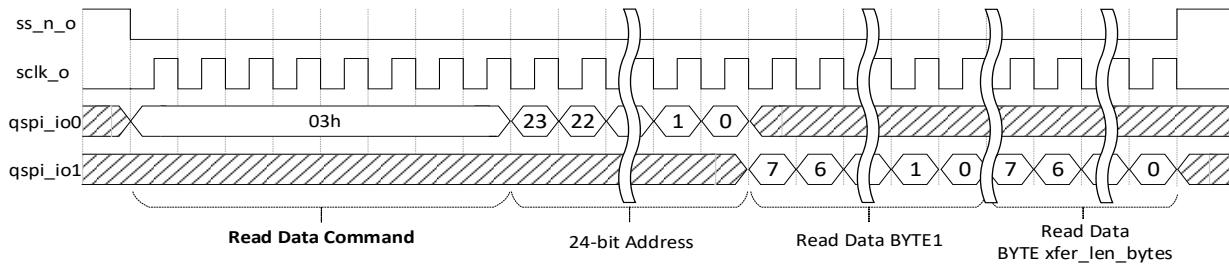
This IP supports standard, dual, and quad SPI transactions. During quad SPI-enabled protocol communication, standard and dual SPI transactions can still be processed by the controller. Likewise, during dual SPI-enabled protocol communication, standard SPI transactions can still be processed by the controller.

Controller sequences are mainly categorized for supported commands and generic SPI transactions.


This IP also provides an option to map the target flash device to an address space to mimic local memory access. When this is enabled, XiP access and non-XiP access can be performed by the controller using the selected IP's main interface.

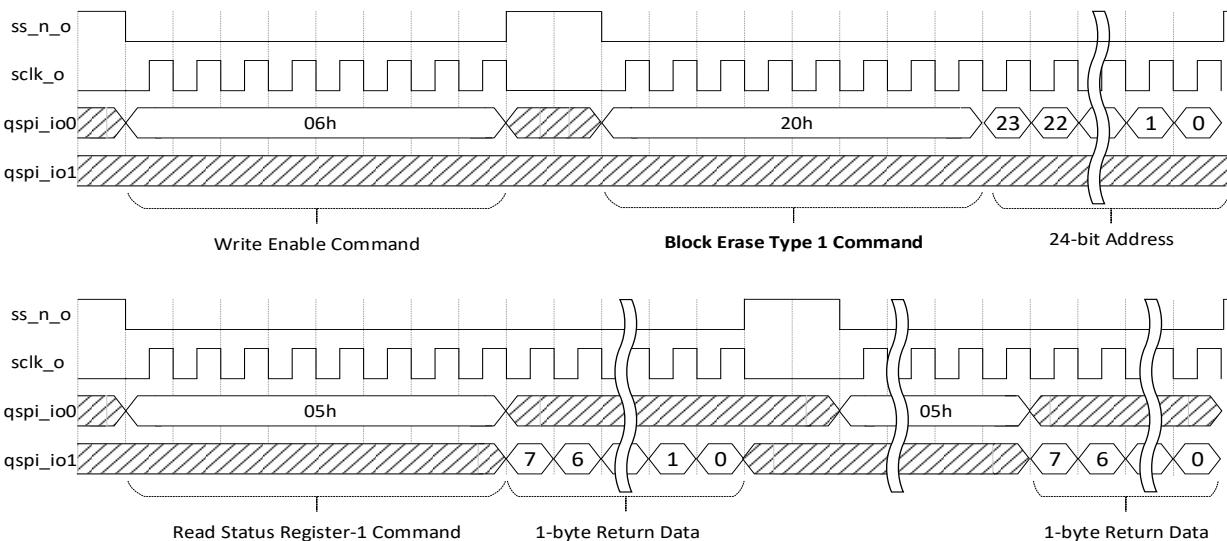
#### 2.5.1.1. Supported Commands Flash Operation

IP supported flash commands are listed in [Table 5.29](#) including commonly used flash commands such as erase, page program, and read. For a flash operation, the `flash_command_code` bits of the packet header 0 register value are used by the controller to generate the complete sequence needed to execute the operation. The opcode used is based on the flash command opcode setting on the IP GUI or through the Flash Command Code 0 to 7 Registers with addresses 0x0000\_000C to 0x0000\_0028.


Below are the sample sequences automatically created by the controller based on flash\_command\_code register bits:

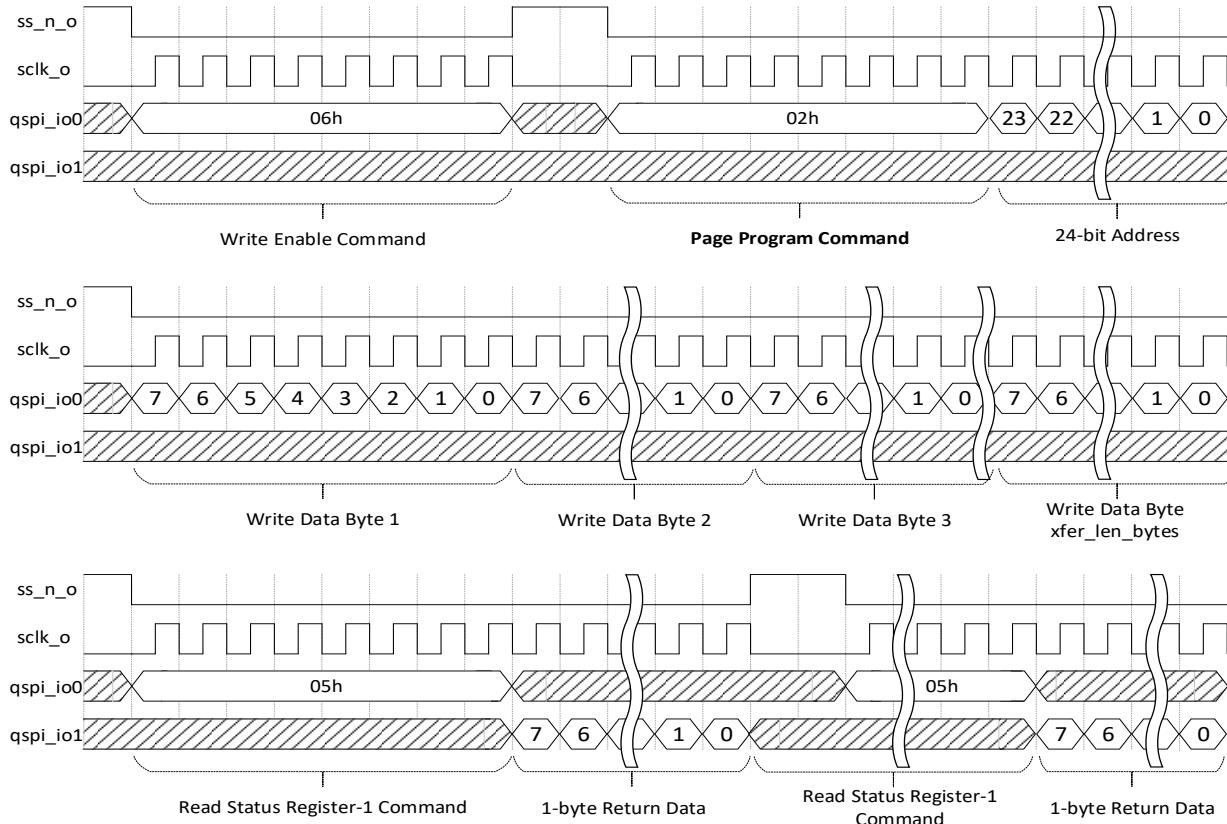
- flash\_command\_code == 5'h14, Write Enable flash command: The controller sends the equivalent opcode to the SPI interface.




**Figure 2.2. Write Enable Command 06h Supported Command Sequence on SPI Mode**

- flash\_command\_code == 5'h0A, Read Data flash command: The controller sends the equivalent opcode and specified flash address to the SPI interface. The SPI transaction remains active until xfer\_len\_bytes of data are read from the flash.




**Figure 2.3. Read Data Command 03h Supported Command Sequence on SPI Mode**

- flash\_command\_code == 5'h10, Block Erase Type 1 flash command: The controller sends the write enable opcode, equivalent erase opcode, specified flash address, and read status register opcode to the SPI interface. For erase flash transaction, the controller automatically sends the write enable and read status register flash command opcodes before and after sending the main flash command and address to the interface, respectively. The controller continues to send the read status register command until it reads that the flash is no longer busy.



**Figure 2.4. Block Erase Type 1 Command 20h Supported Command Sequence on SPI Mode**

- `flash_command_code == 5'h17`, Page Program flash command: The controller sends the write enable opcode, equivalent page program opcode, and specified flash address. The SPI transaction remains active until all `xfer_len_bytes` of data from the packet data register or FIFO are sent to the flash after which the read status register opcode is sent to the SPI interface to end the flash operation. For write transaction, the controller automatically sends the write enable and read status register flash command opcodes before and after sending the main flash command, address, and data to the interface, respectively. The controller continues to send the read status register command until it reads that the flash is no longer busy.



**Figure 2.5. Page Program Command 02h Supported Command Sequence on SPI Mode**

### 2.5.1.2. Generic Commands Operation

The IP can also process generic SPI transactions. The controller just sends and reads data to and from the SPI interface using packet data registers or FIFO based on the transaction described through the packet header 0 register for generic SPI transaction as listed in [Table 5.30](#). Refer to the [Generic Flash Write Operation](#) and [Generic Flash Read Operation](#) sections for sample sequences on how use these features of the IP.

### 2.5.1.3. Non-XIP Access

This is a direct write or read access using AXI4 or AHB-L interface with INCR type burst operation to program to or read from flash. Single and burst transfers are supported for AHB-L and AXI4. When using this feature, both interfaces support a 32-bit data size only.

The program command can be set through the *Write Access Command* IP attribute or through the configuration register 0 `flash_map_en_wr_access_cmd` bits. The read command can be set through the *Read Access Command* IP attribute or through the configuration register 0 `flash_map_en_rd_access_cmd` bits. There are other IP attributes which should also be set to define the access to the flash such as *Flash Address Width*, *Command Lane Width*, *Address Lane Width*, *Data Lane Width*, and *Dummy clock cycles* equivalent to QSPI configuration register 0 bits [31:16] as described in the [QSPI Configuration Register 0](#) section.

The write or read access address on the interface and the *Flash Address Mapping* attributes are used to determine the flash address targeted for the access. All *Flash Address Mapping* attributes are listed in [Table 3.1](#). An example of non-XiP access is described in the [Non-XiP Access \(Direct Write/Read Access\) through Flash Memory Map](#) section.

#### 2.5.1.4. eXecute-in-Place (XiP) Access

This is a direct read access using the AXI4 or AHB-L interface with INCR type burst operation read from flash using its XiP mode. Single and burst transfers are supported for AHB-L and AXI4. When using this feature, both interfaces support a 32-bit data size only.

Accessing flash devices via XiP mode allows for faster read execution because only an address is required during operation.

To use this IP feature, the flash device XiP mode must first be activated using generic command packet. Refer to the flash device data sheet on how to activate and deactivate its XiP mode.

Once the flash device XiP mode is activated, set the xip\_enable bit on the start transaction register to perform XiP access. Through direct read access using the AXI4 or AHB-L interface, the controller performs direct read using the read command specified on the IP GUI during generation or through QSPI Configuration Register 0 bits with XiP-enabled flash. An example of XiP access is described in the [XiP Access](#) section.

### 2.5.2. User Packet Frame Structure

This section describes the packet structures used by the IP to generate SPI transactions. The packet header and data structure can also be written to the TX FIFO whenever the TX FIFO is enabled. Read data from the flash device can be stored in the RX FIFO when enabled or in the packet data register before the data is read through the interface.

For flash operations of supported commands, the number of dwords on the header depends on the flash address width.

[Figure 2.6](#) shows the packet structure for supported commands, such as write and read status register, that do not require a flash address but has write or read data.

|                       | 7                      | 6 | 5                    | 4                                                        | 3                    | 2            | 1                    | 0 |
|-----------------------|------------------------|---|----------------------|----------------------------------------------------------|----------------------|--------------|----------------------|---|
| Byte 0                | multiple_flash_target  |   |                      | flash_cmd_code [4:0]                                     |                      | with_payload | sup_flash_cmd = 1    |   |
| Byte 1                |                        |   |                      | num_wait_state [7:0]                                     |                      |              |                      |   |
| Byte 2                |                        |   |                      | xfer_len_bytes [7:0]                                     |                      |              |                      |   |
| Byte 3                |                        |   |                      | xfer_len_bytes [15:8]                                    |                      |              |                      |   |
| Byte 4                | reserved [1:0]         |   | dat_lane_width [1:0] |                                                          | adr_lane_width [1:0] |              | cmd_lane_width [1:0] |   |
| Byte 5                | flash_addr_width [2:0] |   |                      |                                                          | tgt_cs [4:0]         |              |                      |   |
| Byte 6                |                        |   |                      | reserved [7:0]                                           |                      |              |                      |   |
| Byte 7                |                        |   |                      | reserved [7:0]                                           |                      |              |                      |   |
| Byte 8                |                        |   |                      | payload [7:0]                                            |                      |              |                      |   |
| Byte 9                |                        |   |                      | payload [15:8]                                           |                      |              |                      |   |
| ...                   |                        |   |                      | ...                                                      |                      |              |                      |   |
| Byte 7+xfer_len_bytes |                        |   |                      | payload [(xfer_len_bytes*8) - 1 : (xfer_len_bytes-1)*8)] |                      |              |                      |   |

**Figure 2.6. Supported Flash Command Packet with 2DW Header**

Figure 2.7 shows the packet structure for supported commands, such as page program and read data, with 32-bit flash address and write or read data.

|                        | 7                      | 6 | 5                    | 4                                                       | 3                    | 2            | 1                    | 0 |
|------------------------|------------------------|---|----------------------|---------------------------------------------------------|----------------------|--------------|----------------------|---|
| Byte 0                 | multiple_flash_target  |   |                      | flash_cmd_code [4:0]                                    |                      | with_payload | sup_flash_cmd = 1    |   |
| Byte 1                 |                        |   |                      | num_wait_state [7:0]                                    |                      |              |                      |   |
| Byte 2                 |                        |   |                      | xfer_len_bytes [7:0]                                    |                      |              |                      |   |
| Byte 3                 |                        |   |                      | xfer_len_bytes [15:8]                                   |                      |              |                      |   |
| Byte 4                 | reserved [1:0]         |   | dat_lane_width [1:0] |                                                         | adr_lane_width [1:0] |              | cmd_lane_width [1:0] |   |
| Byte 5                 | flash_addr_width [2:0] |   |                      |                                                         | tgt_cs [4:0]         |              |                      |   |
| Byte 6                 |                        |   |                      | reserved [7:0]                                          |                      |              |                      |   |
| Byte 7                 |                        |   |                      | reserved [7:0]                                          |                      |              |                      |   |
| Byte 8                 |                        |   |                      | flash_address [31:24]                                   |                      |              |                      |   |
| Byte 9                 |                        |   |                      | flash_address [23:16]                                   |                      |              |                      |   |
| Byte 10                |                        |   |                      | flash_address [15:8]                                    |                      |              |                      |   |
| Byte 11                |                        |   |                      | flash_address [7:0]                                     |                      |              |                      |   |
| Byte 12                |                        |   |                      | payload [7:0]                                           |                      |              |                      |   |
| Byte 13                |                        |   |                      | payload [15:8]                                          |                      |              |                      |   |
| ...                    |                        |   |                      | ...                                                     |                      |              |                      |   |
| Byte 11+xfer_len_bytes |                        |   |                      | payload [(xfer_len_bytes*8) -1 : (xfer_len_bytes-1)*8)] |                      |              |                      |   |

Figure 2.7. Supported Flash Command Packet with 3DW Header

Figure 2.8 shows the packet structure for supported commands, such as page program and read data, with more than 32-bit flash address and with write or read data.

|                        | 7                      | 6 | 5                    | 4                                                       | 3                    | 2            | 1                    | 0 |
|------------------------|------------------------|---|----------------------|---------------------------------------------------------|----------------------|--------------|----------------------|---|
| Byte 0                 | multiple_flash_target  |   |                      | flash_cmd_code [4:0]                                    |                      | with_payload | sup_flash_cmd = 1    |   |
| Byte 1                 |                        |   |                      | num_wait_state [7:0]                                    |                      |              |                      |   |
| Byte 2                 |                        |   |                      | xfer_len_bytes [7:0]                                    |                      |              |                      |   |
| Byte 3                 |                        |   |                      | xfer_len_bytes [15:8]                                   |                      |              |                      |   |
| Byte 4                 | reserved [1:0]         |   | dat_lane_width [1:0] |                                                         | adr_lane_width [1:0] |              | cmd_lane_width [1:0] |   |
| Byte 5                 | flash_addr_width [2:0] |   |                      |                                                         | tgt_cs [4:0]         |              |                      |   |
| Byte 6                 |                        |   |                      | reserved [7:0]                                          |                      |              |                      |   |
| Byte 7                 |                        |   |                      | reserved [7:0]                                          |                      |              |                      |   |
| Byte 8                 |                        |   |                      | flash_address [63:56]                                   |                      |              |                      |   |
| Byte 9                 |                        |   |                      | flash_address [55:48]                                   |                      |              |                      |   |
| Byte 10                |                        |   |                      | flash_address [47:40]                                   |                      |              |                      |   |
| Byte 11                |                        |   |                      | flash_address [39:32]                                   |                      |              |                      |   |
| Byte 12                |                        |   |                      | flash_address [31:24]                                   |                      |              |                      |   |
| Byte 13                |                        |   |                      | flash_address [23:16]                                   |                      |              |                      |   |
| Byte 14                |                        |   |                      | flash_address [15:8]                                    |                      |              |                      |   |
| Byte 15                |                        |   |                      | flash_address [7:0]                                     |                      |              |                      |   |
| Byte 16                |                        |   |                      | payload [7:0]                                           |                      |              |                      |   |
| Byte 17                |                        |   |                      | payload [15:8]                                          |                      |              |                      |   |
| ...                    |                        |   |                      | ...                                                     |                      |              |                      |   |
| Byte 15+xfer_len_bytes |                        |   |                      | payload [(xfer_len_bytes*8) -1 : (xfer_len_bytes-1)*8)] |                      |              |                      |   |

Figure 2.8. Supported Flash Command Packet with 4DW Header

Figure 2.9 shows the packet structure for generic SPI transaction where the controller only serializes the payload to the SPI interface or reads the data from the SPI interface.

|                       | 7                     | 6                  | 5         | 4                    | 3                     | 2              | 1                                                       | 0 |
|-----------------------|-----------------------|--------------------|-----------|----------------------|-----------------------|----------------|---------------------------------------------------------|---|
| Byte 0                | multiple_flash_target | frm_end            | frm_start | data_rate            | lane_width[1:0]       | cmd_type       | sup_flash_cmd = 0                                       |   |
| Byte 1                |                       | num_wait_sck [2:0] |           |                      | tgt_cs [4:0]          |                |                                                         |   |
| Byte 2                |                       |                    |           | xfer_len_bytes [7:0] |                       |                |                                                         |   |
| Byte 3                |                       |                    |           |                      | xfer_len_bytes [15:8] |                |                                                         |   |
| Byte 4                |                       |                    |           |                      |                       | payload [7:0]  |                                                         |   |
| Byte 5                |                       |                    |           |                      |                       | payload [15:8] |                                                         |   |
| ...                   |                       |                    |           |                      |                       | ...            |                                                         |   |
| Byte 5+xfer_len_bytes |                       |                    |           |                      |                       |                | payload [(xfer_len_bytes*8) -1 : (xfer_len_bytes-1)*8)] |   |

Figure 2.9. Generic Command Packet with 1DW Header

Table 5.28, Table 5.31, Table 5.32, Table 5.33, Table 5.34, and Table 5.35 show the packet header and data field definitions for flash operations of supported commands. Table 5.30, Table 5.34, and Table 5.35 show the packet header and data field definitions for generic SPI operations.

### 3. IP Parameter Description

The configurable attributes of the QSPI Flash Controller IP are shown in the following table. You can configure the IP by setting the attributes accordingly in the IP Catalog's Module/IP wizard of the Lattice Radiant software.

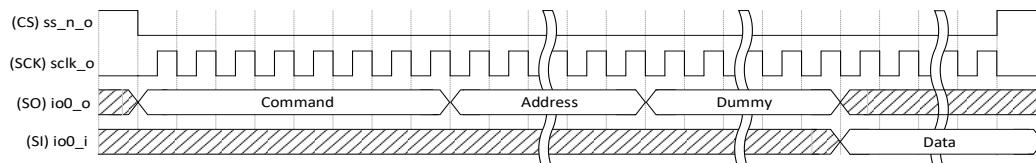
Wherever applicable, default values are in bold.

#### 3.1. General

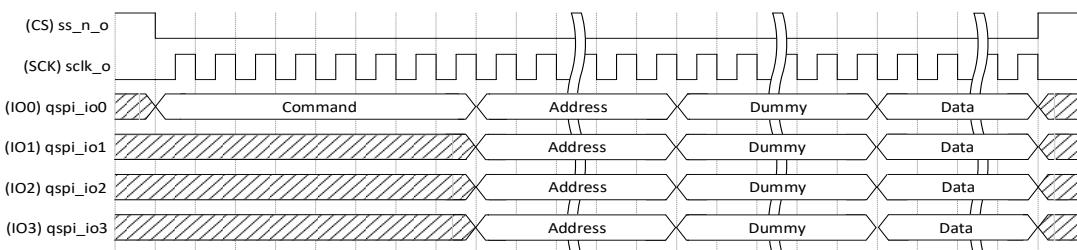
**Table 3.1. General Attributes**

| Attribute                                          | Selectable Values                                         | Description                                                                                                                                                                                                                     |
|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Interface Settings</b>                          |                                                           |                                                                                                                                                                                                                                 |
| Main Interface                                     | <b>AHB-L</b> , AXI4                                       | Selects memory-mapped interface to be used by the host. The unselected interfaces are not available in the generated IP.                                                                                                        |
| Enable AXI4-L Interface (For register access only) | <b>Checked</b>                                            | Use the AXI4-L for register access when flash address mapping is enabled. Informational only.                                                                                                                                   |
| Interface Data Width                               | <b>32</b>                                                 | All interfaces use a 32-bit data width. Informational only.                                                                                                                                                                     |
| AXI4 ID Width                                      | <b>0–32, 4</b>                                            | Editable when <i>Main Interface == AXI4</i> .                                                                                                                                                                                   |
| Data Endianness                                    | <b>Little-endian</b> , Big-endian                         | Endianness of the interface data port.                                                                                                                                                                                          |
| <b>IO Primitive</b>                                |                                                           |                                                                                                                                                                                                                                 |
| Enable IO Buffer                                   | <b>Checked</b> , <b>Unchecked</b>                         | Enables bidirectional ports.                                                                                                                                                                                                    |
| <b>SPI Configuration and Transfer Setting</b>      |                                                           |                                                                                                                                                                                                                                 |
| Supported Protocol                                 | <b>Standard</b> , Dual, Quad                              | Standard, dual, and quad SPI are the supported protocols. Extended dual and quad SPI are also supported. When quad SPI is selected, the IP can also operate on 1X and 2X I/O widths. Dual SPI can also operate on 1X I/O width. |
| Number of SPI Target                               | <b>1–32</b>                                               | Specifies the number of target-select signal bits. Each bit is used for selecting an SPI target device.                                                                                                                         |
| Clock Mode                                         | <b>0, 3</b>                                               | SPI polarity and phase combination<br>Specifies the polarity of the SPI serial clock during idle state. Also specifies whether the rising or falling edge of the SPI serial clock will be used to shift in and out data.        |
| First Transmitted Bit                              | <b>MSB</b> , LSB                                          | Specifies the direction of shifting the data bits into and out of the SPI interface.<br>Editable if <i>Supported Protocol = Standard SPI</i> . Otherwise, value is fixed to MSB first transaction.                              |
| Chip Select High Time (ns)                         | <b>30, ..., 100</b>                                       | Specifies the minimum chip select high time.                                                                                                                                                                                    |
| <b>Clock Frequency Settings</b>                    |                                                           |                                                                                                                                                                                                                                 |
| System Clock Frequency (MHz)                       | <b>1–200</b>                                              | Specifies the clock frequency of the interface.                                                                                                                                                                                 |
| Internal Clock Frequency (MHz)                     | <b>1–200</b>                                              | Clock frequency to be used for core operation. Informational only. Value follows the <i>System Clock Frequency</i> attribute.                                                                                                   |
| SPI Clock Frequency Divider                        | <b>2, 4, 6, 8 ... 62</b>                                  | Specifies the divider value to generate the SPI clock from the system clock.                                                                                                                                                    |
| SPI Clock Frequency (MHz)                          | <b>System Clock Frequency/62–System Clock Frequency/2</b> | Indicates the resulting SPI clock frequency based on system clock frequency and divider values. Informational only.<br><i>SPI Clock Frequency (MHz) = System Clock Frequency (MHz) / SPI Clock Frequency Divider</i>            |
| <b>Transmit FIFO Configuration</b>                 |                                                           |                                                                                                                                                                                                                                 |
| Enable Transmit FIFO                               | <b>Checked</b> , <b>Unchecked</b>                         | Enables transmit FIFO.                                                                                                                                                                                                          |
| Address Depth                                      | <b>16, 32, 64, 128</b>                                    | Specifies the number of FIFO levels.<br>Visible and editable only when <i>Enable Transmit FIFO == Checked</i> .                                                                                                                 |

