

www.latticesemi.com

1

tn1125_01.0

February 2007 Technical Note TN1125

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction

Lattice provides pre-tested, reusable functions that can be easily integrated into designs; thereby, allowing the
designer to focus on their unique system architecture. These Intellectual Property (IP) cores eliminate the need to
recreate many industry-standard functions. These IP Cores are optimized for Lattice Field Programmable Gate
Array (FPGA) architectures, which results in fast, compact cores that utilize the latest Lattice architectures to their
fullest.

The IPexpress™ design flow enables users to fully parameterize IP in real-time. IPexpress generates the IP in the
Verilog hardware description language (HDL). The designer can then instantiate the user-configured IP and com-
plete the design process, including simulation and bitstream generation. For those designers who prefer a VHDL
environment for simulation, the use of a single-kernel mixed-language simulator with Lattice FPGA device library
support is required. EDA tools such as ModelSim

®

 from Mentor Graphics

®

 and Active-HDL

®

 from Aldec

®

 provide
this feature.

Verilog Simulation Flow

Lattice IP cores are distributed using an obfuscated Verilog RTL simulation model and an encrypted Verilog gate
level model. In Verilog-based designs, the IP cores are directly instantiated in the top-level of the design as mod-
ules. A Verilog testbench is provided for all Lattice IPs. The testbench is used to verify the correct operation of the
IP prior to use in a design.

Mixed Language Simulation Flow

If the FPGA application is being developed in VHDL, the IP must be instantiated as a component. The entire FPGA
application can then be simulated as though the IP were a VDHL design. This process is shown in Figure 1.

Once the core has been generated by IPexpress, a VHDL wrapper must be created for instantiating the obfuscated
Verilog RTL simulation model. In ModelSim, a designer creates a component using a utility named vgencomp. This
utility reads in the Verilog top-level module port list and I/O declarations from which it creates a VHDL component
port map. The user creates a matching VHDL Entity/Architecture pair and instantiates the component within to cre-
ate the VHDL wrapper. The newly created VHDL wrapper can then be instantiated in a VHDL testbench or in a top-
level VHDL design. The design may now be compiled for simulation using vcom for the VHDL design units and vlog
for the Verilog modules.

Mixed-Language Simulation with
Lattice IP Designs Using ModelSim

2

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 1. Mixed Mode Simulation Flow for IP Express Generated IP Cores

Examples

The example below illustrates a VHDL instantiation of a Lattice DDR Verilog core generated by IPexpress. The IP
core can be created and simulated in the ModelSim environment. The following example assumes that the user is
experienced in using the ispLEVER

®

, IPexpress and ModelSim tool flows to implement a Lattice Semiconductor IP.
It also assumes that the user has used IPexpress to download and install the Lattice Semiconductor DDR SDRAM
Controller v6.2 in the directory C:\DDR_ML_Example.

Done

VHDL Top
Correct?

IP Core
Correct? Correct?

Verilog
Checker

Verilog IP Core
Obfuscated RTL

or
Encrypted NL

Verilog IP Core
Obfuscated RTL

or
Encrypted NL

VHDL Wrapper

VHDL
Checker

VHDL
Top Level

Verilog
Top Level

Verilog
Testbench

VHDL
Testbench

Test VectorsTest Vectors

Yes

Yes

Yes

No

No No

3

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Using ModelSim to Instantiate a Verilog RTL Design Into a VHDL Project

This example assumes the following:

• The user has installed Lattice ispLEVER 6.1 SP1 in the directory C:/ispTOOLS6_1.

• The user has already utilized the Lattice IPexpress tool to install the DDR SDRAM Controller v 6.2 in the direc-
tory C:/DDR_ML_Example.

• The targeted file name is ddr_sdram.

• The targeted device is the LFECP33E-4F484C.

• The user has installed ModelSim SE 6.2 C in the directory C:\Modeltech_6.2c.

Launch ModelSim and navigate to the simulation directory.

1. Click on Start->Programs->ModelSim->Modelsim

1.1. The

ModelSim opening screen

 now appears as shown in Figure 2.

