=] attice Mixed-Language Simulation with

212181 Semiconductor Lattice IP Designs Using ModelSim
February 2007 Technical Note TN1125
Introduction

Lattice provides pre-tested, reusable functions that can be easily integrated into designs; thereby, allowing the
designer to focus on their unique system architecture. These Intellectual Property (IP) cores eliminate the need to
recreate many industry-standard functions. These IP Cores are optimized for Lattice Field Programmable Gate
Array (FPGA) architectures, which results in fast, compact cores that utilize the latest Lattice architectures to their
fullest.

The IPexpress™ design flow enables users to fully parameterize IP in real-time. IPexpress generates the IP in the
Verilog hardware description language (HDL). The designer can then instantiate the user-configured IP and com-
plete the design process, including simulation and bitstream generation. For those designers who prefer a VHDL
environment for simulation, the use of a single-kernel mixed-language simulator with Lattice FPGA device library
support is required. EDA tools such as ModelSim® from Mentor Graphics® and Active-HDL® from Aldec® provide
this feature.

Verilog Simulation Flow

Lattice IP cores are distributed using an obfuscated Verilog RTL simulation model and an encrypted Verilog gate
level model. In Verilog-based designs, the IP cores are directly instantiated in the top-level of the design as mod-
ules. A Verilog testbench is provided for all Lattice IPs. The testbench is used to verify the correct operation of the
IP prior to use in a design.

Mixed Language Simulation Flow

If the FPGA application is being developed in VHDL, the IP must be instantiated as a component. The entire FPGA
application can then be simulated as though the IP were a VDHL design. This process is shown in Figure 1.

Once the core has been generated by IPexpress, a VHDL wrapper must be created for instantiating the obfuscated
Verilog RTL simulation model. In ModelSim, a designer creates a component using a utility named vgencomp. This
utility reads in the Verilog top-level module port list and I/O declarations from which it creates a VHDL component
port map. The user creates a matching VHDL Entity/Architecture pair and instantiates the component within to cre-
ate the VHDL wrapper. The newly created VHDL wrapper can then be instantiated in a VHDL testbench or in a top-
level VHDL design. The design may now be compiled for simulation using vcom for the VHDL design units and vlog
for the Verilog modules.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 1 tn1125_01.0

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 1. Mixed Mode Simulation Flow for IP Express Generated IP Cores

VHDL Verilog
Test Vectors Testbench —p Testbench Test Vectors

v A4
VHDL Verilog
Top Level Top Level
v v
VHDL Wrapper
) Verilog IP Core
Verilog IP Core Obfuscated RTL
Obfuscated RTL or
or Encrypted NL
Encrypted NL

'

Verilog ¢
Checker

> VHDL
Checker

No Correct? Yes

No

Examples

The example below illustrates a VHDL instantiation of a Lattice DDR Verilog core generated by IPexpress. The IP
core can be created and simulated in the ModelSim environment. The following example assumes that the user is
experienced in using the ispLEVER®, IPexpress and ModelSim tool flows to implement a Lattice Semiconductor IP.
It also assumes that the user has used IPexpress to download and install the Lattice Semiconductor DDR SDRAM

Controller v6.2 in the directory C:\DDR_ML_Example.

Lattice Semiconductor

Mixed-Language Simulation

with Lattice IP Designs Using ModelSim

Using ModelSim to Instantiate a Verilog RTL Design Into a VHDL Project

This example assumes the following:

* The user has installed Lattice ispLEVER 6.1 SP1 in the directory C:/ispTOOLS6_1.

* The user has already utilized the Lattice IPexpress tool to install the DDR SDRAM Controller v 6.2 in the direc-

tory C:/DDR_ML_Example.
* The targeted file name is ddr_sdram.
» The targeted device is the LFECP33E-4F484C.

* The user has installed ModelSim SE 6.2 C in the directory C:\Modeltech_6.2c.

Launch ModelSim and navigate to the simulation directory.

1. Click on Start->Programs->ModelSim->Modelsim

1.1. The ModelSim opening screen now appears as shown in Figure 2.

Figure 2. ModelSim Opening Screen

T MuodelSim SE PLUS 6.2¢
File Ect

View Compile Simulste Add Library Took Layost ‘Window Heslp

[thms’_ -

synopsys Liceany

ol veiog Lty M
L
(] — |
i] r
Transcript

MR EH

i/ THIS WORK CONTAINS TRADE SECRET AND

/7 PROPRIETARY INFORMATION WHICH |5 THE PROPERTY
/¢ OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS
gﬁ; AMND IS SUBJECT TO LICENSE TERMS.

ModetSin:

|n1ram:r'pt|

<No Design Loaded>

|IRacursive Mode 4

Lattice Semiconductor

Mixed-Language Simulation
with Lattice IP Designs Using ModelSim

1.2. Click on File->Change Directory

The Choose Folder window now appears as shown in Figure 3.

Figure 3. Choose Folder Screen Before Changing Directory

[7]Choose folder

F=H A

;}[;_",_ Cif

ilaalitilalu

=1 D
=] E¥
= Fu
+=H Hi
=1
<]

- ModelTech_B.2¢c

ok o

xamples

X

rmisc

psl

systemc
systermverilog
tutarials

ucdb

verilog

vhdl

Directory path
’Ef ModelTech_E.2c/examples

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

1.3. Browse to the project’s simulation directory.

Browse to C:/DDR_ML_Example/ddr_p_eval/ddr_sdram/sim/modelsim.

The Choose Folder window now appears as shown in Figure 4.

Figure 4. Choose Folder Screen After Browsing to Project Simulation Directory
x|

=2 A)

;’Hp ci
-Har DDR_ML_Example
- ddr_p_eval

j—? ddr_sdram

=} sim

=3 Dd
=] EJ
=H23 Fi
S0 HY
= 1
= J
] K
0 M
=3 Py
1H:| =¥ LI
< | |

— Directory path
[DDFI_ML_E:-:ample;’ddr_p_eval;’ddr_sdrarnf’sim.-"modelsim

oK I Cancel|

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

1. 4. Click on OK to change to the project’s simulation directory.
The Choose Folder screen will close and the ModelSim screen will appear as in Figure 5.