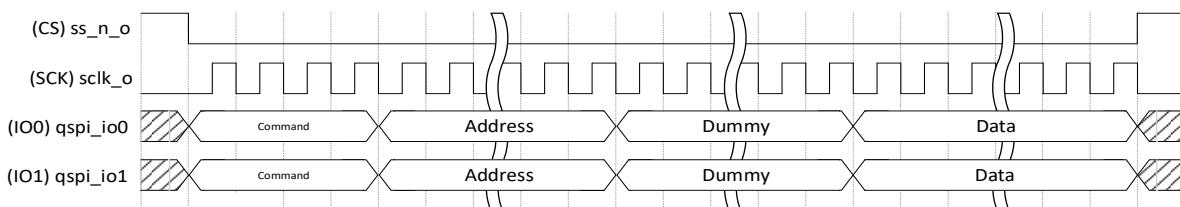
| Attribute                            | Selectable Values                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Receive FIFO Configuration</b>    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enable Receive FIFO                  | <input checked="" type="checkbox"/> <input type="checkbox"/> <b>Unchecked</b>                                                             | Enables receive FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Address Depth                        | <b>16, 32, 64, 128, 256, 512</b>                                                                                                          | Specifies the number of FIFO levels.<br>Visible and editable only when <i>Enable Receive FIFO == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Flash Address Mapping</b>         |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enable Flash Address Mapping         | <input checked="" type="checkbox"/> <input type="checkbox"/> <b>Unchecked</b>                                                             | Enables mapping of the flash device to the interface memory map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Register Space Size (KB)             | <b>1</b>                                                                                                                                  | Memory map size for the registers of the IP. Informational only.<br>Visible only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Register Map Base Address (Hex)      | <b>00000000</b>                                                                                                                           | This is the starting address of the register space.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minimum Flash Address Alignment (KB) | <b>4-1048576</b>                                                                                                                          | Indicates the minimum flash address alignment when multiple target flash devices are enabled.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                               |
| Flash Memory Map Size (KB)           | <b>4-1048576</b>                                                                                                                          | Indicates the size of the flash memory to be mapped. When multiple target flash devices are enabled, this attribute refers to the total flash address space (Minimum Flash Address Alignment × Number of SPI Target) rounded off to the nearest power of 2.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                 |
| Starting Flash Address (Hex)         | <b>00000000</b>                                                                                                                           | Refers to the starting real flash memory address to be mapped. This should be based on the minimum flash address alignment when multiple target flash devices are enabled.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .<br><i>Minimum Flash Address Alignment</i> should be reflected on this attribute. Otherwise, the IP GUI DRC displays an error message.                                                                                                                                                            |
| AXI/AHB-L Address Map (Hex)          | <b>00001000</b>                                                                                                                           | AXI/AHB-L main interface starting address of the target memory map space.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .<br>This attribute should be aligned to <i>Flash Memory Map Size</i> .<br>When using the IP on Propel, flash address map can be placed in the processor's cacheable range to perform burst access. This can be done by setting the <i>AXI/AHB-L Address Map</i> value within the cacheable region defined by the CPU. Refer to the <a href="#">RISC-V RX CPU IP User Guide (FPGA-IPUG-02254)</a> . |
| Write Access Command                 | <b>Page Program, Dual Input Fast Program, Extended Dual Input Fast Program, Quad Input Fast Program, Extended Quad Input Fast Program</b> | Write command used on non-XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Read Access Command                  | <b>Read Data, Fast Read, Dual Output Fast Read, Dual Input/Output Fast Read, Quad Output Fast Read, Quad Input/Output Fast Read</b>       | Read command used on non-XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flash Address Width                  | <b>24, 32</b>                                                                                                                             | Flash address width used for non-XiP access and XiP access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                                                                                                                                                                                                                                                                                                                                                                                 |


| Attribute                                | Selectable Values             | Description                                                                                                                                                                                                                               |
|------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Command Lane Width                       | <b>x1, x2, x4</b>             | Number of lanes used by the controller for sending flash command opcode on non-XiP and XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                              |
| Address Lane Width                       | <b>x1, x2, x4</b>             | Number of lanes used by the controller for sending flash address on non-XiP and XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                     |
| Data Lane Width                          | <b>x1, x2, x4</b>             | Number of lanes used by the controller for sending and receiving data on non-XiP and XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                                                |
| Dummy clock cycles                       | <b>0, 2, 4, 6, 8, ..., 14</b> | Number of clock cycles added after the controller sends address during read access operation on non-XiP and XiP direct access.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> .                         |
| eXecute-in-Place (XiP) Pattern           | <b>8'hA5</b>                  | Indicates the byte value used by the target flash device to enable XiP mode. Check the data sheet of the flash device to be used for this information.<br>Visible and editable only when <i>Enable Flash Address Mapping == Checked</i> . |
| <b>Supported Flash Commands</b>          |                               |                                                                                                                                                                                                                                           |
| Read Status Register-1                   | <b>8'h05</b>                  | List of flash read, erase, and write commands that are supported on the soft logic of the IP.                                                                                                                                             |
| Read Status Register-2                   | <b>8'h35</b>                  |                                                                                                                                                                                                                                           |
| Read Status Register-3                   | <b>8'h15</b>                  |                                                                                                                                                                                                                                           |
| Read Configuration Register              | <b>8'hB5</b>                  |                                                                                                                                                                                                                                           |
| Read ID                                  | <b>8'h9F</b>                  |                                                                                                                                                                                                                                           |
| Read Electronic ID                       | <b>8'hAB</b>                  |                                                                                                                                                                                                                                           |
| Multiple I/O Read ID                     | <b>8'hAF</b>                  |                                                                                                                                                                                                                                           |
| Read Manufacturer and Device ID          | <b>8'h90</b>                  |                                                                                                                                                                                                                                           |
| Read Manufacturer and Device ID Dual I/O | <b>8'h92</b>                  |                                                                                                                                                                                                                                           |
| Read Manufacturer and Device ID Quad I/O | <b>8'h94</b>                  |                                                                                                                                                                                                                                           |
| Read Data                                | <b>8'h03</b>                  |                                                                                                                                                                                                                                           |
| Fast Read                                | <b>8'h0B</b>                  |                                                                                                                                                                                                                                           |
| Dual Output Fast Read                    | <b>8'h3B</b>                  |                                                                                                                                                                                                                                           |
| Dual Input/Output Fast Read              | <b>8'hBB</b>                  |                                                                                                                                                                                                                                           |
| Quad Output Fast Read                    | <b>8'h6B</b>                  |                                                                                                                                                                                                                                           |
| Quad Input/Output Fast Read              | <b>8'hEB</b>                  |                                                                                                                                                                                                                                           |
| Block Erase Type 1                       | <b>8'h20</b>                  |                                                                                                                                                                                                                                           |
| Block Erase Type 2                       | <b>8'h52</b>                  |                                                                                                                                                                                                                                           |
| Block Erase Type 3                       | <b>8'hD8</b>                  |                                                                                                                                                                                                                                           |
| Chip Erase                               | <b>8'h60</b>                  |                                                                                                                                                                                                                                           |
| Write Enable                             | <b>8'h06</b>                  |                                                                                                                                                                                                                                           |
| Write Disable                            | <b>8'h04</b>                  |                                                                                                                                                                                                                                           |
| Write Status/Configuration Register      | <b>8'h01</b>                  |                                                                                                                                                                                                                                           |
| Page Program                             | <b>8'h02</b>                  |                                                                                                                                                                                                                                           |
| Dual Input Fast Program                  | <b>8'hA2</b>                  |                                                                                                                                                                                                                                           |
| Extended Dual Input Fast Program         | <b>8'hD2</b>                  |                                                                                                                                                                                                                                           |
| Quad Input Fast Program                  | <b>8'h32</b>                  |                                                                                                                                                                                                                                           |

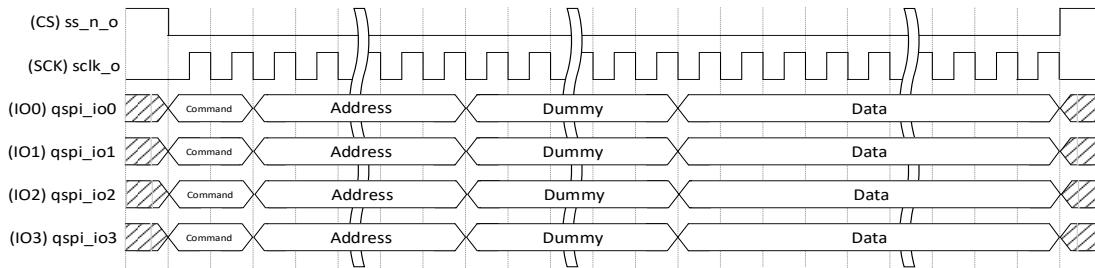
| Attribute                        | Selectable Values | Description |
|----------------------------------|-------------------|-------------|
| Extended Quad Input Fast Program | <b>8'h38</b>      |             |
| Enter 4-Byte Address Mode        | <b>8'hB7</b>      |             |
| Exit 4-Byte Address Mode         | <b>8'hE9</b>      |             |
| Enter Quad Input/Output Mode     | <b>8'h35</b>      |             |
| Reset Quad Input/Output Mode     | <b>8'hF5</b>      |             |


## 3.2. IP Parameter Settings for Example Use Cases

### 3.2.1. SPI Protocols


The IP core supports different types of SPI protocols: standard, extended (dual or quad), dual, and quad SPI. Support for these SPI protocols are distinguished by the number of data lanes. Standard SPI uses the common four signals: CS, SCK, SI and SO, which are equivalent to the IP's ss\_n\_o, sclk\_o, io0\_i, and io0\_o signals, as shown in [Figure 3.1](#). Extended SPI supports the standard SPI operations and extends it to support multiple data lanes in address, dummy, and data phase as shown in [Figure 3.2](#). Dual SPI uses two tri-state data lanes (IO0 and IO1 which are equivalent to IP's qspi\_io0 and qspi\_io1 signals) to double the performance of standard SPI as shown in [Figure 3.3](#). Quad SPI uses four tri-state data lanes (IO0, IO1, IO2, and IO3 which are equivalent to IP's qspi\_io0, qspi\_io1, qspi\_io2, and qspi\_io3 signals) to quadruple the performance of standard SPI as shown in [Figure 3.4](#).




**Figure 3.1. Standard SPI Timing Diagram**



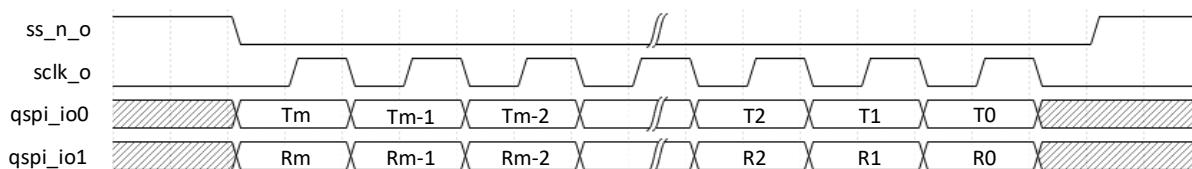
**Figure 3.2. Extended SPI Timing Diagram**



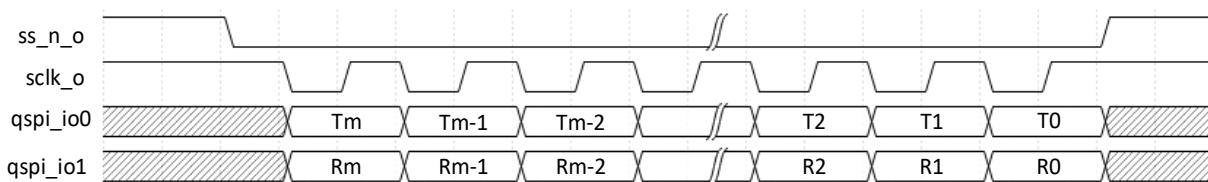
**Figure 3.3. Dual SPI Timing Diagram**



**Figure 3.4. Quad SPI Timing Diagram**


### 3.2.2. SPI Clock Phase and Polarity

SPI clock polarity and SPI clock phase can be set through the IP GUI *Clock Mode* attribute or configuration register. SPI clock polarity sets the polarity of the sclk\_o signal during the idle state (ss\_n\_o bit is inactive). Transitioning of the ss\_n\_o signal from inactive logic to active logic marks the start of the transmission and transitioning from active logic to inactive logic marks the end of the transmission. SPI clock phase selects the sclk\_o phase. It sets whether the rising or falling clock edge is used to sample and shift the data. The IP must be set to the SPI clock polarity and SPI clock phase corresponding to the requirements of the flash. There are two SPI clocking modes available, which are shown in [Table 3.2](#).


**Table 3.2. Clocking Modes**

| Clocking Mode | SPI Clock Polarity | SPI Clock Phase | Description                                                                                                                                                                                           |
|---------------|--------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | 0                  | 0               | The ss_n_o signal transition to active logic shifts out a data bit. The first clock transition samples the data.<br>Data is sampled on the sclk_o rising edge and is shifted out on the falling edge. |
| 3             | 1                  | 1               | The first clock transition shifts out a data bit and the second clock transition samples the data.<br>Data is sampled on the sclk_o rising edge and is shifted out on the falling edge.               |

The sample waveforms for the SPI clocking modes are shown in [Figure 3.5](#) and [Figure 3.6](#).



**Figure 3.5. Clocking Mode 0 (SPI Clock Polarity=0, SPI Clock Phase=0) Waveforms**



**Figure 3.6. Clocking Mode 3 (SPI Clock Polarity=1, SPI Clock Phase=1) Waveforms**

### 3.2.3. Big and Little Endian

The data byte order in the bus interface can be configured through the IP GUI *Data Endianness* attribute or by programming the *data\_endianness* register bit of the configuration register 0 with offset address 0x0000\_0004.

In little endian, the lowest significant byte is stored in the lowest address. In big endian, the most significant byte is stored in the lowest address.

Table 3.3 shows an example on how the controller interprets an AXI4 address 0x0000\_1000 with AXI4 Data of 0x1234\_5678 on both data endianness. Note that the controller will always send the data from the lowest byte address first on the SPI interface.

**Table 3.3. Bus Interface Data Endianness**

| Byte Address | Data Stored   |            |
|--------------|---------------|------------|
|              | Little Endian | Big Endian |
| 0x0000_1000  | 0x78          | 0x12       |
| 0x0000_1001  | 0x56          | 0x34       |
| 0x0000_1002  | 0x34          | 0x56       |
| 0x0000_1003  | 0x12          | 0x78       |

### 3.2.4. MSB or LSB First Transmitted Bit Transaction

The *First Transmitted Bit* attribute defines the first bit of the data byte to be send on the SPI interface, which is either MSB or LSB.

### 3.2.5. Multiple SPI Targets

The *Number of Target* attribute defines the number of targets connected to the controller. When there are multiple targets, the controller IP generates a multi-bit *ss\_n\_o* signal where each bit is dedicated to the chip select pin of a target device.

For register-based flash transactions, the IP checks if the *multiple\_flash\_target* packet header 0 register bit field is enabled to activate the specific target by asserting only one bit of the *ss\_n\_o* signal at a time determined through the *tgt\_cs* packet header 1 register bit field value. Refer to the [Packet Header 0 Register for Supported Flash Commands](#), [Packet Header 0 Register for Generic SPI Transactions](#), and [Packet Header 1 Register](#) sections.

When using the IP in direct access mode and with the number of SPI targets greater than 1, the IP automatically decodes the target device based on the AXI/AHB-L address map and the minimum flash address alignment. For example, when the number of SPI target devices is two (each target device size is 4 KB), the IP enables the first target when the lower 4 KB flash memory map is being accessed; the IP enables the second target when the upper 4 KB flash memory map is being accessed. Refer to the [AXI/AHB-L Address Map](#) Register section.

### 3.2.6. Transmit and Receive FIFO

FIFOs are optional. When TX FIFO is enabled, depth can be set up to 128. This depth cannot be fully used on the programming flow because the IP only supports 256 bytes for flash program operations with an additional depth for packet header values. When RX FIFO is enabled, depth of up to 512 levels can be used to store read flash data. This feature allows for writing of data to the TX FIFO before start of a page program operation and to the RX FIFO after start of a read data operation to flash before the data is fetched to the interface.

When disabled, the IP has packet data register that assumes the role of the FIFO. Two packet data registers can be used for programming operations while only one packet data register can be used for read operations.

## 4. Signal Description

This section describes the QSPI Flash Controller IP ports.

**Table 4.1. Top-Level Ports**

| Port                      | Width                           | Type   | Output<br>Reset Value         | Description                                                       |
|---------------------------|---------------------------------|--------|-------------------------------|-------------------------------------------------------------------|
| <b>Clock and Reset</b>    |                                 |        |                               |                                                                   |
| a_clk_i                   | 1                               | Input  | —                             | System clock                                                      |
| a_reset_n_i               | 1                               | Input  | —                             | Asynchronous active low reset                                     |
| <b>Interrupt</b>          |                                 |        |                               |                                                                   |
| int_o                     | 1                               | Output | 1'b0                          | Interrupt signal                                                  |
| <b>SPI</b>                |                                 |        |                               |                                                                   |
| sclk_o                    | 1                               | Output | <i>SPI Clock<br/>Polarity</i> | SPI controller clock output                                       |
| ss_n_o                    | <i>Number of SPI<br/>Target</i> | Output | 1                             | SPI controller target select output<br>Active-low one-hot encoded |
| <b>Disabled IO Buffer</b> |                                 |        |                               |                                                                   |
| io0_i                     | 1                               | Input  | —                             | SPI data input io0 if Standard/Dual/Quad SPI mode is selected.    |
| io1_i                     | 1                               | Input  | —                             | SPI data input io1 if Dual/Quad SPI mode is selected.             |
| io2_i                     | 1                               | Input  | —                             | SPI data input io2 if Quad SPI mode is selected.                  |
| io3_i                     | 1                               | Input  | —                             | SPI data input io3 if Quad SPI mode is selected.                  |
| io0_o                     | 1                               | Output | 1'b0                          | SPI data output io0 if Standard/Dual/Quad SPI mode is selected.   |
| io1_o                     | 1                               | Output | 1'b0                          | SPI data output io1 if Dual/Quad SPI mode is selected.            |
| io2_o                     | 1                               | Output | 1'b0                          | SPI data output io2 if Quad SPI mode is selected.                 |
| io3_o                     | 1                               | Output | 1'b0                          | SPI data output io3 if Quad SPI mode is selected.                 |
| io0_oe_o                  | 1                               | Output | 1'b0                          | Direction control for io0 I/O pad (1=output, 0=input).            |
| io1_oe_o                  | 1                               | Output | 1'b0                          | Direction control for io1 I/O pad (1=output, 0=input).            |
| io2_oe_o                  | 1                               | Output | 1'b0                          | Direction control for io2 I/O pad (1=output, 0=input).            |
| io3_oe_o                  | 1                               | Output | 1'b0                          | Direction control for io3 I/O pad (1=output, 0=input).            |
| <b>Enabled IO Buffer</b>  |                                 |        |                               |                                                                   |
| qspi_io0                  | 1                               | Inout  | —                             | SPI data inout io0 if Standard/Dual/Quad SPI mode is selected.    |
| qspi_io1                  | 1                               | Inout  | —                             | SPI data inout io1 if Dual/Quad SPI mode is selected.             |
| qspi_io2                  | 1                               | Inout  | —                             | SPI data inout io2 if Quad SPI mode is selected.                  |
| qspi_io3                  | 1                               | inout  | —                             | SPI data inout io3 if Quad SPI mode is selected.                  |

| Port                       | Width | Type   | Output<br>Reset Value | Description                                                                                                                                                          |
|----------------------------|-------|--------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>AHB-Lite Interface</b>  |       |        |                       |                                                                                                                                                                      |
| ahbl_hsel_i                | 1     | Input  | —                     | AHB-Lite select signal<br>Indicates the device is selected and transfer is required.                                                                                 |
| ahbl_hready_i              | 1     | Input  | —                     | AHB-Lite ready input signal<br>Indicates data phase of previous transfer is completed.                                                                               |
| ahbl_haddr_i               | 32    | Input  | —                     | AHB-Lite address signal                                                                                                                                              |
| ahbl_hburst_i              | 3     | Input  | —                     | AHB-Lite burst type signal<br>Indicates if the transfer is a single transfer or forms part of a burst.                                                               |
| ahbl_hsize_i               | 3     | Input  | —                     | AHB-Lite transfer size signal<br>Indicates the size of the transfer that is a byte, halfword, or word.                                                               |
| ahbl_hmastlock_i           | 1     | Input  | —                     | AHB-Lite lock signal<br>This signal is unused.                                                                                                                       |
| ahbl_hprot_i               | 4     | Input  | —                     | AHB-Lite protection control<br>This signal is unused.                                                                                                                |
| ahbl_htrans_i              | 2     | Input  | —                     | AHB-Lite transfer type signal<br>Indicates the transfer type of the current transfer.                                                                                |
| ahbl_hwrite_i              | 1     | Input  | —                     | AHB-Lite transfer direction signal<br>Indicates the transfer direction. When HIGH, a write transfer; when LOW, a read transfer.                                      |
| ahbl_hwdata_i              | 32    | Input  | —                     | AHB-Lite write data signal                                                                                                                                           |
| ahbl_hreadyout_o           | 1     | Output | 1'b1                  | AHB-Lite ready output signal<br>Indicates that a transfer has finished on the bus. The subordinate uses this signal to extend an AHB-Lite transfer.                  |
| ahbl_hrdata_o              | 32    | Output | 32'b0                 | AHB-Lite read data signal                                                                                                                                            |
| ahbl_hresp_o               | 1     | Output | 1'b0                  | AHB-Lite transfer response signal                                                                                                                                    |
| <b>AXI4-Lite Interface</b> |       |        |                       |                                                                                                                                                                      |
| axil_awaddr_i              | 32    | Input  | —                     | AXI4-Lite write address                                                                                                                                              |
| axil_awvalid_i             | 1     | Input  | —                     | AXI4-Lite write address valid<br>Indicates that the write address is valid.                                                                                          |
| axil_awprot                | 3     | Input  | —                     | AXI4-Lite write address protect<br>Indicates the protection attributes of a write transaction: privilege, security level, and access type.<br>This signal is unused. |
| axil_awready_o             | 1     | Output | 1'b0                  | AXI4-Lite write address ready<br>Indicates that a transfer on the write address channel can be accepted.                                                             |
| axil_wdata_i               | 32    | Input  | —                     | AXI4-Lite write data                                                                                                                                                 |
| axil_wvalid_i              | 1     | Input  | —                     | AXI4-Lite write valid<br>Indicates that the write data is valid.                                                                                                     |
| axil_wstrb_i               | 4     | Input  | —                     | AXI4-Lite write strobe<br>Indicates which byte lanes hold valid data.                                                                                                |
| axil_wready_o              | 1     | Output | 1'b0                  | AXI4-Lite write ready<br>Indicates that a transfer on the write data channel can be accepted.                                                                        |
| axil_bresp_o               | 2     | Output | 2'b00                 | AXI4-Lite write response<br>Indicates the status of a bus write transaction.                                                                                         |
| axil_bvalid_o              | 1     | Output | 1'b0                  | AXI4-Lite write response valid<br>Indicates that the write response is valid.                                                                                        |

| Port                              | Width         | Type   | Output<br>Reset Value | Description                                                                                                                                                        |
|-----------------------------------|---------------|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| axil_bready_i                     | 1             | Input  | —                     | AXI4-Lite write response ready<br>Indicates that a transfer on the write response channel can be accepted.                                                         |
| axil_araddr_i                     | 32            | Input  | —                     | AXI4-Lite read address                                                                                                                                             |
| axil_arvalid_i                    | 1             | Input  | —                     | AXI4-Lite read address valid<br>Indicates that the read address is valid.                                                                                          |
| axil_arprot                       | 3             | Input  | —                     | AXI4-Lite read address protect<br>Indicates the protection attributes of a read transaction: privilege, security level, and access type.<br>This signal is unused. |
| axil_arready_o                    | 1             | Output | 1'b0                  | AXI4-Lite read address ready<br>Indicates that a transfer on the read address channel can be accepted.                                                             |
| axil_rdata_o                      | 32            | Output | All 0                 | AXI4-Lite read data                                                                                                                                                |
| axil_rvalid_o                     | 1             | Output | 1'b0                  | AXI4-Lite read data valid<br>Indicates that the read data is valid.                                                                                                |
| axil_rresp_o                      | 2             | Output | 2'b00                 | AXI4-Lite read data response<br>Indicates the status of a bus read transaction.                                                                                    |
| axil_rready_i                     | 1             | Input  | —                     | AXI4-Lite read data ready<br>Indicates that a transfer on the read data channel can be accepted.                                                                   |
| <b>AXI4 Interface</b>             |               |        |                       |                                                                                                                                                                    |
| <b>AXI4 Write Address Channel</b> |               |        |                       |                                                                                                                                                                    |
| axi_awid_i                        | AXI4 ID Width | Input  | —                     | AXI4 write address ID<br>Indicates the identification tag for a write transaction.                                                                                 |
| axi_awaddr_i                      | 32            | Input  | —                     | AXI4 write address<br>Indicates the address of the first transfer in a write transaction.                                                                          |
| axi_awlen_i                       | 8             | Input  | —                     | AXI4 write address length<br>Indicates the exact number of data transfers in a write transaction.                                                                  |
| axi_awsize_i                      | 3             | Input  | —                     | AXI4 write address size<br>Indicates the number of bytes in each data transfer in a write transaction.                                                             |
| axi_awburst_i                     | 2             | Input  | —                     | AXI4 write address burst<br>Indicates how address changes between each transfer in a write transaction.<br>Only FIXED burst type access is supported.              |
| axi_awlock_i                      | 1             | Input  | —                     | AXI4 write address lock<br>Provides information about the atomic characteristics of a write transaction.<br>This signal is unused.                                 |
| axi_awcache_i                     | 4             | Input  | —                     | AXI4 write address cache<br>Indicates how a write transaction is required to progress through a system.<br>This signal is unused.                                  |
| axi_awprot_i                      | 3             | Input  | —                     | AXI4 write address protect<br>Indicates the protection attributes of a write transaction: privilege, security level, and access type.<br>This signal is unused.    |

| Port                               | Width         | Type   | Output<br>Reset Value | Description                                                                                                                                                        |
|------------------------------------|---------------|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| axi_awvalid_i                      | 1             | Input  | —                     | AXI4 write address valid<br>Indicates that the write address channel signals are valid.                                                                            |
| axi_awready_o                      | 1             | Output | 1'b0                  | AXI4 write address ready<br>Indicates that a transfer on the write address channel can be accepted.                                                                |
| <b>AXI4 Write Data Channel</b>     |               |        |                       |                                                                                                                                                                    |
| axi_wid_i                          | AXI4 ID Width | Input  | —                     | AXI4 write data ID<br>Indicates the ID tag of the write data transfer.                                                                                             |
| axi_wdata_i                        | 32            | Input  | —                     | AXI4 write data                                                                                                                                                    |
| axi_wstrb_i                        | 4             | Input  | —                     | AXI4 write data strobe<br>Indicates which byte lanes hold valid data.                                                                                              |
| axi_wlast_i                        | 1             | Input  | —                     | AXI4 write data last<br>Indicates whether this is the last data transfer in a write transaction.                                                                   |
| axi_wvalid_i                       | 1             | Input  | —                     | AXI4 write data valid<br>Indicates that the write data channel signals are valid.                                                                                  |
| axi_wready_o                       | 1             | Output | 1'b0                  | AXI4 write data ready<br>Indicates that a transfer on the write data channel can be accepted.                                                                      |
| <b>AXI4 Write Response Channel</b> |               |        |                       |                                                                                                                                                                    |
| axi_bid_o                          | AXI4 ID Width | Output | 0                     | AXI4 write response ID<br>Indicates the identification tag for a write response.                                                                                   |
| axi_bresp_o                        | 2             | Output | 2'b00                 | AXI4 write response<br>Indicates the status of a write transaction.                                                                                                |
| axi_bvalid_o                       | 1             | Output | 1'b0                  | AXI4 write response valid<br>Indicates that the write response channel signals are valid.                                                                          |
| axi_bready_i                       | 1             | Input  | —                     | AXI4 write response ready<br>Indicates that a transfer on the write response channel can be accepted.                                                              |
| <b>AXI4 Read Address Channel</b>   |               |        |                       |                                                                                                                                                                    |
| axi_arid_i                         | 4             | Input  | —                     | AXI4 read address ID<br>Indicates the identification tag for a read transaction.                                                                                   |
| axi_araddr_i                       | 32            | Input  | —                     | AXI4 read address<br>Indicates the address of the first transfer in a read transaction.                                                                            |
| axi_arlen_i                        | 8             | Input  | —                     | AXI4 read address length<br>Indicates the exact number of data transfers in a read transaction.                                                                    |
| axi_arsize_i                       | 3             | Input  | —                     | AXI4 read address size<br>Indicates the number of bytes in each data transfer in a read transaction.                                                               |
| axi_arburst_i                      | 2             | Input  | —                     | AXI4 read address burst<br>Indicates how address changes between each transfer in a read transaction.<br>Only FIXED burst type in RD_DATA_REG access is supported. |
| axi_arlock_i                       | 1             | Input  | —                     | AXI4 read address lock<br>Provides information about the atomic characteristics of a read transaction.                                                             |

| Port                          | Width         | Type   | Output<br>Reset Value | Description                                                                                                                                                   |
|-------------------------------|---------------|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |               |        |                       | This signal is unused.                                                                                                                                        |
| axi_arcache_i                 | 4             | Input  | —                     | AXI4 read address cache<br>Indicates how a read transaction is required to progress through a system.<br>This signal is unused.                               |
| axi_arprot_i                  | 3             | Input  | —                     | AXI4 read address protect<br>Indicates the protection attributes of a read transaction: privilege, security level, and access type.<br>This signal is unused. |
| axi_arvalid_i                 | 1             | Input  | —                     | AXI4 read address valid<br>Indicates that the read address channel signals are valid.                                                                         |
| axi_arready_o                 | 1             | Output | 1'b0                  | AXI4 read address ready<br>Indicates that a transfer on the read address channel can be accepted.                                                             |
| <b>AXI4 Read Data Channel</b> |               |        |                       |                                                                                                                                                               |
| axi_rid_o                     | AXI4 ID Width | Input  | 0                     | AXI4 read data ID<br>Indicates the ID tag of the read data transfer.                                                                                          |
| axi_rdata_o                   | 32            | Output | All 0                 | AXI4 read data                                                                                                                                                |
| axi_rresp_o                   | 2             | Output | 2'b00                 | AXI4 read data response<br>Indicates the status of a read transfer.                                                                                           |
| axi_rlast_o                   | 1             | Output | 1'b0                  | AXI4 read data last<br>Indicates whether this is the last data transfer in a read transaction.                                                                |
| axi_rvalid_o                  | 1             | Output | 1'b0                  | AXI4 read data valid<br>Indicates that the read data channel signals are valid.                                                                               |
| axi_rready_i                  | 1             | Input  | —                     | AXI4 read data ready<br>Indicates that a transfer on the read data channel can be accepted.                                                                   |

## 5. Register Description

### 5.1. Overview

The host can control the QSPI Flash Controller IP core by writing and reading through the 32-bit address space. The registers are classified as configuration, status, interrupt, and control registers.

**Table 5.1** defines the register access types. **Table 5.2** lists the address map and specifies the registers available.

