Lattice Radiant 2.2 Tutorial with
CrossLink-NX (LIFCL)

= LATTICE

October 20, 2020

Copyright

Copyright © 2020 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. Modelsim and Questa are trademarks or registered trademarks of
Siemens Industry Software Inc. or its subsidiaries in the United States or other
countries. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

http://www.latticesemi.com/legal

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<l[talic> Variables in commands, code syntax, and path names.

Ctri+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.
{1} Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

= LATTICE

Contents

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 7
About the Tutorial 7

Task 1: Create a New Radiant Project 8
Opening the New Project Wizard 8
Setting the Project Name and Location 9
Adding Source Files 9
Selecting a Device 10
Finishing the Project Setup 11
About the File List View 12

Task 2: Add HDL Code 13
Generating a Module from IP Catalog 14
Instantiating the Module 15
Adding RAM with PMI 16
Adding More RAM with PMI 17

Task 3: Verify Functionality with Simulation 18
Starting a Simulation Run 19
Checking the Simulation Results 20
Rerunning the Simulation 22

Task 4: Set Location Assignments 23

Task 5: Process the Design 24
About the Process Toolbar 25
Processing the Design 25

Task 6: Examine the Layout 26
Task 7: Analyze Power Consumption 27

Task 8: Add an On-Chip Debug Module 28
About the Logic Analyzer Core 29
Setting Up Trace Signals 30
Setting Up Trace Options 31
Setting Up Trigger Units 32
Setting Up a Trigger Expression 33
Setting Up Trigger Options 34

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

CONTENTS

Creating Virtual Switches and LEDs 34
Creating User Register Access 36
Creating Hard IP Access 36

Inserting the Debug Logic 37

Task 9: Examine Timing Analysis Results 37
Reading the Timing Analysis Report 38
Using Timing Analyzer 39

Task 10: Set Timing Constraints 40
Defining the Oscillator Clock 41
Close the Radiant Project 42

Summary of Accomplishments 43
Recommended References 43

Revision History 45

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

= LATTICE

Lattice Radiant 2.2 Tutorial
with CrossLink-NX (LIFCL)

The Lattice Radiant® software is a complete toolset for designing for Lattice
Semiconductor's FPGAs. This tutorial leads you through all the basic steps of
designing, implementing, and debugging designs targeted to the Lattice
CrossLink-NX™ (LIFCL) device family.

Note

Some of the screen captures in this tutorial may have been taken from a version of the
Radiant software that differs from the one you are using. There may be slight
differences in the graphical user interface (GUI), but the software functions the same.

About the Tutorial

When you have completed this tutorial, you should be able to do the following:
Create a new Radiant software project.
Customize IP using IP Catalog.
Verify functionality with simulation.
Set timing and location constraints.
Process the design.
Analyze power consumption.
Analyze static timing.

Create on-chip debug logic.
Time to Complete About 2 hours.

You can stop at the end of any task and restart at the beginning of the next
task. See “Close the Radiant Project” on page 42. When you restart the

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 7

Create a New Radiant Project

Radiant software, it shows a Recent Project List. Just click the name of your
project.

System Requirements You need:

Radiant software, version 2.2

Online Help You can find additional information on any tool used in the
tutorial at any time by choosing Help > Lattice Radiant Software Help or
Help > <tool name>. The Help also provides easy access to many other
information sources.

Sample Design This tutorial comes with a Verilog design that counts up
and down. There are also some additional modules so you can fully exercise
the Radiant software’s on-chip debugging abilities: a dual-port RAM module
and a module that uses the MIPI D-PHY interface built into CrossLink-NX.
The tutorial includes a simple testbench to run the simulator on. This is not
intended to be a complete design, so some of the modules are not completely
connected.

Task 1: Create a New Radiant Project

A “project” is a collection of all the files and settings needed to create your
design, test and analyze its behavior, and process it into a programming file
for a Lattice FPGA.

Setting up a new project is done through the New Project wizard. The New
Project wizard guides you through the steps of specifying a project name and
location, selecting a target device, and adding existing source files to the new
project. We will walk through each page of the wizard one by one. At the end,
we’ll introduce the Radiant main window and its parts.

Opening the New Project Wizard

Open the Radiant software and open the New Project wizard.

To open the New Project wizard:

1. If you haven't already, start the Radiant software by doing one of the
following:

On Windows, go to the Start menu and choose Lattice Radiant
Software > _ | Radiant Software.

On Linux, enter the following on a command line:
<Radiant _install_path>/bin/lin64/radiant

The main window of the Radiant software opens along with an Update
dialog box. This takes a moment.

2. If the Update dialog box says “No update found,” click Close. Otherwise,
install the update and restart the Radiant software.

8 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Create a New Radiant Project

Now you have a clear view of the Start Page. With the Start Page you can
easily open a new project, open a recent project, and access information.

3. Click the New Project || button.
The New Project wizard opens.
4. Click Next.

The Project Name page opens.

Setting the Project Name and Location
Specify a name and location for the project files and for a design

“implementation.”

An implementation is one version of your design. You can have more than one
implementation, so that you can experiment with different design approaches.
A project starts with one implementation. You can add more later.

To fill out the Project Name page:
1. Specify the project name: CLNXtutorial.

2. Browse to where you want to store the project’s files. This tutorial uses
C:/my_radiant_tutorial. But you can use any location.

3. Make sure the Create subdirectory option is selected.

The wizard automatically adds a folder for your project, which is shown
immediately below the Location box.

4. Specify an implementation name. We'll use the default: impl_1.

The directory for the implementation is displayed in the Location box.
5. Click Next.

The Add Source dialog box appears.

Adding Source Files

Since the tutorial comes with source files, you can add them now. Source files
can be added at any time or created with the Radiant software.

To add existing source files:
1. Click Add Source.
The Import File dialog box appears.

2. Browse to: <Radiant_install_path>/docs/tutorial/crosslink_nx_tutorial.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 9

Create a New Radiant Project

Select the following files (Control+A will do it.):
count32.v
testbench.v
top.v
top_test1.v
topcount.v
Click Open.
Confirm that the New Project wizard is showing all of the files.
If any files are missing, click Add Source again.
If any extra files are showing, select the files and click Remove Source.

Make sure that the Copy source to implementation source directory
option is selected.

This makes copies of the files in your implementation instead of referring
to the original files.

The Create empty constraint files option is not needed for this tutorial.
Click Next.

The Select Device dialog box appears.

Selecting a Device

Specify exactly which Lattice FPGA you plan to use. This selection can be
changed at any time if you find a need to.

To select a device:

1.

Select the device family: LIFCL (which is the part number code for the
CrossLink-NX family).

Select the specific device within the family: LIFCL-40.
Select the following device options:
Operating Condition: Industrial
Package: CABGA400
Performance Grade: 7_High-Performance_1.0V
The Part Number, at the bottom, changes as you make selections.

The dialog box should resemble Figure 1. At the bottom is a link to get a
data sheet for the device. At the right is Device Information, including a list
of resources in the device such as the number of LUTs (look-up tables),
registers, and PIO (programmable 1/O) pins.

10

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Create a New Radiant Project

Figure 1: New Project Wizard’s Select Device Page

MNew Project *

Select Device
Specify a target device for the project.

Device information

Select Device: Device Information:
Family: Device: Core Voltage: 1.0V
LFD2NX LIFCL-17 Logic Cells: 33000
Select device LIFCL LIFCL-40 LuTs: 32258
iCEADUP Registers: 32256
EER Blocks: 84
DSPs: 462
PLLs: 3
DLLs: 10
PCSs: 1
PIO Cells: 217
PIO Pins: 217
Operating Condition: Package:
Industrial ¥ CABGA400 =

Select device options

Performance Grade:

7_High-Performance_1.0v -
Part Number:
LIFCL-40-7BG4001 4
Get data sheet —————————0niine Dats sheet for Device
< Back Mext = Cancel Help
4. Click Next.

The Select Synthesis Tool dialog box opens.

Finishing the Project Setup

Finish by selecting a synthesis tool and confirming all the choices that you
made in the New Project wizard. Then you’ll see how a project looks in the
Radiant main window.

To finish setting up the project:

1. Select a synthesis tool. This tutorial requires Lattice LSE (Lattice
Synthesis Engine).
Note

If you choose to use Synopsys® Synplify Pro® for Lattice, some of the Radiant
tools, such as Timing Constraint Editor and Netlist Analyzer, will not be available.
Synplify Pro may have similar tools but they are not covered in this tutorial.

2. Click Next.

The Project Information dialog box appears. This dialog box summarizes
the choices you made in the wizard. If you want to change any of them,
click Back.