Figure 5. ModelSim Screen After Changing to the Project’s Simulation Directory

[ModelSim SE PLUS 6.2c (o] x|
Fle Eckt View Comple Simuste Add Ubrary Took Layout Window Help

[DsesisReans A8 %] SERE|| w2 x0X 2] Lowfden

e = A

[TName 2Type [Faih | | =
4 lese Library SMUDEL_TECH/. fieee

il modeisin_ib Librarp $MODEL_TECH/.. /modeksim_kb

sl s Librarp $MODEL_TECH/../std

ifl] std_devekperskit Librarp $MODEL_TECH/.. /std_developerskit

] svsd Librarp $MODEL_TECH/../ev_std

1,1]1 WhopaYs Library SMUDEL_TECH/. Asyropsys

] veiiog Library SMODEL_TECH/.. Aveibog

+ vial2000 Library $MODEL_TECH/. Adlal00

] 1 Libeary | KL
Trarseipt

// THIS WORK, CONTAINS TRADE SECRET AMD

/7 PROPRIETARY INFORMATION WHICH |5 THE PROPERTY

// OF MENTOR GRAPHICS CORPORATION O 1TS LICENSORS

/7 &ND IS SURJIECT TO LICENSE TERMS.

t/

cd C./DDA_ML_E xample//ddr_p_sval/dd_sdram/sim/madelsim

ModelSing

| F Transcript I
|<Nu Design Loaded> ||F!el:ursive Mode

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2. Import the ECP Verilog library.

2.1. Click on File->Import->Library

The Import Library Wizard screen will appear as shown in Figure 6.
Figure 6. Import Library Wizard Screen Before Import

[“]Import Library Wizard =101 x|

The Import Library Wizard will step you through the tasks necessary
to reference and use a library.

A library can be either an existing Model Technology library or an
FPGA library that you received from an FPGA vendor. |f the library
was received from an FPGA vendor, it must be a precompiled
library.

Please enter the location of the library to be imported below.

Import Library Pathname
Bmwse...l
< Previous MNext > | Cancel |

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.2. Click on the Browse button.
The Select Source Library screen will appear as shown in Figure 7.

Figure 7. Select Source Library Screen

E]'Select Source Library
®{2 AY
;’Hp Gl
= DDR_ML_Example
- ddr_p_eval

;’)—Q ddr_sdram
B™= modelsim
=3 Dy
=] EJ
=3 Hi
=3 1
= Jf
=3 Ky
] M —
=3 Py
=3 sy
1|'|:| Wi LI
<| | [

Ly

Library path
’E)FI_ML_E wample/ddr_p_eval/ddr_sdram/sim/modelsim

0K I Eancel|

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.3. Navigate to and select the ModelSim Verilog simulation library for the required Lattice device family.
Browse to C:/lispTOOLS6_1/modelsim/lattice/verilog/ecp/ecp_vig.
The Select Source Library screen will appear as shown in Figure 8.

Figure 8. Select Source Library Screen After Selecting ecp_vig

[pz;-_;]'Select Source Library x|

=0 AY A
=H_1 Ci
;}LP ispTOOLSE_1
= modelsim
= lattice

—Ha verilog
L—# ecp

T E—

=3 Di
=] ES
0 Hi
£
= Ji
=] Ky
+H0 M
=] P
1H:| =¥ LI

o |]

— Library path

[C'. AspT O0LSE_1/modelsimdlathice/venloglecplecp_vlg

oK I Cancel|

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.4. Click on OK to return to the Import Library Wizard.
The Import Library Wizard screen will appear as shown in Figure 9.

Figure 9. Import Library Wizard Screen After Selecting ecp_vlg Library

[“]Import Library Wizard =101 x|

The Import Library Wizard will step you through the tasks necessary
to reference and use a library.

A library can be either an existing Model Technology library or an
FPGA library that you received from an FPGA vendor. |f the library
was received from an FPGA vendor, it must be a precompiled
library.

Please enter the location of the library to be imported below.

Import Library Pathname

I C:/ispTOOLSE_1/modelsim/lattice /verlog/ecp/ecp_vig

Browse... |

< F’reviousl MNext > | Cancel |

2.5. Click on Next to open the Import Library screen.
The Import Library screen will appear as shown in Figure 10.

Figure 10. Import Library Screen with ecp_vlg Library
ﬁlmport Library: ec -10] x|

— Library Information

Library Wendor: Model Technology
Library Wersion :

tMapping Name : ecp_vlg
Destination :

Library Dependencies

Mo library dependencies

4 Previuus| Mext > | Cancel |

10

Mixed-Language Simulation

Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.6. Click on Next to select the destination folder.
The Import Library screen will appear as shown in Figure 11.
Figure 11. Import Library Screen

ﬁ Import Library: ecp_vlg Alglﬁ

Please specify the destination location where this library should be copied. The
library will be copied to the new location and it will be mapped.

—Source Library
C:/ispTOOLSE_1/modelsim/lattice/verilog/ecplect
— Destination
Browse... |
—Mapping Mame
ecp_vlg

£ Pteviousl MNext > | Cancel |

11

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.7. Browse to select the library destination folder.
Browse to C:/DDR_ML_Example/ddr_p_eval/ddr_sdram/sim/modelsim.
The Destination Library Location screen will appear as shown in Figure 12.

Figure 12. Destination Library Selected

[+ Destination library location: x|

= A]
;’Hp i
= DDR_ML_Example
- ddr_p_eval

j—? ddr_sdram

=} sim

=3 Dd
=] EJ
*H D Hi
= i
= Ji
= K
FH M L]
= P

=3 s

1H:| Wi LI
< | |
— Directory path
[DDFI_ML_E:-:ample;’ddr_p_eval;’ddr_sdrarnf’sim.-"modelsim

oK I Cancel|

12

Mixed-Language Simulation

Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.8. Click on OK to return to the Import Library Wizard.
The Import Library screen will appear as shown in Figure 13.

Figure 13. Import Library Screen Showing Destination Path

]}zj Import Library: ecp_vlg 4@1’

Please specify the destination location where this library should be copied. The
library will be copied to the new location and it will be mapped.

—Source Library
C:/ispTOOLSE_1/modelsim/lattice/verilog/ecplect

— Destination

I C:/DDR_ML_Example/ddr_p_eval/ddr_sdram/sim/mod:

Blowse...l

—Mapping Mame

ecp_vlg

£ Previousl MNext > | Cancel |

2.9. Click on Next to import and map the simulation library.
The Import Library screen will appear as shown in Figure 14.
Figure 14. Import Library Screen After Import and Mapping
ﬁlmpurt Library: ecp_vlg =100 %]
The library has been imported and mapped, and is now ready

to be refreshed. This step will update the library data to the
current compiler version. Press Next to continue,

<F"reviaus| Mext > | Cancel |

13

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

2.10. Click on Next to update the simulation library.
The Import Library screen will appear as shown in Figure 15.

Figure 15. Import Library Screen after Updating the Simulation Library

']_'I__j Import Library: ecp_vlg =101 x|
The library has been successfully imported.

Close |

.2.11. Click on Close to complete importing the simulation library.