**Table 5.1. Register Access Types**

| Access Type               | Access Type Abbreviation | Behavior on Read Access | Behavior on Write Access                                                                      |
|---------------------------|--------------------------|-------------------------|-----------------------------------------------------------------------------------------------|
| Read only                 | RO                       | Returns register value  | Ignores write access                                                                          |
| Write only                | WO                       | Returns 0               | Updates register value                                                                        |
| Read and write            | RW                       | Returns register value  | Updates register value                                                                        |
| Read and write 1 to clear | RW1C                     | Returns register value  | Writing 1'b1 on register bit clears the bit to 1'b0. Writing 1'b0 on register bit is ignored. |

**Table 5.2. Summary of QSPI Flash Controller IP Core Registers**

| Offset Address                        | Register Name                                                   | Description                                                             |
|---------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| <b>Configuration Registers</b>        |                                                                 |                                                                         |
| 0x0000_0000                           | Reserved                                                        | Reserved address for configuration register                             |
| 0x0000_0004                           | QSPI Configuration Register 0                                   | Programmable registers to configure standard/dual/quad SPI transactions |
| 0x0000_0008                           | QSPI Configuration Register 1                                   | Programmable registers to configure standard/dual/quad SPI transactions |
| 0x0000_000C                           | Flash Command Code 0                                            | Supported flash read command codes                                      |
| 0x0000_0010                           | Flash Command Code 1                                            | Supported flash read command codes                                      |
| 0x0000_0014                           | Flash Command Code 2                                            | Supported flash read command codes                                      |
| 0x0000_0018                           | Flash Command Code 3                                            | Supported flash read command codes                                      |
| 0x0000_001C                           | Flash Command Code 4                                            | Supported flash write command codes                                     |
| 0x0000_0020                           | Flash Command Code 5                                            | Supported flash write command codes                                     |
| 0x0000_0024                           | Flash Command Code 6                                            | Supported flash write command codes                                     |
| 0x0000_0028                           | Flash Command Code 7                                            | Supported flash write command codes                                     |
| 0x0000_002C                           | Minimum Flash Address Alignment                                 | Flash address alignment size                                            |
| 0x0000_0030                           | Starting Flash Address                                          | Starting actual flash memory address                                    |
| 0x0000_0034                           | Flash Memory Map Size                                           | Size of the virtual flash memory space                                  |
| 0x0000_0038                           | AXI/AHB-L Address Map                                           | Address map for flash memory                                            |
| 0x0000_003C to 0x0000_00FF            | Reserved                                                        | Reserved addresses for configuration registers                          |
| <b>Status and Interrupt Registers</b> |                                                                 |                                                                         |
| 0x0000_0100                           | Transaction Status                                              | Indicates the IP transaction status                                     |
| 0x0000_0104                           | Interrupt Status                                                | Interrupt capability                                                    |
| 0x0000_0108                           | Interrupt Enable                                                | Interrupt capability                                                    |
| 0x0000_010C                           | Interrupt Set                                                   | Interrupt capability                                                    |
| 0x0000_0110                           | Supported Flash Command Packet Header and Data Transfer Status  | Supported flash command packet transfer counter                         |
| 0x0000_0114                           | Generic SPI Transactions Packet Header and Data Transfer Status | Generic SPI transaction packet transfer counter                         |
| 0x0000_0118 to 0x0000_01FF            | Reserved                                                        | Reserved addresses for status and interrupt registers                   |

| Offset Address             | Register Name     | Description                                                                     |
|----------------------------|-------------------|---------------------------------------------------------------------------------|
| <b>Control Registers</b>   |                   |                                                                                 |
| 0x0000_0200                | TX FIFO Mapping   | Transmit FIFO mapping                                                           |
| 0x0000_0204                | RX FIFO Mapping   | Receive FIFO mapping                                                            |
| 0x0000_0208                | Packet Header 0   | User packet structure for supported flash commands and generic SPI transactions |
| 0x0000_020C                | Packet Header 1   | User packet structure for supported flash commands                              |
| 0x0000_0210                | Packet Header 2   | User packet structure for supported flash commands                              |
| 0x0000_0214                | Packet Header 3   | User packet structure for supported flash commands                              |
| 0x0000_0218                | Packet Data 0     | User packet structure for supported flash commands and generic SPI transactions |
| 0x0000_021C                | Packet Data 1     | User packet structure for supported flash commands and generic SPI transactions |
| 0x0000_0220                | Start Transaction | Start IP operation to generate SPI transaction                                  |
| 0x0000_0224 to 0x0000_02FF | Reserved          | Reserved addresses for control registers                                        |

## 5.2. Configuration Registers

These programmable registers must be held static during QSPI Flash Controller IP core operations. Any change on these registers would require a reset.

For sections from [Flash Command Code 0 Register](#) through [Flash Command Code 7 Register](#), commands included are based on flash devices such as Micron MT25QU128, Macronix MX25L12833F and MX25L51245G, and Winbond W25Q512JV.

### 5.2.1. QSPI Configuration Register 0

[Table 5.3](#) lists the register bit fields for SPI transfer configuration, clock frequency divider, data endianness of the interface, and frame end done counter. Bits [15:0] are used on all types of transactions while bits [31:16] are specific for non-XiP access and XiP access, which are available only if *Enable Flash Address Mapping* is selected on the IP GUI. Thus, bits [31:16] are read-only when *Enable Flash Address Mapping* is not selected.

**Table 5.3. QSPI Configuration Register 0**

| Field   | Name            | Description                                                                                                                                                                | Access | Default                    |
|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|
| [31:30] | dat_lane_width  | Data can be sent to target flash memory in different lane widths during non-XiP and XiP access.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane.    | RW     | <i>Data Lane Width</i>     |
| [29:28] | addr_lane_width | Address can be sent to target flash memory in different lane widths during non-XiP and XiP access.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane. | RW     | <i>Address Lane Width</i>  |
| [27:26] | cmd_lane_width  | Command can be sent to target flash memory in different lane widths during non-XiP and XiP access.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane. | RW     | <i>Command Lane Width</i>  |
| [25]    | xip_addr_width  | Flash address width used by the controller for non-XiP and XiP access.<br>1'b0 – 24-bit flash address<br>1'b1 – 32-bit flash address                                       | RW     | <i>Flash Address Width</i> |

| Field   | Name                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Access | Default                       |
|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| [24:22] | dummy_clock_cycles         | <p>Number of dummy clock cycles used by the controller for non-XiP and XiP read access.</p> <p>Number of Dummy Clock Cycles = Value of Setting <math>\times</math> 2</p> <p>3'b000 – 0 <math>\times</math> 2 dummy clock cycles</p> <p>3'b001 – 1 <math>\times</math> 2 dummy clock cycles</p> <p>3'b010 – 2 <math>\times</math> 2 dummy clock cycles</p> <p>...</p> <p>3'b111 – 7 <math>\times</math> 2 dummy clock cycles</p>      | RW     | Dummy Clock Cycles/2          |
| [21:19] | flash_map_en_rd_access_cmd | <p>This command, whose opcode is based on Flash Command 2 and 3 registers, is used by the controller for non-XiP and XiP flash read access.</p> <p>3'b000 – Read Data</p> <p>3'b001 – Fast Read</p> <p>3'b010 – Dual Output Fast Read</p> <p>3'b011 – Dual Input/Output Fast Read</p> <p>3'b100 – Quad Output Fast Read</p> <p>3'b101 – Quad Input/Output Fast Read</p>                                                              | RW     | Read Access Command           |
| [18:16] | flash_map_en_wr_access_cmd | <p>This command, whose opcode is based on Flash Command 5 and 6 registers, is used by the controller for non-XiP and XiP flash write access.</p> <p>3'b000 – Page Program</p> <p>3'b001 – Dual Input Fast Program</p> <p>3'b010 – Extended Dual Input Fast Program</p> <p>3'b011 – Quad Input Fast Program</p> <p>3'b100 – Extended Quad Input Fast Program</p>                                                                      | RW     | Write Access Command          |
| [15]    | en_frame_end_done_cntr     | <p>Enables frame end as done counter for executing generic SPI transaction.</p> <p>1'b0 – The generic SPI transaction status register increments whenever generic packet header and data are set and processed by the controller.</p> <p>1'b1 – The generic SPI transaction status register only increments when a frame end is detected on packet header 0 register.</p>                                                            | RW     | 0x0                           |
| [14]    | reserved                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | RO     | 0x0                           |
| [13]    | data_endianness            | 0 – little-endian<br>1 – big-endian                                                                                                                                                                                                                                                                                                                                                                                                  | RW     | Data Endianness               |
| [12:8]  | sck_rate                   | <p>Clock divider value.</p> <p>5'b0_0001 – Divide by 2 of sck_src_i</p> <p>5'b0_0010 – Divide by 4 of sck_src_i</p> <p>...</p> <p>SPI Clock Frequency = <math>sck\_src\_i / (2 \times sck\_rate)</math></p> <p>The default value of the sck_rate register is based on the GUI setting of <i>SPI Clock Frequency Divider</i> decoded as 5-bit register. When <i>SPI Clock Frequency Divider</i> = 2, sck_rate default value is 1.</p> | RW     | SPI Clock Frequency Divider/2 |
| [7:3]   | reserved                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | RO     | 0x0                           |
| [2]     | cpha                       | <p>Clock phase. Specifies clock edge for shifting out data in io*_o and sampling data in io*_i.</p> <p>Only SPI clock modes 0 and 3 are supported. Set this register accordingly together with the cpol register bit.</p> <p>1'b0 – Sampling of data occurs at odd edges (1, 3, 5, ..., 15) of the sclk_o clock.</p> <p>1'b1 – Sampling of data occurs at even edges (2, 4, 6, ..., 16) of the sclk_o clock.</p>                     | RW     | Clock Mode Bit 0              |

| Field | Name               | Description                                                                                                                                                                                                                                                                                                                  | Access | Default                      |
|-------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|
| [1]   | cpol               | Clock polarity. Specifies the logic level of sclk_o during idle.<br>Only SPI clock modes 0 and 3 are supported. Set this register accordingly together with the cpha register bit.<br>1'b0 – Active-low clocks selected. In idle state, sclk_o is low.<br>1'b1 – Active-high clocks selected. In idle state, sclk_o is high. | RW     | <i>Clock Mode Bit 1</i>      |
| [0]   | first_bit_transfer | 1'b0 – Data is transferred with MSB first.<br>1'b1 – Data is transferred with LSB first.                                                                                                                                                                                                                                     | RW     | <i>First Transmitted Bit</i> |

## 5.2.2. QSPI Configuration Register 1

Table 5.4. QSPI Configuration Register 1

| Field   | Name             | Description                                                                                                                                                                                                                                                                 | Access | Default |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | tgt_rd_trans_cnt | Target count for read transaction using supported or generic SPI commands to generate an interrupt. This should be a non-zero value. It is initially set at the start of operation and should only be changed after a previous tgt_rd_trns_cnt_hit_int is already cleared.  | RW     | 0x1     |
| [15:0]  | tgt_wr_trans_cnt | Target count for write transaction using supported or generic SPI commands to generate an interrupt. This should be a non-zero value. It is initially set at the start of operation and should only be changed after a previous tgt_wr_trns_cnt_hit_int is already cleared. | RW     | 0x1     |

## 5.2.3. Flash Command Code 0 Register

This register is used by the IP on supported command transactions only.

Table 5.5. Flash Command Code 0 Register

| Field   | Name                                 | Description                                                                                                                                                                              | Access | Default                            |
|---------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| [31:24] | read_status_register_1_cmd_code      | Read commands for status and configuration registers. Flash devices have at least one readable status register.                                                                          | RW     | <i>Read Status Register-1</i>      |
| [23:16] | read_status_register_2_cmd_code      | Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | <i>Read Status Register-2</i>      |
| [15:8]  | read_status_register_3_cmd_code      | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                              | RW     | <i>Read Status Register-3</i>      |
| [7:0]   | read_configuration_register_cmd_code |                                                                                                                                                                                          | RW     | <i>Read Configuration Register</i> |

## 5.2.4. Flash Command Code 1 Register

This register is used by the IP on supported command transactions only.

Table 5.6. Flash Command Code 1 Register

| Field   | Name                         | Description                                                                                                                                                                                                | Access | Default                     |
|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| [31:24] | read_id_cmd_code             | Read ID commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | <i>Read ID</i>              |
| [23:16] | read_electronic_id_cmd_code  | These registers are the actual command opcode of a                                                                                                                                                         | RW     | <i>Read Electronic ID</i>   |
| [15:8]  | multiple_io_read_id_cmd_code |                                                                                                                                                                                                            | RW     | <i>Multiple I/O Read ID</i> |

|       |                                      |                                                                                          |    |                                 |
|-------|--------------------------------------|------------------------------------------------------------------------------------------|----|---------------------------------|
| [7:0] | read_manufacturer_device_id_cmd_code | particular flash device. Values at reset depend on the command opcode set on the IP GUI. | RW | Read Manufacturer and Device ID |
|-------|--------------------------------------|------------------------------------------------------------------------------------------|----|---------------------------------|

### 5.2.5. Flash Command Code 2 Register

This register is used by the IP on supported command transactions only.

**Table 5.7. Flash Command Code 2 Register**

| Field   | Name                                         | Description                                                                                                                                                                                                         | Access | Default                                  |
|---------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|
| [31:24] | read_manufacturer_device_id_dual_io_cmd_code | Read ID and data commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | Read Manufacturer and Device ID Dual I/O |
| [23:16] | read_manufacturer_device_id_quad_io_cmd_code | For some flash devices, read data commands can have different opcodes depending on the address mode such as 3- or 4-byte address.                                                                                   | RW     | Read Manufacturer and Device ID Quad I/O |
| [15:8]  | read_data_cmd_code                           | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                                                         | RW     | Read Data                                |
| [7:0]   | fast_read_cmd_code                           |                                                                                                                                                                                                                     | RW     | Fast Read                                |

### 5.2.6. Flash Command Code 3 Register

This register is used by the IP on supported command transactions only.

**Table 5.8. Flash Command Code 3 Register**

| Field   | Name                                 | Description                                                                                                                                                                                                  | Access | Default                     |
|---------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|
| [31:24] | dual_output_fast_read_cmd_code       | Read data commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | Dual Output Fast Read       |
| [23:16] | dual_input_output_fast_read_cmd_code | For some flash devices, read data commands can have different opcodes depending on the address mode such as 3- or 4-byte address.                                                                            | RW     | Dual Input/Output Fast Read |
| [15:8]  | quad_output_fast_read_cmd_code       | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                                                  | RW     | Quad Output Fast Read       |
| [7:0]   | quad_input_output_fast_read_cmd_code |                                                                                                                                                                                                              | RW     | Quad Input/Output Fast Read |

### 5.2.7. Flash Command Code 4 Register

This register is used by the IP on supported command transactions only.

**Table 5.9. Flash Command Code 4 Register**

| Field   | Name                        | Description                                                                                                                                                                                              | Access | Default            |
|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
| [31:24] | block_erase_type_1_cmd_code | Erase commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | Block Erase Type 1 |
| [23:16] | block_erase_type_2_cmd_code |                                                                                                                                                                                                          | RW     | Block Erase Type 2 |
| [15:8]  | block_erase_type_3_cmd_code | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                                              | RW     | Block Erase Type 3 |
| [7:0]   | chip_erase_cmd_code         |                                                                                                                                                                                                          | RW     | Chip Erase         |

### 5.2.8. Flash Command Code 5 Register

This register is used by the IP on supported command transactions only.

**Table 5.10. Flash Command Code 5 Register**

| Field   | Name                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Access | Default                      |
|---------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|
| [31:24] | write_enable_cmd_code                        | Write operation commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly.                                                                                                                                                                                                                                                                                                                                              | RW     | <i>Write Enable</i>          |
| [23:16] | write_disable_cmd_code                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RW     | <i>Write Disable</i>         |
| [15:8]  | write_status_configuration_register_cmd_code |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RW     | <i>Write Status Register</i> |
| [7:0]   | page_program_cmd_code                        | <p>For some flash devices, page program command can have different opcodes depending on the address mode such as 3- or 4-byte address.</p> <p>These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.</p> <p><b>Note:</b> For page program flash command, the IP only supports continuous byte write up to the flash page size. If the number of bytes is more than the flash page size, you need to access the packet header and data for another set of page program.</p> | RW     | <i>Page Program</i>          |

### 5.2.9. Flash Command Code 6 Register

This register is used by the IP on supported command transactions only.

**Table 5.11. Flash Command Code 6 Register**

| Field   | Name                                      | Description                                                                                                                                                                                                     | Access | Default                                 |
|---------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|
| [31:24] | dual_input_fast_program_cmd_code          | Page program commands. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | <i>Dual Input Fast Program</i>          |
| [23:16] | extended_dual_input_fast_program_cmd_code |                                                                                                                                                                                                                 | RW     | <i>Extended Dual Input Fast Program</i> |
| [15:8]  | quad_input_fast_program_cmd_code          | For some flash devices, page program commands can have different opcodes depending on the address mode such as 3- or 4-byte address.                                                                            | RW     | <i>Quad Input Fast Program</i>          |
| [7:0]   | extended_quad_input_fast_program_cmd_code | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                                                     | RW     | <i>Extended Quad Input Fast Program</i> |

### 5.2.10. Flash Command Code 7 Register

This register is used by the IP on supported command transactions only.

**Table 5.12. Flash Command Code 7 Register**

| Field   | Name                                  | Description                                                                                                                                                                                                                                        | Access | Default                             |
|---------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|
| [31:24] | enter_4_byte_address_mode_cmd_code    | Flash commands to configure the flash on different modes. Check the data sheet of the target flash device to determine if the commands shown are also supported then update the corresponding command code on the IP GUI or registers accordingly. | RW     | <i>Enter 4-Byte Address Mode</i>    |
| [23:16] | exit_4_byte_address_mode_cmd_code     |                                                                                                                                                                                                                                                    | RW     | <i>Exit 4-Byte Address Mode</i>     |
| [15:8]  | enter_quad_input_output_mode_cmd_code | These registers are the actual command opcode of a particular flash device. Values at reset depend on the command opcode set on the IP GUI.                                                                                                        | RW     | <i>Enter Quad Input/Output Mode</i> |
| [7:0]   | reset_quad_input_output_mode_cmd_code |                                                                                                                                                                                                                                                    | RW     | <i>Reset Quad Input/Output Mode</i> |

### 5.2.11. Minimum Flash Address Alignment Register

**Table 5.13. Minimum Flash Address Alignment Register**

| Field  | Name                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Access | Default     |
|--------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|
| [31:0] | min_flash_addr_alignment | <p>Flash address alignment in terms of KB size. Values are in power of 2. Starts at 1 KB, 2 KB, 4 KB, ..., 32 KB. Available only if <i>Enable Flash Address Mapping</i> is selected on the IP GUI.</p> <p>This register identifies the target address alignment based on the size of each SPI target on the memory map. The lower bits that are within the memory map size value are set to 0 while the upper bits are set to 1. For example, if the memory map size is 4KB (0x1000), then the lower 12 bits ([11:0]) correspond to the offset and the upper bits [31:12] correspond to the base address. Thus, the min_flash_addr_alignment value is 0xFFFF_F000.</p> | RW     | 0xFFFF_F000 |

### 5.2.12. Starting Flash Address Space Mapping Register

**Table 5.14. Starting Flash Address Space Mapping Register**

| Field  | Name                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Access | Default                |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|
| [31:0] | start_flash_address_space_map | <p>Starting flash address of the flash memory to be mapped to the address space. Available only if <i>Enable Flash Address Mapping</i> is selected on the IP GUI.</p> <p>This is the actual starting address of the flash memory map, which must be aligned to the minimum flash address alignment register value.</p> <p>Below are sample starting flash address values when minimum flash address alignment value is 4 KB:</p> <p>0x0000_0000 – Accesses the SPI target 0x0000_0000 to 0x0000_0FFF address which is the first 4KB partition of the flash.</p> <p>0x0000_1000 – Accesses the SPI target 0x0000_1000 to 0x0000_1FFF address which is the second 4KB partition of the flash.</p> <p>From the samples above, notice that the lower 12 bits ([11:0]) are always 0, the same with the minimum flash address alignment requirement.</p> | RW     | Starting Flash Address |

### 5.2.13. Flash Memory Map Size Register

Table 5.15. Flash Memory Map Size Register

| Field  | Name                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Access | Default     |
|--------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|
| [31:0] | flash_memory_map_size | <p>This setting identifies the total size of the flash memory to be mapped to the interface memory map. For single target only, it should have the same value as the minimum target address alignment. The lower bits that are within the memory map size value are set to 0 while the upper bits are set to 1.</p> <p>For example, if the total memory map size is 64KB (0x10000), then the lower 16 bits ([15:0]) correspond to the offset and the upper bits [31:16] correspond to the base address. Thus, the flash_memory_map_size value is 0xFFFF_0000.</p> <p>Available only if <i>Enable Flash Address Mapping</i> is selected on the IP GUI.</p> | RW     | 0xFFFF_F000 |

### 5.2.14. AXI/AHB-L Address Map Register

Table 5.16. AXI/AHB-L Address Map Register

| Field  | Name                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Access | Default               |
|--------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| [31:0] | axi_ahbl_address_map | <p>AXI/AHB-L base address of the target memory map. This register value indicates if the address being accessed on the main interface is a direct or non-direct access.</p> <p>When flash address mapping is enabled on the IP GUI, with <i>Number of SPI Target</i> set to 4, <i>Minimum Flash Address Alignment</i> of 4 KB, and starting flash address of 0x0000_1000, the resulting <i>Flash Memory Map Size</i> is 16 KB (0x4000). When set via register, <i>min_flash_addr_alignment</i> and <i>flash_memory_map_size</i> should be set as 0xFFFF_F000 and 0xFFFF_C000 respectively. Therefore, the AXI/AHB-L address map value should have the lower 14 bits ([13:0]) set to 0.</p> <p>Notice that the AXI/AHB-L address map value follows the requirement of the <i>flash_memory_map_size</i>.</p> <p>The AXI/AHB-L address map value (together with the minimum flash address alignment) is also used by the IP to control the <i>ss_n_o</i> behavior for multiple SPI targets. From the sample above, when the AXI/AHB-L address map is set to 0x0000_4000, the mapping for each SPI target is as follows:</p> <ul style="list-style-type: none"> <li>• Direct access on AXI/AHB-L address of 0x0000_4000<br/>– 0x0000_4FFF selects Target 0 through <i>ss_n_o</i>[0].</li> <li>• Direct access on AXI/AHBL address of 0x0000_5000<br/>– 0x0000_5FFF selects Target 1 through <i>ss_n_o</i>[1].</li> <li>• Direct access on AXI/AHBL address of 0x0000_6000<br/>– 0x0000_6FFF selects Target 2 through <i>ss_n_o</i>[2].</li> <li>• Direct access on AXI/AHBL address of 0x0000_7000<br/>– 0x0000_7FFF selects Target 3 through <i>ss_n_o</i>[3].</li> </ul> <p>Available only if <i>Enable Flash Address Mapping</i> is selected on the IP GUI.</p> | RW     | AXI/AHB-L Address Map |

## 5.3. Status and Interrupt Registers

The interrupts of the IP are implemented based on the Lattice Interrupt Interface definition.

### 5.3.1. Transaction Status Register

This register defines the IP status when a transaction begins.

**Table 5.17. Transaction Status Register**

| Field  | Name       | Description                                                                                                                                                                     | Access | Default |
|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:1] | reserved   | Reserved                                                                                                                                                                        | RO     | 0x0     |
| [0]    | trans_stat | Run status of the IP<br>1'b0 – Idle state. If previous transfer has already started, this indicates that transfer is done.<br>1'b1 – Transfer has started and is still running. | RO     | 0x0     |

### 5.3.2. Interrupt Status Register

#### 5.3.2.1. Interrupt Status Register when FIFO is Enabled

When FIFO is enabled, this register defines the Receive and Transmit FIFO interrupt statuses. An interrupt status asserts only when a change in the corresponding FIFO status occurs.

**Table 5.18. Interrupt Status Register when FIFO is Enabled**

| Field   | Name                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | Access | Default |
|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:10] | reserved                 | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                           | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int  | Target read transaction count hit interrupt.<br>1'b0 – Read transaction counter is not equal to tgt_rd_trans_cnt.<br>1'b1 – Read transaction counter is equal to tgt_rd_trans_cnt.                                                                                                                                                                                                                                                                 | RW1C   | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int  | Target write transaction count hit interrupt.<br>1'b0 – Write transaction counter is not equal to tgt_wr_trans_cnt.<br>1'b1 – Write transaction counter is equal to tgt_wr_trans_cnt.                                                                                                                                                                                                                                                              | RW1C   | 0x0     |
| [7]     | rx_fifo_full_int         | Receive FIFO full interrupt. This interrupt asserts when FIFO status changes from non-empty to full.<br>1'b0 – Indicates that data available on the Receive FIFO is still less than Receive FIFO Address Depth × 4 bytes after the read transaction has started.<br>1'b1 – Indicates that Receive FIFO Address Depth × 4 bytes of data are already available on the Receive FIFO after the read transaction has started.                           | RW1C   | 0x0     |
| [6]     | rx_fifo_almost_full_int  | Receive FIFO almost full interrupt. This interrupt asserts when FIFO status changes from non-empty to almost full.<br>1'b0 – Indicates that data available on the Receive FIFO is still less than (Receive FIFO Address Depth – 4) × 4 bytes after the read transaction has started.<br>1'b1 – Indicates that (Receive FIFO Address Depth – 4) × 4 bytes of data are already available on the Receive FIFO after the read transaction has started. | RW1C   | 0x0     |
| [5]     | rx_fifo_almost_empty_int | Receive FIFO almost empty interrupt. This interrupt asserts when FIFO status changes from non-empty to almost empty.<br>1'b0 – Indicates that the remaining data available on the Receive FIFO after the read transaction completion and reading on the FIFO has started is still greater than 1 dword or 4 bytes only.                                                                                                                            | RW1C   | 0x0     |

| Field | Name                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             | Access | Default |
|-------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
|       |                          | 1'b1 – Indicates that the remaining data available on the Receive FIFO after the read transaction completion and reading on the FIFO has started is already 1 dword or 4 bytes only.                                                                                                                                                                                                                                                                    |        |         |
| [4]   | rx_fifo_empty_int        | Receive FIFO empty interrupt. This interrupt asserts when FIFO status changes from non-empty to empty.<br>1'b0 – Indicates that there are still data available on Receive FIFO after read transaction completion.<br>1'b1 – Indicates that Receive FIFO Address Depth $\times$ 4 bytes of data are already read after read transaction completion.                                                                                                      | RW1C   | 0x0     |
| [3]   | tx_fifo_full_int         | Transmit FIFO full interrupt. This interrupt asserts when FIFO status changes from non-empty to full.<br>1'b0 – Indicates that data stored on the Transmit FIFO is still less than Transmit FIFO Address Depth $\times$ 4 bytes before the transaction has started.<br>1'b1 – Indicates that Transmit FIFO Address Depth $\times$ 4 bytes of data are already stored on the Transmit FIFO before the transaction has started.                           | RW1C   | 0x0     |
| [2]   | tx_fifo_almost_full_int  | Transmit FIFO almost full interrupt. This interrupt asserts when FIFO status changes from non-empty to almost full.<br>1'b0 – Indicates that data stored on the Transmit FIFO is still less than (Transmit FIFO Address Depth – 4) $\times$ 4 bytes before the transaction has started.<br>1'b1 – Indicates that (Transmit FIFO Address Depth – 4) $\times$ 4 bytes of data are already stored on the Transmit FIFO before the transaction has started. | RW1C   | 0x0     |
| [1]   | tx_fifo_almost_empty_int | Transmit FIFO almost empty interrupt. This interrupt asserts when FIFO status changes from non-empty to almost empty.<br>1'b0 – Indicates that the remaining data on Transmit FIFO is greater than 1 dword or 4 bytes after the transaction has started.<br>1'b1 – Indicates that the remaining data available on the Transmit FIFO after the transaction has started is already 1 dword or 4 bytes only.                                               | RW1C   | 0x0     |
| [0]   | tx_fifo_empty_int        | Transmit FIFO empty interrupt. This interrupt asserts when FIFO status changes from non-empty to empty.<br>1'b0 – Indicates that there are still data bytes available on the Transmit FIFO after the transaction started.<br>1'b1 – Indicates that all data bytes are already sent from Transmit FIFO to SPI bus after the transaction started.                                                                                                         | RW1C   | 0x0     |

### 5.3.2.2. Interrupt Status Register when FIFO is Disabled

When FIFO is disabled, this register defines the packet data interrupt status during IP operations.

**Table 5.19. Interrupt Status Register when FIFO is Disabled**

| Field   | Name                        | Description                                                                                                                                                                                                                                                                                                                                                                                                    | Access | Default |
|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:10] | reserved                    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                       | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int     | Target read transaction count hit interrupt.<br>1'b0 – Read transaction counter is not equal to tgt_rd_trans_cnt.<br>1'b1 – Read transaction counter is equal to tgt_rd_trans_cnt.                                                                                                                                                                                                                             | RW1C   | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int     | Target write transaction count hit interrupt.<br>1'b0 – Write transaction counter is not equal to tgt_wr_trans_cnt.<br>1'b1 – Write transaction counter is equal to tgt_wr_trans_cnt.                                                                                                                                                                                                                          | RW1C   | 0x0     |
| [7:5]   | reserved                    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                       | RO     | 0x0     |
| [4]     | rd_pkt_data_0_not_empty_int | Interrupt status of packet data during read operations.<br>1'b0 – Read packet data register is empty.<br>1'b1 – There is already an available read data on read packet data register.                                                                                                                                                                                                                          | RW1C   | 0x0     |
| [3:2]   | reserved                    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                       | RO     | 0x0     |
| [1]     | wr_pkt_data_1_empty_int     | Interrupt status of packet data during write operations with payload.<br>Once write transaction is completed, this packet data register interrupt status is reset to 1. This interrupt status should not be cleared if any transaction without payload is executed.<br>1'b0 – There is already available data in packet data that can be transmitted.<br>1'b1 – Packet data is empty. New data can be written. | RW1C   | 0x1     |
| [0]     | wr_pkt_data_0_empty_int     | Interrupt status of packet data during write operations with payload.<br>Once write transaction is completed, this packet data register interrupt status is reset to 1. This interrupt status should not be cleared if any transaction without payload is executed.<br>1'b0 – There is already available data in packet data that can be transmitted.<br>1'b1 – Packet data is empty. New data can be written. | RW1C   | 0x1     |

### 5.3.3. Interrupt Enable Register

#### 5.3.3.1. Interrupt Enable Register when FIFO is Enabled

When FIFO is enabled, this register defines the Receive and Transmit FIFO interrupt enable.