Figure 2. ModelSim Opening Screen

4

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

1.2. Click on

File->Change Directory

The

Choose Folder

 window now appears as shown in Figure 3.

Figure 3. Choose Folder Screen Before Changing Directory

5

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

1.3. Browse to the project’s simulation directory.

Browse to

C:/DDR_ML_Example/ddr_p_eval/ddr_sdram/sim/modelsim

.

The

Choose Folder

 window now appears as shown in Figure 4.

Figure 4. Choose Folder Screen After Browsing to Project Simulation Directory

6

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

1. 4. Click on

OK

 to change to the project’s simulation directory.

The

Choose Folder

 screen will close and the ModelSim screen will appear as in Figure 5.

Figure 5. ModelSim Screen After Changing to the Project’s Simulation Directory

7

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2. Import the ECP Verilog library.

2.1. Click on

File->Import->Library

The

Import Library Wizard

 screen will appear as shown in Figure 6.

Figure 6. Import Library Wizard Screen Before Import

8

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.2. Click on the

Browse

 button.

The

Select Source Library

 screen will appear as shown in Figure 7.

Figure 7. Select Source Library Screen

9

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.3. Navigate to and select the ModelSim Verilog simulation library for the required Lattice device family.

Browse to

C:/ispTOOLS6_1/modelsim/lattice/verilog/ecp/ecp_vlg

.

The

Select Source Library

 screen will appear as shown in Figure 8.

Figure 8. Select Source Library Screen After Selecting ecp_vlg

10

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.4. Click on

OK

 to return to the Import Library Wizard.

The

Import Library Wizard

 screen will appear as shown in Figure 9.

Figure 9. Import Library Wizard Screen After Selecting ecp_vlg Library

2.5. Click on

Next

 to open the Import Library screen.

The

Import Library

 screen will appear as shown in Figure 10.

Figure 10. Import Library Screen with ecp_vlg Library

11

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.6. Click on

Next

 to select the destination folder.

The

Import Library

screen will appear as shown in Figure 11.

Figure 11. Import Library Screen

12

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.7. Browse to select the library destination folder.

Browse to

C:/DDR_ML_Example/ddr_p_eval/ddr_sdram/sim/modelsim

.

The

Destination Library Location

 screen will appear as shown in Figure 12.

Figure 12. Destination Library Selected

13

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.8. Click on

OK

 to return to the Import Library Wizard.

The

Import Library

 screen will appear as shown in Figure 13.

Figure 13. Import Library Screen Showing Destination Path

2.9. Click on

Next

 to import and map the simulation library.

The

Import Library

 screen will appear as shown in Figure 14.

Figure 14. Import Library Screen After Import and Mapping

14

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.10. Click on

Next

 to update the simulation library.

The

Import Library

screen will appear as shown in Figure 15.

Figure 15. Import Library Screen after Updating the Simulation Library

.2.11. Click on

Close

 to complete importing the simulation library.

ModelSim will now refresh the importing modules in the library and import it into the project workspace.

2.12. Return to the

ModelSim

 screen.

The

ModelSim

 screen will now appear as shown in Figure 16.

Figure 16. ModelSim Screen After Successfully Importing the ecp_vlg Simulation Library

15

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

3. Create the work library and run the Verilog simulation.

3.1 Click on

TOOLS->TCL->Execute

The

Execute Do File

 screen will appear as shown in Figure 17.

Figure 17. Execute Do File Screen

3.2. Click on

ddr_sdram_eval.do

 to select it.

The

Execute Do File

 screen will appear as shown in Figure 18.

Figure 18. Execute Do File Screen Ready to Execute the Simulation Macro

16

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

3.3. Click on

Open

 to execute the macro.

The simulator will execute the macro file and run the simulation. The

ModelSim

 screen will appear as shown in
Figure 19.

Figure 19. ModelSim Screen Displaying Successful Execution of the DDR SDRAM Behavioral Simulation

17

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4. Creating the VHDL Top Level Wrapper.