3. Click Finish.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 1

Create a New Radiant Project

Several views are added to the Radiant window to give you easy access
to files, tools, and messages from the software. Figure 2 identifies the
views in the default arrangement. On the left is the File List view showing
the files and other components of the project that you just created. On the
right is the Reports view showing a summary of other information about
the project.

In the File List view, right-click testbench.v and choose Include for >
Simulation.

By default all input files are marked for both synthesis and simulation. But
you do not want the testbench when you synthesize the design.

You will see activity in the Output view, at the bottom of the window, as the
Radiant software re-analyzes the design hierarchy. In the File List view,
top.v is bolded to show that it holds the top module. The Hierarchy view,
which is underneath the File List view, also changes.

Figure 2: Radiant Main Window

Process Toolbar
Controls converting the
design to a bitstream.

File List
Provides easy access to
project components.

Tool Area

File

)

Bt View Proect Tooks Window Help
o O EE

Export Fils

B GeBMs ZBOM

Synthesize Desion

Map Design Place &Route Design

Shows the active tools.

Hierarchy
Provides access to the
modules of the design.

- B cunvutoris 2x | D sttrane Reports ~
18 UrcL-s0-78G4001
~) Strategies
& Area Reports GLNXtutorial Project Summary
] Timing Implementation Name: impL_1 Performance Grade 7_High-Performance_1.0v
7 Strategyl .
~ 7 impl_1 (Lattice LSE) Project Summary Stategy Name Stategyt Operating IND
ML PartNumber LIFCL-40-7BG4001 Synthesis; Latice LSE
» (%] Synthesis Reports
Famil LIFCL Timin
» (5 Map Reports Device: LIFCL-40 2020100129 09:53:19
CABGA400 2020109129 095320
»
Place & Route Reports Cmy_radiant_tuforial CLNXIutoriallCLNXtutorial rof |
Post-Synthesis Constrain Files
Debug il Imple mentation Location Cimy_ragiant tutorialCLNutorialimpl 1
ebug Files » [Export Reports
Script Fles
Analysis iles
Programming Files » (3 Misc Reports Resource Usage
Lure: 0 10 Bulters; o
PFU Register 0 EBR o
~ I testbench - testbenchy x || 7+ [® oerors warnings | | © 81nfos| | B Groupby D | searc 2 x

3

DI e List] Source Template] 1P Catalog

topldut) -
opldut) - topy + Project (1 warnings, 8 nfos)

» © 2049993 INFO - C:/my_radiant tutorial/CLNXtutorial/source/impl_l/testbench.v(3,8-3,17) (VERI-1018) compiling module 'testbench’
2049991 WARNING - C:/my_radiant tuterial/CLNXtutorial/source/impl_l/testbench.v(11.2-18,5) (VERI-2435) port User_reg_clK'is not connected on this instance testbenchy:11

Td Console E output E¥ Message

Source Template IP Catalog Tcl Console Output Message
Helps create common Get customizable Shows and accepts Shows all messages Shows messages
features in HDL code. modules (IP). Tcl commands. as they are produced. organized by type.

About the File List View

The File List view gives easy access to the components of the project

including:

The device.

Strategies, which are collections of option settings for how the design is
processed. Start with Strategy1, a balanced approach. If you are having
trouble fitting a design into a device, try the Area strategy. If you are

12

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add HDL Code

having trouble with timing, try the Timing strategy. You can create your
own strategy by cloning one of these.

Implementations, which are all the source files for a version of a design. A
project can have several implementations so that you can experiment with
different design approaches.

Input Files, which are the design files.

A variety of other files that may be created in the project.

Bold Text Notice that some of the items, such as Strategy1 and impl_1, are
written with bold text. You can have multiple components of a given type, but
usually only one can be active. So impl_1 is the active implementation and
Strategy1 is the active strategy for impl_1.

An exception to this rule is in the Input Files, which are the HDL design files.
These are all active. In Input Files, bold text indicates a file with a top module.
The Radiant software automatically analyzes the Input Files for the design
hierarchy, which can be seen in the Hierarchy view. So top.v holds the top
module in impl_1.

Commands Right-click an item to see the available commands for that
item. The commands vary depending on the item. There are commands for
changing properties, adding files, changing the active file, and more.

Task 2: Add HDL Code

The Radiant software has a few tools to help you create HDL code:

Source Editor is a text editor optimized for HDL code. Source Editor color
codes different parts of HDL code, tracks parenthesis pairs, and can
collapse blocks for easier reading.

Source Template provides templates for common functions and structures
to help you build Verilog, VHDL, and constraint files. The templates can
be simply dragged and dropped into Source Editor and filled in there.

IP Catalog provides a collection of pre-built modules that you customize
through a dialog box. The Radiant software comes with many commonly
used functions such as 1/O, arithmetic, and memory. Many more-
specialized functions can be downloaded.

PMI (Parameterized Module Interface) provides a collection of modules
similar to those that come with IP Catalog. But with PMI, you customize by
changing parameters in the instantiation code, which is available in
Source Template. IP Catalog tends to provide more ways to customize its
modules. But PMI may be easier when you need several similar, but not
identical, instances of a module.

Of course, you can also create code outside of the Radiant software and
import the files into your project.

In this task you will use all these tools to add a few modules to finish the
design.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 13

Add HDL Code

Generating a Module from IP Catalog

In this section, you will customize and generate a phase-locked loop (PLL)
module to add to the design.

To customize and generate a PLL module:

1.

8.

Click the IP Catalog tab (lower-left corner, under the File List view).
IP Catalog replaces the File List view.

IP Catalog comes with a large variety of architecture, arithmetic, and
memory modules. These are under the IP on Local tab. Click the IP on
Server tab to see more-specialized modules that you can download. Take
this opportunity to expand the folders and see what’s available to you.

On the IP on Local tab, expand Module > Architecture_Modules and hover
over PLL.

To the right, a blue circle with a question mark) appears. You may need
to scroll to the right to see it.

Click the blue circle.

A brief description of the module appears in the tool area. To get more
information about this module, click User Guide in the description. This
will download a PDF file to your browser.

Double-click PLL.
The Module/IP Block Wizard opens.

For Component name, enter my_pll. Use the default for the “Create in”
location.

Click Next.

The wizard changes to a block diagram of the module and a table of
properties and values.

As you can see, there are several ways that you can customize this
module. Each tab provides more options.

Some of the properties are grayed out because they are read-only, such
as a value calculated from the option settings. But usually, a grayed out
property becomes available to change depending on other option settings.
For example, if you change Configuration Mode to Divider, the CLKI:
Divider Value option becomes available.

In the General tab, set the following values:
Configuration Mode: Frequency
CLKI: Frequency: 125

CLKFB: Feedback Mode: INTCLKOP (Feed back CLKOP, the primary
output clock, internally.)

CLKORP: Frequency Desired Value: 200 (Scroll down to the Primary
Clock Output section.)

Click the Optional Ports tab. This is where the reset and lock pins come
from.

14

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add HDL Code

10.

1.

12.

13.

Clear the Provide PLL Lock Signal option.
The diagram changes to remove the lock_o pin.
Click Calculate.

A box opens with messages. This may take a moment. Check for error
messages.

Note: Most IP do not have a Calculate button.
Click Generate.
The Check Generated Result page appears. This may take a moment.

Ensure that Insert to project, in the lower-left corner, is selected and click
Finish.

Go back to the File List view to see that my_pll/my_pll.ipx has been added
to the list of Input Files. The module comes with a few associated files. In
the Hierarchy view, a my_pll module appears.

Instantiating the Module

When IP Catalog generates a module, it also creates templates for
instantiating the module. You just copy the Verilog or VHDL code, paste it into
your design, and fill in the blanks: instance name and I/O signals.

To instantiate the PLL module:

1.

In the File List view, double-click source/impl_1/top.v.
The file opens in Source Editor.
Scroll down to a comment that says: //*** Add my pll here. ***

In the File List view, right-click my_pll.ipx and choose Copy Verilog
Instantiation.

Go to Source Editor and paste the code below the comment.

Note

For VHDL, follow a similar process using the Copy VHDL Component and Copy
VHDL Instantiation commands.

You need to fill in a name for the instance and signal names for the ports.
See below for the finished instantiation command. Bold is the text that you
enter.

//*** Add my pll here. ***

my pll pll_inst(.clki i (oclk),
.rstn_i(rstn),
.clkop_o(peclk));

Click the Save [button in the toolbar.

In the Hierarchy view, the my_pll module moves to be under the top
module.