**Table 5.20. Interrupt Enable Register when FIFO is Enabled**

| Field   | Name                        | Description                                     | Access | Default |
|---------|-----------------------------|-------------------------------------------------|--------|---------|
| [31:10] | reserved                    | Reserved                                        | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int_en  | Enables target transaction count hit interrupt. | RW     | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int_en  | Enables target transaction count hit interrupt. | RW     | 0x0     |
| [7]     | rx_fifo_full_int_en         | Enables Receive FIFO full interrupt.            | RW     | 0x0     |
| [6]     | rx_fifo_almost_full_int_en  | Enables Receive FIFO almost full interrupt.     | RW     | 0x0     |
| [5]     | rx_fifo_almost_empty_int_en | Enables Receive FIFO almost empty interrupt.    | RW     | 0x0     |
| [4]     | rx_fifo_empty_int_en        | Enables Receive FIFO empty interrupt.           | RW     | 0x0     |
| [3]     | tx_fifo_full_int_en         | Enables Transmit FIFO full interrupt.           | RW     | 0x0     |
| [2]     | tx_fifo_almost_full_int_en  | Enables Transmit FIFO almost full interrupt.    | RW     | 0x0     |
| [1]     | tx_fifo_almost_empty_int_en | Enables Transmit FIFO almost empty interrupt.   | RW     | 0x0     |
| [0]     | tx_fifo_empty_int_en        | Enables Transmit FIFO empty interrupt.          | RW     | 0x0     |

#### 5.3.3.2. Interrupt Enable Register when FIFO is Disabled

When FIFO is disabled, this register defines the packet data interrupt enable during IP operations.

**Table 5.21. Interrupt Enable Register when FIFO is Disabled**

| Field   | Name                           | Description                                                           | Access | Default |
|---------|--------------------------------|-----------------------------------------------------------------------|--------|---------|
| [31:10] | reserved                       | Reserved                                                              | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int_en     | Enables target transaction count hit interrupt.                       | RW     | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int_en     | Enables target transaction count hit interrupt.                       | RW     | 0x0     |
| [7:5]   | reserved                       | Reserved                                                              | RO     | 0x0     |
| [4]     | rd_pkt_data_0_not_empty_int_en | Interrupt enable of packet data during read operations.               | RW     | 0x0     |
| [3:2]   | reserved                       | Reserved                                                              | RO     | 0x0     |
| [1]     | wr_pkt_data_1_empty_int_en     | Interrupt enable of packet data during write operations with payload. | RW     | 0x0     |
| [0]     | wr_pkt_data_0_empty_int_en     | Interrupt enable of packet data during write operations with payload. | RW     | 0x0     |

### 5.3.4. Interrupt Set Register

#### 5.3.4.1. Interrupt Set Register when FIFO is Enabled

When FIFO is enabled, this register defines the Receive and Transmit FIFO interrupt set.

**Table 5.22. Interrupt Set Register when FIFO is Enabled**

| Field   | Name                         | Description                                  | Access | Default |
|---------|------------------------------|----------------------------------------------|--------|---------|
| [31:10] | reserved                     | Reserved                                     | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int_set  | Sets target transaction count hit interrupt. | RW     | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int_set  | Sets target transaction count hit interrupt. | RW     | 0x0     |
| [7]     | rx_fifo_full_int_set         | Sets Receive FIFO full interrupt.            | RW     | 0x0     |
| [6]     | rx_fifo_almost_full_int_set  | Sets Receive FIFO almost full interrupt.     | RW     | 0x0     |
| [5]     | rx_fifo_almost_empty_int_set | Sets Receive FIFO almost empty interrupt.    | RW     | 0x0     |
| [4]     | rx_fifo_empty_int_set        | Sets Receive FIFO empty interrupt.           | RW     | 0x0     |
| [3]     | tx_fifo_full_int_set         | Sets Transmit FIFO full interrupt.           | RW     | 0x0     |
| [2]     | tx_fifo_almost_full_int_set  | Sets Transmit FIFO almost full interrupt.    | RW     | 0x0     |
| [1]     | tx_fifo_almost_empty_int_set | Sets Transmit FIFO almost empty interrupt.   | RW     | 0x0     |
| [0]     | tx_fifo_empty_int_set        | Sets Transmit FIFO empty interrupt.          | RW     | 0x0     |

#### 5.3.4.2. Interrupt Set Register when FIFO is Disabled

When FIFO is disabled, this register defines the packet data interrupt set during IP operations.

**Table 5.23. Interrupt Set Register when FIFO is Disabled**

| Field   | Name                            | Description                                                        | Access | Default |
|---------|---------------------------------|--------------------------------------------------------------------|--------|---------|
| [31:10] | reserved                        | Reserved                                                           | RO     | 0x0     |
| [9]     | tgt_rd_trns_cnt_hit_int_set     | Sets target transaction count hit interrupt.                       | RW     | 0x0     |
| [8]     | tgt_wr_trns_cnt_hit_int_set     | Sets target transaction count hit interrupt.                       | RW     | 0x0     |
| [7:5]   | reserved                        | Reserved                                                           | RO     | 0x0     |
| [4]     | rd_pkt_data_0_not_empty_int_set | Interrupt set of packet data during read operations.               | RW     | 0x0     |
| [3:2]   | reserved                        | Reserved                                                           | RO     | 0x0     |
| [1]     | wr_pkt_data_1_empty_int_set     | Interrupt set of packet data during write operations with payload. | RW     | 0x0     |
| [0]     | wr_pkt_data_0_empty_int_set     | Interrupt set of packet data during write operations with payload. | RW     | 0x0     |

### 5.3.5. Supported Flash Command Packet Header and Data Transfer Status Register

This register tracks the number of supported flash command packet headers and data sets transferred during write and read operations.

**Table 5.24. Supported Flash Command Transaction Status Register**

| Field   | Name                                       | Description                                                                                                                                                                                                             | Access | Default |
|---------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | sup_flash_cmd_pkt_header_data_xfer_wr_cntr | Supported flash command packet header and data transfer during write operations counter.<br>This counter increments when a set of packet header and data is transferred by the controller to the external flash.        | RO     | 0x0     |
| [15:0]  | sup_flash_cmd_pkt_header_data_xfer_rd_cntr | Supported flash command packet header and data transfer during read operations counter.<br>This counter increments when a packet data is transferred by the controller and when data is received from the flash memory. | RO     | 0x0     |

### 5.3.6. Generic SPI Transaction Packet Header and Data Transfer Status Register

This register tracks the number of generic packet headers and data sets transferred during write and read operations.

**Table 5.25. Generic SPI Transaction Status Register**

| Field   | Name                                       | Description                                                                                                                                                                          | Access | Default |
|---------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | gen_flash_cmd_pkt_header_data_xfer_wr_cntr | Generic SPI transaction packet header and data transfer during write operations counter.<br>This counter increments when a packet data is transferred by the generic SPI controller. | RO     | 0x0     |
| [15:0]  | gen_flash_cmd_pkt_header_data_xfer_rd_cntr | Generic SPI transaction packet header and data transfer during read operations counter.<br>This counter increments when a packet data is received from target flash.                 | RO     | 0x0     |

## 5.4. Control Registers

Control registers include Transmit or Receive FIFO mapping, packet header and data, and start transaction registers.

### 5.4.1. TX FIFO Mapping

**Table 5.26. TX FIFO Mapping Register**

| Field  | Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                | Access | Default |
|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:0] | tx_fifo_data | This register should be used only when <i>Enable Transmit FIFO</i> == Checked. When FIFO is enabled, data to be written to the FIFO should follow the user packet frame structure described in the <a href="#">User Packet Frame Structure</a> section. Endianness mode applies to the register bit fields of the user packet frame structure that corresponds to packet header 2 and 3 and packet data 0 and 1 registers. | WO     | 0x0     |

## 5.4.2. RX FIFO Mapping

**Table 5.27. RX FIFO Mapping Register**

| Field  | Name         | Description                                                                                                                           | Access | Default |
|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:0] | rx_fifo_data | This register should be used only when <i>Enable Receive FIFO</i> == Checked. Endianness mode applies to the read data from the FIFO. | RO     | 0x0     |

## 5.4.3. Packet Header 0 Register

The bit fields of this register should be set depending on the supported flash command to be executed.

### 5.4.3.1. Packet Header 0 Register for Supported Flash Commands

For supported flash commands, the IP automatically generates the flash command sequence to perform flash erase, write, or read transaction as described in the [Supported Commands Flash Operation](#) section.

[Table 5.28](#) shows the Packet Header 0 Register bit field definitions when sup\_flash\_cmd is set to 1'b1. If FIFO is enabled, this register is read-only access.

**Table 5.28. Packet Header 0 Register – Supported Flash Commands**

| Field   | Name                  | Description                                                                                                                                                                                                                                                                                                                                                            | Access | Default |
|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | xfer_len_bytes        | Transfer length in bytes. The total number of bytes goes up to 65,535 bytes (64 KB).<br>16'h1 – 1 byte.<br>16'h2 – 2 bytes.<br>...<br>16'hFFFF – 65,535 bytes.<br>16'h0 – 64 K bytes.<br>For program operations, set xfer_len_bytes to multiples of 4 or 8. If the number of bytes in the transfer is not multiples of 4 or 8, use the generic command packet instead. | RW     | 0x0     |
| [15:8]  | num_wait_state        | Indicates the number of wait cycles or dummy cycles after the flash address is transmitted during read commands.<br>0 – No wait cycle.<br>1 – One wait cycle.<br>...<br>255 – 255 wait cycles.                                                                                                                                                                         | RW     | 0x0     |
| [7]     | multiple_flash_target | 0 – Single flash target. The tgt_cs register value is ignored.<br>1 – Multiple flash targets. The tgt_cs register value is used for target chip select.                                                                                                                                                                                                                | RW     | 0x0     |
| [6:2]   | flash_command_code    | The values 0 to 31 map to specific vendor flash command codes. <a href="#">Table 5.29</a> lists the supported flash commands.                                                                                                                                                                                                                                          | RW     | 0x0     |
| [1]     | with_payload          | 0 – Payload will not be present in this packet.<br>1 – Payload is present in this packet. The total payload should be specified in the xfer_len_bytes register field.                                                                                                                                                                                                  | RW     | 0x0     |
| [0]     | sup_flash_cmd         | 0 – Generic command packet of the IP will be used to perform SPI transaction.<br>1 – Supported flash command sequence of the IP will be used.                                                                                                                                                                                                                          | RW     | 0x0     |

**Table 5.29. Supported Flash Commands**

| <b>flash_command_code</b> | <b>Flash Command</b>                     |
|---------------------------|------------------------------------------|
| 5'h00                     | Read Status Register-1                   |
| 5'h01                     | Read Status Register-2                   |
| 5'h02                     | Read Status Register-3                   |
| 5'h03                     | Read Configuration Register              |
| 5'h04                     | Read ID                                  |
| 5'h05                     | Read Electronic ID                       |
| 5'h06                     | Multiple I/O Read ID                     |
| 5'h07                     | Read Manufacturer and Device ID          |
| 5'h08                     | Read Manufacturer and Device ID Dual I/O |
| 5'h09                     | Read Manufacturer and Device ID Quad I/O |
| 5'h0A                     | Read Data                                |
| 5'h0B                     | Fast Read                                |
| 5'h0C                     | Dual Output Fast Read                    |
| 5'h0D                     | Dual Input/Output Fast Read              |
| 5'h0E                     | Quad Output Fast Read                    |
| 5'h0F                     | Quad Input/Output Fast Read              |
| 5'h10                     | Block Erase Type 1                       |
| 5'h11                     | Block Erase Type 2                       |
| 5'h12                     | Block Erase Type 3                       |
| 5'h13                     | Chip Erase                               |
| 5'h14                     | Write Enable                             |
| 5'h15                     | Write Disable                            |
| 5'h16                     | Write Status/Configuration Register      |
| 5'h17                     | Page Program                             |
| 5'h18                     | Dual Input Fast Program                  |
| 5'h19                     | Extended Dual Input Fast Program         |
| 5'h1A                     | Quad Input Fast Program                  |
| 5'h1B                     | Extended Quad Input Fast Program         |
| 5'h1C                     | Enter 4-Byte Address Mode                |
| 5'h1D                     | Exit 4-Byte Address Mode                 |
| 5'h1E                     | Enter Quad Input/Output Mode             |
| 5'h1F                     | Reset Quad Input/Output Mode             |

#### 5.4.3.2. Packet Header 0 Register for Generic SPI Transactions

For generic SPI transactions, you can manually create the flash sequence necessary to perform a flash operation.

**Table 5.30** shows the Packet Header 0 Register bit field definitions when sup\_flash\_cmd is set to 1'b0. If FIFO is enabled, this register is read-only access.

**Table 5.30. Packet Header 0 Register – Generic SPI Transactions**

| Field   | Name            | Description                                                                                                                                                                                                                                                                                                                                                                                                        | Access | Default |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | xfer_len_bytes  | Transfer length in bytes. The total number of bytes goes up to 65535 bytes (64 KB). This register must be set to a non-zero value.                                                                                                                                                                                                                                                                                 | RW     | 0x1     |
| [15:13] | num_wait_sck    | Indicates the number of wait cycles or dummy cycles after the flash address is transmitted during read commands.<br>0 – No wait cycle.<br>1 – One wait cycle.<br>...<br>7 – Seven wait cycles.<br>Additional wait cycles (multiples of 8 SCK) can be generated by sending additional dummy write transactions after sending the address and before the actual read transaction using generic packet data register. | RW     | 0x0     |
| [12:8]  | tgt_cs          | Chip select<br>0 to 31 targets can be selected.                                                                                                                                                                                                                                                                                                                                                                    | RW     | 0x0     |
| [7]     | multiple_target | 0 – Single flash target. The tgt_cs register value is ignored.<br>1 – Multiple flash targets. The tgt_cs register value is used for target chip select.                                                                                                                                                                                                                                                            | RW     | 0x0     |
| [6]     | frm_end         | Frame end<br>1'b0 – Stop/Pause SCK if there are no further transactions. Chip select is not de-asserted after the last byte transfer.<br>1'b1 – Stop/Pause SCK and de-assert chip select after the last byte transfer.                                                                                                                                                                                             | RW     | 0x0     |
| [5]     | frm_start       | Frame start<br>1'b0 – Indicates that the current transfer is not the start of the frame. This packet continues the previous transaction from asserted chip select held from previous transaction.<br>1'b1 – Indicates that the current transfer is the start of the frame. The target chip select transitions from a de-asserted state to an asserted state.                                                       | RW     | 0x0     |
| [4]     | data_rate       | 1'b0 – Single data rate.<br>1'b1 – Invalid value. Only single data rate is supported for this IP release.                                                                                                                                                                                                                                                                                                          | RW     | 0x0     |
| [3:2]   | lane_width      | 2'b00 – x1 (Standard SPI)<br>2'b01 – x2 (Dual SPI)<br>2'b10 – x4 (Quad SPI)<br>2'b11 – Reserved                                                                                                                                                                                                                                                                                                                    | RW     | 0x0     |
| [1]     | cmd_type        | 1'b0 – SPI read transaction<br>1'b1 – SPI write transaction (payload may or may not be present)                                                                                                                                                                                                                                                                                                                    | RW     | 0x0     |

| Field | Name          | Description                                                                                                                                         | Access | Default |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [0]   | sup_flash_cmd | Supported flash command<br>0 – The flash command to be sent is not supported by the IP.<br>1 – The flash command to be sent is supported by the IP. | RW     | 0x0     |

#### 5.4.4. Packet Header 1 Register

This register can be used only for supported flash commands. If FIFO is enabled, this register is read-only access.

**Table 5.31. Packet Header 1 Register**

| Field   | Name             | Description                                                                                                                                                                                                                                                            | Access | Default |
|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:16] | reserved         | Reserved                                                                                                                                                                                                                                                               | RO     | 0x0     |
| [15:13] | flash_addr_width | Flash address width to be used in the transaction.<br>3'b000 – No address<br>3'b001 – 16-bit address<br>3'b010 – 24-bit address<br>3'b011 – 32-bit address<br>3'b100 – 40-bit address<br>3'b101 – 48-bit address<br>3'b110 – 56-bit address<br>3'b111 – 64-bit address | RW     | 0x0     |
| [12:8]  | tgt_cs           | Target chip select.<br>This should be set when multiple_flash_target is set to 1. Supports up to 32 targets (Target 0, Target 1, ..., Target 31).                                                                                                                      | RW     | 0x0     |
| [7:6]   | reserved         | Reserved                                                                                                                                                                                                                                                               | RO     | 0x0     |
| [5:4]   | dat_lane_width   | Data can be sent to target flash memory in different lane widths.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane.                                                                                                                              | RW     | 0x0     |
| [3:2]   | addr_lane_width  | Address can be sent to target flash memory in different lane widths.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane.                                                                                                                           | RW     | 0x0     |
| [1:0]   | cmd_lane_width   | Command can be sent to target flash memory in different lane widths.<br>2'b00 – Use x1 lane.<br>2'b01 – Use x2 lane.<br>2'b10 – Use x4 lane.                                                                                                                           | RW     | 0x0     |

### 5.4.5. Packet Header 2 Register

This register should be set for supported flash commands and when flash\_addr\_width is greater than 3'b000 but less than 3'b100. The address starts at the most significant bit. For example, if flash\_addr\_width is 3'b010 for a 24-bit address, then bits [31:8] should contain the flash\_address value. If FIFO is enabled, this register is read-only access.

**Table 5.32. Packet Header 2 Register**

| Field   | Name          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Access | Default |
|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:24] | flash_address | Endianness mode applies to this register. For supported commands IP transaction when <i>Enable Flash Address Mapping == Unchecked</i> , little endian mode, and a 32-bit flash address, packet header 2 bits [7:0] should contain flash_address [31:24]. For little endian mode and a 24-bit flash address, packet header 2 bits [15:8] should contain the flash_address [23:16]. For big endian mode, packet header 2 bits [31:24] are treated collectively as the most significant byte and therefore, should contain the flash_address most significant byte that will be sent first up to the last valid flash_address based on flash_addr_width. | RW     | 0x00    |
| [23:16] | flash_address |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RW     | 0x00    |
| [15:8]  | flash_address |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RW     | 0x00    |
| [7:0]   | flash_address |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RW     | 0x00    |

### 5.4.6. Packet Header 3 Register

This register should be set for supported flash commands and when flash\_addr\_width is greater than 3'b011 and flash address is greater than 32 bits. If FIFO is enabled, this register is read-only access.

**Table 5.33. Packet Header 3 Register**

| Field   | Name          | Description                                                                                                                                                                                                                                                                                                    | Access | Default |
|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:24] | flash_address | Endianness mode applies to this register. This packet header works with packet header 2 and starts with the most significant bit. For example, if flash_addr_width is 3'b101 for a 48-bit address, packet header 2 contains flash_address [47:16] while packet header 3 [31:16] contains flash_address [15:0]. | RW     | 0x00    |
| [23:16] | flash_address |                                                                                                                                                                                                                                                                                                                | RW     | 0x00    |
| [15:8]  | flash_address |                                                                                                                                                                                                                                                                                                                | RW     | 0x00    |
| [7:0]   | flash_address |                                                                                                                                                                                                                                                                                                                | RW     | 0x00    |

### 5.4.7. Packet Data 0 Register

This should be present only for commands with payload and there is no FIFO enabled. If FIFO is enabled, this register is read-only access.

**Table 5.34. Packet Data 0 Register**

| Field  | Name       | Description                                                                                                                                                                                      | Access | Default |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:0] | pkt_data_0 | The payload starts at the lowest significant data bit. You should keep track of the status of this register to know when to write or read new data.<br>Endianness mode applies to this register. | RW     | 0x00    |

#### 5.4.8. Packet Data 1 Register

This should be present only for commands with payload and there is no FIFO enabled. If FIFO is enabled, this register is read-only access.

**Table 5.35. Packet Data 1 Register**

| Field  | Name       | Description                                                                                                                                                                              | Access | Default |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:0] | pkt_data_1 | The payload starts at the lowest significant data bit. You should keep track of the status of this register to know when to write new data.<br>Endianness mode applies to this register. | RW     | 0x00    |

#### 5.4.9. Start Transaction Register

When all the configuration and control registers are already set, set this register to start flash operations. This register also enables the XiP support of the IP.

**Table 5.36. Start Transaction Register**

| Field  | Name        | Description                                                                                                                                                                | Access | Default |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| [31:2] | reserved    | Reserved                                                                                                                                                                   | RO     | 0x0     |
| [1]    | xip_enable  | eXecute-in-Place (XiP) Enable<br>1'b0 – Flash device XiP mode of operation will not be used.<br>1'b1 – Flash device XiP mode of operation will be used on the transaction. | RW     | 0x0     |
| [0]    | start_trans | Used to start the transfer from controller to the targeted flash.<br>0 – Idle or no operation.<br>1 – Start transfer.                                                      | RW     | 0x0     |

## 5.5. Operation Details/Programming Flow

The QSPI Flash Controller IP usage is dependent on the use of either the transmit FIFO or receive FIFO. If FIFOs are enabled, all data in the packet header and data format are written to the FIFOs. Otherwise, all user packet registers should be set before starting a transaction. Read data can either be stored in a receive FIFO or read through packet data 0 register.

### 5.5.1. Flash Write/Erase Supported Commands with FIFO Enabled

For FIFO enabled configurations, all data necessary to perform an operation should be written first to the FIFO before starting the transaction.

Below is an example on how to perform a flash operation which requires a command to be sent to the SPI interface. To perform the “Enter Quad Input/Output Mode” operation, send all the transactions listed in [Table 5.37](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

Other supported commands, such as Enter/Exit 4-Bytes Mode, have the same sequence below except that the `flash_command_code` bit fields should be set according to the equivalent 5-bit value listed in [Table 5.29](#). For operations where the target flash is set to operate on dual or quad SPI mode, `cmd_lane_width` should be set according to the I/O lanes requirement of the target flash.

**Table 5.37. Programming Flow: Enter Quad Input/Output Mode, Without Payload, Standard SPI**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0000_0079 | <p>[31:16] <code>xfer_len_bytes</code> = 16'h0</p> <p>[15:8] <code>num_wait_state</code> = 8'h0</p> <p>[7] <code>multiple_flash_target</code> = 1'h0</p> <p>[6:2] <code>flash_command_code</code> = 5'h1E (Enter Quad Input/Output Mode)</p> <p>[1] <code>with_payload</code> = 1'h0</p> <p>[0] <code>sup_flash_cmd</code> = 1'h1 (Supported Command)</p> |
|                                              | 0x0000_0000 | <p>[31:16] reserved bits</p> <p>[15:13] <code>flash_addr_width</code> = 3'h0</p> <p>[12:8] <code>tgt_cs</code> = 5'h0</p> <p>[7:6] reserved bits</p> <p>[5:4] <code>dat_lane_width</code> = 2'h0</p> <p>[3:2] <code>addr_lane_width</code> = 2'h0</p> <p>[1:0] <code>cmd_lane_width</code> = 2'h0 (x1 lane)</p>                                           |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                         |

Below is an example on how to perform a flash operation which requires a command and address to be sent to the SPI interface. To perform “Block Erase Type 1” operation, send all the transactions listed in [Table 5.38](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

Other supported commands, such as Block Erase Type 2 and 3, have the same sequence below except that the `flash_command_code` bit fields should be set according to the equivalent 5-bit value listed in [Table 5.29](#). For operations where the target flash is set to operate on dual or quad SPI mode, `cmd_lane_width` and `addr_lane_width` should be set according to the I/O lanes requirement of the target flash.

**Table 5.38. Programming Flow: Block Erase Type 1, Without Payload, Big Endian, Standard SPI**

| Interface Address                            | Write Data  | Description/Comment                                                |
|----------------------------------------------|-------------|--------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0000_0041 | [31:16] <code>xfer_len_bytes</code> = 16'h0                        |
|                                              |             | [15:8] <code>num_wait_state</code> = 8'h0                          |
|                                              |             | [7] <code>multiple_flash_target</code> = 1'h0                      |
|                                              |             | [6:2] <code>flash_command_code</code> = 5'h10 (Block Erase Type 1) |
|                                              |             | [1] <code>with_payload</code> = 1'h0                               |
|                                              |             | [0] <code>sup_flash_cmd</code> = 1'h1 (Supported Command)          |
|                                              | 0x0000_4000 | [31:16] reserved bits                                              |
|                                              |             | [15:13] <code>flash_addr_width</code> = 3'h2 (24-bit address mode) |
|                                              |             | [12:8] <code>tgt_cs</code> = 5'h0                                  |
|                                              |             | [7:6] reserved bits                                                |
|                                              |             | [5:4] <code>dat_lane_width</code> = 2'h0                           |
|                                              | 0x0010_0000 | [3:2] <code>addr_lane_width</code> = 2'h0 (x1 lane)                |
|                                              |             | [1:0] <code>cmd_lane_width</code> = 2'h0 (x1 lane)                 |
|                                              | 0x0010_0000 | [31:8] <code>flash_address</code> = 24'h00_1000                    |
|                                              |             | [7:0] unused bits                                                  |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                  |

Below is an example on how to perform a flash operation which requires a command and data to be sent to the SPI interface. To perform the “Write Status/Configuration Register” operation, send all the transactions listed in [Table 5.39](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section. For operations where the target flash is set to operate on dual or quad SPI mode, cmd\_lane\_width and data\_lane\_width should be set according to the I/O lanes requirement of the target flash.

**Table 5.39. Programming Flow: Write Status/Configuration Register, With Payload, Big Endian, Standard SPI**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0001_005B | <ul style="list-style-type: none"> <li>[31:16] xfer_len_bytes = 16'h1 (1 byte)</li> <li>[15:8] num_wait_state = 8'ho</li> <li>[7] multiple_flash_target = 1'ho</li> <li>[6:2] flash_command_code = 5'h16 (Write Status/Configuration Register)</li> <li>[1] with_payload = 1'h1 (with write data)</li> <li>[0] sup_flash_cmd = 1'h1 (Supported Command)</li> </ul> |
|                                              | 0x0000_0000 | <ul style="list-style-type: none"> <li>[31:16] reserved bits</li> <li>[15:13] flash_addr_width = 3'ho</li> <li>[12:8] tgt_cs = 5'ho</li> <li>[7:6] reserved bits</li> <li>[5:4] dat_lane_width = 2'ho (x1 lane)</li> <li>[3:2] addr_lane_width = 2'ho</li> <li>[1:0] cmd_lane_width = 2'ho (x1 lane)</li> </ul>                                                    |
| Register Map: Interface Base Address + 0x220 | 0x4000_0000 | Payload DW1                                                                                                                                                                                                                                                                                                                                                        |
|                                              | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                  |

Below are examples on how to perform a flash operation which requires a command, address, and data to be sent to the SPI interface. To perform “Page Program” and “Extended Quad Input Fast Program” operations, send all the transactions listed in [Table 5.40](#) and [Table 5.41](#) to the interface, respectively. After the transaction is started, follow the procedures in the [Polling Mode after a Write Transaction is started for FIFO Enabled Configuration](#) section.

All other program supported commands have the same sequence below except that the flash\_command\_code bit fields should be set according to the equivalent 5-bit value listed in [Table 5.29](#) and the cmd\_lane\_width, addr\_lane\_width, and dat\_lane\_width bit fields should be set according to the I/O lanes requirement of the target flash.

Flash devices may need additional commands or sequence to set it to a different SPI mode to perform other program commands. These necessary steps should be done prior to performing the flash operation.