4.1. On the

ModelSim - Workspace - Library

 tab, expand the work library by clicking on the

+

 sign.

The

ModelSim

 opening screen now appears as shown in Figure 20.

Figure 20. ModelSim screen with expanded work library.

18

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.2. Scroll down the Library window to click on

ddr_sdram_mem_top

 to select it.

The

ModelSim

 opening screen now appears as shown in Figure 21.

Figure 21. ModelSim Screen with ddr_sdram_mem_top Module Selected

19

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.3. Type

vgencomp ddr_sdram_mem_top

 on the transcript window command line.

The

ModelSim

 opening screen now appears as shown in Figure 22.

Figure 22. ModelSim screen with “vgencomp ddr_sdram_mem_top” entered.

20

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.4. Enter a

carriage return

 to execute the transcript window command line.

The

ModelSim

 opening screen now appears as shown in Figure 23.

Figure 23. ModelSim Screen After Execution of vgencomp.

ModelSim has created a VHDL component port map that directly maps the ddr_sdram_mem_top Verilog module.
The component port map is shown in the Figure 24.

Note that the VHDL component port map is configuration-specific. Making any changes to the configuration in IPex-
press will also require matching changes to the component and its associated Entity/Architecture pair.

21

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 24. ModelSim Created VHDL Component Port Map

22

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.5. Implementing the Top-Level Wrapper.

The next step is to create a VHDL entity-architecture pair using the ModelSim generated component port map.

Edit a new VHDL source file and add the source code provided in the VHDL Wrapper Listing in this document. The
ModelSim screen is shown in Figure 25. Note that the component declaration has been copied into the VHDL file
and the entity/architecture pair have been built around it.

Figure 25. ModelSim Screen with New VHDL Wrapper in Text Editor

23

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.6. Saving the new VHDL Wrapper.

The next step is to save the new VHDL Wrapper in the top-level source directory

4.6.1. Click on File->Save As and enter ddr_sdram_mem_core_top.vhd into the file name text box.

The new ModelSim screen is shown in Figure 26.

Figure 26. Save As ddr_sdram_mem_core_top.vhd.

24

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.6.2. Browse to the directory C:\DDR_ML_Example\ddr_p_eval\ddr_sdram\src\rtl\top\ecp and click on Save to
save the new VHDL Wrapper.

The new ModelSim screen is shown in Figure 27.

Figure 27. ModelSim Screen with Saved VHDL Wrapper

25

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.7. Adding the new VHDL Wrapper to the work library.

The next step is to add the new VHDL Wrapper to the work library. This is done by modifying the
ddr_sdram_eval.do macro file. Click on File->Open to open the Open File window. Click on the selection arrow
next to the File Type text entry box and select Macro Files (*.do,*.tcl). Select ddr_sdram_eval.do. The Open File
screen is shown in Figure 28.

Figure 28. Open File Window with Macro File Showing

Click on Open to open the file in the text editor pane.

Add the following text to the file on line 25: vcom ../../src/rtl/top/ecp/ddr_sdram_mem_core_top.vhd

The ModelSim window with the modified file will appear as shown in Figure 29.

26

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 29. Modified VHDL Wrapper file.

Click on File->Save to save the edited file.

Click on Tools->TCL->Execute Macro and select ddr_sdram_eval.do.

The Execute Do File screen will appear as shown in Figure 30.

27

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 30. Execute Do File Screen with ddr_sdram_eval.do Selected

Click on Open to execute the macro file and compile the VHDL Wrapper into the work library. After compiling, the
simulator runs the simulation without using the new VHDL Wrapper. A new entry ddr_sdram_mem_core_top is cre-
ated in the work library. The ModelSim screen will appear as shown in Figure 31. Note the addition of the
ddr_sdram_mem_core_top Entity/Architecture pair.