ModelSim will now refresh the importing modules in the library and import it into the project workspace.

2.12. Return to the ModelSim screen.
The ModelSim screen will now appear as shown in Figure 16.

Figure 16. ModelSim Screen After Successfully Importing the ecp_vig Simulation Library

T MuodelSim SE PLUS 6.2¢

Filz Ect vView Complle Simulate Add Ubeary Took Lazyot Window Help

lDs a2 82 %] SERM|| com 2|

2| Type |F'alh
ecp_vig Library C/DDH_ML_Exarple/ddr_p_eval/ddi_sdram/smimodebardecp_vig
Library SMODEL_TECH/.. fieee
Library $MODEL_TECH/../modeksim_ib
Library $MODEL_TECH/../ad

_,m std_developershit Library $MODEL_TECH/../std_developerskit
av_std Library SMUDEL_TECH/. /sv_std

WhOoDIYE Library SMODEL_TECH/.. fsynopsys

ol veing Library $SMODFL_TECH?. Aveilog

wial 2000 Library $MODEL_TECH/. Adtal2000

Trarscipt
Relreshirg module X0R11

- Refreshing module X0R2

- Relrzshirg module X0R21

- Relreshirg module X0R3

- Relieshirg module X0R4

- Refreshirg module XORS

I

ModelSim>

| F Transcrpt I KIE|

| <No Design Loaded>

|[Recursve Made

14

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

3. Create the work library and run the Verilog simulation.
3.1 Click on TOOLS->TCL->Execute
The Execute Do File screen will appear as shown in Figure 17.

Figure 17. Execute Do File Screen

21

Look in: |a modelsim :I = [:’_i‘ '

= ecp_vlg
r[g ddr_sdram_eval.do

History

D e:sk.tdp

=]

My Computer
g’ =

p—

My Network P...

File name: I :I Open

Files of type: IMacm Files [*.do." tcl) =l Cancel /l
%

3.2. Click on ddr_sdram_eval.do to select it.

The Execute Do File screen will appear as shown in Figure 18.

Figure 18. Execute Do File Screen Ready to Execute the Simulation Macro

20

Look in: | -3 modelsim x| « &k E-
= ecp_vlg
@ ddr_sdram_eval.do

History

My Metwork P...

File name: Iddr_sdram_eval, do :I Open I

Files of type: Ih‘lacro Files [*.da.” tcl) j Cancel

15

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

3.3. Click on Open to execute the macro.

The simulator will execute the macro file and run the simulation. The ModelSim screen will appear as shown in
Figure 19.

Figure 19. ModelSim Screen Displaying Successful Execution of the DDR SDRAM Behavioral Simulation
=10

Fle Ect View cComplle Simulate Add wave Took Layout Window Help

IsEE sReD B %] SERA| 4 e (FM ondlBE BP R g g el 7]
0L 0 || eafmime [R AET][QQQAQ]

Tﬂz@!m}éﬁ|

y pace i H A x
jlnstan:a ;I
ol PUR_INST
o read
ol resda
o resst
ol self_ref
=kl U _dde_scham_mesm_top
=4 U0 DOSDLL
++ 8 U1_dd_zdram_mem_core
=2l U1_dd_sdram_mem_io_top
~a u_G5R
—a UT_INY
ood U1_kba_cle_pl
(o U _mem_db_width_32

fhest_mem_chil/U1_ddr_sdram_me. .
mem_chlf)1_ddi_sdram_me...
L_mem_ctil/U1_ddr_sdram_me...

701 _ddi_scham_me .

o sdram_rem...
|_mem_ctl/U1_ddi_sdiam_mem...
chl/U1_ddi_sdram_rmem

How pi0ps

(#h o U _monice
ol U1 oot watchdog |
[— =
|mmawlﬁsimlr:-]‘jﬂes|ﬂhieldﬂ |dwaw| CE]
Transcrpt HaA
Sirulation Breakport: Simulation stop requested =l
MACHD CADDR_ML_E xample’dcr_p_svaldd_sdrambsimmodelsim'.ddr_sdram_eval do FAUSED 2t ne 50
Brzak keyp hit
VS IM[paused) =
| F Transcrpt I KIE|
|Now: 4,965 ns Delta: 2 |s|m:Iteat_rnem_:trlfU1_ddr_sdrnm_mem_mpﬂJ‘l _ddr_sdram_mem_io_top/AU1_ddr_data_iofu[31/bidi_cell/J)1_IDDREBAALWA

16

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4, Creating the VHDL Top Level Wrapper.
4.1. On the ModelSim - Workspace - Library tab, expand the work library by clicking on the + sign.
The ModelSim opening screen now appears as shown in Figure 20.
Figure 20. ModelSim screen with expanded work library.
—

1 EBARDS A% S2RH| 4+ €» (B ondABEB BT R g g[] el 2
IEt BT EEEE

gl viave - defakt EEF
(— Global Signal:

: - 4 ftest_mem_ctl/1_ddi_sdram_mem...
o] ie= Librai 4 Pest_mem_ctd/UT_dd_sdram_mem...
:,m modedsim_ih Libra [— Memon Interface Signals
:,m std Librai Stest_mem_chl/U1_ddr_sdiam_ma
4 m std_daveloperskit Libtaik Stest_mem_chil/U1_ddr_sdram_me...
:‘m v and Librai ftest_mem_ctil/U1_ddr_sdram_mea.. Pz
m . ftest_meem_chilAJ1_ddi_sdram_me...
) SYOpEYE Libra)
5“ vering Librai
o] vie2000 Librai
] wer Lioral ! m_ctl/U1_ddi_sdram_mem,..
M 0P Optar { il AU1_cdi_sdram_mem
—_] a1 B8b_ddr_sdram Mod. — - — =
—J bidi_cel Hod.]
[0 bidi oz Mod. =]
(5] — = ||
] I Liteary | &5 sm | 2 HMmdul | o wave I]
Transcript Ha
Sirulation Breakport: Simulation stop requested =l
MACHD CADDR_ML_E xample’dcr_p_svaldd_sdrambsimmodelsim'.ddr_sdram_eval do FAUSED 2t ne 50
Brzak keyp hit

VS IM[paused) =

| F Transcrpt I KIE|

|Now: 4965 ns Delta: 2 sim:/test_mem_ctd/U1_ddr_sdram_mem_top/U1_ddr_sdram_mem_io_top/U1_ddr_data_iofu[31Jbidi_cellfl)1_IDDRXBAALWA

17

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.2. Scroll down the Library window to click on ddr_sdram_mem_top to select it.
The ModelSim opening screen now appears as shown in Figure 21.