**Table 5.40. Programming Flow: 256-bytes Page Program, FIFO Enabled, Big Endian, Standard SPI**

| Interface Address                            | Write Data  | Description/Comment                                   |
|----------------------------------------------|-------------|-------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0100_005F | [31:16] xfer_len_bytes = 16'h100 (256-bytes)          |
|                                              |             | [15:8] num_wait_state = 8'h0                          |
|                                              |             | [7] multiple_flash_target = 1'h0                      |
|                                              |             | [6:2] flash_command_code = 5'h17 (Page Program)       |
|                                              |             | [1] with_payload = 1'h1 (with write data)             |
|                                              |             | [0] sup_flash_cmd = 1'h1 (Supported Command)          |
|                                              | 0x0000_4000 | [31:16] reserved bits                                 |
|                                              |             | [15:13] flash_addr_width = 3'h2 (24-bit address mode) |
|                                              |             | [12:8] tgt_cs = 5'h0                                  |
|                                              |             | [7:6] reserved bits                                   |
|                                              |             | [5:4] dat_lane_width = 2'h0 (x1 lane)                 |
|                                              | 0x0010_0000 | [3:2] addr_lane_width = 2'h0 (x1 lane)                |
|                                              |             | [1:0] cmd_lane_width = 2'h0 (x1 lane)                 |
|                                              | 0x1234_5678 | [31:8] flash_address = 24'h00_1000                    |
|                                              |             | [7:0] unused bits                                     |
|                                              | 0x1234_5678 | Payload DW1                                           |
|                                              | 0x9ABC_DEF0 | Payload DW2                                           |
|                                              | ...         | Payload DWx                                           |
|                                              | 0xDEAD_BEEF | Payload DW63                                          |
|                                              | 0xA5A5_C3C3 | Payload DW64                                          |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                     |

**Table 5.41. Programming Flow: 256-bytes Extended Quad Input Fast Program, FIFO Enabled, Little Endian**

| Interface Address                            | Write Data  | Description/Comment                                   |
|----------------------------------------------|-------------|-------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0100_006F | [31:16] xfer_len_bytes = 16'h100 (256-bytes)          |
|                                              |             | [15:8] num_wait_state = 8'h0                          |
|                                              |             | [7] multiple_flash_target = 1'h0                      |
|                                              |             | [6:2] flash_command_code = 5'h1B (Page Program)       |
|                                              |             | [1] with_payload = 1'h1 (with write data)             |
|                                              |             | [0] sup_flash_cmd = 1'h1 (Supported Command)          |
|                                              | 0x0000_4028 | [31:16] reserved bits                                 |
|                                              |             | [15:13] flash_addr_width = 3'h2 (24-bit address mode) |
|                                              |             | [12:8] tgt_cs = 5'h0                                  |
|                                              |             | [7:6] reserved bits                                   |

| Interface Address                            | Write Data  | Description/Comment   |                             |
|----------------------------------------------|-------------|-----------------------|-----------------------------|
|                                              |             | [5:4] dat_lane_width  | = 2'h2 (x4 lane)            |
|                                              |             | [3:2] addr_lane_width | = 2'h2 (x4 lane)            |
|                                              |             | [1:0] cmd_lane_width  | = 2'h0 (x1 lane)            |
|                                              |             | 0x0010_0000 [31:8]    | flash_address = 24'h00_1000 |
|                                              |             | [7:0]                 | unused bits                 |
|                                              | 0x7856_3412 | Payload DW1           |                             |
|                                              | 0xF0DE_BC9A | Payload DW2           |                             |
|                                              | ...         | Payload DWx           |                             |
|                                              | 0xEFBE_ADDE | Payload DW63          |                             |
|                                              | 0xC3C3_A5A5 | Payload DW64          |                             |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction     |                             |

### 5.5.2. Flash Read Supported Commands with FIFO Enabled

Below are examples on how to perform a flash read operation which requires only a command to be sent to the SPI interface to have data read from flash. To perform “Read Status Register-1” and “Quad Input/Output Fast Read” operations, send all the transactions listed in [Table 5.42](#) and [Table 5.43](#) to the interface, respectively. To continue the operation, follow the procedure in the [Polling Mode after a Read Transaction is started for FIFO Enabled Configuration](#) section.

All other read status and ID supported commands have the same sequence below except that the `flash_command_code` bit fields should be set according to the equivalent 5-bit value listed in [Table 5.29](#) and `xfer_len_bytes` bit fields should align to the expected read data from flash.

**Table 5.42. Programming Flow: Read Status Register, FIFO Enabled, Standard SPI**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0001_0001 | <ul style="list-style-type: none"> <li>[31:16] <code>xfer_len_bytes</code> = 16'h1</li> <li>[15:8] <code>num_wait_state</code> = 8'h0</li> <li>[7] <code>multiple_flash_target</code> = 1'h0</li> <li>[6:2] <code>flash_command_code</code> = 5'h00 (Read Status Register-1)</li> <li>[1] <code>with_payload</code> = 1'h0</li> <li>[0] <code>sup_flash_cmd</code> = 1'h1 (Supported Command)</li> </ul> |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | <ul style="list-style-type: none"> <li>[31:16] reserved bits</li> <li>[15:13] <code>flash_addr_width</code> = 3'h0</li> <li>[12:8] <code>tgt_cs</code> = 5'h0</li> <li>[7:6] reserved bits</li> <li>[5:4] <code>dat_lane_width</code> = 2'h0</li> <li>[3:2] <code>addr_lane_width</code> = 2'h0</li> <li>[1:0] <code>cmd_lane_width</code> = 2'h0 (x1 lane)</li> </ul>                                   |
|                                              | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                                                        |

All other read data supported commands have the same sequence below except that the `flash_command_code` bit fields should be set according to the equivalent 5-bit value listed in [Table 5.29](#) and `cmd_lane_width`, `addr_lane_width`, `dat_lane_width`, and `num_wait_state` bit fields should follow the target flash device requirements on these I/O lanes and dummy clock cycles.

Flash devices may need additional commands or sequence to set it to a different SPI mode and dummy clock cycle configuration to perform other read commands. These necessary steps should be done prior to performing the flash operation.

**Table 5.43. Programming Flow: 256-bytes Quad Input/Output Fast Read, FIFO Enabled, Big Endian, Extended SPI**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x200 | 0x0100_063D | <ul style="list-style-type: none"> <li>[31:16] <code>xfer_len_bytes</code> = 16'h100 (256-bytes)</li> <li>[15:8] <code>num_wait_state</code> = 8'h6 (6 dummy clock cycles)</li> <li>[7] <code>multiple_flash_target</code> = 1'h0</li> <li>[6:2] <code>flash_command_code</code> = 5'h0F (Quad Input/Output Fast Read)</li> <li>[1] <code>with_payload</code> = 1'h0</li> <li>[0] <code>sup_flash_cmd</code> = 1'h1 (Supported Command)</li> </ul> |
|                                              | 0x0000_4028 | <ul style="list-style-type: none"> <li>[31:16] reserved bits</li> <li>[15:13] <code>flash_addr_width</code> = 3'h2 (24-bit address mode)</li> </ul>                                                                                                                                                                                                                                                                                                |

| Interface Address                            | Write Data  | Description/Comment                    |
|----------------------------------------------|-------------|----------------------------------------|
|                                              |             | [12:8] tgt_cs = 5'h0                   |
|                                              |             | [7:6] reserved bits                    |
|                                              |             | [5:4] dat_lane_width = 2'h2 (x4 lane)  |
|                                              |             | [3:2] addr_lane_width = 2'h2 (x4 lane) |
|                                              |             | [1:0] cmd_lane_width = 2'h0 (x1 lane)  |
|                                              | 0x0010_0000 | [31:8] flash_address = 24'h000_1000    |
|                                              |             | [7:0] unused bits                      |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                      |

### 5.5.3. Flash Supported Commands using Packet Header and Data Registers

Flash erase, write, or read operations with FIFO disabled configuration uses packet header and data registers. The same sample sequence and write data from the [Flash Write/Erase Supported Commands with FIFO Enabled](#) and [Flash Read Supported Commands with FIFO Enabled](#) sections apply. But instead of writing via the TX FIFO register address, interface write access uses the packet header and data register addresses. The first two dwords are the write data of packet header 0 and 1 registers. When address is present, depending on the `flash_addr_width`, these are the write data of packet header 2 and 3 registers. For write commands with payload, all the payloads are the write data of packet data registers. While for read commands with return data from flash, packet data 0 register is read instead of RX FIFO register address.

[Table 5.44](#) shows a list of transactions to perform a page program. After starting the transaction, follow procedure in the [Polling Mode after a Write Transaction is started for FIFO Disabled Configuration](#) section to continue the writing of data to packet data registers.

**Table 5.44. Programming Flow: 256-bytes Page Program, FIFO Disabled, Big Endian, Standard SPI**

| Interface Address                                                                                | Write Data  | Description/Comment                                                  |
|--------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208                                                     | 0x0100_005F | [31:16] <code>xfer_len_bytes</code> = 16'h100 (256-bytes)            |
|                                                                                                  |             | [15:8] <code>num_wait_state</code> = 8'h0                            |
|                                                                                                  |             | [7] <code>multiple_flash_target</code> = 1'h0                        |
|                                                                                                  |             | [6:2] <code>flash_command_code</code> = 5'h17 (Page Program)         |
|                                                                                                  |             | [1] <code>with_payload</code> = 1'h1 (with write data)               |
|                                                                                                  |             | [0] <code>sup_flash_cmd</code> = 1'h1 (Supported Command)            |
| Register Map: Interface Base Address + 0x20C                                                     | 0x0000_4000 | [31:16] reserved bits                                                |
|                                                                                                  |             | [15:13] <code>flash_addr_width</code> = 3'h2 (24-bit address mode)   |
|                                                                                                  |             | [12:8] <code>tgt_cs</code> = 5'h0                                    |
|                                                                                                  |             | [7:6] reserved bits                                                  |
|                                                                                                  |             | [5:4] <code>dat_lane_width</code> = 2'h0 (x1 lane)                   |
|                                                                                                  |             | [3:2] <code>addr_lane_width</code> = 2'h0 (x1 lane)                  |
|                                                                                                  |             | [1:0] <code>cmd_lane_width</code> = 2'h0 (x1 lane)                   |
| Register Map: Interface Base Address + 0x210                                                     | 0x0010_0000 | [31:8] <code>flash_address</code> = 24'h00_1000<br>[7:0] unused bits |
| Register Map: Interface Base Address + 0x218                                                     | 0x1234_5678 | Payload DW1                                                          |
| Register Map: Interface Base Address + 0x21C                                                     | 0x9ABC_DEF0 | Payload DW2                                                          |
| Register Map: Interface Base Address + 0x220                                                     | 0x0000_0001 | Start Transaction                                                    |
| Register Map: Interface Base Address + 0x218 and<br>Register Map: Interface Base Address + 0x21C | ...         | Payload DWx                                                          |
| Register Map: Interface Base Address + 0x218                                                     | 0xDEAD_BEEF | Payload DW63                                                         |
| Register Map: Interface Base Address + 0x21C                                                     | 0xA5A5_C3C3 | Payload DW64                                                         |

**Table 5.45** shows a list of transactions to perform a read operation. After starting the transaction, follow the procedure in the [Polling Mode after a Read Transaction is started for FIFO Disabled Configuration](#) section to read the data from packet data registers.

**Table 5.45. Programming Flow: 256-bytes Quad Input/Output Fast Read, FIFO Disabled, Big Endian, Extended SPI**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0100_063D | <ul style="list-style-type: none"> <li>[31:16] xfer_len_bytes = 16'h100 (256-bytes)</li> <li>[15:8] num_wait_state = 8'h6 (6 dummy clock cycles)</li> <li>[7] multiple_flash_target = 1'h0</li> <li>[6:2] flash_command_code = 5'h0F (Quad Input/Output Fast Read)</li> <li>[1] with_payload = 1'h0</li> <li>[0] sup_flash_cmd = 1'h1 (Supported Command)</li> </ul> |
| Register Map: Interface Base Address + 0x20C | 0x0000_4028 | <ul style="list-style-type: none"> <li>[31:16] reserved bits</li> <li>[15:13] flash_addr_width = 3'h2 (24-bit address mode)</li> <li>[12:8] tgt_cs = 5'h0</li> <li>[7:6] reserved bits</li> <li>[5:4] dat_lane_width = 2'h2 (x4 lane)</li> <li>[3:2] addr_lane_width = 2'h2 (x4 lane)</li> <li>[1:0] cmd_lane_width = 2'h0 (x1 lane)</li> </ul>                      |
| Register Map: Interface Base Address + 0x210 | 0x0010_0000 | <ul style="list-style-type: none"> <li>[31:8] flash_address = 24'h000_1000</li> <li>[7:0] unused bits</li> </ul>                                                                                                                                                                                                                                                     |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                    |

### 5.5.4. Generic Flash Write Operation

This section provides examples on how to use the generic command packet of the IP to perform a generic flash write operation. The examples provided use the FIFO disabled configuration. For the FIFO enabled configuration, use the TX FIFO mapping register address instead of the packet header and data register addresses.

Below is an example on how to send a command opcode using generic command packet for the FIFO disabled configuration. To send a Write Enable command with 06h opcode, send all the transactions listed in [Table 5.46](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.46. Programming Flow: Sending a Command, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0001_0062 | <ul style="list-style-type: none"> <li>[31:16] xfer_len_bytes = 16'h1 (1 byte)</li> <li>[15:13] num_wait_sck = 3'h0</li> <li>[12:8] tgt_cs = 5'h0</li> <li>[7] multiple_flash_target = 1'h0</li> <li>[6] frm_end = 1'h1 (end of the transaction)</li> <li>[5] frm_start = 1'h1 (start of the transaction)</li> <li>[4] data_rate = 1'h0 (single data rate)</li> <li>[3:2] lane_width = 2'h0 (x1 lane)</li> <li>[1] cmd_type = 1'h1 (write command)</li> <li>[0] sup_flash_cmd = 1'h0 (generic SPI transaction)</li> </ul> |
| Register Map: Interface Base Address + 0x218 | 0x0600_0000 | Payload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Through generic command packet, a flash operation with dwords to be written to a target flash device is also possible. First, set the write enable bit of the target device by sending the transactions listed in [Table 5.46](#). Then, perform the transactions listed in [Table 5.47](#) to program 256 bytes of data starting from the 24'h00\_FF00 flash address. Since more than two dwords will be used, follow the procedure in the [Polling Mode after a Write Transaction is started for FIFO Disabled Configuration](#) section after starting the transaction.

**Table 5.47. Programming Flow: Sending Command and Data, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0104_0062 | <ul style="list-style-type: none"> <li>[31:16] xfer_len_bytes = 16'h104 (1 byte for opcode, 3-bytes for address and 256-bytes to program on flash, a total of 260-bytes)</li> <li>[15:13] num_wait_sck = 3'h0</li> <li>[12:8] tgt_cs = 5'h0</li> <li>[7] multiple_flash_target = 1'h0</li> <li>[6] frm_end = 1'h1 (end of the transaction)</li> <li>[5] frm_start = 1'h1 (start of the transaction)</li> <li>[4] data_rate = 1'h0 (single data rate)</li> <li>[3:2] lane_width = 2'h0 (x1 lane)</li> <li>[1] cmd_type = 1'h1 (write command)</li> <li>[0] sup_flash_cmd = 1'h0 (generic SPI transaction)</li> </ul> |
| Register Map: Interface Base Address + 0x218 | 0x0200_FF00 | Payload DW1 (opcode and address)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Register Map: Interface Base Address + 0x21C | 0x1234_5678 | Payload DW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Interface Address                                                                                | Write Data  | Description/Comment |
|--------------------------------------------------------------------------------------------------|-------------|---------------------|
| Register Map: Interface Base Address + 0x218                                                     | 0x9ABC_DEF0 | Payload DW3         |
| Register Map: Interface Base Address + 0x220                                                     | 0x0000_0001 | Start Transaction   |
| Register Map: Interface Base Address + 0x218 and<br>Register Map: Interface Base Address + 0x21C | ...         | Payload DWx         |
| Register Map: Interface Base Address + 0x218                                                     | 0xDEAD_BEEF | Payload DW64        |
| Register Map: Interface Base Address + 0x21C                                                     | 0xA5A5_C3C3 | Payload DW65        |

### 5.5.5. Generic Flash Read Operation

This section provides an example on how to use the generic command packet of the IP to perform a generic flash read operation. The example provided uses the FIFO disabled configuration. For the FIFO enabled configuration, use the TX and RX FIFO mapping register addresses accordingly instead of the packet header and data register addresses.

Below is an example on how to read back 256 bytes of data after sending a read opcode 8'h03 starting from the 24'h00\_FF00 flash address. The first transaction is a generic SPI write transaction to send the command opcode and address to the SPI bus while the second transaction is a generic SPI read transaction which reads the return data from the target device. After initiating the generic SPI write transaction, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section. After initiating the generic SPI read transaction, follow the procedure in the [Polling Mode after a Read Transaction is started for FIFO Disabled Configuration](#) section.

**Table 5.48. Programming Flow: Sending Command then Read Data, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0004_0022 | <p>[31:16] xfer_len_bytes = 16'h4 (1 byte for opcode, 3-bytes for address)</p> <p>[15:13] num_wait_sck = 3'h0</p> <p>[12:8] tgt_cs = 5'h0</p> <p>[7] multiple_flash_target = 1'h0</p> <p>[6] frm_end = 1'h0 (not yet the end of the transaction)</p> <p>[5] frm_start = 1'h1 (start of the transaction)</p> <p>[4] data_rate = 1'h0 (single data rate)</p> <p>[3:2] lane_width = 2'h0 (x1 lane)</p> <p>[1] cmd_type = 1'h1 (write transaction)</p> <p>[0] sup_flash_cmd = 1'h0 (generic SPI transaction)</p> |
| Register Map: Interface Base Address + 0x218 | 0x0300_FF00 | Payload DW1 (opcode and address)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>Polling Mode</i>                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Register Map: Interface Base Address + 0x208 | 0x0100_0040 | <p>[31:16] xfer_len_bytes = 16'h100 (256-bytes of read data)</p> <p>[15:13] num_wait_sck = 3'h0</p> <p>[12:8] tgt_cs = 5'h0</p> <p>[7] multiple_flash_target = 1'h0</p> <p>[6] frm_end = 1'h1 (end of the transaction)</p> <p>[5] frm_start = 1'h0 (continuation of previous transaction)</p> <p>[4] data_rate = 1'h0 (single data rate)</p> <p>[3:2] lane_width = 2'h0 (x1 lane)</p> <p>[1] cmd_type = 1'h0 (read transaction)</p> <p>[0] sup_flash_cmd = 1'h0 (generic SPI transaction)</p>                |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### 5.5.6. Non-XiP Access (Direct Write/Read Access) through Flash Memory Map

Below is a sample sequence on how to perform direct write or read within the flash memory map address range on the IP interface. In this example, a Macronix flash, MX25L51245G, is used as the target flash device. This device has a 512-Mbit size, which is equivalent to 64 MB or 65,536 KB.

1. Generate a QSPI protocol IP configuration with the following IP GUI settings:

- Quad SPI supported protocol
- *Enable Flash Address Mapping* selected
- *Minimum Flash Address Alignment (KB)*: 65536 KB
- *Flash Memory Map Size (KB)*: 65536 KB (same as the *Minimum Flash Address Alignment (KB)* since there is only one target flash device)
- *Starting Flash Address (Hex)*: 0x0000\_0000
- *AXI/AHB-L Address Map (Hex)*: 0x0800\_0000
  - Flash size is  $65536 \times 1024 \times 8$  for 512 Mb or  $65536 \times 1024$  for 64 MB.
  - $2 \times 512\text{Mb}$  or  $2 \times 64\text{MB}$  which is equivalent to 0x0800\_0000.
  - The lower 64 MB will be enough for the IP's 1KB register.
  - Offset Address range for the whole flash: 0x0800\_0000 – 0x0BFF\_FFFF.
  - Offset Address 0x0800\_000 maps to flash address 0x0000\_0000 while offset address 0x0BFF\_FFFF maps to flash address 0x03FF\_FFFF.
- *Write Access Command*: Extended Quad Input Fast Program
- *Read Access Command*: Quad Input/Output Fast Read
- *Flash Address Width*: 32
- *Command Lane Width*: x1
- *Address Lane Width*: x4
- *Data Lane Width*: x4
- *Dummy Clock Cycles*: 8

**Note:** Transmit and receive FIFO can be optionally enabled to be used for supported command flash operations.

2. Set the target flash device to a 4-byte address mode. Flash devices may or may not have an equivalent command opcode for this operation. The example below assumes that the target flash device has an equivalent opcode. Some flash devices may have a different set of flash command opcodes for 3-byte and 4-byte address mode. If 4-byte address mode flash command opcode is used, set the opcodes through Flash Command Code 0-7 register addresses (refer to sections [Flash Command Code 0 Register](#) through [Flash Command Code 7 Register](#)).

To perform the “Enter 4-byte Address Mode” operation, send all the transactions listed on [Table 5.49](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.49. Programming Flow: Enter 4-byte Address Mode, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                          |
|----------------------------------------------|-------------|--------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0000_0071 | [31:16] xfer_len_bytes = 16'h0                               |
|                                              |             | [15:8] num_wait_state = 8'h0                                 |
|                                              |             | [7] multiple_flash_target = 1'ho                             |
|                                              |             | [6:2] flash_command_code = 5'h1C (Enter 4-byte Address Mode) |
|                                              |             | [1] with_payload = 1'h0                                      |
|                                              |             | [0] sup_flash_cmd = 1'h1 (Supported Command)                 |
|                                              |             | [31:16] reserved bits                                        |
| Register Map: Interface Base Address + 0x20C | 0x0000_0000 | [15:13] flash_addr_width = 3'h0                              |
|                                              |             | [12:8] tgt_cs = 5'h0                                         |

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                             |
|----------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |             | <ul style="list-style-type: none"> <li>[7:6] reserved bits</li> <li>[5:4] dat_lane_width = 2'h0</li> <li>[3:2] addr_lane_width = 2'h0</li> <li>[1:0] cmd_lane_width = 2'h0 (x1 lane)</li> </ul> |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                               |

3. Set the target device to quad mode. The example below assumes that there is a flash command which is Write Status Register with write data that should be done for this mode. The write data sets the specific bit of the register that enables the quad mode. Other flash devices and depending on the write or read flash command to be used, may have a specific command to enable this mode.

To perform the “Write Status Register” operation, send all the transactions listed in [Table 5.50](#) to the interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.50. Programming Flow: Write Status Register, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |             | <ul style="list-style-type: none"> <li>[31:16] xfer_len_bytes = 16'h1 (1-byte data)</li> <li>[15:8] num_wait_state = 8'h0</li> <li>[7] multiple_flash_target = 1'h0</li> <li>[6:2] flash_command_code = 5'h16 (Write Status/Configuration Register)</li> <li>[1] with_payload = 1'h1</li> <li>[0] sup_flash_cmd = 1'h1 (Supported Command)</li> </ul> |
| Register Map: Interface Base Address + 0x208 | 0x0001_005B |                                                                                                                                                                                                                                                                                                                                                       |
| Register Map: Interface Base Address + 0x20C | 0x0000_0000 | <ul style="list-style-type: none"> <li>[31:16] reserved bits</li> <li>[15:13] flash_addr_width = 3'h0</li> <li>[12:8] tgt_cs = 5'h0</li> <li>[7:6] reserved bits</li> <li>[5:4] dat_lane_width = 2'h0 (x1 lane)</li> <li>[3:2] addr_lane_width = 2'h0</li> <li>[1:0] cmd_lane_width = 2'h0 (x1 lane)</li> </ul>                                       |
| Register Map: Interface Base Address + 0x218 | 0x4000_0000 | Payload DW1                                                                                                                                                                                                                                                                                                                                           |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                                                                                                                                                                                                                                                                                                     |

4. Direct Write Access – 256-byte write using Quad Input/Output Fast Program supported command starting from 32'h0800\_0000 address. [Table 5.51](#) shows single write access to the main interface to perform the program operation.
  - a. If a configuration change is required, set the configuration register 0. Bits [31:16] of this configuration register can be changed before starting direct access to update SPI transaction settings.
  - b. Execute a write access on the main interface bus. For single write transfers, the output ready signal will stay de-asserted until the controller has sent the write data to the SPI bus and the flash is no longer busy. For burst write transfers, the output ready signal will stay de-asserted until the controller has sent the write data to the SPI bus. While the direct access is being performed on the main interface of the IP, AHB-L or AXI4, [Polling Mode for Transaction Status](#) can be performed on the AXI4L interface. Since it will take some time for the direct write access on the main interface to be processed and started by the IP, consider a minimum delay of ten SCLK cycles before starting the polling mode. This polling mode will consider the program time of the target device after the write data are transmitted on SPI bus to ensure that the flash device is already on idle state before requesting a new flash transaction.

**Table 5.51. Programming Flow: Direct Write Access, Big Endian**

| Interface Address         | Write Data  | Description/Comment |
|---------------------------|-------------|---------------------|
| Register Map: 0x0800_0000 | 0x1234_5678 | DW1                 |
| Register Map: 0x0800_0004 | 0x9ABC_DEF0 | DW2                 |
| ...                       | ...         | ...                 |
| Register Map: 0x0800_00F8 | 0xDEAD_BEEF | DW63                |
| Register Map: 0x0800_00FC | 0xA5A5_C3C3 | DW64                |

5. Direct Read Access – 256-byte read using Quad Input/Output Fast Read supported command starting from 32'h0800\_0000 address.
  - a. If a configuration changed is required, set the configuration register 0. Bits [31:16] of this configuration register can be changed before starting direct access to update the SPI transaction settings.
  - b. Execute a read access on the main interface bus. The interface output valid signal will assert whenever a 4-byte read data is available. While the direct access is being performed on the main interface of the IP, AHB-L or AXI4, [Polling Mode for Transaction Status](#) can be performed on the AXI4L interface. Since it will take some time for the direct read access on the main interface to be processed and started by the IP, consider a minimum delay of ten SCLK cycles before starting the polling mode. This polling mode will check the transaction status of the IP before requesting a new flash transaction.
6. For non-XIP and register-based transactions performed with either the AHB-L or AXI4 main interface and AXI4-L interface, respectively, transactions on one interface should be ensured done before requesting a new transaction to the other interface. For burst write transaction, after the transactions are done on the bus, consider the program time of the target device before issuing a new transaction to the SPI target.

### 5.5.7. XiP Access (Direct Read Access) through Flash Memory Map

The performance enhancement mode of the flash device is supported. Check the XiP activation/deactivation sequence of the target flash device and perform activation/deactivation using the generic SPI command packet to start and end the XiP-enabled transactions of the IP.

Below is a sample sequence on how to perform XiP access on a Macronix flash device, MX25L51245G, together with this IP. This flash device has a 512-Mbit size, which is equivalent to 64 MB or 65,536 KB. XiP activation of this flash device is performed in step 5 of this sample sequence.

1. Generate an IP configuration similar to as described in step 1 of the [Non-XiP Access \(Direct Write/Read Access\) through Flash Memory Map](#) section.
2. Enable the 4-byte address mode of the flash through the IP's supported command sequence. Refer to step 2 of the [Non-XiP Access \(Direct Write/Read Access\) through Flash Memory Map](#) section.
3. Set the Quad Enable (QE) bit of the status register to 1. Refer to step 3 of the [Non-XiP Access \(Direct Write/Read Access\) through Flash Memory Map](#) section.
4. Enable Quad I/O mode of the flash through the IP's supported command sequence. Refer to [Table 5.37](#) for the packet frame values. Instead of sending to the TX FIFO mapping address, send the packet frame values to packet header 0 and 1 registers accordingly.
5. Initiate a read transaction using Quad Input/Output Fast Read operation, 8'hEB opcode, along with the performance enhancement indicator to enable the XiP mode of the Macronix flash for succeeding reads.

To send the command opcode, send all the transactions listed in [Table 5.52](#) to the AXI4L interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.52. Programming Flow: 1-Byte Quad Input/Output Fast Read, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                 |
|----------------------------------------------|-------------|-----------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0001_002A | [31:16] xfer_len_bytes = 16'h1 (1 byte)             |
|                                              |             | [15:13] num_wait_sck = 3'h0                         |
|                                              |             | [12:8] tgt_cs = 5'h0                                |
|                                              |             | [7] multiple_flash_target = 1'h0                    |
|                                              |             | [6] frm_end = 1'h0 (not yet end of the transaction) |
|                                              |             | [5] frm_start = 1'h1 (start of the transaction)     |
|                                              |             | [4] data_rate = 1'h0 (single data rate)             |
|                                              |             | [3:2] lane_width = 2'h2 (x2 lane)                   |
|                                              |             | [1] cmd_type = 1'h1 (write command)                 |
|                                              |             | [0] sup_flash_cmd = 1'h0 (generic SPI transaction)  |
| Register Map: Interface Base Address + 0x218 | 0xEB00_0000 | Payload (Flash command opcode)                      |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                   |

To send the 4-byte address, send all the transactions listed in [Table 5.53](#) to the AXI4L interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.53. Programming Flow: 4-Byte Address, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                |
|----------------------------------------------|-------------|--------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0004_000A | [31:16] xfer_len_bytes = 16'h4 (4-byte address)                    |
|                                              |             | [15:13] num_wait_sck = 3'h0                                        |
|                                              |             | [12:8] tgt_cs = 5'h0                                               |
|                                              |             | [7] multiple_flash_target = 1'h0                                   |
|                                              |             | [6] frm_end = 1'h0 (not yet end of the transaction)                |
|                                              |             | [5] frm_start = 1'h0 (continuation of previous transaction)        |
|                                              |             | [4] data_rate = 1'h0 (single data rate)                            |
|                                              |             | [3:2] lane_width = 2'h2 (x4 lane)                                  |
|                                              |             | [1] cmd_type = 1'h1 (write command)                                |
|                                              |             | [0] sup_flash_cmd = 1'h0 (generic SPI transaction)                 |
| Register Map: Interface Base Address + 0x218 | 0x0000_0000 | Payload (Flash address equivalent to starting flash address value) |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                  |

To send the XiP pattern and dummy, send all the transactions listed in [Table 5.54](#) to the AXI4L interface. Then, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

**Table 5.54. Programming Flow: XiP Pattern and Dummy, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                                |
|----------------------------------------------|-------------|--------------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0001_800A | [31:16] xfer_len_bytes = 16'h1 (1-byte XiP pattern)                |
|                                              |             | [15:13] num_wait_sck = 3'h4 (4 dummy clock cycles for EBh command) |
|                                              |             | [12:8] tgt_cs = 5'h0                                               |
|                                              |             | [7] multiple_flash_target = 1'h0                                   |
|                                              |             | [6] frm_end = 1'h0 (not yet end of the transaction)                |
|                                              |             | [5] frm_start = 1'h0 (continuation of previous transaction)        |
|                                              |             | [4] data_rate = 1'h0 (single data rate)                            |
|                                              |             | [3:2] lane_width = 2'h2 (x4 lane)                                  |
|                                              |             | [1] cmd_type = 1'h1 (write command)                                |
|                                              |             | [0] sup_flash_cmd = 1'h0 (generic SPI transaction)                 |
| Register Map: Interface Base Address + 0x218 | 0xA500_0000 | Payload (XiP pattern of the target device)                         |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                                  |

To start the XiP read access, send all the transactions listed in [Table 5.55](#) to the AXI4L interface. Then, perform the polling mode as described in the [Polling Mode after a Read Transaction is started for FIFO Disabled Configuration](#) section.

