

RISC-V RX CPU IP - Lattice Propel Builder 2022.1

User Guide

FPGA-IPUG-02211-1.0

November 2022

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Contents

Acronyms in This Document	5
1. Introduction	6
1.1. Quick facts	6
1.2. Features	6
1.3. Conventions	6
2. Functional Descriptions	7
2.1. Overview	7
2.2. Modules Description	8
2.2.1. RISC-V Processor Core	8
2.2.2. Submodule	13
2.3. Signal Description	18
2.3.1. sysClock and Reset	18
2.3.2. Data Interface	19
2.3.3. Interrupt Interface	22
2.4. Attribute Summary	22
2.5. Memory Map	24
3. RISC-V RX CPU IP Generation	25
Appendix A. Resource Utilization	28
References	29
Technical Support Assistance	
Revision History	31

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figures

Figure 2.1. RISC-V RX Soft IP Diagram (all features enabled)	7
Figure 2.2. RISC-V RX Processor Core Block Diagram	8
Figure 2.3. Various Forms of Privileged Execution	9
Figure 2.4. Machine Trap-vector Base-address Register (mtvec)	
Figure 2.5. RV32 PMP Configuration CSR Layout	11
Figure 2.6. PMP Address Register Format, RV32	12
Figure 2.7. PLIC Operation Parameter Block Diagram	
Figure 3.1. Entering Component Name	25
Figure 3.2. Configuring Parameters	
Figure 3.3. Verifying Results	27
Figure 3.4. Specifying Instance Name	27
Figure 3.5. Generated Instance	27

Tables

Table 1.1 RISC-V RX Soft IP Quick Facts	6
Table 2.1. RISC-V Processor Core Control and Status Registers	9
Table 2.2. Mtvec Register	11
Table 2.3. Pmp#cfg Register Format	11
Table 2.4. PMP Access Logic	12
Table 2.5. PLIC Registers	14
Table 2.6. CLINT Registers	17
Table 2.7. WDT Registers	18
Table 2.8. Clock and Reset Ports	18
Table 2.9. Local Data Ports (Optional)	19
Table 2.10. Local Instruction Ports (Optional)	19
Table 2.11. AXI Data Ports (Constant)	20
Table 2.12. AXI Instruction Ports (Optional)	21
Table 2.13. Interrupt Ports	22
Table 2.14. Configurable Attributes	22
Table 2.15. Attributes Description	22
Table 2.16. SoC Memory Map	24
Table A.1. Resource Utilization in CertusPro-NX Device	28

Acronyms in This Document

Acronyms	Definition
ABI	Application Binary Interface
AEE	Application Execution Environment
AXI	Advanced eXtensible Interface
CLINT	Core Local Interrupter
CPU	Central Processing Unit
CSR	Control and Status Register
DDR	Double Data Rate
DMIPS	Dhrystone MIPS (Million Instructions per Second)
DTCM	Data TCM
IP	Intellectual Property
EIP	External Interrupt Pending
FPGA	Field Programmable Gate Array
GDB	Gnu Debugger
HDL	Hardware Description Language
IE	Interrupt Enable
IRQ	Interrupt Request
ISA	Instruction Set Architecture
JTAG	Joint Test Action Group
ITCM	Instruction TCM
LUT	Lookup-Table
NMI	Non-Maskable Interrupt
OpenOCD	Open On-Chip Debugger
OS	Operating System
PLIC	Platform-Level Interrupt Controller
РМР	Physical Memory Protection
RISC-V	Reduced Instruction Set Computer-V (five)
RV32IMC	RISC-V Integer, M & Compressed Instruction Sets
RX	Real Time OS (RISC-V for RTOS applications)
SDRAM	Synchronous Dynamic Random-Access Memory
SEE	Supervisor Execution Environment
SoC	System-on-Chip
тсм	Tightly Coupled Memory
UART	Universal Asynchronous Receiver Transmitter
WARL	Write Any Values, Reads Legal Values
WDT	Watchdog Timer Device

A list of acronyms used in this document.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

1. Introduction

The Lattice Semiconductor RISC-V RX soft IP contains a 32-bit RISC-V processor core and several submodules – Platform Level Interrupt Controller (PLIC), Core Local Interrupter (CLINT), and Watchdog. CPU core supports RV32IMC instruction set and debug feature which is JTAG – IEEE 1149.1 compliant. The modules outside are accessed by the processor core using AXI or Local Bus Interface.

The design is implemented in Verilog HDL. It can be configured and generated using the Lattice Propel[™] Builder software. It is targeted for Lattice Avant[™], MachXO5[™]-NX, Certus[™]-NX, CertusPro[™]-NX and CrossLink[™]-NX FPGA devices. The design is implemented using Lattice Radiant[™] software Place and Route tool integrated with the Synplify Pro[®] synthesis tool.

1.1. Quick Facts

Table 1.1 presents a summary of the RISC-V RX CPU IP Core.

IP Requirements	Supported FPGA Families	Avant, MachXO5-NX, Certus-NX, CertusPro-NX, CrossLink-NX				
Resource	Targeted Devices	LAV-AT, LFMXO5, LFD2NX, LFCPNX, LIFCL				
Utilization	Supported Users Interface	AXI Interface, Local Bus Interface				
	Resources	See Table A.1.				
Design Tool	Lattice Implementation	IP Core v2.0 - Lattice Propel Builder 2022.1				
Support	Synthesis	Lattice Synthesis Engine				
	Synthesis	Synopsys [®] Synplify Pro for Lattice				
	Simulation	For a list of supported simulators, see the Lattice Radiant and Lattice Diamond software user guide.				