Close Source Editor and IP Information by clicking the X in their tabs.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 15

Add HDL Code

Adding RAM with PMI

Suppose you want to add a few RAM blocks to your design. There are several
types available in IP Catalog. But, for each RAM block, you would have to
open IP Catalog, select options, and generate the module from the beginning.

If the RAM blocks are similar, it might be easier to use PMI from Source
Template. You can set up one block and then make copies of it to modify.

In this section, you will create two RAM DQ blocks. The first RAM will be 32-
bits wide, 64-words deep, and with a 9-bit address. It will include a register on
the output with a synchronous reset. The second RAM will be smaller, only 32
words, and without the registered output.

To add RAM with PMI:
1. In the File List view, double-click source/impl_1/top_test1.v.
The file opens in Source Editor.
2. Scroll down to a comment that says: //*** Add RAM here. ***
3. Click the Source Template tab (under File List).
Source Template replaces the File List view.

Source Template offers a large variety of Verilog, VHDL, and constraint
templates. Take this opportunity to expand the folders and see what is
available to you.

4. Expand Verilog > PMI Templates > LIFCL and LFD2NX PMI and click
ram_dq in the list of modules.

The instantiation template for the pmi_ram_dqg module appears in the
lower space of Source Template.

To get more information about this module, get Memory Modules User
Guide at:

www.latticesemi.com/view_document?document_id=52685

5. Drag ram_dq from the list to the space below the “Add RAM here.”
comment.

The template is added to the file.
6. You need to fill in the parameter values.

To the right of the parameters are comments showing what kind of values
can be used. Many of these are text inside quotes. The straight line, |,
means OR. When quoted text is available, you can copy it, including the
quotes, and paste it in the parenthesis. Any parameter left without a value
uses a default value.

pmi_addr_depth: 64

pmi_addr_width: USER_REG_ADDRWIDTH (This parameter is
defined a little higher up in the file.)

pmi_data_width: USER_REG_DATAWIDTH (This parameter is
defined a little higher up in the file.)

16

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

http://www.latticesemi.com/view_document?document_id=52685

Add HDL Code

pmi_regmode: "reg
pmi_gsr: "enable"
pmi_resetmode: "sync"
pmi_family: "LIFCL"

7. Change <your inst label>, which is near the middle of the template
to the instance name, ram1. Delete the angle brackets.

8. You can copy the port names from the wire definitions just above the “Add
RAM here.” comment.

The result in Source Editor should look like Figure 3 (but with color). Bold
is the text that you enter.

Figure 3: First Finished PMI RAM

// *** Add RAM here. **

pmi ram dg

#(
.pmi_addr depth
.pmi_addr width
.pmi_data width
.pmi_regmode
.pmi gsr
.pmi_resetmode
.pmi_init file
.pmi_init file format

*

64), // integer
USER_REG_ADDRWIDTH), // integer
USER_REG_DATAWIDTH), // integer

uregu) , 7/ nregn | nnoregn
"sync"), // "async"|"sync"

, // string
, // llbinaryll | "hex"

— —

(
(
(
(
("enable"), // "enable"|"disable"
(
(
(
(

.pmi_ family "LIFCL") // "LIFCL"|"LFD2NX"|"common"
) raml (

.Data (User_reg wdatal), // I:

.Address (User_reg addrl), // I:

.Clock (User_reg clk), // I:

.ClockEn (User_reg en), // I:

.WE (User_reg wr_rdnl), // I:

.Reset (reset), // I:

.0 (User_reg_rdatal) // O:

Adding More RAM with PMI

Now make the second RAM block.This is probably easier and faster than
going through IP Catalog twice. You will have two different RAM blocks and
could easily create more.

To add more RAM with PMI:

1. Select all of the code of the ram_dq template that you just finished.
(Clicking a line number selects the whole line.) Copy this code and paste it
below the first instance.

2. In the copy, change the following parameters:
pmi_addr_depth: 32

pmi_regmode: "noreg"

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

17

Verify Functionality with Simulation

3. Change the instance name to ram2.
4. Similarly, change the 1 to a 2 in the ports:
Data: User_reg_wdata2
Address: User_reg_addr2
WE: User_reg_wr_rdn2
Q: User_reg_rdata2

The result in Source Editor should look like Figure 3. Bold is the text that
you change.

Figure 4: Second Finished PMI RAM

pmi ram dg

#(
.pmi_addr depth (32), // integer
.pmi_addr width (USER_REG _ADDRWIDTH), // integer
.pmi _data width (USER_REG_DATAWIDTH), // integer
.pmi_regmode ("noreg"), // "reg"|"noreg"
.pmi_gsr ("enable"), // "enable"|"disable"
.pmi_resetmode ("sync"), // "async"|"sync"
.pmi_init file (), // string
.pmi init file format (), // "binary"|"hex"
.pmi_ family ("LIFCL") // "LIFCL"|"LFD2NX"|"common"
) ram2 (
.Data User reg wdata2), // I:

(
.Address (User reg addr2), // I:
.Clock (User reg clk), // I:
.ClockEn (User reg en), // I:
(
(
(

.WE User reg wr rdn2), // I:
.Reset reset), // I:
.0 User reg rdata2) // O:

5. Click the Save [H button in the toolbar.

6. Close Source Editor.

Task 3: Verify Functionality with Simulation

Now that the design is finished, you can simulate it to test the logic. With the
Radiant software, you can run a simulation at different stages of the
development process:

Before synthesis (RTL)
Post-synthesis

Post-route, gate-level
Post-route, gate-level and timing

In this tutorial we will just do the RTL simulation. For the other stages, the
process is similar.

18 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Verify Functionality with Simulation

For a simulator, this tutorial uses the Mentor® ModelSim® Lattice FPGA
Edition simulator that comes with the Radiant software on Windows.

If you are not using an HDL simulator that is integrated with the Radiant
software, you can skip this task. “Integrated” means that you can run the
simulator from the Radiant software. What is available depends on your
operating system. You can use other simulators outside of the Radiant
software.

If you are not using the ModelSim that comes with the Radiant software, you
need to compile the primitive library. For instructions, open the Radiant Help
and see User Guides > Simulating the Design > Third-Party Simulators.

This tutorial comes with a simple testbench. You will probably create your own
testbenches using your simulator. Simulators usually include tools for creating
testbenches.

Starting a Simulation Run

While you can start your simulator directly, it's good to create a simulator
project that allows you to run the simulator from the Radiant software.

To start simulating the design:
1. Choose Tools > [Simulation Wizard.
The Simulation Wizard dialog box appears.
2. Click Next.
The Simulator Project Name page appears.
3. Enter the Project name: sim_test.
Leave the other settings at their defaults.
4. Click Next.

If you left the default for the project location, a dialog box opens saying,
“sim_test does not exist. Do you want to create it?” Click Yes. This creates
a sim_test folder.

The Add and Reorder Source page appears.

6. Make sure all source files are present in the Source Files list. You can
modify this list but that is usually not needed. Instead, leave the
Automatically set simulation compilation file order option selected.
Click Next.

The “Parse HDL files for simulation” page appears.

7. Verify that the simulation top module is “testbench.” This is shown at the
bottom of the dialog box. Click Next.

The Summary dialog box appears.

8. Make sure that the Run simulator, Add top-level signals to waveform
display, and Run simulation options are all selected.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 19

Verify Functionality with Simulation

9. Click Finish.

The selected simulator launches and the simulation starts automatically.
After completing the simulation, the waveform appears. This takes several
moments. Wait for the waveform to appear.

If you see the Welcome to ModelSim dialog box, select Don’t show this
again, at the bottom of the dialog box, and click Close. Do not click
Jumpstart.

10. Look at the File List view in the Radiant window. Under Script Files, you
see sim_test/sim_test.spf.

You can rerun the simulation by double-clicking the .spf file. The Simulation
Wizard will open with a Skip to End button. Click it to jump to the last page of
the wizard. Then click Finish to start the simulation running.

Checking the Simulation Results

Note

If you are not using ModelSim Lattice FPGA Edition, you can skip the rest of the
simulator task.

Now that you’ve run the simulation, you can see what happened on the top-
level signals of the testbench as shown in Figure 5. ModelSim stopped
automatically after the first microsecond of simulation time. The testbench is
set to run longer, over 5 s, but this is enough to see the startup.

To check the simulation results:
1. You probably want to expand the Wave view. Do one of the following:
Expand the ModelSim window.

Undock the Wave view. Click the Dock/Undock g button that is in the
upper-right corner of the Wave view. Then expand the Wave window.