**Table 5.55. Programming Flow: Read 4-bytes Data, FIFO Disabled, Big Endian**

| Interface Address                            | Write Data  | Description/Comment                                         |
|----------------------------------------------|-------------|-------------------------------------------------------------|
| Register Map: Interface Base Address + 0x208 | 0x0004_0048 | [31:16] xfer_len_bytes = 16'h4 (4-byte read data)           |
|                                              |             | [15:13] num_wait_sck = 3'h0                                 |
|                                              |             | [12:8] tgt_cs = 5'h0                                        |
|                                              |             | [7] multiple_flash_target = 1'h0                            |
|                                              |             | [6] frm_end = 1'h1 (end of the transaction)                 |
|                                              |             | [5] frm_start = 1'h0 (continuation of previous transaction) |
|                                              |             | [4] data_rate = 1'h0 (single data rate)                     |
|                                              |             | [3:2] lane_width = 2'h2 (x4 lane)                           |
|                                              |             | [1] cmd_type = 1'h0 (read command)                          |
|                                              |             | [0] sup_flash_cmd = 1'h0 (generic SPI transaction)          |
| Register Map: Interface Base Address + 0x220 | 0x0000_0001 | Start Transaction                                           |

6. If a configuration change is required, set the configuration register 0. Bit [31:16] of this configuration register can be changed before starting direct access to update SPI transaction settings.
7. Set the xip\_enable bit of the Start Transaction Register 0x0000\_0220 to 1. This indicates that the next read access will be in XiP mode.
8. Execute a read access on the main interface bus to read a 256-byte data starting from the 0x0800\_0000 flash address map. The interface output valid signal asserts whenever a 4-byte read data is available. While the direct access is being performed on the main interface of the IP, AHB-L or AXI4, [Polling Mode for Transaction Status](#) can be performed on the AXI4L interface. Since it will take some time for the direct read access on the main interface to be processed and started by the IP, consider a minimum delay of ten SCLK cycles before starting the polling mode. This polling mode will check the transaction status of the IP before requesting a new flash transaction. During the polling mode, the xip\_enable bit of the Start Transaction Register 0x0000\_0220 should stay at value 1.
9. XiP access can continue until deactivation of the XiP mode of the flash device is executed. To deactivate the XiP of the Macronix device used, send all the transactions in [Table 5.52](#), [Table 5.53](#), [Table 5.54](#), and [Table 5.55](#). In [Table 5.54](#), set the packet data 0 to 32'h0000\_0000 to exit the XiP mode of the flash. 8'h00 is the performance enhancement mode deactivation pattern used in this example.
10. Set the xip\_enable bit of the Start Transaction Register 0x0000\_0220 to 0. This indicates that the next read access will be on non-XiP mode.

## 5.5.8. Polling Mode

This section describes the different polling modes to track a flash operation, write to packet data registers, and read from packet data registers.

### 5.5.8.1. Polling Mode for Transaction Status

After any transaction is initiated, the following are the steps to check and end the transaction:

1. Poll the trans\_stat bit of the transaction status register described in the [Transaction Status Register](#) section to determine if the transaction has started.
2. Continue polling until an idle state is reached.
3. Once idle, write 0 to the start\_trans bit of the start transaction register described in the [Start Transaction Register](#) section.

### 5.5.8.2. Polling Mode after a Write Transaction is started for FIFO Disabled Configuration

After setting the packet header and data registers and transaction is started, the following are the steps to continue an operation with payload greater than 2 dwords:

1. Perform a read on the transaction status register described in the [Transaction Status Register](#) section to check if the transaction has started.
2. For xfer\_len\_bytes greater than 8 (2 dwords), once the transaction has started, poll the interrupt status register bits [1:0] for wr\_pkt\_data\_1\_empty\_int and wr\_pkt\_data\_0\_empty\_int. Once a bit is read as high, clear the interrupt status bit, then write the new dword.
3. Continue performing step 2 until all xfer\_len\_bytes of data are written to the packet data register.
4. To check and end the transaction, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

### 5.5.8.3. Polling Mode after a Read Transaction is started for FIFO Disabled Configuration

After setting the packet header and data registers and transaction is started, the following are the steps to continue a read operation:

1. Perform a read on the transaction status register to check if the transaction has started.
2. Once the read transaction has started, poll the interrupt status register bit [4] for rd\_pkt\_data\_0\_not\_empty\_int. Once the bit is read as high, clear the interrupt status bit, then perform a read on the packet data 0 register address.
3. Continue performing step 2 until all xfer\_len\_bytes of data are read back via the packet data 0 register.
4. To check and end the transaction, perform the polling mode as described in the [Polling Mode for Transaction Status](#) section.

### 5.5.8.4. Polling Mode after a Write Transaction is started for FIFO Enabled Configuration

Perform the steps in the [Polling Mode for Transaction Status](#) section to poll the status of the started write transaction and conclude this operation.

### 5.5.8.5. Polling Mode after a Read Transaction is started for FIFO Enabled Configuration

After setting the packet header and data value format in the RX FIFO Mapping registers and transaction is started, the following are the steps to continue a read operation:

1. Perform a read on the transaction status register to check if the transaction has already started.
2. Continue polling the transaction status register until an idle state is read.
3. Read the return data from flash through continuous reading of the RX FIFO Mapping register address until all target xfer\_len\_bytes of data are read.

**Note:** If reading the return data from flash is preferred while the flash read operation is on-going, poll the interrupt status register bit [4] for rx\_fifo\_empty\_int to flag an available dword on the RX FIFO, then perform the read.

## 6. Example Design

A system design with the QSPI Flash Controller IP can be developed to test this peripheral IP with a RISC-V processor.

The QSPI Flash Controller example design allows you to compile, simulate, and test the QSPI Flash Controller IP on the following Lattice evaluation board:

- CertusPro-NX Evaluation Board

### 6.1. Example Design Supported Configuration

The following IP configuration was used during IP generation in the Propel project but some IP attributes with equivalent registers were also changed in the C code test sequence during validation.

**Note:** In the table below, ✓ refers to a checked option in the QSPI Flash Controller IP example design and ✗ refers to an unchecked option or a non-applicable option in the QSPI Flash Controller IP.

**Table 6.1. QSPI Flash Controller IP Configuration Used on Example Design**

| QSPI Flash Controller IP GUI Parameter             | QSPI Flash Controller IP configuration |
|----------------------------------------------------|----------------------------------------|
| <b>Interface Settings</b>                          |                                        |
| Main Interface                                     | AHB-L                                  |
| Enable AXI4-L Interface (for register access only) | ✓                                      |
| Interface Data Width                               | 32                                     |
| AXI4 ID Width                                      | ✗                                      |
| Data Endianness                                    | Big Endian                             |
| <b>IO Primitive</b>                                |                                        |
| Enable IO Buffer                                   | ✓                                      |
| <b>SPI Configuration and Transfer Settings</b>     |                                        |
| Supported Protocol                                 | Quad                                   |
| Number of SPI Target                               | 1                                      |
| Clock Mode                                         | 3                                      |
| First Transmitted Bit                              | MSB                                    |
| Chip Select High Time (ns)                         | 100                                    |
| <b>Clock Frequency Settings</b>                    |                                        |
| System Clock Frequency (MHz)                       | 125                                    |
| Internal Clock Frequency (MHz)                     | 125                                    |
| SPI Clock Frequency Divider                        | 2                                      |
| SPI Clock Frequency (MHz)                          | 62.5                                   |
| <b>Transmit FIFO Configuration</b>                 |                                        |
| Enable Transmit FIFO                               | ✗                                      |
| <b>Receive FIFO Configuration</b>                  |                                        |
| Enable Receive FIFO                                | ✗                                      |
| <b>Flash Address Mapping</b>                       |                                        |
| Enable Flash Address Mapping                       | ✓                                      |
| Register Space Size (KB)                           | 1                                      |
| Register Map Base Address (Hex)                    | 00000000                               |
| Minimum Flash Address Alignment (KB)               | 4                                      |
| Starting Flash Address (Hex)                       | 00000000                               |
| Flash Memory Map Size (4KB-2GB)                    | 4                                      |
| AXI/AHB-L Address Map (Hex)                        | 10003000 <sup>1</sup>                  |
| Write Access Command                               | Page Program                           |
| Read Access Command                                | Fast Read                              |
| Flash Address Width                                | 24                                     |

| QSPI Flash Controller IP GUI Parameter | QSPI Flash Controller IP configuration |
|----------------------------------------|----------------------------------------|
| Command Lane Width                     | x1                                     |
| Address Lane Width                     | x1                                     |
| Data Lane Width                        | x1                                     |
| Dummy clock cycles                     | 8                                      |
| eXecute-in-Place (XiP) Pattern         | 8'hA5                                  |
| Supported Flash Commands               |                                        |
| Supported Flash Commands               | Opcode default values                  |

### Note:

1. This IP attribute value must be the same as the main interface base address of the design's Address Space when using Propel.

## 6.2. Overview of the Example Design and Features

The example design discussed in this section is created using a RISC-V RX SoC Project template in the [Lattice Propel Development Suite](#). The generated project includes the following components:

- Processor – RISC-V RX with tightly-coupled memory modules (TCMs), platform level interrupt controller (PLIC), core local interrupter (CLINT), and watchdog
- AXI4 system buses
- GPIO
- UART – Serial port
- Oscillator and PLL
- Glue logic
- System memory

[Figure 6.1](#) shows how the QSPI Flash Controller IP is instantiated on the template. The AXI4-L interface is connected directly to the AXI4 system bus while the AHB-L interface is connected to the AXI4 system bus through a AXI4 to AHB-L bridge. The SPI interface ports are ported out as top-level ports. The input clock and reset are connected to the PLL output clock and system reset, respectively.

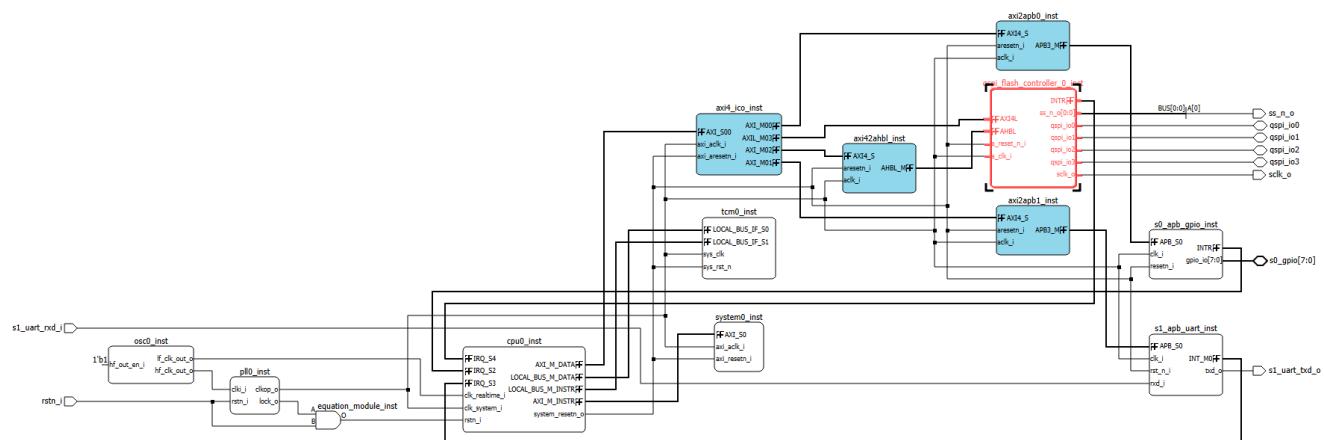



Figure 6.1. OSPI Flash Controller IP Example Design in SoC Project

## 6.3. Example Design Components

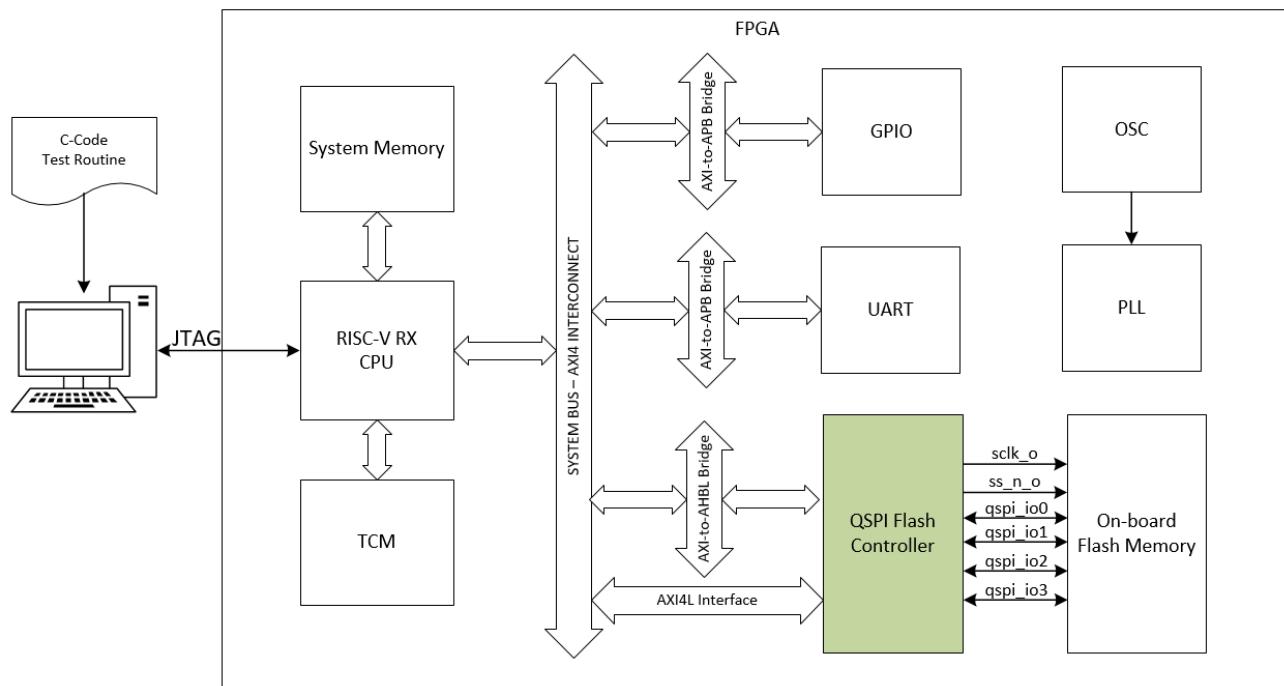



Figure 6.2. QSPI Flash Controller Example Design Block Diagram

The QSPI Flash Controller IP example design includes the following blocks:

- RISC-V RX CPU – Processes data and instructions.
- System memory and TCM – Stores the commands to be used for testing.
- Oscillator and PLL – Clock generator
- System bus – Manages transfers from the processor and memory to the connected IP modules.
- Interface bridge – Translates AXI4 to APB transactions for GPIO and UART; translates AXI4 to AHB-L transactions for QSPI Flash Controller.
- GPIO and UART – Serve as debug modules. UART can be used to display debug messages while GPIO output can be used to indicate successful load of bitstream on the FPGA board.
- QSPI Flash Controller IP – Instance of the IP connected to the flash device available on the FPGA board.
- Flash memory – SPI target. This is not an instance of any submodule. The IP's SPI interface ports connect to the on-board flash device through the physical design constraint (PDC) file.

## 6.4. Generating the Example Design

The Lattice Propel Builder and Propel SDK can be used to create an embedded system which consists of a system-on-chip (SoC) design with an embedded processor and system software. The following is a procedure for generating an example design for the QSPI Flash Controller IP. A workspace is generated on Propel SDK. The SoC project is then created in Propel Builder. For complete step-by-step instructions, refer to [A Step-By-Step Approach to Lattice Propel \(FPGA-AN-02052\)](#) or the [Lattice Propel Builder User Guide \(FPGA-UG-02212\)](#) and [Lattice Propel SDK User Guide \(FPGA-UG-02211\)](#).

To create an SoC project:

1. Launch Propel SDK. The **Lattice Propel Launcher** opens as shown on [Figure 6.3](#). Browse to a directory for the **Workspace** field and click **Launch**.

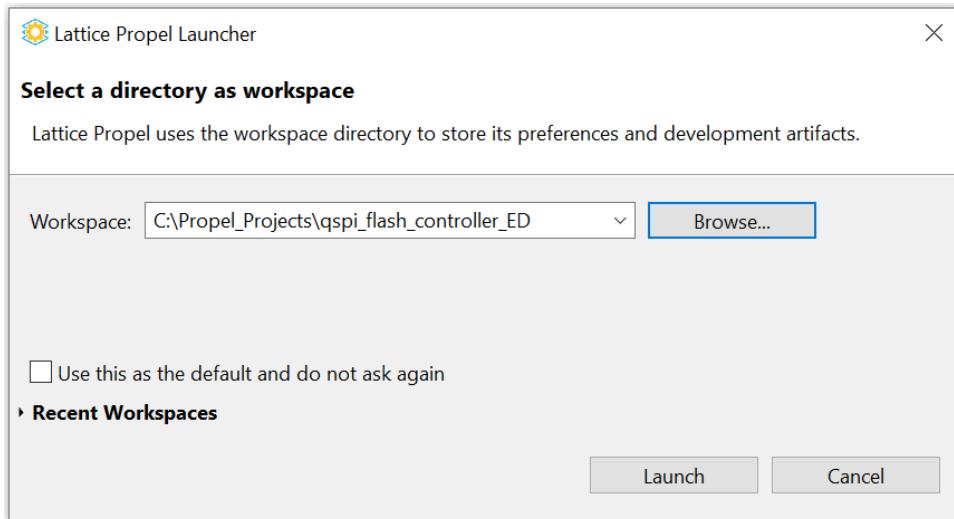
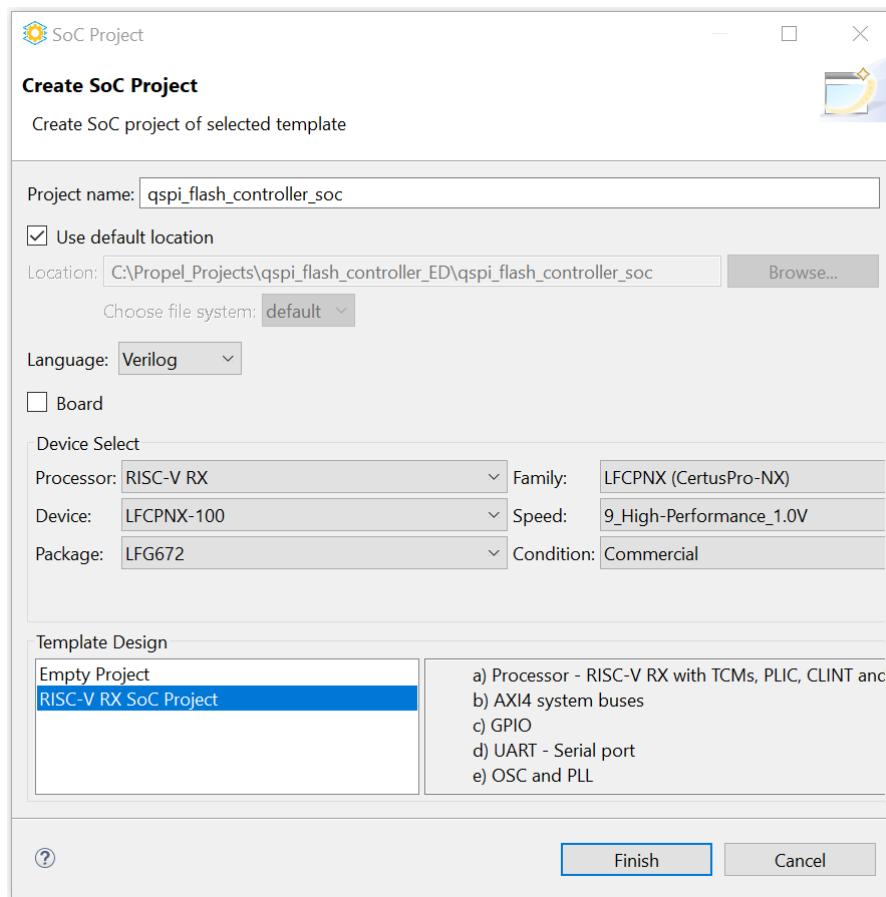
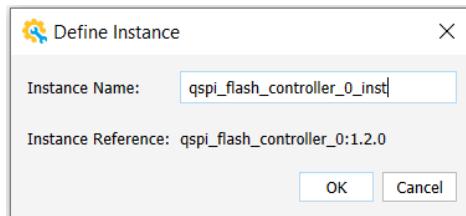
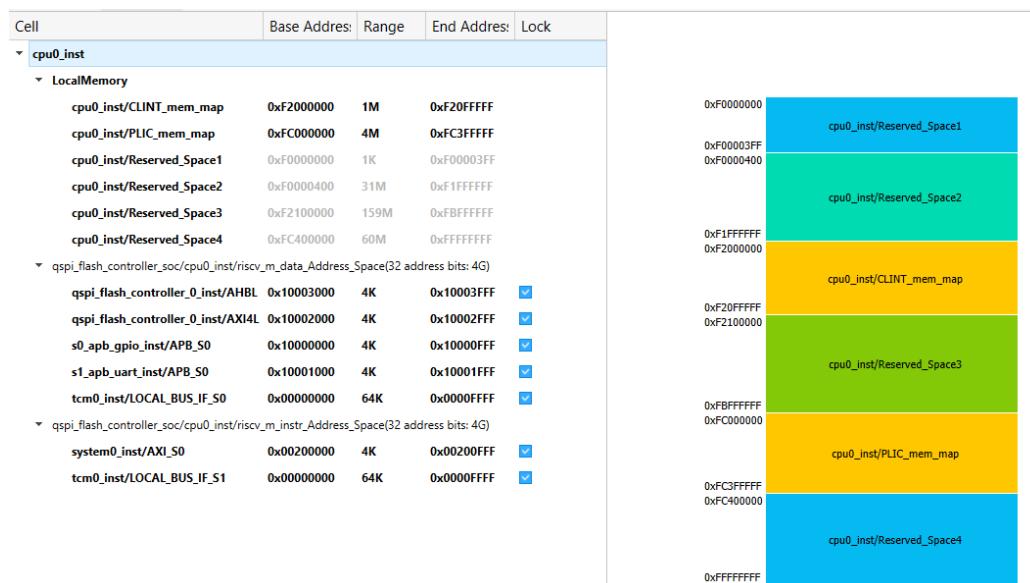



Figure 6.3. Lattice Propel Launcher

2. Create a new SoC design project by selecting **File > New > Lattice SoC Design Project**. The **Create SoC Project** window opens as shown on [Figure 6.4](#). Enter a name for the SoC project in the **Project name** field. Customize the options under **Device Select** using drop-down menus or configure it through the **Board** option. Then, select the **Template Design**. For this example design, RISC-V RX processor, LFCPNX-100-9LFG672C board, and RISC-V RX SoC Project are used. Then, click **Finish**.



Figure 6.4. Create SoC Project

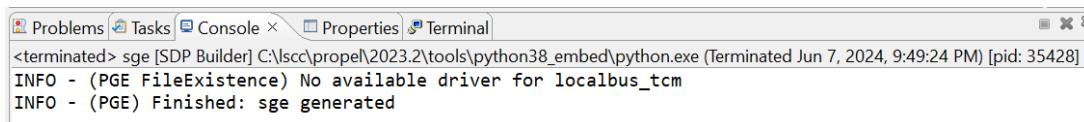
3. Select the generated project. Then, run Propel Builder by clicking the  icon or select **LatticeTools > Open Design in Propel Builder**. The **Propel Builder** opens and loads the design template.
4. In the IP Catalog tab, instantiate the QSPI Flash Controller IP by generating the IP configuration as shown in [Table 6.1](#).
5. After generating the IP, the **Define Instance** window opens as shown in [Figure 6.5](#). Modify the instance name if needed. Then, click **OK**.



**Figure 6.5. Define Instance**

6. Connect the instantiated IP to the system (refer to [Figure 6.1](#)). Modify the system component settings from default as follows:
  - Oscillator HCLK frequency to 50 MHz.
  - PLL input clock and CLKOP frequency to 50 MHz and 125 MHz, respectively.
  - RISC-V RX CPU Number of User Interrupt Requests to 3.
  - Update the AXI4 interconnect and AXI4 to APB bridge instances. In case an error message is flagged during regeneration, select the instances, then delete and replace these instances with the latest IP versions available on the IP server.
  - AXI4 interconnect with four external subordinates composed of three AXI4 subordinates and one AXI4-L subordinate.
  - Add AXI4 to AHB-L bridge. From the AXI4 interconnect, use this bridge to connect to the QSPI Flash Controller IP AHB-L interface.
  - UART system clock frequency to 125 MHz.
7. View the project's memory space by selecting the **Address** tab as shown in [Figure 6.6](#). Enable the **Lock** of address space settings so that addresses cannot be manually or automatically updated. Click the  icon to perform DRC. Save the SoC project.

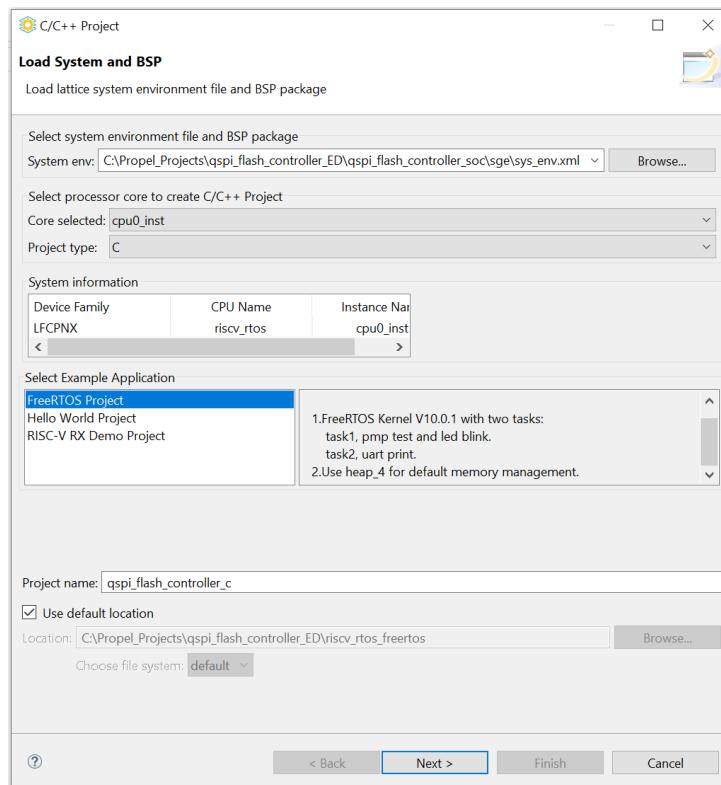



**Figure 6.6. Address Tab**

To create a Radiant project:

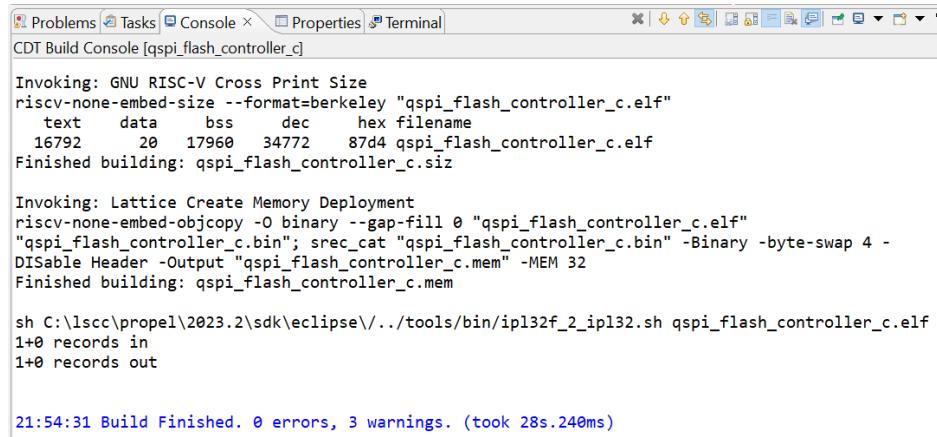
1. Click the  icon or select **Design > Run Radiant** to launch the Lattice Radiant Software.
2. Create the IP constraint file. On the pdc file, connect the IP's SPI ports to the on-board flash pins. Set sysCONFIG MASTER\_SPI\_PORT to DISABLE to use the on-board flash as the target device.
3. Generate the programming file.