Table 1.1 RISC-V RX Soft IP Quick Facts

1.2. Features

The RISC-V RX soft IP has the following features:

- RV32IMC instruction set
- Five stage pipeline
- All three privilege modes supported: Machine mode, Supervisor mode, and User mode
- Instruction Cache and Data Cache
- Support for the AXI4 bus standard for data port
- Debug through Gnu Debugger (GDB) and Open On-Chip Debugger (OpenOCD)
- PLIC module
- CLINT module
- Watchdog module
- Benchmark and Frequency:
 - Balanced mode: 1.01 DMIPS/MHz performance; 130 MHz(sp9)/110 MHz(sp7) on CertusPro-NX device **Note**: fmax is based on:
 - standalone processor core
 - Radiant 3.1 production build, with 9_High-Performance_1.0V (sp9) and 7_High[1]Performance_1.0V (sp7)

1.3. Conventions

The nomenclature used in this document is based on Verilog HDL.

2. Functional Descriptions

2.1. Overview

The RISC-V RX IP processes data and instructions while monitoring the external interrupts. As shown in Figure 2.1, the CPU IP has a 32-bit processor core and submodules. Among submodules, PLIC and CLINT/Watchdog are required, while Local UART is optional. The AXI Instruction Port and both TCM ports are also optional.

The 32-bit processor can use the AXI Instruction Port or the local instruction port to fetch instructions from an external AXI device or a TCM, respectively. The processor can use the AXI Data Port or the local data port to access data. Among these AXI and local bus ports, the AXI Instruction Port and both TCM local bus ports, as shown in Figure 2.1, are optional in the RX configuration dialog. But Either the AXI Instruction Port or both of the TCM ports must be enabled to make the RX core perform normally.

The CPU core, bridges, MUX, PLIC and UART run in the fast system clock domain. The CLINT and the Watchdog run in both the fast system clock domain and the slow real time clock domain. The Debug module runs in both the system clock domain and the JTAG clock domain.

Figure 2.1. RISC-V RX Soft IP Diagram (with All Features Enabled)

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

2.2. Modules Description

2.2.1. RISC-V Processor Core

Figure 2.2 shows the processor core block diagram.

Figure 2.2. RISC-V RX Processor Core Block Diagram

2.2.1.1. Interrupt

There are four types of interrupts, External Interrupt from PLIC (Machine mode/Supervisor mode), Software Interrupt and Timer Interrupt from CLINT and Non-Maskable Interrupt from outside.

- External Interrupt
 - In this version, RX processor core expands the number of external interrupts to 32 in total, 30 of them available for user.
- NMI
 - A basic non-maskable interrupt (NMI) is supported in this version of RX. There is a new Control and Status Register (CSR) named mnvec for users to set specific trap entry for NMI routine. Its offset is 0x7C0.
 - There is a new input port nmilnterrupt for the incoming interrupt. When there is an asserted input, the pc jumps to the address stored in mnvec (for other types of interrupts, it jumps to mtvec). Below is an example asm code:

#define CSR_MNVEC	0x7C0
 la t0, trap_entry_nmi csrw CSR_MNVEC, t0	

• The current NMI implementation is non-recoverable. So, it's expected for the processor to jump into the correct interrupt service, but there is no guarantee for how it gets returned. General interrupt has mepc CSR register to store the pc address before jumping to the interrupt, so that when the processor returns from it, mepc is used to restore the previous pc address. NMI doesn't have such a register. So when the processor comes back from NMI, it may go out of control. (Note: there is a task group aiming to define the recoverable NMI, which is still on track, with no stable draft specification yet.)

By default, interrupts are handled in Machine mode. Considering Supervisor mode is supported, it is possible to delegate certain interrupts to Supervisor mode.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.2.1.2. Exception

If an exception occurs, the processor core stops the corresponding instruction, flushes all previous instructions, and waits until the terminated instruction reaches the writeback stage before jumping to the exception service routine.

2.2.1.3. Low Power Mode

The processor core enters low power mode when it executes the WFI instruction. The PC halts during the low power mode. The processor wakes up if there is external/timer interrupt.

2.2.1.4. Debug

The processor core supports the IEEE-1149.1 JTAG debug logic with two hardware breakpoints.

2.2.1.5. Cache

Both Instruction Cache and Data Cache have the following configurations:

- cache size: 4096 bytes
- 32 bytes per cache line
- 2-way set associative

The cache strategy for data cache is write through. The cache eviction policy of both caches is round robin.

2.2.1.6. Privilege Mode

The processor supports User, Supervisor and Machine mode. Along with corresponding CSR registers, Figure 2.3 shows two typical software stacks:

- A simple system that supports only a single application running on an application execution environment (AEE). The application is coded to run with a particular application binary interface (ABI). ABI includes the supported user-level Instruction Set Architecture (ISA) plus a set of ABI calls to interact with the AEE. The ABI hides details of the AEE from the application to allow greater flexibility in implementing the AEE.
- Meanwhile, a conventional operating system (OS) can provide AEE and ABI. The OS interfaces with a supervisor execution environment (SEE) via a supervisor binary interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of SBI function calls.