2. To make other adjustments to the Wave view, choose Simulate >
Runtime Options.

The Runtime Options dialog box opens showing a variety of options that
you can set.

3. Make the following changes in the Defaults tab:

For Default Radix, select Hexadecimal. This is how the values of
signals are normally displayed.

For Default Run, enter 100ns. This is the amount of time that the Run
command simulates.

4. Click OK.

The values shown in the Objects and Wave views change to hexadecimal.

20

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Verify Functionality with Simulation

Figure 5: Simulated Waveform

M ModelSim Lattice FPGA Edition 2020.3 — [m} *
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help

E-E T ag;_tz;\&vmn\j\ﬁ@m Q|| @t eme (FF[10onsS{ELEIE S | % DO
Yot F.5- J Layout [Simulate - lumns = H 53'53'5.3'@'5‘3‘

J ColumnLayout |n11¢

IR I E e S IEEEIES @ % |
QR 3% || [AWM
& sim -Default — = +| & x|| |4 Objects i LS|

v’lInsiance |Design ul| | *|MName
:,—! ist:e:ch :sﬂ:enc CLOliI:_CYCLE Jtestbench/countt
+ u p coun
estbench/leds
+ ol GSR_INST GSR. leds iermend’wflod(
& FALWAYS#31 testbenc lock Jtestbench/dk
P #INITIAL#34 testhenc 3 =
S std std reset ftestbench/reset

|g #vsim_capacity# direction ftestbench/direction

|TYDE j

*|Name

KN | El

B Memory List @sim [1 L Ny [J |>| .
‘ l Transcript S ﬂ ﬂ ﬂ
** Warning: lmmi ref mmd dig and lmmi_ref mask is equal to O j
Time: 2 ns Scope: testbench.dut.pll_inst.lscc pll_inst.u_PLL.PLL inst.<protected>.<protected> File: C:/MentorGraphics/RadiantFiles_n

o_cre/verilog/lifcl/gpll core.v Line: 96

VSIM 23 j

999220500 fs to 1000000500 fs |Project : sim_test |Mow: lus Delta: 2 sim: ftestbench

e

5. Choose Wave > Zoom > Zoom Full or click the Zoom Full @& button in
the toolbar to see the whole waveform. The Zoom toolbar looks like this:

|aqesm.an

In the Wave view, you see the reset signal activated by the testbench.
This drives the leds value to zero. After reset is released, countt starts
counting.

6. The values of countt may not be visible. Click the Zoom In @& button in the
toolbar until you can see the values.

7. Choose Simulate > Run > Run 100 or click the Run [g]| button to see
more of the simulation. The Run toolbar looks like this:

PEF 100 nd $f ELEEELBE & |

Another 100 ns is added to the waveforms. This is the time you set in the
Runtime Options dialog box. You can change this amount in the box next
to the Run button.

8. Click anywhere to see what the values are at that moment.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 21

Verify Functionality with Simulation

The nearest cursor (a vertical yellow line) jumps to where you clicked. The
value column shows all the values at that moment.

You can click on the cursor and drag it to other positions on the timeline.
You can also return to the cursor after scrolling away by clicking the Zoom

In on Active Cursor 1% button.

Rerunning the Simulation

In ModelSim you can make changes in the simulation and rerun it. For
example, you can add more signals.

To add a signal and rerun the simulation:

1. In the List view, click the sim tab (also know as the Structure view), and
expand:

testbench > dut > top_test1_inst > counter > counter

2. Click on #ALWAYS#12. This is the ball icon underneath counter.
The Objects view changes.
Drag countai from the Objects view to the Wave view.

4. Rerun the simulation to see what is happening with the countai register.
Choose Simulate > Restart or click the Restart £ button.

The Restart dialog box opens with a variety of features that you might
have changed. You can leave them all selected.

5. Click OK.
The waveforms in the Wave view disappear.

6. Then choose Simulate > Run > Run -All or click the Run -All &} button.
The Finish Vsim dialog box opens. It asks if you want to finish.

7. Click No.

Warning

Do not click Yes. If you do, the $finish statement in the testbench causes
ModelSim to exit.

If this happens, go to the File List view in the Radiant window and look under the
Script Files folder. Double-click sim_test/sim_test.spf to restart ModelSim.

ModelSim’s source editor opens with the testbench.v file.

8. Close testbench.v and go back to the Wave view. Now you see the full
5 us.

9. You can take this opportunity to explore ModelSim more.

There’s a lot more that you can do with ModelSim. For more information,
see the Help menu in the ModelSim window.

10. When you are done exploring ModelSim, choose File > Quit to close
ModelSim.

22 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Set Location Assignments

1.

The Quit Vsim dialog box opens.
Click Yes.

Task U: Set Location Assignments

You will use the Device Constraint Editor to assign signals to the pins of the
FPGA. There are a few ways to do this:

Drag the port from the Editor’s list view to the Package View, which is a
graphic layout of the FPGA'’s pins.

Right-click the port in the spreadsheet to open the Assign Ports dialog
box, which presents a list of all appropriate pins.

Type the pin number in the spreadsheet.

Since we have a list of the pin numbers, typing is probably the easiest way.

To assign pins:

1.

10.

Choose Tools > [7] Device Constraint Editor.
The Device Constraint Editor appears.

If you see a yellow bar with a message saying the “Design database in
memory is outdated,” click Reset Database, which is to the right of the
message.

Click the Port tab, in the lower-left.

In the spreadsheet, scroll to the bottom and find the rstn port.

Click in the Pin cell and enter G19.

In the Device View, G19 shows a green dot, indicating an input port.

In the spreadsheet, right-click on Name and choose Filter > Enable
Filter.

A button for a drop-down menu appears on each column title.
Click the drop-down button in the Name column.

Afilter list appears.

In the Search box, type leds.

The filter list is reduced to the leds ports.

Click OK.

The spreadsheet is reduced to the leds ports.

Fill in the Pin cells of the leds ports with the following pins. Start at the top

of the list. After typing the pin number, press the down arrow key to get
the next cell.

leds[0]: E17
leds[1]: F13
leds[2]: G13

to

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

23

Process the Design

leds[3]: F14
leds[4]: L16
leds[5]: L15
leds[6]: L20
leds[7]: L19

As you enter values, the matching spots in the diagram are filled in with
blue, indicating output ports.

11. Click the Constraint Preview [} button.

The Preview dialog box opens showing the constraint commands. See
Figure 6.

Figure 6: Device Constraints

ldc_set location -site {G19} [get ports rstn]

ldc _set location -site {E17} [get ports {leds[0]}]
ldc_set location -site {F13} [get ports {leds[1]}]
ldc_set location -site {G13} [get ports {leds[2]}]
ldc_set location -site {F14} [get ports {leds[3]}]
ldc_set location -site {L16} [get ports {leds[4]}]
ldc _set location -site {L15} [get ports {leds[5]}]
ldc set location -site {L20} [get ports {leds[6]}]
ldc_set location -site {L19} [get ports {leds[7]}]

12. Click the Save [button in the toolbar.
The Save dialog box opens.
13. Name the file eval_board and click Save.

In the File List view, eval_board.pdc appears under the Post-Synthesis
Constraint Files folder. Device constraints are not used in synthesis.

14. Close the Device Constraint Editor.

Task 5: Process the Design

Processing a design involves a few steps that convert the high-level Verilog
and VHDL description into code that can actually program a specific FPGA:

1. Synthesize converts HDL into a gate-level netlist that is optimized for the
FPGA.

2. Map converts the netlist into a network of device-specific components,
such as PFU (programmable function units) and 1/0 buffers.

3. Place and route converts the mapped network into specific components
and signal routes within the device.

4. Export converts the place-and-route specifications into code to program
the FPGA.

24 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Process the Design

Each step also produces a set of reports that describe how the process was
run and the results. If a process fails, its reports are the place to start
troubleshooting.

About the Process Toolbar

Use the Process Toolbar (shown below) to run the processes.

Figure 7: Process Toolbar

[..:'/' Synthesize Design E Map Design | Place &Route Design Export Files

Run All Task Detail View

With a single click you can run any individual process including any preceding
processes that have not been run yet. Click the Run All p button to run the
whole sequence. Right-click a process button to get a menu of options for
running the process.

Click the Task Detail View button to select other files to generate while
running the processes. Timing analysis and simulation files are available.

While a process is running, the Run All button changes to the Stop @ button.
Click the Stop button to stop the processing.

When a process completes, its button shows its success or failure with a
green check mark & orared X .

Processing the Design

In this task, you will step through the processes one-by-one and check the
reports after each. However, in normal practice, you would probably run the
whole sequence and then check the results.