Figure 21. ModelSim Screen with ddr_sdram_mem_top Module Selected
i I=1ES|

Flz Ecit View Compile Simuate Add Transcript Tools Layout Window Heb

IsEG s eEn A% SERMA| 4 e (FMrosdElLE DR R g g el 2
IEt BT EEEE
& afadigoee &|

XOK [

P ——— Hax
AR SType 2| | Global Signaly —————————————
{1 bici_cel Mod. 4 Nest_mem_cil/UT_cdi_sdram_mem..
__—l bidi_cqs Mod. 4 JNtest_mem_ctl/U1_ddi_sdram_mem...
L] ea_dvgen_dd_sdiam Mod. — Memory Interfece Signals
___] data_vald_macicl Hod. Stest_mem_chl/U1_ddr_sdiam_ma
_—l data_valid macio2 Hod, Shest_mem_chl/U1_ddr_sdram_me...
rid ddt) Hod. mem_ctil/U1_ddr_sdram_ma... 2
] dd_dataio Hod L_mem_ctil/J1_dd_sdram_me...
i) dd_dm_io Hod. et AUH_ddr_sckasn_me. .
[de_daz_io Mod. _|
i) dd_scham Hod. hest_mem_ctl/UIT_cdr_sdram_mem...
] dd_scham_msmio_top Hod. | m_ctl/U1_ddi_sdram_mem...
5 ddk_stkam_mem_bop chl/U1_ddi_sdram_rmem
= eadb2el_ddr_sdram Mad. P . . I
_J gdfd_ddy_sdham Mod Now PO ps
HIE ictaiSt_dar_sdiam Hod. -
il | 5

]mmaw ﬁsim

Sirulation Breakport: Simulation stop requested
MACHD CADDR_ML_E xample’dcr_p_svaldd_sdrambsimmodelsim'.ddr_sdram_eval do FAUSED 2t ne 50

Broak key hit

VS IMpausedd vgencomp -

| F Transcrpt I KIE|
|Now: 4965 ns Delta: 2 sim:/test_mem_ctd/U1_ddr_sdram_mem_top/U1_ddr_sdram_mem_io_top/U1_ddr_data_iofu[31Jbidi_cellfl)1_IDDRXBAALWA

18

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.3. Type vgencomp ddr_sdram_mem_top on the transcript window command line.
The ModelSim opening screen now appears as shown in Figure 22.

Figure 22. ModelSim screen with “vgencomp ddr_sdram_mem_top” entered.
=10 x|

Filz Ecit vView Compile Simulate Add Transcript Tools Layout Window Heb

DB s a0 A% || SHRA| 4+ €+ (B ondABE DR Q|| el 2
I BRI EEEE
& afadigoee &|

XOK [

pace ——— il Halx g vave - defaul A x
Ll SType 2| | Global Signaly ————————————— [
{1 bici_cel Mod. 4 Nest_mem_cil/UT_cdi_sdram_mem..
__—l bidi_cqs Mod. 4 JNtest_mem_ctl/U1_ddi_sdram_mem...
L] ea_dvgen_dd_sdiam Mod. — Memory Interfece Signals
___] dat_vald_macrol Hod. Atest_mem_chl/L1_ddi_stham_m=
_—l data vald macroz Hod. Stest_mem_chilfU1_ddi_sdram_me. .
rid 41 . Hod. best_mem_chil/U1_ddi_sdram_me... [
] dd_dataio Hod ftest_mem_ctil/J1_ddi_sdram_me...
i) dd_dm_io Hod. et AUH_ddr_sckasn_me. .
[de_daz_io Mod. _|
_:—l ddk_scham Mod. Mest_mem_ctl/U1_ddi_sdram_menm..,
] dd_scham_msmio_top Hod. m_ctl/U1_ddi_sdram_mem...
5 ddk_stkam_mem_bop em_chl/U1_ddi_sdram_mem
= eadb2el_ddr_sdram Mad. P . . I
_J gdfd_ddy_sdham Mod Now PO ps
N cfaibt_dor_sdeam Mod. ;l
il | 5

]mmaw ﬁsim

& Sirlation Break poit Simulation stop requested
MACHO CADOR_ML_E xample’dcr_p_svahdd_sdrambsimimodelzim'ddr_sdiam_eval do FALUSED =t ne B0

Brsak key hit
VS IM[paused): wgencomp ddr_sdram_mem_top -
| F Transcrpt I KIE|
[Nuw. 4965 ns Delta: 2 sim:test_mem_ctrdU1_ddr_sdram_mem_top/UT_ddr_sdram_mer_io_top/AU1_ddr_data_iofu[21)/bidi_cellfl)_IDDRXBAALWA

19

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.4. Enter a carriage return to execute the transcript window command line.
The ModelSim opening screen now appears as shown in Figure 23.

Figure 23. ModelSim Screen After Execution of vgencomp.
=101 x|

Fll= Ec#t View Compile Simuate Add Transcript Tools Layout Window Hebo

Broak key hit =
VS IMIoausedl: vgercomp ddr_sdran_men_lop
component ddr_sdiam_mem_lop

porf
ckin :in atd b
i in sd Joge.
e n std_kgic_vectod]3 downto 0
addr cin std_logic_vectord 24 downta).

cmd_valid in std_logic;

mit_start cin std logic:

wite_dasta :in std_logic_vectar(B3 dowto 0):
dala_mazk in sid_loges_wectol7 dowelo O):
cd_rdy oot std_logee:

nit_donz :out std legic

data_rdy out std_kgic;

read_dstz ot shd_logic_wector53 downto 0);
read_dsla_vahd o sd_loge;

k_ck cout std_logec:

em_dd_data : nout std_loge vectod31 downto D)
em_dd_dgs : inout std_logec_wector3 dowto O):
em_dd ok cut std bogic_vectod0 downto 0):
em_dd_ck_n out sd_loge_veclold downto 01
em_dd_cke :out sid_logic_vectorl0 dowmto O):
em_dd ez out std_loge:

em_dd_cas_n :out std bgic;

em_dd_we_n out std logic;
em_dd_cs n ouwt sd_loge_veclold downto 01

burst_tem :in std_ogic:

em dd dm :out sid logic_vector|3 downto D)
em_ddr_ba out std_logic_vectolf] dovnto O

em_dd_addi :out std locic_wector[12 downta 0)

E e il e e o

end companent:

VS IM(paused) j
| F Transcrpt I EIE
[Nowr 4965 ns Delta: 2 |snm:Itest_rnem_:trlfU1_ddr_sdram_mem_mpﬂJ‘l _ddr_sdram_mem_io_top/U1_ddr_data_iofu[31bidi_cell/)1_IDDRXBMFALWA

ModelSim has created a VHDL component port map that directly maps the ddr_sdram_mem_top Verilog module.
The component port map is shown in the Figure 24.