Application	Application	Application	
ABI	ABI	ABI	
AEE	OS		
	SI	BI	
	EE		

Figure 2.3. Various Forms of Privileged Execution

2.2.1.7. Control and Status Registers

The processor core supports three privilege modes. All supported Control and Status Registers (CSRs) are listed in Table 2.1.

Table 2.1. RISC-V Processor Core Control and Status Registers

Number	Privilege	Name	Description		
Supervisor Trap Setup					
0x100	SRW	sstatus	Supervisor status register.		
0x104	SRW	sie	Supervisor interrupt enable register.		
0x105	SRW	stvec	Supervisor trap hander base address.		

^{© 2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Number	Privilege	Name	Description				
Supervisor Trap Handling							
0x140	SRW	sscratch	Scratch register for supervisor trap handlers.				
0x141	SRW	sepc	Supervisor exception program counter.				
0x142	SRW	scause	Supervisor trap cause.				
0x143	SRW	stval	Supervisor bad address or instruction.				
0x144	SRW	sip	Supervisor interrupt pending.				
Machine Info	rmation Registe	rs					
0xF11	MRO	mvendorid	Vendor ID.				
0xF12	MRO	marchid	Architecture ID.				
0xF13	MRO	mimpid	Implementation ID.				
0xF14	MRO	mhartid	Hardware thread ID.				
Machine Trap Setup							
0x300	MRW	mstatus	Machine status register.				
0x301	MRO	misa	ISA and extensions.				
0x302	MRW	medeleg	Machine exception delegation register.				
0x303	MRW	mideleg	Machine interrupt delegation register.				
0x304	MRW	mie	Machine interrupt enable register.				
0x305	MRW	mtvec	Machine trap hander base address.				
Machine Trap	o Handling						
0x340	MRW	mscratch	Scratch register for machine trap handlers.				
0x341	MRW	mepc	Machine exception program counter.				
0x342	MRO	mcause	Machine trap cause.				
0x343	MRO	mtval	Machine bad address or instruction.				
0x344	MRW	mip	Machine interrupt pending.				
Machine Cou	nter/Timers						
0xB00	MRW	mcycle	Machine cycle counter.				
0xB02	MRW	minstret	Machine instructions-retired counter.				
0xB80	MRW	mcycleh	Upper 32 bits of mcycle.				
0xB82	MRW	minstreth	Upper 32 bits of minstret.				

2.2.1.8. Machine Trap-vector Base-address Register (mtvec) Vectored Mode

This version processor core increases the support of the vectored mode of register mtvec and meets the demand of MODE field WARL (Write Any Values, Reads Legal Values) behavior, as shown in Figure 2.4.

31	2	1 0	_
BASE [31:2] (WARL)		MODE(WARL)	mtvec
30		2	

Figure 2.4. Machine Trap-vector Base-address Register (mtvec)

According to the RISC-V Privileged Specification (Version 20211203), the mtvec mode decides the address where pc is to be set. You can change the vectored mode of core by writing the MODE field of mtvec. The encoding of the MODE field is shown in Table 2.2.

Table 2.2. Mtvec Register

Field	Name	Behavior	Width	Descriptio	Description				
[31:2]	BASE	WARL	29	Vector bas	vector base address.				
				Encoding	Encoding of mtvec MODE field.				
				Value	Name	Description			
[1:0]	MODE	WARL	3	0	Direct	All exceptions set pc to BASE.			
				1	Vectored	Asynchronous interrupts set pc to BASE+4×cause.			
				2	—	Reserved.			

When MODE=Direct, all traps into Machine mode cause the pc to be set to the address in the BASE field. When MODE=Vectored, all synchronous exceptions into Machine mode cause the pc to be set to the address in the BASE field, whereas interrupts cause the pc to be set to the address in the BASE field plus four times the interrupt cause number.

2.2.1.9. PMP

The Physical Memory Protection (PMP) unit provides machine mode control registers to limit the access of different regions of physical memory with different privileges (read, write, execute) for RV32 systems. To support Lattice RISC-V products, the PMP structure only supports the top boundary of an arbitrary range (TOP) mode with up to 4 entries and the granularity is 0. Our design follows the RISC-V Privileged Specification (Version 1.12).

PMP entries are described by an 8-bit configuration register and one 32-bit address register. These two kinds of registers are packed into CSRs to minimize context-switch time. The PMP configuration registers named pmpcfg# determine the permission and addressing mode for protection regions. The PMP address registers named pmpaddr# contain the address for corresponding regions. # indicates the serial number of register.

This PMP unit partitions the memory range to four pages. There are only four entries for this unit instead of sixteen or sixty-four entries as in the RISC-V Specification. In other words, in this PMP unit, there is only one PMP configuration register, pmpcfg0, and four PMP address registers, pmpaddr0–pmpaddr3. All the registers fields are "write any values and read legal values (WARL)" registers.

• PMP Configuration Registers

Each pmpcfg# register contains four, 8-bits pmp#cfg register fields to describe the access privileges corresponding to four pmpaddr# for the RV32 system. As mentioned above, only pmpcfg0 is used in this unit and its associated number in CSRs is 0x3a0, as shown in Figure 2.5.

Figure 2.5.	RV32	PMP	Configuration	CSR	Layout
-------------	------	-----	---------------	-----	--------

Table 2.3 shows the layout of one pmp#cfg register inside pmpcfg0.