28

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 31. ModelSim Window with Entity/Architecture Pair Added

Summary
The previous steps have verified the integrity of the Lattice IPexpress DDR SDRAM Controller 6.2 core and created
VHDL top-level wrappers for instantiation of the core into the user's design. As Lattice does not package a VHDL
test-bench with the IP core, the user must create a VHDL testbench for simulation of the core using the new wrap-
pers. Optionally the user may instantiate the core into their VHDL design and simulate the core as part of the over-
all design.

References
Refer to the ModelSim SE User's Manual Chapter 9 Mixed-Language Simulation and Chapter 18 Signal Spy for fur-
ther information.

HDL Source Listings
Verilog Core Top-Level Module
module ddr_sdram_mem_top (

 // Clock and reset
 clk_in, // System Clock
 rst_n, // System reset

 // Inputs signals from the User Interface
 cmd, // Command for controller

29

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

 addr, // Address for Rd/Wr
 cmd_valid, // Command Valid
 init_start, // Starts the Iitialization
 write_data, // Data to be written
 data_mask, // Data Mask

 // User Interface Output signals
 cmd_rdy, // Ready for the new Command
 init_done, // Initialization is done
 data_rdy, // Ready for more Write_data
 read_data, // Read data to the User
 read_data_valid, // Read Data Valid
 k_clk,

 // Bi-directional databus to external memory
 em_ddr_data, // Data to the memory
 em_ddr_dqs, // Data_Strobes

 // Output to External memory
 // SDRAM Address, controls and clock
 em_ddr_clk, // DDR1/DDR2 clock
 em_ddr_clk_n, // Inverted DDR1/DDR2 clock
 em_ddr_cke, // Clock Enable
 em_ddr_ras_n, // Row address strobe
 em_ddr_cas_n, // Column Address Strobe
 em_ddr_we_n, // Write Enable
 em_ddr_cs_n, // Chip select

 burst_term, // Burst Termination

 em_ddr_dm, // Data mask
 em_ddr_ba, // Bank Address
 em_ddr_addr // Row or Collumn Address
);

//--------User Inputs
input clk_in;
input rst_n;
input [3:0] cmd;
input [`ADDR_WIDTH-1:0] addr;
input cmd_valid;
input init_start;
input [`DSIZE-1:0] write_data;
input [`USER_DM-1:0] data_mask;

//--------User Outputs
output cmd_rdy;
output init_done;
output data_rdy;
output [`DSIZE -1:0] read_data;
output read_data_valid;
output k_clk;

//--------DDR Bi-Directionals

30

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

inout [`DATA_WIDTH-1:0] em_ddr_data;
inout [`DQS_WIDTH-1:0] em_ddr_dqs;

//--------DDR Outputs
output [`DATA_WIDTH/8-1:0] em_ddr_dm;
output [`CLKO_WIDTH-1:0] em_ddr_clk;
output [`CLKO_WIDTH-1:0] em_ddr_clk_n;
output [`CKE_WIDTH-1:0] em_ddr_cke;
output em_ddr_ras_n;
output em_ddr_cas_n;
output em_ddr_we_n;
output [`CS_WIDTH-1:0] em_ddr_cs_n;

//--------DDR Inputs
input burst_term;

//--------DDR Output Buses
output [`ROW_WIDTH-1:0] em_ddr_addr;
output [`BNK_WDTH-1:0] em_ddr_ba;

VHDL Wrapper Listing
Library IEEE;
Use IEEE.Std_Logic_1164.All;

 Entity ddr_sdram_mem_core_top Is
 Port(
 clk_in : in std_logic;
 rst_n : in std_logic;
 cmd : in std_logic_vector(3 downto 0);
 addr : in std_logic_vector(24 downto 0);
 cmd_valid : in std_logic;
 init_start : in std_logic;
 write_data : in std_logic_vector(63 downto 0);
 data_mask : in std_logic_vector(7 downto 0);
 cmd_rdy : out std_logic;
 init_done : out std_logic;
 data_rdy : out std_logic;
 read_data : out std_logic_vector(63 downto 0);
 read_data_valid : out std_logic;
 k_clk : out std_logic;
 em_ddr_data : inout std_logic_vector(31 downto 0);
 em_ddr_dqs : inout std_logic_vector(3 downto 0);
 em_ddr_clk : out std_logic_vector(0 downto 0);
 em_ddr_clk_n : out std_logic_vector(0 downto 0);
 em_ddr_cke : out std_logic_vector(0 downto 0);
 em_ddr_ras_n : out std_logic;
 em_ddr_cas_n : out std_logic;
 em_ddr_we_n : out std_logic;
 em_ddr_cs_n : out std_logic_vector(0 downto 0);
 burst_term : in std_logic;
 em_ddr_dm : out std_logic_vector(3 downto 0);
 em_ddr_ba : out std_logic_vector(1 downto 0);