To process the design:
1. In the Process Toolbar, click Synthesize Design.

Task Detail View opens and tracks completion of the processes.
2. In the Reports view, click Synthesis Reports.

These reports give details of how synthesis ran. They also give detailed
information about use of device resources and timing. Hover over the
Contents button in the top-right corner to get links to different sections of a
report.

When you finish looking at the synthesis reports, click Map Design.
4. Inthe Reports view, click Map Reports and examine the available reports.

When you finish looking at the map reports, click Place & Route Design.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 25

Examine the Layout

6.

In the Reports view, click Place & Route Reports and examine the
available reports.

When you finish looking at the place and route reports, click Export Files.

In the Reports view, click Export Reports and examine the available
reports.

At the end of the Bitstream report is the pathname of the bitstream file:
<project_path>/impl_1/CLNXtutorial_impl_1.bit.

Task 6: Examine the Layout

After place-and-route, you can see a display of the layout using Physical
Designer and cross-probing between different views.

To see the layout:

1.

Choose Tools > ;7] Physical Designer.
Physical Designer shows a large-component layout of your design.

To the left of the diagram are lists of instances and 10s. Expand the
Instances list and choose one of the primitives, such as Instances >
top_test1 _inst > leds_i8.ff_inst.

The display zooms to the component.

Right-click on the component and choose Physical Designer Routing
Mode.

The Routing Mode opens with the display zoomed to the same
component. The Routing Mode provides a detailed layout of your design
that includes switch boxes and physical wire connections.

In the toolbar of Physical Designer, click the arrow of the Routing [E& -
button and choose [10 Mode.

Physical Designer changes to show the I/O of the device.

In the list, expand Instances, scroll down to the bottom, and click
rstn_pad.bb_inst.

Physical Designer zooms in to the I/O for rstn: G19, which you set in the
constraint file. The padlock symbol shows the pads that have constraints
on them.

You can do this for any of the instances labeled with “_pad” and for any of
the items in the 10s list.

Close Physical Designer.

26

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Analyze Power Consumption

Task 7: Analyze Power Consumption

Power Calculator estimates the power dissipation for a given design. Power
Calculator uses parameters such as voltage, temperature, process variations,
air flow, heat sink, resource utilization, activity, and frequency to calculate the

Figure 8: Power Calculator

#

nl Start Page Reports

Device Environment

Family: LIFCL | Performance grade: | 7_High-Performance_1.0v ~

Device: LIFCL-40 ~ | Operating conditions: | Industrial - Ambient Temperature{°C): 25

Package type: QFN72 * | Part Number: LIFCL-40-75G 721 - Effective Theta-JA(®C/W): 8.36

Device Power Parameters Junction Temperature(®C): | 25.14

Process Type: | Typical ~ | Power File Revision: | Preliminary Maximum Safe Ambient(°C): = 99.44

Voltage /Dynamic Power Multiplier Current by Power Supply Power by Power Supply

Voltage DPM Static (&) Dynamic (&) Total (4) Static (W) = Dynamic (W) | otal (W

Vee 1.000 1.00 0.003841 0.003841 0.003841 0.000000 | 0.003...
Veepg 1.000 1.00 0.002678 0.002678 0.002678 0.000000 | 0.002...
Vecaux 1.800 1.00 0.002824 0.002824 0.005084 0.000000 | 0.005...
Vecauxa 1.800 1.00 0.000000 0.000000 0O
Vecauxh 1.800 1.00 0.000000 0.000000 | 0.000...
Vecauxhi 1.800 1.00 0.000111 0.000000
Vecauxho 1.800 1.00 0.000000 | 0.000...
Vecio 3.3 3.300 1.00 0.000000 | 0.000...
Vecio 25 2.500 1.00 0.000000 | 0.000...
Vecio 1.8 1.800 1.00 0.000000 | 0.003
Vecio1.35 1.350 1.00 0.000000 | 0.000...
Vecio 1.5 1.500 1.00 0.000000 | 0.000...
Vecio1.2 1.200 1.00 0.000000 | 0.000...
Vecio 1.0 1.000 1.00 0.000000 | 0.000...
Vecapll 0.900 1.00 0.000304 0.000273 0.000000 | 0.000...
Power Summary Power Matrix Logic Block Clocks 1jo If0 Term DsP PLL

device’s static and dynamic power consumption.

To analyze power consumption:

1.

Choose Tools > @& Power Calculator.

Power Calculator opens in Calculation mode as shown in Figure 8.

'@' Power Calculator

Block RAM

T

Software Mode: | Calculation

Thermal Profile...

Power by Block (W) Peak Start 4 »
Legic Block 0.002197
Clocks
o
/O Term
DSP 0177
PLL 0.000589
Block RAM 0.000019
LRAM 0
SGMICDR
DDRDLL 0.000224
DLLDEL] 02
DQs 0.000068
MIPIDPHY 0.000436
ADC 0.000068
ALU 0.000002

LRAM SGMIICDR 4 »

Power Calculator provides two modes for reporting power consumption:

Estimation mode:

In estimation mode, Power Calculator provides estimates of power
consumption based on the device resources or template that you
provide. This mode enables you to estimate the power consumption
for your design before the design is complete or even started.

Calculation mode:

In calculation mode, Power Calculator calculates power consumption
on the basis of device resources taken from a design’s .udb file or

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

27

Add an On-Chip Debug Module

from an external file such as a value change dump (.vcd) file, after
placement and routing. This mode is intended for accurate calculation
of power consumption, because it is based on the actual device
utilization.

Editing data in white cells, such as voltage, frequency, activity factor, and
thermal data, does not change the mode. Editing data in yellow cells, such
as design data, will change calculation mode to estimation mode.

2. For Process Type in the Device Power Parameters section, choose
Worst.

3. Click Thermal Profile in the Environment section.

The Power Calculator — Thermal Profile dialog box appears.
4. For Board Selection, choose Small Board.

Click OK.

After a moment, the new temperature results become available in the
Environment section.

6. Close Power Calculator.
A Confirm dialog box appears.
7. Click Yes.
8. Give the file a name, such as eval_board, and click Save.

In the File List view, a .pcf file appears under Analysis Files.

Task 8: Add an On-Chip Debug Module

Many times you will want to see what is happening inside the FPGA while it is
running. After you have your design in an FPGA on a prototype circuit board,
you may find problems that did not show up in simulation. The Radiant
software allows you to see what’s happening inside the FPGA and to even
change register values while your system is running.

The Radiant software does this by helping you create a “debug module” and
adding it to your design. The module is a combination of two types of “cores:”

Logic Analyzer monitors selected signals for events that you define. When
these events happen, the values of these and other signals are uploaded
to the Radiant software. You can see the values in a waveform viewer or
save them for other software.

Controller gives ongoing access to selected signals and registers. A
Controller core has virtual switches and LEDs to monitor signals, read and
write access to user-defined memory, and read and write access to the
control registers of “hard IP.” Hard IP are modules such as I2CFIFO, PLL,
and DPHY that use features built into the FPGA.

The debug module can have up to 15 cores.

28

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add an On-Chip Debug Module

The Radiant software has two tools for on-chip debugging:

Reveal Inserter, which you use to create a debug module and add it to
your design.

Reveal Analyzer/Controller, which you use to control the debug module
and to view test results. Reveal Analyzer/Controller is used after
programming the FPGA with your combined design and debug module.

In this task, you will create a debug module with both Logic Analyzer and
Controller cores.

About the Logic Analyzer Core

The Radiant software has a flexible system that lets you specify the signals
you want to see and when you want to see them. The events that trigger
sampling the signals can range from very simple to very complex. The Logic
Analyzer core has several features that build up to a powerful logic analyzer:

Trace signals are the signals that you want to analyze.

Sample clock is a clock from your design. Trace signals are sampled on
the rising edge of the sample clock.

Trigger units are the signals that you want to monitor and logic to monitor
them for certain values.

Trigger expressions are logical or sequential combinations of the trigger
units.

Trigger events are logical or sequential combinations of the trigger
expressions. Trigger events trigger uploading the trace samples to Reveal
Analyzer/Controller.

You use Reveal Inserter to specify the signals that the Logic Analyzer core will
use and to set up the trigger units and trigger expressions. But these are only
initial settings. They can be modified in Reveal Analyzer/Controller without
taking the time to process the design and program the FPGA again. Think of
Reveal Inserter as creating capabilities and capacities that you can use with
Reveal Analyzer/Controller.