Field	Name	Access	Width	Descriptio	n				
[7]	L	WARL	1	The PMP en	ne PMP entry is locked.				
[6:5]	0	WARL	2	_					
[4:3]	A	WARL	2	Encoding th Value 0 1	e address-mato Mode OFF TOR	bing mode of the associate PMP address register. Description Null region (disabled) Top of range			
[2]	х	WARL	2	When set, P	When set, PMP entry permits instruction execution.				

Table 2.3. Pmp#cfg Register Format

^{© 2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Field	Name	Access	Width	Description
				When clear, instruction execution is denied.
[1]	w	WARL	2	When set, PMP entry permits write. When clear, write is denied.
[0]	R	WARL	2	When set, PMP entry permits read. When clear, read is denied.

The R, W, and X bits determine whether this entry allows read, write, or execute respectively.

The A bits encode the address-matching mode. Unlike described in RISC-V Privileged Specification (Version 20211203), this field can only be 00 (OFF) or 01 (TOR) two modes. Modes 10 (NA4) and 11 (NAPOT) are reserved for future requirements. The L bit indicates whether the entry is locked. When L bit is set, writes to configuration register and related address registers are ignored. Locked PMP entries unlock when the hart is reset. For instance, if entry i is locked, writes to pmpicfg and pmpaddri are ignored. Additionally, in TOR mode, writing to pmpaddri-1 is also ignored.

• PMP Address Registers

Each pmpaddr# indicates the bits [33:2] of a 34-bits physical address for RV32 systems, as shown in Figure 2.6. Four pmpaddr# are initialized in this unit and its associated number in CSRs are 0x3b0 to 0x3b3.

Figure 2.6. PMP Address Register Format, RV32

• Priority and Matching Logics

As shown in Table 2.4. PMP Access Logic, this section describes the logic to verify the access to some region in physical memory. A PMP entry needs to fully match all bytes of an access and then the L, R, W, and X bits determine whether the access passes or fails. If L is clear and the privilege mode is M-Mode, the access succeeds. If L is set, or L is clear with the privilege mode in U-Mode or S-Mode, the access is determined by R, W, X bits. If no PMP entry matches an M-Mode access, the access succeeds. If no PMP entry matches an S-Mode or U-Mode access, but at least one entry is implemented, the access fails. If at least one access fails, an access-fault exception is generated. L bit cannot be clear until system resets.

Access Mode	Privilege Mode	Read	Write	Execute
Access in protected range	L = 0 & (M-Mode)	Succeeds		
	L = 0 & (U-Mode S-Mode)	R bit	W bit	X bit
	L = 1	R bit	W bit	X bit
Access not in protected range	M-Mode	Succeeds		
	U-Mode S-Mode	Fails		
Access cross protected and not protected	Any Mode	Fails		
range				
All entries are off	M-Mode	Succeeds		
All entries are off	U-Mode S-Mode	Fails		

Table 2.4. PMP Access Logic

2.2.1.10. Write Response

The revised RX core supports the write response which means a write error on the local and AXI bus on the processor causes the Store/AMO access fault exception of the core (exception ID: 7).

It makes sure write response is honored for both cache range and io range which have separate logic for dealing with write operation (store).

2.2.2. Submodule

All the submodules are covered here. Every submodule has a fixed base address. See Table 2.16.

2.2.2.1. PLIC

The Platform Level Interrupt Controller (PLIC) module is compliant with the RISC-V Platform-Level Interrupt Controller Specification (Version 1.0).

The PLIC multiplexes various device interrupts onto the external interrupt lines of Hart contexts (Note: The context is referred to the specific privilege mode in the specific Hart of specific RISC-V processor instance), with hardware support for interrupt priorities. PLIC supports up to 31 external interrupts (0 is reserved) with 7 priority levels, and each one has a corresponding interrupt ID, starting from 1. The first input interrupt (#1) is fixed to Watchdog Timer device.

The PLIC has two interrupt output signals connected to external interrupt inputs of the CPU – one for Machine mode, the other for Supervisor mode.

Figure 2.7 shows the block diagram of PLIC operation parameter. An example for how it works: interrupt input 1 gets asserted, it goes through the Gateway and sets Interrupt Pending bit of the Source. If its Interrupt Enable (IE) is set, the priority value can be passed and compared to other inputs all the way through the chain. The interrupt ID is similarly forwarded. So, if the Max Priority is larger than the threshold, External Interrupt Pending (EIP) can be asserted and sent to the processor. Meanwhile, the Gateway blocks subsequent interrupts from being forwarded until the current interrupt has been completed. Target 0 goes to Machine mode external interrupt, and Target 1 goes to Supervisor mode external interrupt.

^{© 2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The following register blocks are defined in PLIC:

Interrupt Priorities Registers

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped priority register. A priority value of 0 is reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest active priority while the maximum level of priority depends on user settings. For example, the highest priority is 3 if width of PLIC Priority Register is set to 2. Ties between global interrupts of the same priority are broken by the Interrupt ID. Interrupts with the lowest ID have the highest effective priority.

The base address of Interrupt Source Priority block within PLIC Memory Map region is fixed at 0x000000.

• Interrupt Pending Bits Registers

The current status of the interrupt source pending bits in the PLIC core can be read from the pending array, organized as 32-bit register. The pending bit for interrupt ID N is stored in bit N. Bit 0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then performing a claim.