Note that the VHDL component port map is configuration-specific. Making any changes to the configuration in [Pex-
press will also require matching changes to the component and its associated Entity/Architecture pair.

20

Lattice Semiconductor

Mixed-Language Simulation

with Lattice IP Designs Using ModelSim

Figure 24. ModelSim Created VHDL Component Port Map

)

#
f
#
#
tt
#
#
tt
#
#
t
#
#
#
#
t
#
#
#
t
#
#
#
#
#
#
f
#
#

component ddr_sdram_mem_top

port
cli_in in std_logic:
1st_n Jin std_logic;
cmd tin std_logic_wvectar(3 downto 0);
addr in std_logic_vector[24 downto 0];
cmd valid cin std_logic;
init_start :in std_logic:
wiite_data :in std_logic_vector[63 downto 0];
data mask :in std_logic wvector? downto 0;
cmd_rdy s out std_logic;
init_done : out std_logic;
data_rdy cout std logic;
read data ;out std logic_vector[B3 downto 0];

read_data wvalid: out std_logic;

k_clk. cout std_logic;

em_ddr_data :inout std_logic_vector[31 downto 0];
em_ddi_dgs : inout std_logic_vector[3 downto 0];
em_ddi_clk :out std_logic_vectorQ downto 0);
em_ddr_ck_n :out std_logic_vector[0 downto 0);
em_ddi_cke :out std_logic_wvector(Q downto 0);

cout std_logic;
cout std_logic;

em_ddi_ras n
em_ddi_cas_n

em_dd_we_n :out std_logic;

em_ddr_cs_n :out std_logic_vector(0 downto 0);
burst_term s in std_logic;

em_ddr_dm :out std_logic_vector3 downto 0);
em_ddr_ba :out std_logic_vector[l downto 0);

em_ddi_addr : out std_logic_wvector[12 downto 0]

end component;

21

Lattice Semiconductor

Mixed-Language Simulation
with Lattice IP Designs Using ModelSim

4.5. Implementing the Top-Level Wrapper.

The next step is to create a VHDL entity-architecture pair using the ModelSim generated component port map.

Edit a new VHDL source file and add the source code provided in the VHDL Wrapper Listing in this document. The
ModelSim screen is shown in Figure 25. Note that the component declaration has been copied into the VHDL file
and the entity/architecture pair have been built around it.

Figure 25. ModelSim Screen with New VHDL Wrapper in Text Editor

[ModelSim SE PLUS 6.2c =181 x|
File Edt View Complle Simulate Add Source Tools Layowt Window Help
IEEE LR8O A% SHAA|| 4> 0= LU B PR g]| o 2
XX DB || wouFmime | & A || A
REET R
i i HaAx ML_Example/ddi_p_eval/ddr_sc
*[Name | Type ;!
=1 bdi =l tlodk
L] b dae Mod. 1 Library IEEE;
| eal_cvgen,_ddt_sdram Mod. 2 Use IEEE.Std_Logic_1164.411;
| 1] data_valid_macol Mod, 3
L1 data_valid_macro2 Mody 4 Entity ddr_sdram_mem_core_top Is
b1 ddrl ok 5 Port (
1] ddr_data_io Modu & clk_in tin std_legic;
b1 ddr_dm_io Moo 7 rst n : in std logic;
1) ddr_das_io tdody g cmd :in std_logic_vector (3 downto 0);
L) ddr_sdram Mo El addr tin std_logic_vector (24 downte 0);
(=1 dd_sdham_rnem_in_tep Mod. 10 cmd_valid : in = logic:
dar_s o2 Mo 11 init_start : in std_logic;
1) e2d62e0_ddi_schzm Mod. 1z write data :in std logic vector (63 downto 0);
“ﬂ ??:li'd_:‘dir_;jmm mﬁ 13 data mask toin std logic vector (7 downto 0);
] icfafE ram . .
. 14 cmd_rdy : out std_logic;
() #13d50_ddk_scham Mod. 15 init_done ¢ out std_legic;
[Koar_ck ot Mok =l 16 data_rdy ¢ out std_logic:
L) wem_db_sidth_32 Mod, a_rdy : S ogLey e
1] moriter Mok 17 read data : out std logic vector (63 downte 0);
| 1] reBeste_di_scham Mod. ;I.l] read data wvalid : out st d lm:wl c:
L1 ntaSTI7_dd_sdkam Mod. 19 k_clk : out std logics
LA nrt watrhdon Mok =l I 20 em_ddr data : ineout std legic vector (31 downte 0); i
A -~ Al Al B S . o 5
| 8 ey [& s) Unilec * EE
Transcript HaA
H em_ddr_cs_n :out std_logic_vector(0 dowmito O =
bursd lem i sbd logic:
H em_ddr_dm ow sid_logic_vecto 3 downto O
i em_ddr_ba :out std logic_vectol downto 0]
4 em_dd_add out std_bogic_vecto12 downto D]
&
end component;
VS IM[pausad): -
| § Transcriot I 43
|Now: 4965 ns Delta: 2 sim:/ftest_mem_ctrd/AU1_ddr_sdram_mem_fop/U1_ddr_sdram_mem_io_top/AU1_ddr_data_iofu|31 [/bidi_cell/U1_IDDRABARALWA

22

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.6. Saving the new VHDL Wrapper.
The next step is to save the new VHDL Wrapper in the top-level source directory
4.6.1. Click on File->Save As and enter ddr_sdram_mem_core_top.vhd into the file name text box.
The new ModelSim screen is shown in Figure 26.
Figure 26. Save As ddr_sdram_mem_core_top.vhd.
sovens TP
Save in: I {23 modelsirn j = & BB

=] ecp_vlg
| work

My Network P...

File name: I

;l | Save I
;l Cancel /L

Save as type: I'l.-"HDL Files [* vhd.* vhdl * vho.* vht]

23

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.6.2. Browse to the directory C:\DDR_ML_Example\ddr_p_eval\ddr_sdram\src\rti\top\ecp and click on Save to
save the new VHDL Wrapper.

The new ModelSim screen is shown in Figure 27.