To create a C/C++ project:


1. In the Lattice Propel software, build your SoC project to generate the system environment needed for the embedded C/C++ project by selecting the generated SoC project followed by **Project > Build Project**.
2. Check the build result from the **Console** view as shown in [Figure 6.7](#).



```
<terminated> sge [SDP Builder] C:\lsc\propel\2023.2\tools\python38_embed\python.exe (Terminated Jun 7, 2024, 9:49:24 PM) [pid: 35428]
INFO - (PGE_FileExistence) No available driver for localbus_tcm
INFO - (PGE) Finished: sge generated
```


**Figure 6.7. Build SoC Project Result**

3. Generate a new Lattice C/C++ project by selecting **File > New > Lattice C/C++ Project**. The **C/C++ Project Load System and BSP** window opens as shown in [Figure 6.8](#). Update the **Project name** field. Then, click **Next** followed by **Finish**. For this example design, the FreeRTOS Project template is used.



**Figure 6.8. C/C++ Project Load System and BSP**

4. Build the project by selecting the C/C++ project followed by **Project > Build Project**.
5. Check the build result from **Console** view as shown in [Figure 6.9](#).



```

Problems Tasks Console Properties Terminal
CDT Build Console [qspi_flash_controller_c]

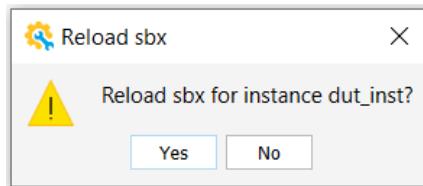
Invoking: GNU RISC-V Cross Print Size
riscv-none-embed-size --format=berkeley "qspi_flash_controller_c.elf"
  text  data  bss  dec  hex filename
  16792    20  17960  34772  87d4 qspi_flash_controller_c.elf
Finished building: qspi_flash_controller_c.size

Invoking: Lattice Create Memory Deployment
riscv-none-embed-objcopy -O binary --gap-fill 0 "qspi_flash_controller_c.elf"
"qspi_flash_controller_c.bin"; srec_cat "qspi_flash_controller_c.bin" -Binary -byte-swap 4 -
DISable Header -Output "qspi_flash_controller_c.mem" -MEM 32
Finished building: qspi_flash_controller_c.mem

sh C:\lscc\propel\2023.2\ sdk\ eclipse\..\ tools\bin\ipl32f_2_ipl32.sh qspi_flash_controller_c.elf
1+0 records in
1+0 records out

21:54:31 Build Finished. 0 errors, 3 warnings. (took 28s.240ms)

```


**Figure 6.9. Build C/C++ Project Result**

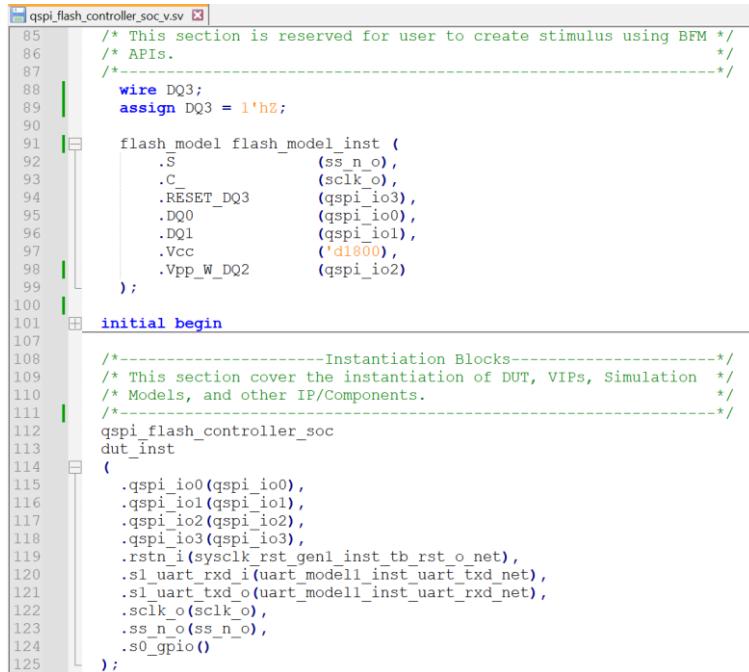
6. This environment is now ready for running on the FPGA board. Refer to the On-Chip Debugging section under [Propel SDK Flow in A Step-By-Step Approach to Lattice Propel \(FPGA-AN-02052\)](#) for details on how to run the design on the FPGA board.

## 6.5. Simulating the Example Design

The Lattice Propel Builder software also has a verification project mode which can be used to generate a simulation environment. The following is a procedure for generating a verification project for the QSPI Flash Controller IP:

1. From the SoC Project, perform the pre-simulation requirements enumerated in the Verification Project Flow section in [A Step-By-Step Approach to Lattice Propel \(FPGA-AN-02052\)](#).
2. Click  to switch to verification project.
3. Reload dut\_inst by double clicking on it. The **Reload sbx** window opens as shown in [Figure 6.10](#).




**Figure 6.10. Reload sbx**

4. Click **Yes**. The verification project schematic is generated as shown in [Figure 6.11](#).

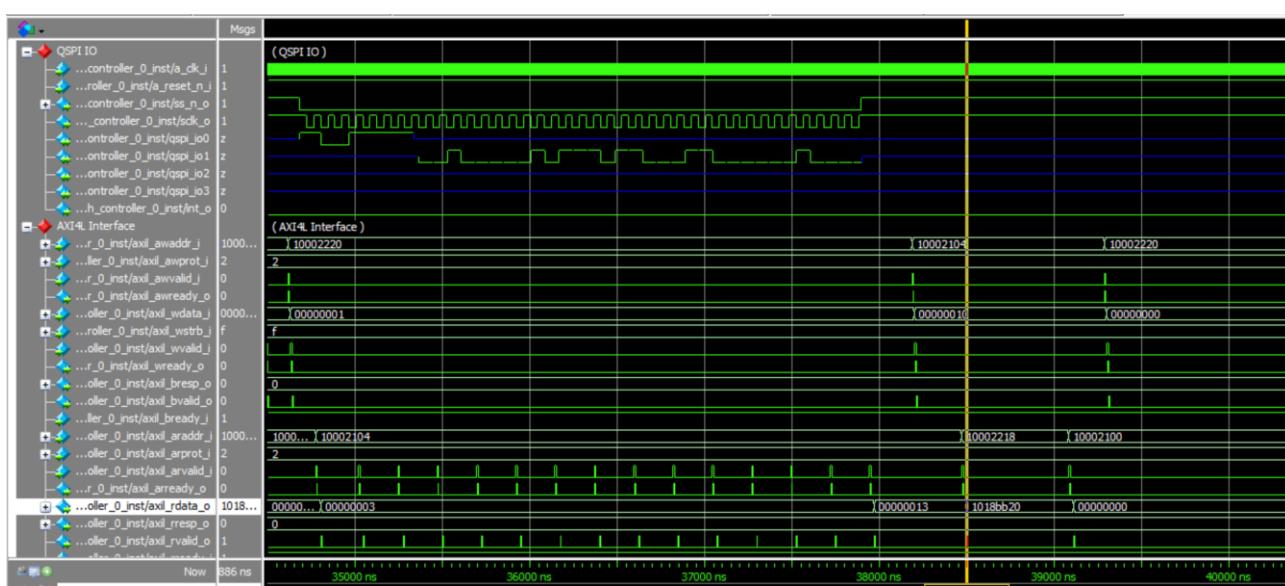


**Figure 6.11. Verification Project Schematic**

- Click the **Generate**  icon to generate the simulation environment. The testbench file including scripts for the chosen simulator, file lists, and other files are generated in the verification folder of the SoC project.
- To see the full IP simulation behavior for this example design, connect a flash simulation model to the IP instance in the generated testbench file as shown in [Figure 6.12](#) and add the flash simulation model in the generated file list.



```


85  /* This section is reserved for user to create stimulus using BFM */
86  /* APIs.
87  */
88  wire DQ3;
89  assign DQ3 = 1'hZ;
90
91  flash_model flash_model_inst (
92    .S      (ss_n_o),
93    .C      (sclk_o),
94    .RESET_DQ3 (qspi_io3),
95    .DQ0    (qspi_io0),
96    .DQ1    (qspi_io1),
97    .Vcc    ('d1800),
98    .Vpp_W_DQ2 (qspi_io2)
99  );
100
101 initial begin
102
103  /*-----Instantiation Blocks-----*/
104  /* This section cover the instantiation of DUT, VIPs, Simulation */
105  /* Models, and other IP/Components.
106  */
107  /*-----*/
108  qspi_flash_controller_soc
109  dut_inst
110  (
111    .qspi_io0(qspi_io0),
112    .qspi_io1(qspi_io1),
113    .qspi_io2(qspi_io2),
114    .qspi_io3(qspi_io3),
115    .rstn_i(sysclk_rst_gen1_inst_tb_rst_o_net),
116    .s1_uart_rxn_i(uart_modell_inst_uart_txd_net),
117    .s1_uart_txn_o(uart_modell_inst_uart_rxd_net),
118    .sclk_o(sclk_o),
119    .ss_n_o(ss_n_o),
120    .so_gpio()
121  );
122
123
124
125

```

**Figure 6.12. Edited Testbench File**

- Click the **Launch Simulation**  icon to run the simulation.

**Note:** The simulation waveform shown in [Figure 6.13](#) is a result where the generated main.c file in the C/C++ project is updated to perform an IP's operation.



**Figure 6.13. Simulation Waveform**

## 6.6. Hardware Testing

The generated bitstream file from the procedure in the [Generating the Example Design](#) section was downloaded to the Certus-Pro NX Evaluation Board via the Radiant programmer. The Reveal inserter/analyizer was added to the Radiant project to check the output behavior of the IP.

## 7. Designing with the IP

This section provides information on how to generate the IP using the Lattice Radiant software and how to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software User Guide.

### 7.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device's architecture. The steps below describe how to generate the QSPI Flash Controller IP in the Lattice Radiant software.

To generate the QSPI Flash Controller IP:

1. Create a new Lattice Radiant software project or open an existing project.
2. In the **IP Catalog** tab, double-click **QSPI Flash Controller** under **IP, Processors\_Controllers\_and\_Peripherals** category. The **Module/IP Block Wizard** opens as shown in Figure 7.1. Enter values in the **Component name** and the **Create in** fields and click **Next**.

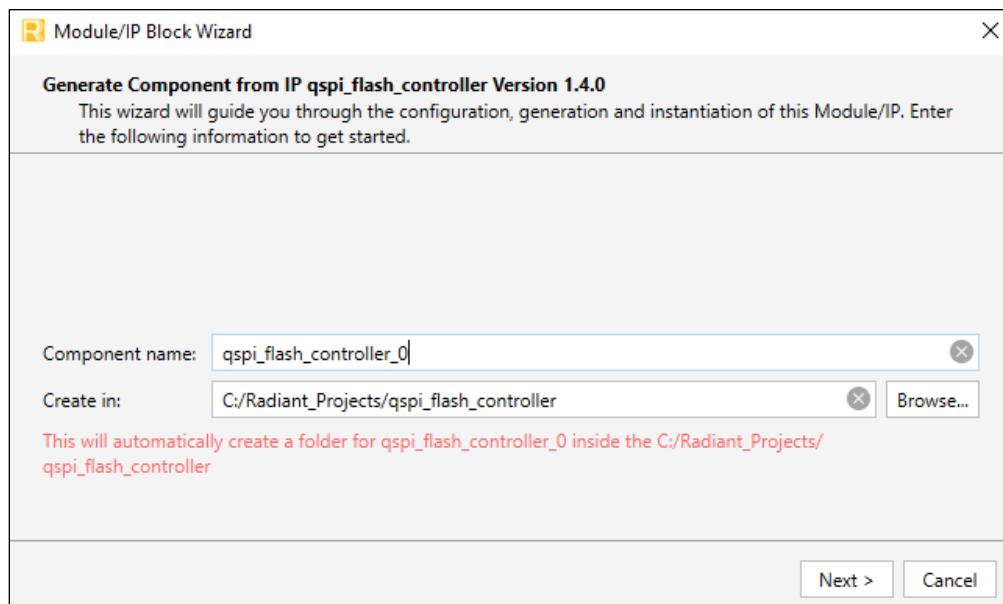



Figure 7.1. Module/IP Block Wizard

3. In the next **Module/IP Block Wizard** window, customize the selected QSPI Flash Controller IP using drop-down lists and check boxes. [Figure 7.2](#) and [Figure 7.3](#) show an example configuration of the QSPI Flash Controller IP. For details on the configuration options, refer to the [IP Parameter Description](#) section.

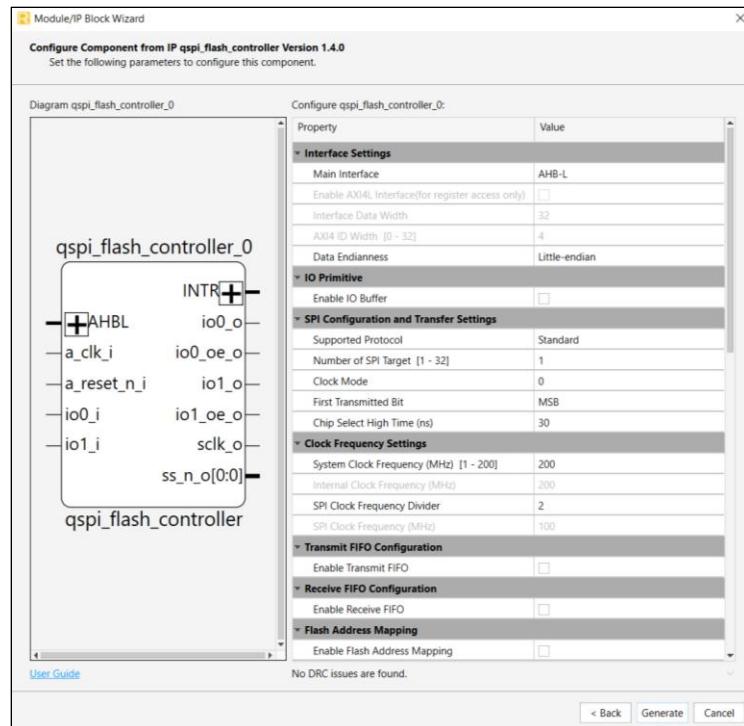



Figure 7.2. IP Configuration – View 1

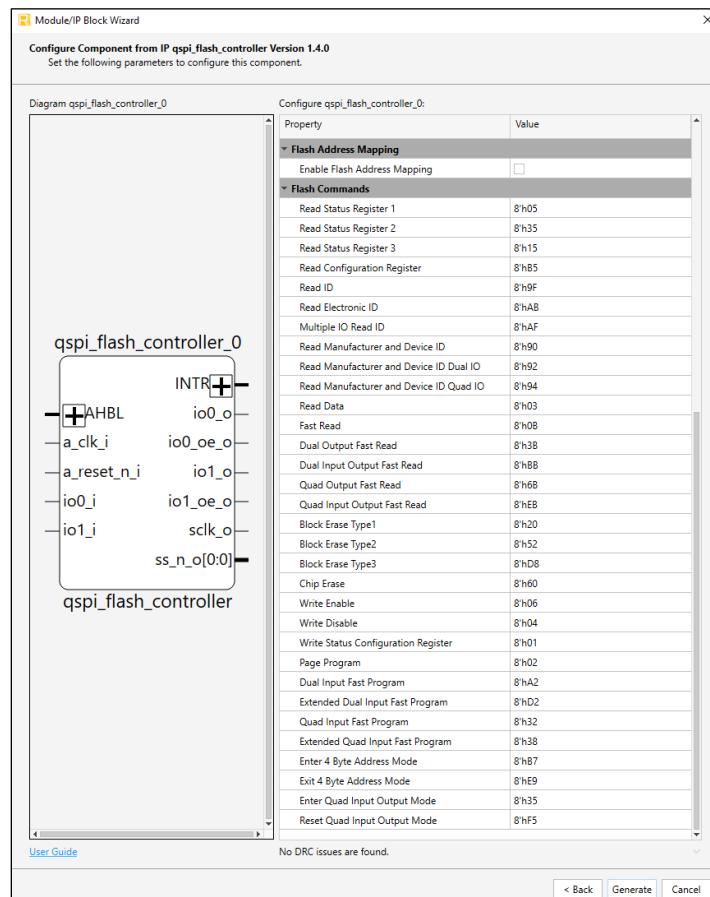
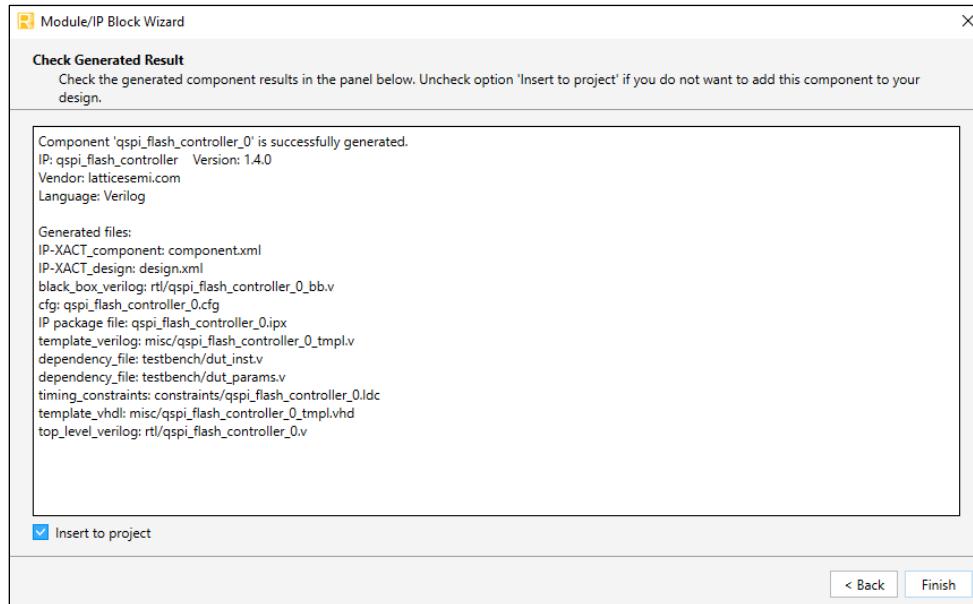




Figure 7.3. IP Configuration – View 2

4. Click **Generate**. The **Check Generating Result** dialog box opens, showing design block messages and results as shown in [Figure 7.4](#).



**Figure 7.4. Check Generating Results**

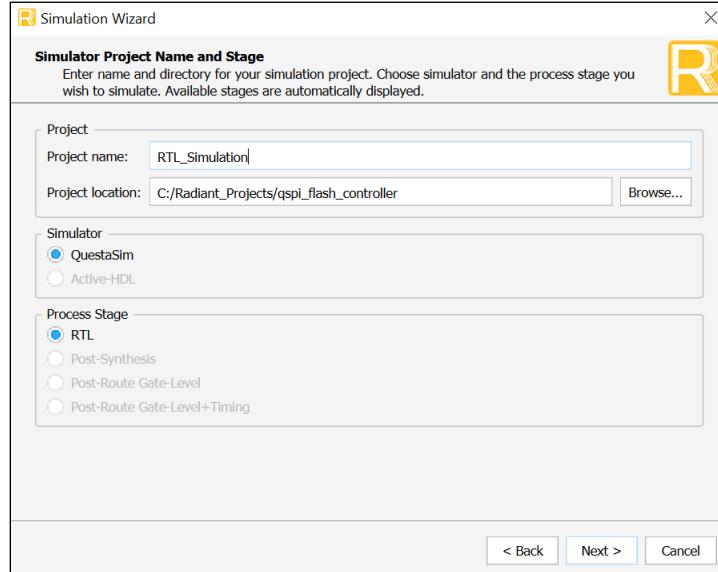
5. Click **Finish**. All the generated files are placed under the directory paths in the **Create in** and the **Component name** fields shown in [Figure 7.1](#).

### 7.1.1. Generated Files and File Structure

The generated QSPI Flash Controller module package includes the closed-box (<Component name>\_bb.v) and instance templates (<Component name>\_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file (<Component name>.v) that can be used as an instantiation template for the module is also provided. You may also use this example as the starting template for your top-level design. The generated files are listed in [Table 7.1](#).

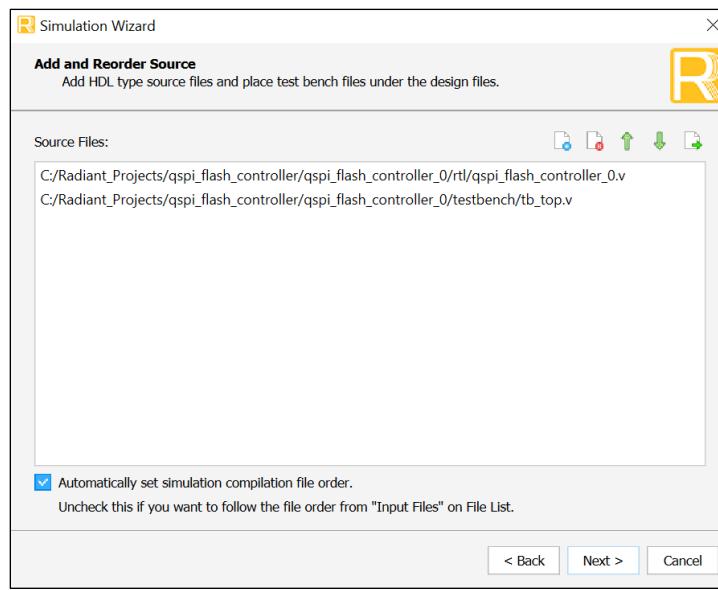
**Table 7.1. Generated File List**

| Attribute                        | Description                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| constraints/<Component name>.lrc | IP constraint file.                                                                                               |
| driver/qspi_flash_ctrl.c         | This file is the driver source file for the IP written in C.                                                      |
| driver/qspi_flash_ctrl.h         | This file contains the header information for the IP driver.                                                      |
| misc/<Component name>_tmpl.v     | These files provide instance templates for the module.                                                            |
| misc /<Component name>_tmpl.vhd  |                                                                                                                   |
| rtl/<Component name>.v           | This file provides an example RTL top file that instantiates the module.                                          |
| rtl/<Component name>_bb.v        | This file provides the synthesis closed-box.                                                                      |
| testbench/dut_inst.v             | This file contains the IP instance instantiation.                                                                 |
| testbench/dut_params.v           | This file contains the parameter values set during IP configuration which is used by the tb_top.v for simulation. |
| testbench/readme.txt             | This file contains information and steps on how to run simulation for the IP.                                     |
| testbench/tb_top.v               | Top-level testbench file of this IP.                                                                              |
| component.xml                    | Contains the ipxact:component information of the IP.                                                              |
| design.xml                       | Documents the configuration parameters of the IP in IP-XACT 2014 format.                                          |
| <Component name>.ipx             | This file contains the information on the files associated to the generated IP.                                   |
| <Component name>.cfg             | This file contains the parameter values used in IP configuration.                                                 |


## 7.2. Running Functional Simulation

You can run functional simulation after the IP is generated. The default simulator already has pre-compiled libraries ready for simulation. Choosing a non-default simulator, however, may require additional steps.

For this IP simulation testing, a flash simulation model should be instantiated and added on the testbench/tb\_top.v file. Follow the procedures available on the testbench/readme.txt file.

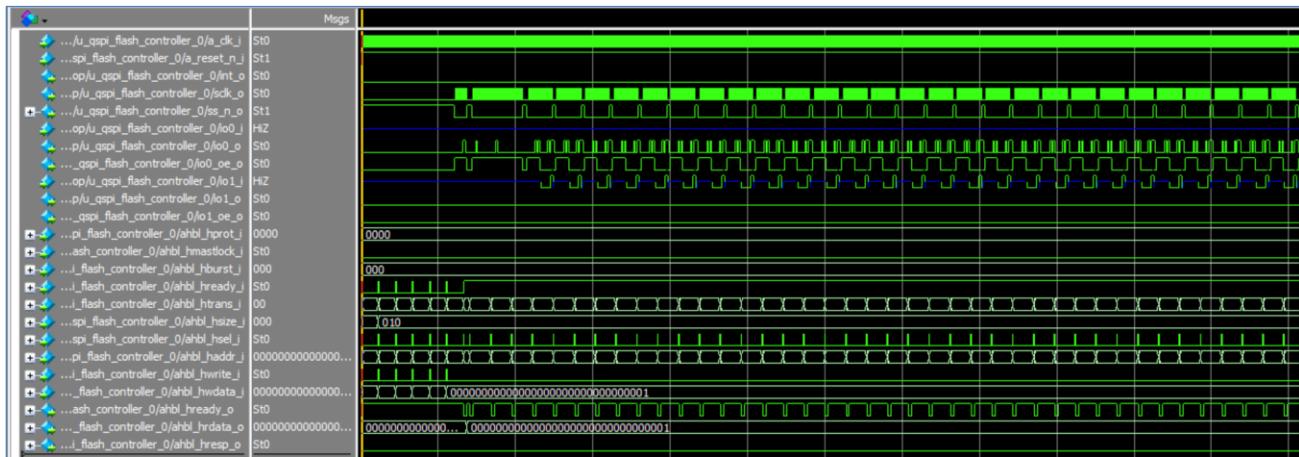

To run functional simulation using the default simulator:

1. Click the  button located on the **Toolbar** to initiate the **Simulation Wizard** shown in [Figure 7.5](#).



**Figure 7.5. Simulation Wizard**

2. Enter a project name and click **Next** to open the **Add and Reorder Source** window as shown in [Figure 7.6](#).




**Figure 7.6: Adding Re-Ordering Source**

3. Click **Next**. The **Summary** window is shown.

4. Click **Finish** to run the simulation.

**Note:** It is necessary to follow the procedure above until it is fully automated in the Lattice Radiant software suite. The results of the simulation in our example are provided in [Figure 7.7](#).



**Figure 7.7. Simulation Waveform**

### 7.3. Constraining the IP

It is your responsibility to provide proper timing and physical design constraints to ensure that the design meets the desired performance goals on the FPGA. The content of the following IP constraint file can be added to the user design constraints:

<IP\_Instance\_Path>/<IP\_Instance\_Name>/eval/constraint.pdc.

The above constraint file has been verified during IP evaluation with the IP instantiated directly in the top-level module. The constraint in this file can be modified given a complete understanding of the effect of the constraint.

To use this constraint file, copy the content of constraint.pdc to the top-level design constraint for post-synthesis.

Refer to [Lattice Radiant Timing Constraints Methodology \(FPGA-AN-02059\)](#) for details on how to constraint the design.

## Appendix A. Resource Utilization

**Table A.1** through **Table A.6** show the resource utilization of the QSPI Flash Controller IP core using different devices and Synplify Pro of the Lattice Radiant software. The default configuration is used, and some attributes are changed from the default value to show the effect on resource utilization.