The base address of Interrupt Pending Bits block within PLIC Memory Map region is fixed at 0x001000.

• Interrupt Enables Registers

Each global interrupt can be enabled by setting the corresponding bit in the enables registers. The enables registers are accessed as a contiguous array of 32-bit registers, packed the same way as the pending bits. Bit 0 of enable register 0 represents the non-existent interrupt ID 0 and is hardwired to 0. PLIC has 2 Interrupt Enable blocks, one for each context.

The context refers to the specific privilege mode in the specific Hart of specific RISC-V processor instance.

For current IP, context 0 refers to hart 0 Machine mode and context 1 refers to hart 0 Supervisor mode.

The base address of Interrupt Enable Bits block within PLIC Memory Map region is fixed at 0x002000.

• Priority Thresholds Registers

PLIC provides context based threshold register for the settings of an interrupt priority threshold of each context. The threshold register is a WARL field. The PLIC masks all PLIC interrupts of a priority less than or equal to threshold. For example, a threshold value of zero permits all interrupts with non-zero priority.

The base address of Priority Thresholds Registers block is located at 4K alignment starts from offset 0x200000.

• Interrupt Claim Registers

The PLIC can perform an interrupt claim by reading the Claim/Complete Registers, which return the ID of the highest priority pending interrupt or zero if there is no pending interrupt. A successful claim also atomically clears the corresponding pending bit on the interrupt source.

The PLIC can perform a claim at any time and the claim operation is not affected by the setting of the Priority Thresholds Registers.

The Interrupt Claim Process Register is context-based and is located at 4K alignment + 4 starts from offset 0x200000.

• Interrupt Completion Registers

The PLIC signals the completion of executing an interrupt handler by host signaling the PLIC and writing the interrupt ID received from the claim to the Claim/Complete Register. The PLIC does not check whether or not the completion ID is the same as the last claim ID for that target. If the completion ID does not match an interrupt source that is currently enabled for the target, the completion is silently ignored.

The Interrupt Completion Registers are context-based and located at the same address as the Interrupt Claim Process Register, which is at 4K alignment + 4 starts from offset 0x200000.

Table 2.5 provides the descriptions of PLIC registers.

Table 2.5. PLIC Registers

Offset	Name	Description
0x00_0000		Reserved
		(Interrupt source 0 does not exist.)

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Offset	Name	Description						
0x00_0004	PLIC_PRIORITY_SRC1	Interrupt se	ource 1 priority					
		Field	Name	Access	Width	Reset		
		[31:3]	Reserved	RO	29	0x0		
		[2:0]	Priority	RW	3	0x0		
		Driority						
		Sets the pri	iority for a given global int	errupt.				
0x00_0008	PLIC_PRIORITY_SRC2	Same as PL	IC_PRIORITY_SRC1.					
0x00_007C	 PLIC PRIORITY SRC31							
		—						
0x00_1000	PLIC_PENDING1	PLIC Interru	upt Pending Register 1 (pe	nding1)				
		Field	Name	Access	Width	Reset		
		[31:1]	PendingN	RO	31	0x0		
		[0]	Pending0	RO	1	0x0		
					1	1		
		Pending0:						
		Non-existe	nt global interrupt 0 is har	dwired to zero).			
		PendingN:						
		Equal to PL	IC_PENDING1[N], Pending	g bit for global	interrupt N.			
	-	_						
0x00_2000	PLIC_ENABLE1_M	PLIC Interru	upt Enable Register 1 (ena	ble1) for Hart (0 M-Mode			
		Field	Name	Access	Width	Reset		
		[31:1]	EnableN	RW	1	0x0		
		[0]	Enable0	RO	1	0x0		
		Enable0: Non-existent global interrupt 0 is hardwired to zero. EnableN:						
		Equal to PL	IC ENABLE M[N], enable	bit for global i	nterrupt N.			
	_	_						
0x00_2080	PLIC_ENABLE1_S	PLIC Interru	upt Enable Register 1 (ena	ble1) for Hart (0 S-Mode			
		Field	Name	Access	Width	Reset		
		[31:1]	EnableN	RW	1	0x0		
		[0]	Enable0	RO	1	0x0		
		Enable0: Non-existent global interrupt 0 is hardwired to zero. EnableN: Equal to PLIC_ENABLE_S[N], enable bit for global interrupt N.						
	-	_						
0x20 0000	PLIC THRESHOLD1 M	PLIC Interru	upt Priority Threshold Regi	ister (threshold	d) for Hart 0 N	1-Mode		
		Field	Name	Access	Width	Reset		
		[31:3]	Reserved	RO	29	0x0		
		[2:0]	Threshold	RW	3	0x0		
		Threshold: Sets the pri	iority threshold.	1	1	· J		