Figure 27. ModelSim Screen with Saved VHDL Wrapper

[V ModelSim SE PLUS 6.2c x
i,
File Edk View Compde Swulate Add Source Tools Layouwt Wndow Help
ISEHS| X BB (A% OQA|| 4 e> [F 0=l 0K g Q] oo 2
XX DB || wouFmime | & A || S A
REET R
i HaAx C:A ‘ecpfod_sdram_mem_core_top vhd
*[Name A| Type 2 1n # |
=1 bdi =l tlodk . - N
1] b das Mo } Library IEEE;)
|) calcvgen_cdr_scram Mode 2 Use IEEE.Std_Logic_1164.All;
| 1] data_valid_macol Mod, 3
|1 data_valid_macro2 HMod 4 Entity ddr_sdram_mem_core_top Is
b1 ddrl ok 5 Port (
1] ddr_data_io Modu & clk_in tin std_legic;
b1 ddr_dm_io Mod 7 st n :in std logic;
1) ddr_das_io toch. a cmd : in std_logic_vector (3 downto 0);
1] ddr_sdram tod] addr :oin std_legic_vector (24 downto 0);
(1] de_sdram_mem_ia Mod 10 emd_valid :in std_legic;
der_sdian - 4o 11 init start : in std_logic;
(1) e2d62e0_ddi_scr=m Mok, 12 write data : in sL-.‘l_lf.w:'i'_' vector (63 downto 0);
=] 9a48d_ddr_sdiam Mod 13 data mask :oin std logic vector (7 downte 0);
_ﬂ ?::;\?;jd:aw:m :3 14 cmd_rdy : out st -:i_l-’.--’:'i =
) sdiam i T . i s
L] Koar_ck b -y 15 ini :_doue i out bL.._lo':.Jl._.,
17 mem_ck_victh_32 Mod 16 data_rdy :oout std_logic:
ST 17 read data : out std_logic_ vector (63 downte 0);
.__‘l ranibor Mody N , . e S
1] rzeBe_det_scham Mo 18 read data valid : out sf-f 1051- H
|11) nia577_dd_sckam Mo |l 19 k_clk :oout =td logicy
LA nrt watrhdon Mok =l I 20 em_ddr data : ineout std legic vector (31 downte 0); =
[l —r | : =
] m Library | &5 sim | % |H] dob_scham_mem_ccee_top.vid A
Transcript HaA
% em.ddiesn out std ke vector(D dovrto O =
bursd lem i sbd logic:
H em_ddr_dm ow sid_logic_vecto 3 downto O
i em_ddr_ba :out std logic_vectol downto 0]
% en_dd_add out sid_keic_vecto12 downio 0)
&
end component;
VS IM[pausad): -
| F Transcriot I 4l
|Nuw: 4965 ns Delta: 2 sim:/ftest_mem_ctrd/AU1_ddr_sdram_mem_fop/U1_ddr_sdram_mem_io_top/AU1_ddr_data_iofu|31 [/bidi_cell/U1_IDDRABARALWA

24

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

4.7. Adding the new VHDL Wrapper to the work library.

The next step is to add the new VHDL Wrapper to the work library. This is done by modifying the
ddr_sdram_eval.do macro file. Click on File->Open to open the Open File window. Click on the selection arrow
next to the File Type text entry box and select Macro Files (*.do,*.tcl). Select ddr_sdram_eval.do. The Open File
screen is shown in Figure 28.

Figure 28. Open File Window with Macro File Showing

2

Look in: | {3 modelsim x| « & ckE-

i

My Network P...

File name: Iddr_&dram_eval.dc- ;I | Open I
Files of type: | Macro Files [*.do.* tcl ~| Cancel |
7/

Click on Open to open the file in the text editor pane.
Add the following text to the file on line 25: vcom ../../src/rtl/top/ecp/ddr_sdram_mem_core_top.vhd

The ModelSim window with the modified file will appear as shown in Figure 29.

25

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 29. Modified VHDL Wrapper file.
1ol

File Edt View Comple Simddate Add Sowrce Took Layout Window Help

DS i @02 AL S|SB 4+ e FmdaduB B0 g @ ol 2[[xoxnB

& 6 @ | NE

Workspace ——ssi——— H A M

Hame =

_-m waork v v "

e o s/mem
1) 252¢9_ods_sckm 10 +J.r:c:d1r+..¢..;..;"modcl fmam)
L] tectmem_cil 11 Lol lere/parans/ddr_sdram_men_params. v\
LA o2kl _tab_k_sekam 12 o d .{. . _{mnde]s;’ecp,‘pin_dva'l i r.i_gen\. v
] cisd7ib_dd_scham 13 ol .f.modelsfecpf‘ dd]:_dat._a_l-a P
LI pef1les_ddr_sdram 14 R /models/ecp/ddr_dm_io.v X
HET pni_chstibded_cgram_iey 15 e Amodels/ecp/ddr dgs io.v N
HA pi_distributed_dpram_no 1& Y Lfmodels/ecp/kbar_clk_pll.v
H) pmi_distributed_cpeam 17 ot /models/ecp/pmi_distributed_dpram.v %
Hi] pio_dvalid_gen 18 S /.. /ddr_sdram_beh.v \
Hi odk_watchdeg L 19 oo/ /models/ecp/ddr_sdram _mem_io _top.v
] nkaS7i7_ddr_sdram 20 oo zre/rel/top/ecp/ddr_sdranm_mem_top.v
] nréese_dd_sdram Z1 Lol /testbench/top/ecp/odt_watchdog. v |
L mankor 22 P /testhench/top/ecp/monitor. v
e ;:':a"" ‘J: ""1"" 32 23 ../ /. ftestbench/top/ecp/test_mem_ctrl.v
[kbar_ck_p z4 t+define+NO_DEBUGHECE
“j FFRf?;T'::"m 25 veom ../ ../sra/rtl/top/acp/ddr _sdram_mem_core_top. vhd
Hee] icfa _adram - - - = —

o <b
H odr_sain: s
| i 2%—]}_&; :JL“ 27 run the simulation
'-:'I] i sd;an ms_m 1o 28 |vsim +define+INT TESTINGH+ECP
i 28 -L ecp_wvlg
__‘I didr_sdram_mean_io_top 30 . N L,_' " —
\=HE] ddi_sdram_mem_coce N:(_-l = work.Lest_mem_ctr

- =i 21 1 AAv sAvewm awal las~

cI I L I

m Libraty B Fie: A I | wave | H] ddr_sdiam_mem_core_top vhd | k] tesl_mam_ctlv | |h] ddi_sciam_mem_too.v | B dd_scam_evaldb |

Traneciph

B = Note: [vaim-3312] Desgn is beiwg optimized

B =Emcr: /¢ Mesbenchhop/ecpdtest_mem_ctl 187]: Failed bo find ‘ddr_sdram_mem_ccie_top' in hierarchiczl name.
H Dptimization faled

B Erion kadng desion

B Erron: Enor loading desian

B Pauwng macro execulion

8 MACAD CADDA_ML_Ewamplehdde p_evalvdd_sdramisimhmodelsimidds_scram_eval.do PAUSED atlne 31

V5IM[pausedp

§=1 Trangcipt |
<No Design Loaded:> |<ND Context> I lLe 28 Cok 0 |

B e =
= ELL‘ L‘ B & [

Click on File->Save to save the edited file.
Click on Tools->TCL->Execute Macro and select ddr_sdram_eval.do.