**Table A.1. Resource Utilization using LAV-AT-E70-3LFG1156I**

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                                                       | 239.063                             | 2063      | 4010              | 0    |
| AXI4 main interface, other settings on default                                                                                                                        | 224.517                             | 2148      | 4139              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                | 231.374                             | 2042      | 3717              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                 | 240.038                             | 2140      | 3853              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                     | 224.215                             | 2637      | 5191              | 0    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                      | 224.669                             | 2729      | 5218              | 0    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 213.812                             | 2634      | 4895              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 224.618                             | 2723      | 5065              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 200 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

**Table A.2. Resource Utilization using LAV-AT-E70-1LFG1156I**

| Configuration                                                                                                                     | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                   | 208.768                             | 2063      | 4010              | 0    |
| AXI4 main interface, other settings on default                                                                                    | 198.491                             | 2148      | 4139              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                            | 192.567                             | 2042      | 3717              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                             | 196.386                             | 2140      | 3853              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default | 166.223                             | 2637      | 5191              | 0    |

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| settings on default                                                                                                                                                   |                                     |           |                   |      |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                      | 174.186                             | 2729      | 5218              | 0    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 166.389                             | 2634      | 4895              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 174.064                             | 2723      | 5065              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 200 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

**Table A.3. Resource Utilization using LFCPNX-100-9LFG672I**

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                                                       | 137.080                             | 2016      | 4007              | 0    |
| AXI4 main interface, other settings on default                                                                                                                        | 144.425                             | 2160      | 4288              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                | 136.091                             | 2059      | 3710              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                 | 137.798                             | 2124      | 3891              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                     | 123.335                             | 2684      | 5275              | 0    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                      | 113.520                             | 2802      | 5400              | 0    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 102.312                             | 2631      | 4942              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 99.413                              | 2816      | 5041              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 125 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

**Table A.4. Resource Utilization using LFCPNX-100-7LFG672I**

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                                                       | 101.75                              | 2021      | 4033              | 0    |
| AXI4 main interface, other settings on default                                                                                                                        | 113.804                             | 2148      | 4270              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                | 105.708                             | 2025      | 3737              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                 | 111.247                             | 2127      | 3883              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                     | 96.283                              | 2682      | 5344              | 0    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                      | 95.274                              | 2753      | 5352              | 0    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 100.321                             | 2628      | 4940              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 87.512                              | 2732      | 5082              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 125 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

**Table A.5. Resource Utilization using LFD2NX-40-9BG256I**

| Configuration                                                                                                                     | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                   | 128.849                             | 2016      | 4007              | 0    |
| AXI4 main interface, other settings on default                                                                                    | 138.850                             | 2160      | 4288              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                            | 120.091                             | 2059      | 3710              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                             | 127.372                             | 2124      | 3891              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default | 111.445                             | 2684      | 5275              | 0    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default  | 126.534                             | 2802      | 5400              | 0    |

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 117.440                             | 2631      | 4942              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 111.000                             | 2816      | 5041              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 125 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

**Table A.6. Resource Utilization using LFD2NX-40-7BG256I**

| Configuration                                                                                                                                                         | f <sub>MAX</sub> (MHz) <sup>1</sup> | Registers | LUTs <sup>2</sup> | EBRs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|-------------------|------|
| AHB-L main interface, other settings on default                                                                                                                       | 78.284                              | 2021      | 4033              | 0    |
| AXI4 main interface, other settings on default                                                                                                                        | 80.418                              | 2148      | 4270              | 0    |
| AHB-L main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                | 79.911                              | 2025      | 3737              | 2    |
| AXI4 main interface, transmit and receive FIFOs enabled, dual SPI protocol, other settings on default                                                                 | 75.746                              | 2127      | 3883              | 2    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                     | 72.129                              | 2682      | 5344              | 0    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, quad SPI protocol, other settings on default                                      | 70.200                              | 2753      | 5352              | 0    |
| AHB-L main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default | 63.955                              | 2628      | 4940              | 2    |
| AXI4 main interface with AXI4-L for register access, flash address mapping enabled, transmit and receive FIFOs enabled, quad SPI protocol, other settings on default  | 65.432                              | 2732      | 5082              | 2    |

**Notes:**

1. f<sub>MAX</sub> is generated when the FPGA design only contains the QSPI Flash Controller IP core and the target frequency is 125 MHz. These values may be reduced when user logic is added to the FPGA design.
2. The distributed RAM utilization is accounted for in the total LUT4 utilization. The actual LUT4 utilization is distributed among logic, distributed RAM, and ripple logic.

## References

- [QSPI Flash Controller IP Release Notes \(FPGA-RN-02016\)](#)
- [QSPI Driver API Reference \(FPGA-TN-02339\)](#)
- [RISC-V RX CPU IP User Guide \(FPGA-IPUG-02254\)](#)
- [A Step-By-Step Approach to Lattice Propel \(FPGA-AN-02052\)](#)
- [Lattice Radiant Timing Constraints Methodology \(FPGA-AN-02059\)](#)
- [Avant-E web page](#)
- [Avant-G web page](#)
- [Avant-X web page](#)
- [Certus-N2 web page](#)
- [Certus-NX web page](#)
- [CertusPro-NX web page](#)
- [CrossLink-NX web page](#)
- [MachXO5-NX web page](#)
- [CertusPro-NX Evaluation Board web page](#)
- [QSPI Flash Controller IP Core web page](#)
- [Lattice Radiant Software web page](#)
- [Lattice Propel Design Environment web page](#)
- [Lattice Solutions IP Cores web page](#)
- [Lattice Solutions Reference Designs web page](#)
- [Lattice Insights for Lattice Semiconductor training courses and learning plans](#)

## Technical Support Assistance

Submit a technical support case through [www.latticesemi.com/techsupport](http://www.latticesemi.com/techsupport).

For frequently asked questions, refer to the Lattice Answer Database at [www.latticesemi.com/Support/AnswerDatabase](http://www.latticesemi.com/Support/AnswerDatabase).

## Revision History

### Revision 1.3, IP v1.5.0, June 2025

| Section      | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction | <ul style="list-style-type: none"> <li>In Table 1.1. Summary of the QSPI Flash Controller IP: <ul style="list-style-type: none"> <li>Renamed <i>Supported FPGA Family</i> to <i>Supported Devices</i> and incorporated <i>Targeted Devices</i> information into row.</li> <li>Removed <i>Targeted Devices</i> row.</li> <li>Added IP core version to <i>Lattice Implementation</i>.</li> <li>Made minor editorial changes.</li> </ul> </li> </ul> |
| References   | <ul style="list-style-type: none"> <li>Added QSPI Driver API Reference (FPGA-TN-02339).</li> <li>Added QSPI Flash Controller IP Core web page.</li> <li>Updated listing name to Lattice Radiant Software web page.</li> </ul>                                                                                                                                                                                                                     |

### Revision 1.2, IP v1.4.0, December 2024

| Section                  | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All                      | Minor editorial changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cover                    | Added IP version.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Introduction             | <ul style="list-style-type: none"> <li>In Table 1.1. Summary of the QSPI Flash Controller IP: <ul style="list-style-type: none"> <li>Added CrossLink-NX, MachXO5-NX, and Certus-N2 to <i>Supported FPGA Family</i>.</li> <li>Removed IP Version row.</li> <li>Added IP Changes row.</li> <li>Added LIFCL-17, LIFCL-33, LIFCL-40, LFMXO5-25, LFMXO5-55T, LFMXO5-100T, and LN2-CT-20 to <i>Targeted Devices</i>.</li> <li>Added Resources row.</li> <li>Added IP core v1.4.0 to <i>Lattice Implementation</i> and removed older entries.</li> <li>Added note on <i>Lattice Implementation</i>.</li> </ul> </li> <li>Added the IP Support Summary section.</li> <li>In the Features section: <ul style="list-style-type: none"> <li>Updated list of features for the different bus interfaces.</li> <li>Updated the programmable SPI clock description.</li> <li>Added generic command packet support.</li> <li>Removed reference to Macronix target device in relation to XiP for read access.</li> </ul> </li> <li>Removed the IP Validation Summary section.</li> <li>Added the Hardware Support section.</li> <li>Added CrossLink-NX, MachXO5-NX, and Certus-N2 devices in Table 1.3. Minimum Device Requirements for QSPI Flash Controller IP.</li> </ul> |
| Functional Description   | <ul style="list-style-type: none"> <li>Updated description for AXI4-Lite in Table 2.1. User Interfaces and Supported Protocols.</li> <li>In the IP Core Operation section: <ul style="list-style-type: none"> <li>Updated description.</li> <li>Added the Generic Commands Operation section.</li> <li>Updated description in the Non-XiP Access and eXecute-in-Place (XiP) Access sections.</li> </ul> </li> <li>In the User Packet Frame Structure section: <ul style="list-style-type: none"> <li>Added Figure 2.9. Generic Command Packet with 1DW Header.</li> <li>Updated description to include reference to generic SPI operations.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IP Parameter Description | <ul style="list-style-type: none"> <li>In Table 3.1. General Attributes: <ul style="list-style-type: none"> <li>Removed <i>SPI Clock Polarity</i> and <i>SPI Clock Phase</i> attributes.</li> <li>Added <i>Clock Mode</i> and <i>eXecute-in-Place (XiP) Pattern</i> attributes.</li> <li>Updated selectable values for <i>SPI Clock Frequency</i> under Clock Frequency Settings.</li> <li>Updated selectable values for <i>Address Depth</i> under Transmit FIFO Configuration and Receive FIFO Configuration.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Section              | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul style="list-style-type: none"> <li>Updated description for <i>Enable Transmit FIFO</i>, <i>Enable Receive FIFO</i>, <i>Flash Memory Map Size</i>, and <i>AXI/AHB-L Address Map</i>.</li> <li>Updated attribute name to <i>Flash Memory Map Size (KB)</i>.</li> <li>Modified descriptions to indicate attributes that are visible only when a certain attribute selection is made.</li> <li>In the SPI Clock Phase and Polarity section: <ul style="list-style-type: none"> <li>Updated description.</li> <li>Removed clocking modes 1 and 2 in Table 3.2. Clocking Modes.</li> <li>Removed the Clocking Mode 1 (SPI Clock Polarity=0, SPI Clock Phase=1) Waveforms and Clocking Mode 2 (SPI Clock Polarity=1, SPI Clock Phase=0) Waveforms figures.</li> </ul> </li> <li>In the IP Parameter Settings for Example Use Cases section: <ul style="list-style-type: none"> <li>Updated references to packet header registers in the Multiple SPI Targets section.</li> <li>Updated description in the Transmit and Receive FIFO section.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Register Description | <ul style="list-style-type: none"> <li>In Table 5.2. Summary of QSPI Flash Controller IP Core Registers: <ul style="list-style-type: none"> <li>Added Generic SPI Transactions Packet Header and Data Transfer Status register.</li> <li>Updated reserved address for Status and Interrupt Registers.</li> <li>Updated description for Packet Header 0, Packet Data 0, and Packet Data 1.</li> </ul> </li> <li>In Table 5.3. QSPI Configuration Register 0: <ul style="list-style-type: none"> <li>Added en_frame_end_done_cntr bit.</li> <li>Updated reserved to bit[14].</li> <li>Updated description for cpha and cpol.</li> <li>Updated default value of dummy_clock_cycles, sck_rate, cpha, and cpol.</li> </ul> </li> <li>In Table 5.4. QSPI Configuration Register 1: <ul style="list-style-type: none"> <li>Updated description and default value of tgt_rd_trans_cnt and tgt_wr_trans_cnt.</li> </ul> </li> <li>Added statement on Lattice Interrupt Interface definition in the Status and Interrupt Registers section.</li> <li>Updated description in the Interrupt Status Register when FIFO is Enabled section under the Interrupt Status Register section.</li> <li>In Table 5.18. Interrupt Status Register when FIFO is Enabled: <ul style="list-style-type: none"> <li>Updated bit/field names by removing "_stat".</li> <li>Updated descriptions of rx_fifo_full_int, rx_fifo_almost_full_int, rx_fifo_almost_empty_int, rx_fifo_empty_int, tx_fifo_full_int, tx_fifo_almost_full_int, tx_fifo_almost_empty_int, and tx_fifo_empty_int.</li> <li>Updated default value for rx_fifo_empty_int and tx_fifo_empty_int.</li> </ul> </li> <li>In Table 5.19. Interrupt Status Register when FIFO is Disabled: <ul style="list-style-type: none"> <li>Updated bit/field names by removing "_stat".</li> <li>Removed rd_pkt_data_1_not_empty_int_stat.</li> <li>Updated reserved to bit[7:5].</li> <li>Updated description for rd_pkt_data_0_not_empty_int, wr_pkt_data_1_empty_int, and wr_pkt_data_0_empty_int.</li> </ul> </li> <li>Updated description in the Interrupt Enable Register when FIFO is Enabled section under the Interrupt Enable Register section.</li> <li>In Table 5.20. Interrupt Enable Register when FIFO is Enabled: <ul style="list-style-type: none"> <li>Updated description for rx_fifo_full_int_en through tx_fifo_empty_int_en.</li> </ul> </li> <li>In Table 5.21. Interrupt Enable Register when FIFO is Disabled: <ul style="list-style-type: none"> <li>Updated bit/field names to tgt_rd_trns_cnt_hit_int_en and tgt_wr_trns_cnt_hit_int_en.</li> <li>Removed rd_pkt_data_1_not_empty_int_en.</li> <li>Updated reserved to bit[7:5].</li> <li>Updated description for rd_pkt_data_0_not_empty_int_en, wr_pkt_data_1_empty_int_en, and wr_pkt_data_0_empty_int_en.</li> </ul> </li> <li>Updated description in the Interrupt Set Register when FIFO is Enabled section under the Interrupt Set Register section.</li> </ul> |

| Section               | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | <ul style="list-style-type: none"> <li>• In Table 5.22. Interrupt Set Register when FIFO is Enabled: <ul style="list-style-type: none"> <li>• Updated bit/field names to tgt_rd_trns_cnt_hit_int_set and tgt_wr_trns_cnt_hit_int_set.</li> <li>• Updated description for rx_fifo_full_int_set through tx_fifo_empty_int_set.</li> </ul> </li> <li>• In Table 5.23. Interrupt Set Register when FIFO is Disabled: <ul style="list-style-type: none"> <li>• Updated bit/field names to tgt_rd_trns_cnt_hit_int_set and tgt_wr_trns_cnt_hit_int_set.</li> <li>• Removed rd_pkt_data_1_not_empty_int_set.</li> <li>• Updated reserved to bit[7:5].</li> <li>• Updated description for rd_pkt_data_i_not_empty_int_set, wr_pkt_data_1_empty_int_set, and wr_pkt_data_0_empty_int_set.</li> </ul> </li> <li>• Added the Generic SPI Transaction Packet Header and Data Transfer Status Register section under the Status and Interrupt Registers section.</li> <li>• Updated description in the Control Registers section.</li> <li>• In Table 5.28. Packet Header 0 Register – Supported Flash Commands: <ul style="list-style-type: none"> <li>• Updated description for xfer_len_bytes and sup_flash_cmd.</li> </ul> </li> <li>• Added Packet Header 0 Register for Generic SPI Transactions section under the Packet Header 0 Register section.</li> <li>• In Table 5.32. Packet Header 2 Register and Table 5.33. Packet Header 3 Register: <ul style="list-style-type: none"> <li>• Updated description of register.</li> </ul> </li> <li>• Added Generic Flash Write Operation and Generic Flash Read Operation sections.</li> <li>• In the Non-XIP Access (Direct Write/Read Access) through Flash Memory Map section: <ul style="list-style-type: none"> <li>• Updated description and rearranged Flash Memory Map Size item in list.</li> <li>• Updated steps 4b and 5b.</li> </ul> </li> <li>• In the XiP Access (Direct Read Access) through Flash Memory Map section: <ul style="list-style-type: none"> <li>• Updated description and sample sequence.</li> <li>• Removed the Programming Flow: 1-Byte Quad Input/Output Fast Read, FIFO Disabled, Big Endian, Quad SPI table.</li> <li>• Added Table 5.52. Programming Flow: 1-Byte Quad Input/Output Fast Read, FIFO Disabled, Big Endian, Table 5.53. Programming Flow: 4-Byte Address, FIFO Disabled, Big Endian, Table 5.54. Programming Flow: XiP Pattern and Dummy, FIFO Disabled, Big Endian, and Table 5.55. Programming Flow: Read 4-bytes Data, FIFO Disabled, Big Endian.</li> </ul> </li> <li>• In the Polling Mode after a Write Transaction is started for FIFO Disabled Configuration section under the Polling Mode section: <ul style="list-style-type: none"> <li>• Updated bit/field names to wr_pkt_data_1_empty_int and wr_pkt_data_0_empty_int.</li> </ul> </li> <li>• In the Polling Mode after a Read Transaction is started for FIFO Disabled Configuration section under the Polling Mode section: <ul style="list-style-type: none"> <li>• Updated bit/field name to rd_pkt_data_0_not_empty_int.</li> </ul> </li> <li>• In the Polling Mode after a Read Transaction is started for FIFO Enabled Configuration section under the Polling Mode section: <ul style="list-style-type: none"> <li>• Updated bit/field name to rx_fifo_empty_int.</li> </ul> </li> </ul> |
| Example Design        | <ul style="list-style-type: none"> <li>• Added introductory paragraph to list the evaluation board used for the example design.</li> <li>• In Table 6.1. QSPI Flash Controller IP Configuration Used on Example Design: <ul style="list-style-type: none"> <li>• Removed SPI Clock Polarity and SPI Clock Phase attributes.</li> <li>• Added Clock Mode and eXecute-in-Place (XiP) Pattern attributes.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Designing with the IP | <ul style="list-style-type: none"> <li>• Updated Figure 7.1. Module/IP Block Wizard, Figure 7.2. IP Configuration – View 1, Figure 7.3. IP Configuration – View 2, and Figure 7.4. Check Generating Results.</li> <li>• In Table 7.1. Generated File List: <ul style="list-style-type: none"> <li>• Rearranged items.</li> <li>• Added testbench/readme.txt, driver/qspi_flash_cntl.c, and driver/qspi_flash.cntl.h.</li> <li>• Updated name to constraints/&lt;Component name&gt;.ldc.</li> </ul> </li> <li>• Removed IP Evaluation section.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Section                          | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix A. Resource Utilization | Updated resource utilization values for $f_{MAX}$ , registers, and LUTs in Table A.1. Resource Utilization using LAV-AT-E70-3LFG1156I through Table A.6. Resource Utilization using LFD2NX-40-7BG256I.                                                                                                                                                                                                                                                                                                                                                                   |
| References                       | <ul style="list-style-type: none"> <li>Added QSPI Flash Controller IP Release Notes, RISC-V RX CPU IP User Guide, Certus-N2, CrossLink-NX, MachXO5-NX, and CertusPro-NX Evaluation Board web pages.</li> <li>Removed Lattice Propel Builder User Guide and Lattice Propel SDK User Guide.</li> <li>Added Lattice Propel Design Environment web page.</li> <li>Updated and added links for IP and Reference Designs.</li> <li>Removed Lattice Radiant Software User Guide.</li> <li>Removed redundant item for Lattice Radiant Timing Constraints Methodology.</li> </ul> |

**Revision 1.1, July 2024**

| Section                                    | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All                                        | Minor editorial changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acronyms and Abbreviation in This Document | Added an rearranged items.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Introduction                               | <ul style="list-style-type: none"> <li>Updated Overview of the IP and Features sections.</li> <li>Updated supported FPGA families, IP version, targeted devices, Lattice implementation, synthesis, and simulation information in Table 1.1. Summary of the QSPI Flash Controller IP in Quick Facts section.</li> <li>Updated the Licensing and Ordering Information section.</li> <li>In IP Validation Summary section: <ul style="list-style-type: none"> <li>Specified synthesis tool used for IP validation.</li> <li>In Table 1.2. IP Validation Level: <ul style="list-style-type: none"> <li>Updated IP validation information.</li> <li>Removed validation in progress note.</li> </ul> </li> </ul> </li> <li>Table 1.3. Minimum Device Requirements for QSPI Flash Controller IP in Minimum Device Requirements section: <ul style="list-style-type: none"> <li>Removed Link Width column and added Device column.</li> <li>Added information by devices.</li> </ul> </li> <li>Removed Host section in Naming Conventions section.</li> <li>Added Attribute Names section in Naming Conventions section.</li> </ul> |
| Functional Description                     | <ul style="list-style-type: none"> <li>Updated Figure 2.1. QSPI Flash Controller IP Block Diagram in IP Architecture Overview section.</li> <li>Removed Programming Flow section.</li> <li>Added Clocking, Reset, User Interfaces, and Other IP Specific Blocks/Layers/Interfaces sections.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IP Parameter Description                   | <ul style="list-style-type: none"> <li>Table 3.1. General Attributes in General section: <ul style="list-style-type: none"> <li>Renamed and moved table into General section.</li> <li>Incorporated default information into Selectable Values column and removed Default column.</li> <li>Removed Attribute Description table and merged attribute descriptions into table.</li> <li>Added, updated, or removed dependency information for various attributes.</li> <li>Updated various attribute names.</li> <li>Updated description for various attributes.</li> <li>Updated selectable and default values for various attributes.</li> <li>Removed attributes Enable Back-to-Back Transfer and Minimum Idle Time between Transfer (number of SCK).</li> <li>Added attributes Register Space Size, Register Map Base Address, Write Access Command, Read Access Command, Flash Address Width, Command Lane Width, Address Lane Width, Data Lane Width, and Dummy clock cycles under Flash Address Mapping.</li> </ul> </li> </ul>                                                                                         |

| Section              | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul style="list-style-type: none"> <li>Renamed table segment rows to <i>Flash Address Mapping</i> and <i>Supported Flash Commands</i>.</li> <li>Split <i>Transmit and Receiver FIFO Configuration</i> into <i>Transmit FIFO Configuration</i> and <i>Receive FIFO Configuration</i>.</li> <li>Added IP Parameter Settings for Example Use Cases section.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Signal Description   | <ul style="list-style-type: none"> <li>Table 4.1. Top-Level Ports: <ul style="list-style-type: none"> <li>Renamed title to <i>Top-Level Ports</i>.</li> <li>Renamed column to <i>Type</i>.</li> <li>Updated various attribute names.</li> <li>Removed attributes <i>sck_i</i> and <i>ss_n_i</i>.</li> <li>Updated width, output reset value, and description for various attributes.</li> <li>Renamed table segment rows to <i>Disabled IO Buffer</i>, <i>Enabled IO Buffer</i>, <i>AHB-Lite Interface</i>, <i>AXI4-Lite Interface</i>, and <i>AXI Interface</i>.</li> <li>Rearranged attributes under <i>Disabled IO Buffer</i>.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Register Description | <ul style="list-style-type: none"> <li>Removed offset address from section titles.</li> <li>Renamed Bits and Reset columns in register tables to Field and Default columns, respectively.</li> <li>Added Table 5.1. Register Access Types.</li> <li>Table 5.2. Summary of QSPI Flash Controller IP Core Registers in Overview section: <ul style="list-style-type: none"> <li>Updated description for registers Flash Command Code 0 through 7, Minimum Flash Address Alignment, AXI/AHB-L Address Map, Packet Header 0, Packet Data 0, and Packet Data 1.</li> <li>Updated register name to AXI/AHB-L Address Map.</li> <li>Changed offset address 0x0000_0114 and 0x0000_0224 to reserved.</li> </ul> </li> <li>Updated Configuration Registers section.</li> <li>In QSPI Configuration Register 0 section: <ul style="list-style-type: none"> <li>Removed descriptions for registers <i>en_flash_address_space_map</i>, <i>chip_select_behavior</i>, <i>min_idle_time</i>, and <i>en_back_to_back_trans</i>.</li> <li>Table 5.3. QSPI Configuration Register 0: <ul style="list-style-type: none"> <li>Added configuration register 0 bit names for bits 16 through 31 and changed bits 3 through 7 and 14 to both reserved and read only.</li> <li>Merged register descriptions into table.</li> <li>Added descriptions for registers <i>dat_lane_width</i>, <i>addr_lane_width</i>, <i>cmd_lane_width</i>, <i>xip_addr_width</i>, <i>dummy_clock_cycles</i>, <i>flash_map_en_rd_access_cmd</i>, and <i>flash_map_en_wr_access_cmd</i>.</li> <li>Changed bit 15 to reserved and read only.</li> <li>Updated descriptions for registers <i>sck_rate</i>, <i>cpha</i>, and <i>cpol</i>.</li> </ul> </li> </ul> </li> <li>Table 5.4. QSPI Configuration Register 1: <ul style="list-style-type: none"> <li>Corrected table title.</li> <li>Merged register descriptions into table.</li> </ul> </li> <li>Updated Flash Command Code 0 Register through Flash Command Code 7 Register sections.</li> <li>In Minimum Flash Address Alignment Register section: <ul style="list-style-type: none"> <li>Table 5.13. Minimum Flash Address Alignment Register: <ul style="list-style-type: none"> <li>Updated and added description for <i>min_flash_addr_alignment</i> into table.</li> <li>Updated default value.</li> </ul> </li> </ul> </li> <li>In Starting Flash Address Space Mapping Register section: <ul style="list-style-type: none"> <li>Table 5.14. Starting Flash Address Space Mapping Register: <ul style="list-style-type: none"> <li>Updated and added description for <i>start_flash_address_space_map</i> into table.</li> </ul> </li> </ul> </li> <li>In Flash Memory Map Size Register section: <ul style="list-style-type: none"> <li>Updated section title.</li> <li>Table 5.15. Flash Memory Map Size Register: <ul style="list-style-type: none"> <li>Updated table title.</li> </ul> </li> </ul> </li> </ul> |

| Section               | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | <ul style="list-style-type: none"> <li>• Updated and added description for flash_memory_map_size into table.</li> <li>• Updated register name and default value.</li> <li>• In AXI/AHB-L Address Map Register section: <ul style="list-style-type: none"> <li>• Updated section title.</li> <li>• Table 5.16. AXI/AHB-L Address Map Register: <ul style="list-style-type: none"> <li>• Updated table title and bit field name.</li> <li>• Added description for axi_ahbl_address_map and merged description into table.</li> </ul> </li> </ul> </li> <li>• In Status and Interrupt Registers section: <ul style="list-style-type: none"> <li>• Reorganized information in Interrupt Status Register section into subsections and merged register descriptions into tables.</li> <li>• Reorganized information in Interrupt Enable Register section into subsections and merged register descriptions into tables.</li> <li>• Reorganized information in Interrupt Set Register section into subsections and merged register descriptions into tables.</li> <li>• In Supported Flash Command Packet Header and Data Transfer Status Register section: <ul style="list-style-type: none"> <li>• Merged description for registers into table.</li> <li>• Updated descriptions of registers in Table 5.24. Supported Flash Command Transaction Status Register.</li> </ul> </li> <li>• Removed Unsupported Flash Command Packet Header and Data Transfer Status Register section.</li> </ul> </li> <li>• In Control Registers section: <ul style="list-style-type: none"> <li>• Updated description.</li> <li>• Updated TX FIFO Mapping and RX FIFO Mapping sections.</li> <li>• Reorganized information in Packet Header 0 Register into subsections.</li> </ul> </li> <li>• In Packet Header 0 Register section: <ul style="list-style-type: none"> <li>• Updated description.</li> <li>• In Table 5.27. Packet Header 0 Register – Supported Flash Commands: <ul style="list-style-type: none"> <li>• Updated bit field name to flash_command_code.</li> <li>• Merged register descriptions into table.</li> <li>• Updated description for flash_command_code and sup_flash_cmd.</li> <li>• Updated num_wait_sck setting and description.</li> <li>• Removed Packet Header 0 Register for Unsupported Flash Commands section.</li> </ul> </li> </ul> </li> <li>• In Packet Header 1 Register section: <ul style="list-style-type: none"> <li>• Updated description.</li> <li>• In Table 5.29. Packet Header 1 Register: <ul style="list-style-type: none"> <li>• Merged register descriptions into table.</li> <li>• Updated reserved bit fields to read-only access and tgt_cs to read-write access.</li> <li>• Updated description for tgt_cs.</li> </ul> </li> </ul> </li> <li>• Updated Packet Header 2 Register section.</li> <li>• Updated Packet Header 3 Register section.</li> <li>• Updated Packet Data 0 Register section.</li> <li>• Updated Packet Data 1 Register section.</li> <li>• In Start Transaction Register section: <ul style="list-style-type: none"> <li>• Updated description.</li> <li>• In Table 5.34. Start Transaction Register: <ul style="list-style-type: none"> <li>• Added xip_enable and updated reserved bits information.</li> <li>• Added description for xip_enable.</li> <li>• Merged register description into table.</li> </ul> </li> </ul> </li> <li>• Removed Enable Loopback Testing Register section.</li> <li>• Added Operation Details/Programming Flow section.</li> </ul> |
| Example Design        | Added Example Design section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Designing with the IP | <ul style="list-style-type: none"> <li>• In Generating and Instantiating the IP section:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Section    | Change Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul style="list-style-type: none"> <li>Renamed section.</li> <li>Updated Figure 7.1. Module/IP Block Wizard, Figure 7.2. IP Configuration – View 1, and Figure 7.4. Check Generating Results.</li> <li>Added reference to Figure 7.3. IP Configuration – View 2.</li> <li>Added Figure 7.3. IP Configuration – View 2.</li> <li>In Generated Files and File Structure section: <ul style="list-style-type: none"> <li>Updated description.</li> <li>Updated Table 7.1. Generated File List.</li> </ul> </li> <li>In Running Functional Simulation section: <ul style="list-style-type: none"> <li>Updated description.</li> <li>Updated Figure 7.5. Simulation Wizard and Figure 7.6: Adding Re-Ordering Source.</li> <li>Removed Parse HDL Files for Simulation step and figure.</li> <li>Removed Summary Wizard figure and reference to figure in step 3.</li> <li>Removed reference to ModelSim in step 4.</li> <li>Added Figure 7.7. Simulation Waveform and note referencing figure.</li> </ul> </li> <li>Moved and updated Constraining the IP section.</li> <li>Added IP Evaluation section.</li> </ul> |
| Appendix   | <ul style="list-style-type: none"> <li>Removed Resource Utilization table.</li> <li>Added Table A.1. Resource Utilization using LAV-AT-E70-3LFG1156I through Table A.6. Resource Utilization using LFD2NX-40-7BG256I.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| References | Added references.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**Revision 1.0, December 2023**

| Section | Change Summary   |
|---------|------------------|
| All     | Initial release. |



[www.latticesemi.com](http://www.latticesemi.com)