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Offset	Name	Description						
0x20_0004	PLIC_CLAIM_1_M	PLIC Claim Register (claim) for Hart 0 M-Mode						
		Field	Name	Access	Width	Reset		
		[31:0]	Claim	RO	32	0x0		
		Claim: Read only f zero if ther correspond	ield, which returns the ID e is no pending interrupt. ing pending bit on the inte	of the highest A successful cl errupt source.	priority pendi aim also atom	ng interrupt or ically clears the		
0x20_0004	PLIC_COMPLETE_1_M	PLIC Compl	ete Register (complete) fo	r Hart 0 M-Mo	ode			
		Field	Name	Access	Width	Reset		
		[31:0]	Completion	WO	32	0x0		
		Completion Write only	n: field, write to it to comple	te interrupt pi	rocess.			
020 1000								
0x20_1000	PLIC_THRESHOLDI_S	Field Name Access Width Post						
		Field	Name	Access		Reset		
		[31:3]	Reserved	RU	29	0x0		
		[2:0]	Inreshold	RW	3	0x0		
		Threshold: Sets the priority threshold.						
0x20_1004	PLIC_CLAIM_1_S	PLIC Claim	Register (claim) for Hart 0	S-Mode				
		Field	Name	Access	Width	Reset		
		[31:0]	Claim	RO	32	0x0		
		Claim: Read only field, which returns the ID of the highest priority pending interrup zero if there is no pending interrupt. A successful claim also atomically clear corresponding pending bit on the interrupt source.						
0x20_1004	PLIC_COMPLETE_1_S	PLIC Complete Register (complete) for Hart 0 S-Mode						
		Field	Name	Access	Width	Reset		
		[31:0]	Completion	WO	32	0x0		
		Completion Write only	ı: field, write to it to comple	te interrupt p	rocess.	·		

2.2.2.2. CLINT

The CLINT module implements mtime, mtimecmp and some other memory-mapped CSR registers that are associated with timer and software interrupts.

There are two clocks for CLINT. The msip register is clocked by the system clock, while the mtimecmp and mtime are clocked by real time clock which is typically 32 KHz for Lattice FPGA.

Table 2.6 provides the descriptions of CLINT registers.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 2.6. CLINT Registers

Offset	Name	Description						
0x00_0000	CLINT_MSIP	MSIP Register for hart 0						
		Field	Name	Access	Width	Reset		
		[31:1]	Reserved	RO	31	0x0		
		[0]	msip	RW	1	0x0		
				•	•	<u>. </u>		
		msip:						
		Reflects the	e memory-mapped MSIP b	oit of the mip (CSR Register.			
		Writing a 1	in msip field results in the	e generation of	f SW interrupt.			
	-	—						
0x00_4000	CLINT_MTIMECMP_L	Machine Ti	imer Register – mtimecmp					
		Field	Name	Access	Width	Reset		
		[31:0]	mtimecmp_l	RW	32	Unchanged		
		mtimecmp	_1:			_		
		Lower 32 b	its of mtimecmp CSR Regis	ster. The first i	reset value is O	xFFFF_FFFF, after		
0.00.4004		nist write,	the reset does not change	the value of t	nis neid.			
0x00_4004			mer Register – mtimecmp	A	14/5-141	Decet		
		Field	Name	Access	wiath	Reset		
		[31:0]	mtimecmp_n	RW	32	Unchanged		
		mtimecmn	h.					
		Higher 32 b	–''' pits of mtimecmp CSR Regi	ister. The first	reset value is (0xFFFF FFFF, after		
		first write, the reset does not change the value of this field.						
	-	_						
0x00 BEE8	CLINT MTIME I	Machine Ti	mer Register - mtime					
0,000_0110		Field	Name	Access	Width	Reset		
		[31:0]	mtime I	RW	32	0x0		
		[01:0]			52	0.0		
		mtime I:						
		Lower 32 bits of mtime CSR Register.						
0x00 BFFC	CLINT MTIME H	Machine Timer Register - mtime						
_		Field	Name	Access	Width	Reset		
		[31:0]	32	0x0				
			•		•			
		mtime_h:						
		Higher 32 b	oits of mtime CSR Register.					

2.2.2.3. Watchdog Timer

The watchdog timer device (WDT) provides a simple two-stage timer controlled through one memory-mapped CSR register, WDCSR.

WDT waits a software-configured period of time with the expectation that system software re-initializes the watchdog state within this period of time. If this time period elapses without software re-init occurring, then a first-stage timeout register bit S1WTO is set within WDCSR that asserts an interrupt request output signal to notify the system of a stage 1 watchdog timeout. If a second period of time elapses without software re-init of the watchdog, then a second-stage timeout register bit (S2WTO) is set within WDCSR that generates a separate interrupt request output signal to notify the system of a stage 2 watchdog timeout.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02211-1.0

For current IP, the stage 1 watchdog timeout is connected to PLIC input channel 1 (fixed) and stage 2 watchdog timeout is connected to system reset.

The mtime CSR Register provides the time base for the watchdog timeout period. The timeout period itself – in units of watchdog clock tick – is specified by the WTOCNT field of the WDCSR CSR Register. When WDCSR is written, the WTOCNT value initializes a down counter that decrements with each watchdog tick.

The watchdog tick occurs when bit 14 of mtime transitions from 0 to 1. So the watchdog timeout period is 0.512 second (based on real time clock of 32 KHz), and maximum timeout period (WTOCNT = 0x3FF) is about 524 seconds.

WDT is included in CLINT module. WDT shares the same base address (0xF200_0000) as that of the CLINT. Table 2.7 provides the descriptions of WDT registers.