In your own on-chip debugging, think about all the signals and all the trigger
events that you might want to see, and build as much of that as possible into
the debug module. The limitation, of course, is the FPGA resources,
especially EBR (embedded block RAM) and distributed RAM, that you have
left after installing your design.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 29

Add an On-Chip Debug Module

Setting Up Trace Signals

Start by opening Reveal Inserter and adding a Logic Analyzer core. You'll add
signals with a simple drag-and-drop action. Then set several options.

To set up trace signals for a Logic Analyzer core:

1.

Figure 9: Trace Signal Setup

Reveal Inserter Toolbar
With Design Rule Check
and Insert Debug buttons.

=

Dataset
Provides access to the
cores in the debug module.

Design Tree
Provides access to all
signals in the design.

Signal Search
Finds signals in the Design Tree view.

Choose Tools > @, Reveal Inserter.
Reveal Inserter starts with a largely blank screen.
Choose Debug > Add New Core > Add Logic Analyzer.

The Trace Signal Setup tab appears. The Dataset view expands to
include a core named top_LAO. See Figure 9.

1 Start Page

[

~ " Datasets

sample Clock Implementation | EBR v 0EBRs

Buffer Depth 256 - Timestamp -

Sample Enable Data Capture Mode

Semple Enable @ single Trigoer Capture

Multiple Trigger Capture

Include trigger signals in trace data

Search Trace Signal Setup ‘Trigger Signal Setup

Core Setup Area
Shows setup tabs of the selected core.

Click on the Trace Signal Setup tab, if it is not already selected.
In the Signal Search box, enter countai.

The Data Tree view expands to show countai[31:0] selected.
Drag the countai[31:0] bus to the Trace pane on the right.

The name of the bus now appears in bold font in the Design Tree pane.
The name is also labeled with “@Tc” to show that it is a trace signal.

Right-click the bus in the Trace pane and choose Rename Trace Bus.
Name the bus countai.

Select the Include trigger signals in trace data option. This is in the
lower-left of the window.

With this option, all signals used to create triggers will also be in the trace
list. This allows you to check how the triggers happen. You will set up the
triggers later.

30

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add an On-Chip Debug Module

At the top, “Trigger Signals” is added to the trace list.
8. In the Signal Search box, enter clk.
This time the Search Result dialog box opens with choices.
9. Select top_test1_inst/counter/clk and click OK.
The signal is selected in the Design Tree view.
10. Drag the selected clk from the Design Tree view to the Sample Clock box.

The name of the signal now appears in bold font in the Design Tree pane.
The name is also labeled with “@C” to show that it is the sample clock
signal.

Setting Up Trace Options

Besides selecting the trace signals, there are several options that you need to
consider.

To set up trace options:
1. For Implementation, choose EBR.

The implementation specifies what kind of RAM to use for the Logic
Analyzer core. Normally EBR (embedded block RAM) would be selected,
but distributed RAM can be used if you are short of EBR.

The number next to the Implementation menu shows how many EBR or
slices are needed.

2. For Buffer Depth, choose 64.

Choose an amount at least as big as the number of samples multiplied by
the number of trigger events. In this case, we plan for 16 samples for 1
trigger event. But it's good to build in some extra capacity if your FPGA
has the resources.

3. Select Timestamp and choose 10 bits.

Timestamp provides a count of sample clock cycles from the beginning of
a test run. The timestamp will show how long the test ran before
triggering. The timestamp can also help associate triggers with external
events.

The number of bits is the size of the timestamps. Choose the smallest
value that can hold the desired count.

Note that the number of EBRs went up when you selected Timestamp.
4. Leave Sample Enable cleared.

This option specifies a signal that can turn data capture on and off. Use
sample enable to reduce the size of the trace buffer when there are
stretches of data of no interest that are associated with a single signal.

5. For Data Capture Mode, select Multiple Trigger Capture.

This option allows for multiple trigger events. The actual number of events
will be set in Reveal Analyzer.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 31

Add an On-Chip Debug Module

6. For “Minimum samples per trigger,” choose 16.

This is the minimum number of samples for each trigger event. The
maximum is set in Buffer Depth.

7. Ignore POR Debug and Disable all Distributed RAMS. These options are
not currently available.

The lower part of the Trace Signal Setup tab should now resemble Figure 10.

Figure 10: Options in the Trace Signal Setup Tab

Sample Clock estl_instfcounter/cdk | Implementation | EBR ~ 2EBRs
Buffer Depth 54 * [Timestamp |10+ Bits
Sample Enable Data Capture Mode

Sample Enable Single Trigger Capture

-

@ Multiple Trigger Capture
Minimum samples per trigger | 16 =~

-

D Indude trigger signals in trace data

Trace Signal Setup Trigger Signal Setup

Setting Up Trigger Units

Here you will specify the signals and values that you want to watch for as part
of the trigger. The values, in the Operator and Value cells, are just initial
settings. They can be changed in Reveal Analyzer/Controller while running
tests.

To set up the trigger units:

1. Click on the Trigger Signal Setup tab.

2. In the Trigger Unit section, at the top, click Add.
A new row appears with default values.
Click in the Name cell and enter tu_countai.

4. Drag the countai[31:0]@Tc bus from the Design Tree pane to the Signals
(MSB:LSB) cell in the Trigger Unit pane.

In the Design Tree view, countai gains a Tg label to show that it is also a
trigger signal.

5. Click in the Operator cell and choose <= from the drop-down menu.

The operators are logical comparisons between the signal and a specified
value. You can also choose rising or falling edges, or a series of values on
a one-bit signal.

6. Click in the Radix cell and choose Hex.

Radix is just the format used to show the value. Pick whichever radix is
most convenient for you. If you are doing a lot of trigger units, you may

32 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add an On-Chip Debug Module

want to choose a radix in the Default Trigger Radix menu (lower-right of
the Trigger Unit area).

7. In the Value cell, enter 8.
This is the value that the trigger will look for.

8. Click Add to add a second trigger unit. Set up this trigger unit with the
following values:

Name: dir

Signals: direction (This is top > direction. If you search for dir*, it's
“direction” in the results.)

Operator: <=
Radix: Bin

Value: 1

Setting Up a Trigger Expression

Combine the trigger signals into a sequence that will trigger uploading the
trace signals.

To set up the trigger expression:
1. In the Trigger Expression section, in the middle, click Add.
A new row appears with default values.

2. In the Expression cell, select the tu_countai and dir trigger units by
entering dir THEN tu_countai.

This statement means: wait for dir to be true, then wait for tu_countai to be
true. They do not have to be true at the same time.

There are several logical and sequence operators available. These allow
you to specify very specific trigger events. Operators include:

& -AND

|- OR

A - XOR

1-NOT

() - Groups trigger units.

THEN - After the first unit is true, wait for the second one.

NEXT - Like THEN except the second unit must be true on the next
clock cycle.

- Adds a counter.

- Adds a counter. Events must be in consecutive clock cycles.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 33

Add an On-Chip Debug Module

3. Set up the rest of this trigger expression with the following values:

RAM Type: 1 EBR

Choose the type of RAM to use for the expression. The menu also
shows the amount needed.

Sequence Depth: 2

This cell shows the number of sequences, or units, in the expression.
This cell is read-only.

Max Sequence Depth: 4

If you want to change the expression in Reveal Analyzer, this is the
maximum number of sequences that will be possible.

Max Event Counter: 32

If you want to change the expression in Reveal Analyzer, this is the
maximum number of counts that will be possible.

Setting Up Trigger Options

In addition to the trigger units and expressions, there are some options to
consider.

To set up trigger options:

1.

Select Enable final trigger counter.

This option creates the ability to have a trigger event happen multiple
times before capturing data.

For Event Counter Value, choose 4.

This is the maximum number of trigger events that will be possible before
capturing data. You specify the actual number of such events in Reveal
Analyzer. Choose the smallest number that will allow all the repetitions
that you might want.

Leave Trigger Out clear.

This option creates an output signal that pulses when the trigger event
happens. This signal can be used by another Logic Analyzer core or go to
an external I/O.

The Trigger Signal Setup tab should now resemble Figure 11.

Creating Virtual Switches and LEDs

In a Reveal Controller module, you can manually control and watch values
inside the design by setting up virtual switches and LEDs.

The addresses that you see in the Reveal Controller core were assigned by
the Radiant software while processing the design.