The Execute Do File screen will appear as shown in Figure 30.

26

Mixed-Language Simulation
Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 30. Execute Do File Screen with ddr_sdram_eval.do Selected

21

Look in: | {3 modelsim x| « & ckE-

H is:h:ll]}
@

Desktop

ddr_sdram_eval.do

My Computer

S

i

My Network P...

File name: Iddr_&dram_eval.dc- :l | Open I
Files of type: | Macro Files [*.do.* tcl ~| Cancel |

Z

Click on Open to execute the macro file and compile the VHDL Wrapper into the work library. After compiling, the
simulator runs the simulation without using the new VHDL Wrapper. A new entry ddr_sdram_mem_core_top is cre-
ated in the work library. The ModelSim screen will appear as shown in Figure 31. Note the addition of the
ddr_sdram_mem_core_top Entity/Architecture pair.

27

Mixed-Language Simulation

Lattice Semiconductor with Lattice IP Designs Using ModelSim

Figure 31. ModelSim Window with Entity/Architecture Pair Added

7] ModelSim SE PLUS 6.2¢ =10l x|
Fie Edt ¥iew Comple Siadate Add Sowrce Tooks Layout Window Help
DS i RO AL S|SB 4+ e 1B mdduB BT R g g ol 2[[x0xD B
86 A8
‘Workspace
r[Hame [Tps [Pan
- wark Libw: k 3
J!lﬁ - o 269 addr_dly = addr;
[antB31b_dd_sdram Modhde CADDF_ML_Exan 270 cmd_dly = emd; L
Hi bid_eet Module CADDR_ML_Exan 2;1 cmd_valid_dly = cmd_valid;
] bid_dae Mode CADDA_ML_Exn 272 N _ N
LI cal_dugen_cer_sciam Module CADDA_ML_Exan 273 GSR GSR_INST [(.GSR(rst_n)):
Hif) data_vabd_maciol Module C:ADDR_ML_Exan 274 FUR PUR_INST [.PUR(ret nj);
HET daka_vabd_macio2 Module C:ADDR_ML_Exan 275 =
Hi] del Module CADDR_ML_Exan Zz7 fio= ==== S==sss=sssssssssss=ssss=ss
Hid] dek_data_ia Module CADDA_ML_Exan 277 /¢{ Instantiations
[dor_dm_ie Modude CADDR_ML_Exan 278 'y
HE ddr_das_io Module CADDR_ML_Exan 279
Hl) dk_sdram Madue CADDR_ML_Exan 280 ddr sdram mem core top Ul ddr sdram mem top (
<E] dei_sdiam_mem_core_top Emiy CADDA_ML_Exan 281 - - - -
.—El ks am_imem_core_top... Archi, 282 / Clock and reze '
J ded_sdram_mem_io_top Modue C\DDR_BL_Exan | 283 “ifdef SLAYER
L] do_scram_mam_top Modue CADDR_ML_Exan 2514 | =1k in (mem clk 2)
i) esdb2e0_ddi_sdiam Modhde CADDA_ML_Exan 285 Celes ST
L7 ged8d_cdr_scram Modue CADDA_ML_Exan ;B; 1k i mem o1k
HE ielfSE_dd_scharm Modle CADDR_ML_Exan Sam et ,.—i“ {mem_clk),
I ¥13250_ddi_sdrem Modude CADDF_ML_Exan enal
HE kbar_ck_pt Module CADDR_ML_Exan 288 .ret_n (rat_n),
LT mem,_db_victh_32 Modude CADDA_ML_Exan = || 287
_I 2an Y Trerute sisavnals Fram +ha TToar Thtarfora d
i I—— ! Al]
.[m Libraty I &isim I] Fiasl B Memnoiies ‘ 4l | wave | [H] ddi_sdram_mem_core_lop.vhd | W ddsdiam_evd do | [H] deb_sdeam_mam_core_top vhd (1) | W] test_rem_ctil v r!l!l
Tramezipt &
arl: 242552 000 nz INFO- S electing B&NE, = | =
: 243162000 nz INFO: Selecting BANE = 2
+ 244026000 nz INFO: Selectng BANK. = 3
B test_menr_ctl | 244502000 ns INFO. B ank Management Section s DONE
B Break at /.0 Aestbenchitests/ecoMestcaze. v Ine 452
B Simulstion Breakpont Bresk ot L/ Aestbenchfiests/ecpftestcase v bne 462
B MACAD CADDRA_ML_Examplehdds_p_evalidd sdrambsimimodelsmbdds_scram_eval.do PALSED st line 31
(VSIM [paured]>
f=1 Trangcipt | Ay
Mow: 245 A6 ns Della: 0 sim:/test_mem_ctrifANITIAL#44 - Limited Visibility Region 1 e 280 Cat 0 | y

Summary

The previous steps have verified the integrity of the Lattice IPexpress DDR SDRAM Controller 6.2 core and created
VHDL top-level wrappers for instantiation of the core into the user's design. As Lattice does not package a VHDL
test-bench with the IP core, the user must create a VHDL testbench for simulation of the core using the new wrap-
pers. Optionally the user may instantiate the core into their VHDL design and simulate the core as part of the over-
all design.

References

Refer to the ModelSim SE User's Manual Chapter 9 Mixed-Language Simulation and Chapter 18 Signal Spy for fur-
ther information.