Table	2.7.	WDT	Registers
-------	------	-----	-----------

Offset	Name	Description						
0x00_D000	WDT_WDCSR	Watchdog Register						
		Field	Name	Access	Width	Reset		
		[31:14]	Reserved	RO	18	0x0	1	
		[13:4]	WTOCNT	RW	10	0x0	1	
		[3]	S2WTO	RW	1	0x0	1	
		[2]	S1WTO	RW	1	0x0	1	
		[1]	Reserved	RW	1	0x0	1	
		[0]	WDEN	RW	1	0x0	1	
		WDEN: When set, S2WTO out asserted, W S1WTO: Stage 1 wa S2WTO: Stage 2 wa WTOCNT: 10 bit time timeout pe	enables the WDT. When c tput signals are forced to b VDT is disabled accordingly tchdog timeout, active hig tchdog timeout, active hig out counter. If it is non-ze riod.	lear, the WDT be zero (de-ass y by setting W th. th. ro and WDEN	is disabled and serted). When DEN to 0. is set, it decret	d S1WTO and system reset is ments every	S	

2.2.2.4. UART

There is an optional UART as local slave. This UART has fixed memory assignment.

2.3. Signal Description

Table 2.8 to Table 2.13 list the ports of the CPU soft IP in different categories.

2.3.1. sysClock and Reset

Table 2.8. Clock and Reset Ports

Name	Direction	Width	Description
clk_system_i	In	1	High speed system clock input.
clk_realtime_i	In	1	Low speed real time clock input.
rstn_i	In	1	System reset (active low).
system_resetn_o	Out	1	Combined system reset and Debug Reset from JTAG.
uart_rxd_i	In	1	Input rxd for local UART. Only available when UART_EN enabled.
uart_txd_o	Out	1	Output txd for local UART. Only available when UART_EN enabled.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.3.2. Data Interface

The RX first release includes a TCM (as a local slave) and connected to instruction port of RISC-V core directly. So, there is no exported instruction interface. In certain scenarios, there is a need to have an exported instruction port. For example, the instruction may come from external flash through flash controller.

To support this, we provide an optional local bus port to connect TCM, meanwhile an extra optional AXI Interface for instruction port is available for accessing other memory map components such as flash controller or DDR controller.

So, there are options for user to enable either Local Bus Interface (for TCM) or AXI Interface (for external memory), or both Local Bus and AXI Interface.

Meanwhile, to remove potential dependency to other components at SoC level, there is an option for user to enable register slice for AXI-based instruction or data port, as shown in Figure 2.1.

Name	Direction	Width	Group	Description
LOCAL_BUS_M_DATA_cmd_valid	Out	1		-
LOCAL_BUS_M_DATA_cmd_ready	In	1		
LOCAL_BUS_M_DATA_cmd_payload_wr	Out	1		-
LOCAL_BUS_M_DATA_cmd_payload_uncached	Out	1		Fixed 1'b0.
LOCAL_BUS_M_DATA_cmd_payload_address	Out	32		_
LOCAL_BUS_M_DATA_cmd_payload_data	Out	32	LOCAL Bus Command	_
LOCAL_BUS_M_DATA_cmd_payload_mask	Out	4		The width field of load or store instruction.
LOCAL_BUS_M_DATA_cmd_payload_size	Out	3		3'b101: an 8-words read burst transfer. 3'b010: a single burst transfer.
LOCAL_BUS_M_DATA_cmd_payload_last	Out	1		_
LOCAL_BUS_M_DATA_rsp_valid	In	1		_
LOCAL_BUS_M_DATA_rsp_payload_last	In	1	LOCAL Due Dead Decrease	
LOCAL_BUS_M_DATA_rsp_payload_data[31:0]	In	32	LOCAL DUS REAU RESPONSE	_
LOCAL_BUS_M_DATA_rsp_payload_error	In	1		_

Table 2.9. Local Data Ports (Optional)

Table 2.10. Local Instruction Ports (Optional)

Name	Direction	Width	Group	Description
LOCAL_BUS_M_INSTR_cmd_valid	Out	1		—
LOCAL_BUS_M_INSTR_cmd_ready	In	1		—
LOCAL_BUS_M_INSTR_cmd_payload_wr	Out	1		Fixed 1'b0.
LOCAL_BUS_M_INSTR_ cmd_payload_uncached	Out	1		Fixed 1'b0.
LOCAL_BUS_M_INSTR_cmd_payload_address	Out	32		-
LOCAL_BUS_M_INSTR_cmd_payload_data	Out	32	LOCAL Bus Command	Fixed 32'b0.
LOCAL_BUS_M_INSTR_cmd_payload_mask	Out	4		Fixed 4'b0.
LOCAL_BUS_M_INSTR_cmd_payload_size	Out	3		3'b101: an 8-words read burst transfer. 3'b010: a single burst transfer.
LOCAL_BUS_M_INSTR_cmd_payload_last	Out	1		Fixed 4'b0.
LOCAL_BUS_M_INSTR_rsp_valid	In	1		_
LOCAL_BUS_M_INSTR_rsp_payload_last	In	1	LOCAL Bus Read Response	-
LOCAL_BUS_M_INSTR_rsp_payload_data[31:0]	In	32		_

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Name	Direction	Width	Group	Description
LOCAL_BUS_M_INSTR_rsp_payload_error	In	1		_

Table 2.11. AXI Data Ports (Constant)