34

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Add an On-Chip Debug Module

Figure 11: Trigger Signal Setup

{2} Start Page

~ "5 Datasets
= p
B Add core...

dn01
dnll
dn2l
dn31
dpll
dpll
dp2l
dp31
extclkl
leds[7:0]
lock
lockl
reset
» ™La switch[7:0]
User_reg_clk
clid
clk2
clknl
clkpl
clkrefl
¥ =7 countt[31:0]
[direction@Tc,Tg

v
[}

Signal Search
dir®

Reports

Search

"% Reveal Inserter * Bl
Trigger Unit
Name Signals (MSB:LSB) Operator Radix Value
1 tu_countai top_testl_inst/counter/counter/countai[31:0] | <= Hex 00000008
Add Remove Default Trigger Radix Bin -
Trigger Expression
Narne Expression RAM Sequence Max Sequence Max Event
Type Depth Depth Counter
1 TEL dir THEN tu_countai 1EEBR 2 4 32
Add
Event Counter
u Enable final trigger counter Event Counter Value 4 hd
Trigger Out
Enable Trigger Out Net -
Polarity | Minimum pulse width
Trace Signal Setup Trigger Signal Setup

To create virtual switches and LEDs:

1.

Choose Debug > Add New Core > Add Controller.

Most of the Reveal Inserter window changes to space to set up virtual
switches and LEDs. There are also set-up tabs for accessing user
registers and hard IP. The Dataset view expands to include top_Controller.

Click the Virtual Switch & LED Setup tab if it is not already showing.
Search for switch and select top_test1_inst/switch[7:0].

The Data Tree view expands to show switch[7:0] selected.

Drag switch[7:0] into the Signal column of the Switch List field.

The field is filled with the individual switch signals. Above the Switch List
field, the Width field changes to 8.

Search for leds and select leds[7:0].
Drag leds[7:0] into the LED List field.

The field is filled with the individual leds signals. Above the LED List field,
the Width field changes to 8.

Make sure that the Virtual Switch Setting and Virtual LED Setting
options, at the top of the Reveal Inserter window, are selected.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

35

Add an On-Chip Debug Module

Creating User Register Access

You can set up read and write access to an internal register by simply
specifying the register’s control and data signals. You can access PMI, EBR,
or distributed memory. In this tutorial, you are going to create read and write
access of a pmi_ram_dqg module.

To set up access to a register:
1. Click the User Register Setup tab.
The tab shows a list of memory signal types.

2. In the Design Tree view, look through the modules under top_test1_inst,
and find ram1(pmi_ram_dq_uniq_1). Expand it.

3. Fillthe User Register Setup tab by dragging the matching signals from the
ram1 module:

Clock: Clock
Clock_enable: ClockEn
Wr_Rdn: WE

Address: Address[7:0]
WnData: Data[31:0]
RData: Q[31:0]

4. Make sure that the Enabled check box, in the upper-right corner, is
selected.

Creating Hard IP Access

Set up access to the control and status registers of the hard IP by simply
selecting the IP you want. Hard IP are modules such as I2CFIFO, PLL, and
DPHY that use features built into the FPGA.

To set up access to hard IP:
1. Click the Hard IP Setup tab.

The tab shows a table with a list of all the hard IP in the design. In this
tutorial, there’s just the PLL.

2. In the Enabled column, select PLL1.

36 Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Examine Timing Analysis Results

Inserting the Debug Logic

Now you will insert the debug logic into the design project.

To insert the debug logic:
1. Choose Debug > [Insert Debug.

The Insert Debug to Design dialog box opens with the top_LAO and
top_Controller cores listed.

2. Make sure that both cores are selected and that the Activate Reveal File
in design project option is selected.

3. Click OK.

The Save Reveal Project dialog box opens.
4. Accept the default flename, CLNXtutorial.rvl.
5. Click Save.

In the File List view, the CLNXtutorial.rvl file is added to the Debug Files
folder. In the Process Toolbar, all the green check marks are turned back
to blue arrows. The design has been changed and needs to be processed
again.

6. Close the Reveal Inserter window.

7. In the Process Toolbar, click the Run All p» button.

Note

When place-and-route finishes, the Timing Check Error dialog box appears!

8. Click No to stop the export process.
9. Go to the Reports tab.

The Project Summary report shows timing errors. The Place & Route
report also shows errors. You will fix these in the next two tasks.

Task 9: Examine Timing Analysis Results

Static timing analysis can determine if your circuit design meets timing
constraints. Rather than simulation, it employs conservative modeling of gate
and interconnect delays that reflect specific operating conditions with a
specific FPGA.

You can produce timing analysis reports as part of the synthesize, map, and
place-and-route processes. Before running a process, click the Task Detail
View in the Process Toolbar and select Timing Analysis for that process.
Timing analysis is selected by default, so you already have all three reports.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 37

Examine Timing Analysis Results

The reports have similar information shown in the same format. But they are
based on information from each process:

Post-synthesis timing analysis is based on pre-synthesis constraints and
estimates of delays.

Map timing analysis is based on post-synthesis constraints, the actual
types of components, and estimates of the routing delays.

Place-and-route timing analysis is based on post-synthesis constraints,
and the actual components and routing.

All the reports can be read in the Reports tab. The place-and-route timing
analysis can also be viewed in the Timing Analyzer tool. Timing Analyzer
gives you a spreadsheet view that you might find easier to read. Timing
Analyzer also has a search function to help you find different data paths.

Reading the Timing Analysis Report

The timing analysis report has several sections to explore.

To examine the timing analysis report:

1.

In the Reports tab, click Place & Route Reports and then click Place &
Route Timing Analysis.

The Timing Report appears.

If the frame for the report is too small, you can enlarge it by clicking the
Detach Tool | button that is at the top-right corner of the Tools Area. This
creates a separate window for Reports.

Hover over the Contents button, in the top-right corner of the report.

A list of the report’s section headings appears. You can use these links to
jump to any section of the report. You can make the contents disappear by
clicking anywhere in the report. You can also jump back to the top of the

report by clicking the scroll-up # button in the bottom-right corner of the
report.

Click 1 DESIGN CHECKING.

“Design Checking” shows the constraints and operating conditions that
guided the analysis. It also shows a list of combinational loops that could
not be analyzed.

Notice that you have one create_clock constraint (if you are using the LSE
synthesis tool). This constraint was created by LSE to specify the high-
frequency output of the FPGA oscillator.

Go to 2 CLOCK SUMMARY. Either scroll down or click in the Contents.

“Clock Summary” shows an analysis for each clock domain defined in the
constraints. The “Clock Domain Crossing” section lists any other clocks
that connect with the given domain. That is, a data path that has different
clocks for its start and end points.

38

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Examine Timing Analysis Results

Notice that the target frequency for the oclk_N domain is 225 MHz, the
oscillator’s default speed. But the “Actual” frequency, which is the
calculated maximum frequency, is much slower.

5. Go to 3 TIMING ANALYSIS SUMMARY.

“Timing Analysis Summary” shows a variety of data including lists of the
ten worst paths for setup slack and for hold slack, unconstrained timing
start and end points, unconstrained I/O ports, and registers without clocks.

6. Go to 4 DETAILED REPORT.

“Detailed Report” shows details of the ten worst paths for setup slack and
for hold slack. Each path has a section that starts with information about
the whole path. This is followed by a table calculating the delay step by

step through the path, beginning with the clock at the start of the path and
ending with the clock at the end of the path. Each step includes the name
of the pin, the site within the FPGA, and the hierarchical name of the port.

If you want to visualize the path, the report has links to other tools.
Physical Designer Placement Mode shows the sites within the FPGA.
Physical Designer Routing Mode shows the route within the FPGA.
(Physical Designer is only available after place-and-route.) Netlist
Analyzer shows a schematic view of the design. Unfortunately, Netlist
Analyzer will often say that it “Can’t show the schematic of this timing
path.”

7. Take some time to study the failing paths in section 4.1, “Setup Detailed
Report.”

Note that the hierarchical names keep referring to “reveal_coretop.” This
should not be surprising because the timing errors only appeared after
adding the Reveal cores.

It looks like parts of the Reveal cores are just too slow for the default oscillator
speed.

Before leaving this task, take a look at the Timing Analyzer tool.

Using Timing Analyzer

Timing Analyzer is a different way to look at the place-and-route timing
analysis that you might find easier to read. Timing Analyzer runs the timing
analysis and presents the results on three spreadsheet tabs. Plus, there is a
Query tab so you can search through the paths. The information in Timing
Analyzer is very similar to that in the Place & Route Timing Analysis report but
is presented differently.

Timing Analyzer can be run anytime after completing the place-and-route
process. You do not need to select timing analysis in the Task Detail View of
the Process Toolbar.