31

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

 em_ddr_addr : out std_logic_vector(12 downto 0)
);
 end ddr_sdram_mem_core_top;

 architecture ddr_sdram_mem_core_arch of ddr_sdram_mem_core is

 component ddr_sdram_mem_core -- created by vgencomp
 port(
 clk_in : in std_logic;
 rst_n : in std_logic;
 cmd : in std_logic_vector(3 downto 0);
 addr : in std_logic_vector(24 downto 0);
 cmd_valid : in std_logic;
 init_start : in std_logic;
 write_data : in std_logic_vector(63 downto 0);
 data_mask : in std_logic_vector(7 downto 0);
 cmd_rdy : out std_logic;
 init_done : out std_logic;
 data_rdy : out std_logic;
 read_data : out std_logic_vector(63 downto 0);
 read_data_valid : out std_logic;
 k_clk : out std_logic;
 em_ddr_data : inout std_logic_vector(31 downto 0);
 em_ddr_dqs : inout std_logic_vector(3 downto 0);
 em_ddr_clk : out std_logic_vector(0 downto 0);
 em_ddr_clk_n : out std_logic_vector(0 downto 0);
 em_ddr_cke : out std_logic_vector(0 downto 0);
 em_ddr_ras_n : out std_logic;
 em_ddr_cas_n : out std_logic;
 em_ddr_we_n : out std_logic;
 em_ddr_cs_n : out std_logic_vector(0 downto 0);
 burst_term : in std_logic;
 em_ddr_dm : out std_logic_vector(3 downto 0);
 em_ddr_ba : out std_logic_vector(1 downto 0);
 em_ddr_addr : out std_logic_vector(12 downto 0)
);
 end component;

begin

 sdram_mem_core_inst: ddr_sdram_mem_core
 port map(
 clk_in => clk_in,
 rst_n => rst_n,
 cmd => cmd,
 addr => addr,
 cmd_valid => cmd_valid,
 init_start => init_start,
 write_data => write_data,
 data_mask => data_mask,
 cmd_rdy => cmd_rdy,
 init_done => init_done,
 data_rdy => data_rdy,
 read_data => read_data,

32

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

 read_data_valid => read_data_valid,
 k_clk => k_clk,
 em_ddr_data => em_ddr_data,
 em_ddr_dqs => em_ddr_dqs,
 em_ddr_clk => em_ddr_clk,
 em_ddr_clk_n => em_ddr_clk_n,
 em_ddr_cke => em_ddr_cke,
 em_ddr_ras_n => em_ddr_ras_n,
 em_ddr_cas_n => em_ddr_cas_n,
 em_ddr_we_n => em_ddr_we_n,
 em_ddr_cs_n => em_ddr_cs_n,
 burst_term => burst_term,
 em_ddr_dm => em_ddr_dm,
 em_ddr_ba => em_ddr_ba,
 em_ddr_addr => em_ddr_addr
);

 end ddr_sdram_mem_core_arch;

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

February 2007 01.0 Initial release.

	Mixed-Language Simulation with Lattice IP Designs Using ModelSim
	Introduction
	Verilog Simulation Flow
	Mixed Language Simulation Flow
	Examples
	Using ModelSim to Instantiate a Verilog RTL Design Into a VHDL Project

	Summary
	References
	HDL Source Listings
	Verilog Core Top-Level Module

	VHDL Wrapper Listing
	Technical Support Assistance
	Revision History