HDL Source Listings

Verilog Core Top-Level Module

module ddr sdram mem top (

// Clock and reset
clk_in,
rst n,

// System Clock
// System reset

// Inputs signals from the User Interface
cmd, // Command for controller

28

Lattice Semiconductor

Mixed-Language Simulation
with Lattice IP Designs Using ModelSim

addr,

cmd _val
init st
write d
data ma

id,
art,
ata,
sk,

//
//
//
//
//

Address for Rd/Wr
Command Valid

Starts the Iitialization
Data to be written

Data Mask

// User Interface Output signals

cmd_rdy, // Ready for the new Command
init done, // Initialization is done
data_rdy, // Ready for more Write data
read data, // Read data to the User
read_data valid, // Read Data Valid

k _clk,

// Bi-directional databus to external memory

//
//

em ddr data,
em _ddr dgs,

Data to the memory
Data_Strobes

// Output to External memory

// SDRAM Address, controls
em _ddr_ clk, //
em ddr_clk n, /7
em_ddr_cke, //
em ddr_ras n, /7
em ddr_cas _n, /7
em ddr _we n, /7
em ddr _cs n, /7
burst term, /7
//
//
//

em ddr dm,
em ddr ba,
em ddr_ addr

Y A —— User Inputs
input

input

input [3:0]

input [\ADDR_WIDTH—l:O]
input

input

input [TDSIZE-1:0]
input [USER_DM-1:0]

Y A —— User Outputs
output

output

output

output [DSIZE -1:0]
output

output

/) =—————— DDR Bi-Directionals

and clock

DDR1/DDR2 clock

Inverted DDR1/DDR2 clock
Clock Enable

Row address strobe
Column Address Strobe
Write Enable

Chip select

Burst Termination

Data mask
Bank Address
Row or Collumn Address

clk in;
rst_n;

cmd;

addr;
cmd_valid;
init start;
write data;
data mask;

cmd_rdy;

init done;
data_rdy;

read data;

read data valid;
k_clk;

29

Mixed-Language Simulation

Lattice Semiconductor with Lattice IP Designs Using ModelSim
inout [“DATA WIDTH-1:0] em ddr data;
inout [“DQS WIDTH-1:0] em _ddr dgs;
[/ == DDR Outputs
output [DATA WIDTH/8-1:0] em _ddr dm;
output [CLKO WIDTH-1:0] em _ddr clk;
output [CLKO WIDTH-1:0] em _ddr clk n;
output [CKE WIDTH-1:0] em _ddr cke;
output em _ddr_ ras_n;
output em _ddr_cas_n;
output em _ddr we_nj;
output [CS WIDTH-1:0] em ddr cs n;
[/ === DDR Inputs
input burst term;
//——=——- DDR Output Buses
output [ROW WIDTH-1:0] em ddr addr;
output [BNK WDTH-1:0] em _ddr ba;

VHDL Wrapper Listing

Library IEEE;
Use IEEE.Std Logic_ 1164.All;

Entity ddr_sdram mem core top Is

Port(
clk in : in std_logic;
rst_ n : in std_logic;
cmd : in std_logic_vector(3 downto 0);
addr : in std_logic_vector (24 downto 0);
cmd_valid : in std_logic;
init start : in std_logic;
write data : in std_logic_vector (63 downto 0);
data mask : in std_logic_vector(7 downto 0);
cmd_rdy : out std_logic;
init done : out std_logic;
data rdy : out std_logic;
read_data : out std_logic_vector (63 downto 0);
read data valid : out std_logic;
k_clk : out std_logic;
em_ddr data : inout std logic_vector (31 downto 0);
em_ddr dgs : inout std logic_vector (3 downto 0);
em_ddr clk : out std_logic_vector(0 downto 0);
em _ddr clk_n : out std_logic_vector(0 downto 0);
em_ddr cke : out std_logic_vector(0 downto 0);
em _ddr ras_n : out std_logic;
em _ddr cas_n : out std_logic;
em _ddr we n : out std_logic;
em _ddr cs_n : out std_logic_vector(0 downto 0);
burst term : in std_logic;
em_ddr_ dm : out std_logic_vector(3 downto 0);
em_ddr_ ba : out std_logic_vector(l downto 0);

30

Mixed-Language Simulation

Lattice Semiconductor with Lattice IP Designs Using ModelSim

em ddr_ addr : out std _logic vector (12 downto 0)

)i

end ddr_ sdram mem core_ top;

architecture ddr sdram mem core arch of ddr sdram mem core is

component ddr_ sdram mem core -- created by vgencomp
port (
clk in : in std_logic;
rst n : in std_logic;
cmd : in std_logic vector(3 downto 0);
addr : in std logic vector (24 downto 0);
cmd_valid : in std_logic;
init start : in std_logic;
write data : in std logic vector (63 downto 0);
data mask : in std_logic vector(7 downto 0);
cmd_rdy : out std_logic;
init done : out std_logic;
data rdy : out std_logic;
read_data : out std logic vector (63 downto 0);
read data valid : out std_logic;
k_clk : out std_logic;
em _ddr data : inout std logic vector (31 downto 0);
em_ddr dgs : inout std logic vector (3 downto 0);
em _ddr clk : out std _logic vector(0 downto 0);
em ddr clk n : out std _logic vector(0 downto 0);
em _ddr_ cke : out std _logic vector(0 downto 0);
em ddr ras_ n : out std_logic;
em ddr cas_n : out std_logic;
em _ddr we n : out std_logic;
em ddr cs_n : out std _logic vector(0 downto 0);
burst term : in std_logic;
em _ddr_dm : out std_logic vector(3 downto 0);
em _ddr_ ba : out std _logic vector(l downto 0);
em ddr_ addr : out std _logic vector (12 downto 0)

)i

end component;
begin

sdram mem core inst: ddr_sdram mem core

port map(
clk in => clk in,
rst n => rst_n,
cmd => cmd,
addr => addr,
cmd_valid => cmd valid,
init start => init start,
write data => write data,
data_mask => data_mask,
cmd_rdy => cmd_rdy,
init done => init done,
data_rdy => data_rdy,
read_data => read_data,

31

Lattice Semiconductor

Mixed-Language Simulation
with Lattice IP Designs Using ModelSim

read data valid
k_clk
em ddr data
em _ddr_dgs
em_ddr clk
em _ddr clk_n
em _ddr_ cke
em ddr ras_n
em ddr cas_n
em ddr we n
em ddr cs_n
burst_term
em_ddr_ dm
em _ddr_ ba
em ddr_ addr
)i

=> read_data_valid,

=> k_clk,

=> em_ddr data,
=> em_ddr_dgs,
=> em_ddr_clk,
=> em _ddr clk n,
=> em_ddr_cke,
=> em _ddr_ras_n,
=> em_ddr_ cas _n,
=> em _ddr we n,
=> em _ddr cs n,
=> burst_term,
=> em_ddr_dm,

=> em_ddr ba,

=> em_ddr_addr

end ddr_sdram mem_ core_arch;

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)
e-mail: techsupport@Iatticesemi.com

Internet: www.latticesemi.com

Revision History

Date

Version

Change Summary

February 2007

01.0

Initial release.

32

	Mixed-Language Simulation with Lattice IP Designs Using ModelSim
	Introduction
	Verilog Simulation Flow
	Mixed Language Simulation Flow
	Examples
	Using ModelSim to Instantiate a Verilog RTL Design Into a VHDL Project

	Summary
	References
	HDL Source Listings
	Verilog Core Top-Level Module

	VHDL Wrapper Listing
	Technical Support Assistance
	Revision History