To use Timing Analyzer:

1. Choose Tools > B Timing Analyzer.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 39

Set Timing Constraints

A progress indicator opens, showing that the Radiant software is
calculating the delays. This takes a moment. Then Timing Analyzer
appears in the Tool Area. The General Information tab is just basic
information about the FPGA and the option settings used in the analysis.
Tabs for the actual analysis are along the bottom.

2. Click the Critical Paths Summary tab.

This tab shows the same information as section 4, “Detailed Report,” of
the text report. At first you just see introductory information for the paths.

3. Click on a row to see the rest of the information.

The window splits into three parts. You might want to enlarge the view by
detaching the tool as a separate window.

The Path Detail part shows the same the introduction to the path seen in
the text report. There are also some delay calculations for the destination
and source clocks.

The third part has two tabs for the table calculating the delay step by step
through the path. Data Path shows the steps. Clock Paths shows the
clocks at the start and end of the path.

To link to Physical Designer Placement Mode or Routing Mode, right-click
any row in the Data Path or Clock Paths tabs.

4. Click the Critical Endpoint Summary tab.

This tab shows the same information as section 3.2, “Setup Summary
Report,” and section 3.2, “Hold Summary Report,” of the text report. Click
on a row to see the same path details as in the Critical Paths Summary
tab.

5. Click the Unconstrained Endpoint Summary tab.

This tab shows the same information as section 3.4, “Unconstrained
Report,” of the text report.

6. Click the Query tab.

This tab shows a query form to search for data paths. After each search,
check the Output view to see if anything was found. Any paths found are
shown in a spreadsheet view at the bottom of the form. Again, you might
want to enlarge the view by detaching the tool as a separate window. Click
on a row to see the same path details as in the Critical Paths Summary
tab.

7. Close Timing Analyzer.

Task 10: Set Timing Constraints

The original design had no timing problems but with the addition of the Reveal
Debug module there are problems. You need to redefine the design’s
oscillator clock with a longer period.

Radiant uses standard Synopsys SDC timing constraints. These constraints
can be created with Source Editor or Timing Constraints Editor. Timing
Constraints Editor helps you find the correct signals and makes sure the

40

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Set Timing Constraints

syntax is correct. But Timing Constraints Editor can only be used with Lattice
Synthesis Engine (LSE).

Note

If you are using Synplify Pro for Lattice, create the constraints using SCOPE or type
them with Source Editor. See Figure 12 on page 42 for the finished timing constraints.

Timing Constraints Editor comes in pre- and post-synthesis versions. These
work the same but produce different files: pre-synthesis produces an .Idc file
that LSE reads and post-synthesis produces a .pdc file that the map process
reads. In large designs, you might use post-synthesis to avoid rerunning
synthesis.

Defining the Oscillator Clock

This “create_clock” constraint redefines the HFCLKOUT pin of the OSCA
module as a clock with a period of 8 ns. The name is specified as oclk_N.

To define the oscillator clock:

1. Choose Tools > @ Timing Constraints Editor > Post-Synthesis
Timing Constraint Editor.

The Post-Synthesis Timing Constraint Editor appears. The top half is a
spreadsheet with a row of tabs beneath it. The bottom half is a box where
constraint text appears.

Each of the tabs creates a different kind of constraint. But all the tabs work
in the same way: fill in the cells along a row. For columns such as Clock or
Port, double-click in the cell and launch the Object Edit dialog box. The

dialog box helps you find objects. The Editor creates the constraint as you

go.
2. Click the Clock tab.

The Editor already has a create_clock constraint. This was created in
synthesis. You can ignore it.

3. Double-click in the empty cell in the second row in the Object Clock
column.

Some text appears in the cell and, at the right side, three periods.
4. Ignore the text and click on the three periods.
The Object Edit dialog box opens.
5. From the Object Type menu, choose CLOCKPIN.
6. In the Filter box, under the Available Objects list, type H.
The list is reduced.
7. Select: osc_inst.OSCA_insttHFCLKOUT.
8. Click OK.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 41

Set Timing Constraints

Figure 12: Timing Constraints

10.

The dialog box closes. A get_pins command appears in the Object Clock
column.

Click in the Clock Name column and type oclk_N. This is an alias to use
instead of the long pathname.

Click in the Period column and enter 8.

The Frequency column is filled in. In the lower half of the editor, a
create_clock constraint appears.

The lower half of the editor should look like Figure 12.

(Auto) create_clock -name {oclk_N} -period 4.444 [get_pins {osc_inst. OSCA_inst/HFCLKOUT}]
create_clock -name {oclk_N} -period 8 [get_pins osc_inst. OSCA_inst/HFCLKOUT]

11

12.

13.

14.

You now have two create_clock constraints for HFCLKOUT. That's OK.
The constraint that you created will override the constraint from synthesis.

. Click the Save [button in the toolbar.

The timing constraints are added to the existing .pdc file. The map and
place & route processes are reset, and need to be run again.

In the Process Toolbar, click the Run All p button.
The export process finishes with no error messages.
Go to the Reports tab.

The Project Summary report shows no timing errors.

Close the Post-Synthesis Timing Constraint Editor.

Close the Radiant Project

If this were a real project, you would now program the FPGA on your
prototype board. Then you would start Reveal Analyzer/Controller to study the
internal operation of your design in detail.

But without a board, the tutorial ends here. You can close the project and exit
the Radiant software.

To gain more skill with the Radiant software, study the online help (Help >
Lattice Radiant Software Help). And begin work on your own project!

To close the project:

1.

Choose File > Close Project.

The Save Modified Files dialog box opens.
Select the files that you want to save.
Click OK.

42

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

Summary of Accomplishments

The design project and associated tools close. The Radiant window
returns to the Start Page.

4. You can continue to work with the Radiant software or exit by choosing
File > Exit.

Summary of Accomplishments

You have completed the Lattice Radiant 2.2 Tutorial with CrossLink-NX
(LIFCL). In this tutorial, you have learned how to:

Create a new Radiant project.
Customize IP using IP Catalog.
Verify functionality with simulation.
Set timing and location assignments.
Process the design.

Analyze power consumption.
Analyze static timing.

Use Reveal Inserter to add on-chip debug logic.

Recommended References

You can find additional information on the subjects covered by this tutorial in
the Radiant software online Help and in the Lattice Radiant Software User
Guide.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 43

http://www.latticesemi.com/view_document?document_id=52517
http://www.latticesemi.com/view_document?document_id=52517

Recommended References

44

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)

= LATTICE

Revision History

The following table gives the revision history for this document.

Date Version Description

10/20/2020 2.2 Updated for Radiant 2.2. Rewrote “Verify Functionality with
Simulation” task to use Mentor ModelSim instead of Aldec
Active-HDL.

6/2/2020 21 Updated for Radiant 2.1. Added section for PMI and Source

Template. Removed use of CrossLink-NX Evaluation Board
until an updated board is available.

2/25/2020 2.0.1 Modified to include use of the CrossLink-NX Evaluation
Board. Added sections for programming the FPGA, and
setting up and running on-chip debug.

12/17/2019 2.0 Added a link for downloading the design files. Expanded
Task 1 with more information about the main window and the
File List view.

11/12/2019 2.0 Initial Release.

Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL) 45

	Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)
	Contents
	Lattice Radiant 2.2 Tutorial with CrossLink-NX (LIFCL)
	About the Tutorial
	Task 1: Create a New Radiant Project
	Opening the New Project Wizard
	Setting the Project Name and Location
	Adding Source Files
	Selecting a Device
	Finishing the Project Setup
	About the File List View

	Task 2: Add HDL Code
	Generating a Module from IP Catalog
	Instantiating the Module
	Adding RAM with PMI
	Adding More RAM with PMI

	Task 3: Verify Functionality with Simulation
	Starting a Simulation Run
	Checking the Simulation Results
	Rerunning the Simulation

	Task 4: Set Location Assignments
	Task 5: Process the Design
	About the Process Toolbar
	Processing the Design

	Task 6: Examine the Layout
	Task 7: Analyze Power Consumption
	Task 8: Add an On-Chip Debug Module
	About the Logic Analyzer Core
	Setting Up Trace Signals
	Setting Up Trace Options
	Setting Up Trigger Units
	Setting Up a Trigger Expression
	Setting Up Trigger Options
	Creating Virtual Switches and LEDs
	Creating User Register Access
	Creating Hard IP Access
	Inserting the Debug Logic

	Task 9: Examine Timing Analysis Results
	Reading the Timing Analysis Report
	Using Timing Analyzer

	Task 10: Set Timing Constraints
	Defining the Oscillator Clock
	Close the Radiant Project

	Summary of Accomplishments
	Recommended References

	Revision History