Name	Direction	Width	Group	Description
AXI_MST_DATA_AWREADY	In	1		—
AXI_MST_DATA_AWVALID	Out	1		—
AXI_MST_DATA_AWADDR	Out	32		—
AXI_MST_DATA_AWLEN	Out	8		—
AXI_MST_DATA_AWSIZE	Out	3		_
AXI_MST_DATA_AWBURST	Out	2		Fixed 2'b01.
AXI_MST_DATA_AWLOCK	Out	1	AXI4 Master Write Address Channel	Fixed 1'b0.
AXI_MST_DATA_AWCACHE	Out	4		Fixed 4'b1111.
AXI_MST_DATA_AWPROT	Out	3		Fixed 3'b010.
AXI_MST_DATA_AWQOS	Out	4		Fixed 4'b0000.
AXI_MST_DATA_AWREGION	Out	4		Fixed 4'b0000.
AXI_MST_DATA_AWID	Out	1		Fixed 1'b0.
AXI_MST_DATA_WREADY	In	1		_
AXI_MST_DATA_WVALID	Out	1		_
AXI_MST_DATA_WDATA	Out	32	AXI4 Master Write Data Channel	_
AXI_MST_DATA_WLAST	Out	1		_
AXI_MST_DATA_WSTRB	Out	4		—
AXI_MST_DATA_BVALID	In	1		_
AXI MST DATA BRESP	In	2		b'00: OKAY. b'10: SIVERR
ANI_WIST_DATA_BRESP		2	AXI4 Master Write Response Channel	b'11: DECERR.
AXI_MST_DATA_BID	In	1	-	Not used.
AXI_MST_DATA_BREADY	Out	1		_
AXI_MST_DATA_ARVALID	In	1		_
AXI_MST_DATA_ARREADY	Out	1		_
AXI_MST_DATA_ARCACHE	Out	4		Fixed 4'b1111.
AXI_MST_DATA_ARPROT	Out	3		Fixed 3'b010.
AXI_MST_DATA_ARQOS	Out	4		Fixed 4'b0000.
AXI_MST_DATA_ARREGION	Out	4	AVIA monton Doord Address Channel	Fixed 4'b0000.
AXI_MST_DATA_ARID	Out	1	AXI4 master Read Address Channel	Fixed 1'b0.
AXI_MST_DATA_ARADDR	Out	32		—
AXI_MST_DATA_ARLEN	Out	8		—
AXI_MST_DATA_ARSIZE	Out	3		—
AXI_MST_DATA_ARBURST	Out	2		Fixed 2'b01.
AXI_MST_DATA_ARLOCK	Out	1		Fixed 1'b0.
AXI_MST_DATA_RID	In	1		Not used.
AXI_MST_DATA_RDATA	In	32		-
AXI_MST_DATA_RRESP	In	2	AXI4 Master Read Data Channel	_
AXI_MST_DATA_RLAST	In	1		Not used.
AXI_MST_DATA_RVALID	In	1		_

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Name	Direction	Width	Group	Description
AXI_MST_DATA_RREADY	Out	1		—

Table 2.12. AXI Instruction Ports (Optional)

Name	Direction	Width	Group	Description
AXI_MST_DATA_AWREADY	In	1		Not used.
AXI_MST_DATA_AWVALID	Out	1		Not used.
AXI_MST_DATA_AWADDR	Out	32		Not used.
AXI_MST_DATA_AWLEN	Out	8		Not used.
AXI_MST_DATA_AWSIZE	Out	3		Not used.
AXI_MST_DATA_AWBURST	Out	2		Not used.
AXI_MST_DATA_AWLOCK	Out	1	AXI4 Master write Address Channel	Not used.
AXI_MST_DATA_AWCACHE	Out	4		Not used.
AXI_MST_DATA_AWPROT	Out	3		Not used.
AXI_MST_DATA_AWQOS	Out	4		Not used.
AXI_MST_DATA_AWREGION	Out	4		Not used.
AXI_MST_DATA_AWID	Out	1		Not used.
AXI_MST_DATA_WREADY	In	1		Not used.
AXI_MST_DATA_WVALID	Out	1		Not used.
AXI_MST_DATA_WDATA	Out	32	AXI4 Master Write Data Channel	Not used.
AXI_MST_DATA_WLAST	Out	1		Not used.
AXI_MST_DATA_WSTRB	Out	4		Not used.
AXI_MST_DATA_BVALID	In	1		Not used.
AXI_MST_DATA_BRESP	In	2	AVIA Mactor Write Despense Channel	Not used.
AXI_MST_DATA_BID	In	1	AXI4 Master Write Response Channel	Not used.
AXI_MST_DATA_BREADY	Out	1		Not used.
AXI_MST_DATA_ARVALID	In	1		_
AXI_MST_DATA_ARREADY	Out	1		_
AXI_MST_DATA_ARCACHE	Out	4		Fixed 4'b1111.
AXI_MST_DATA_ARPROT	Out	3		Fixed 3'b010.
AXI_MST_DATA_ARQOS	Out	4		Fixed 4'b0000.
AXI_MST_DATA_ARREGION	Out	4	AVIA mactor Road Addross Channel	Fixed 4'b0000.
AXI_MST_DATA_ARID	Out	1	AXI4 master Read Address Chamler	Fixed 1'b0.
AXI_MST_DATA_ARADDR	Out	32		_
AXI_MST_DATA_ARLEN	Out	8		_
AXI_MST_DATA_ARSIZE	Out	3		Fixed 2'b10.
AXI_MST_DATA_ARBURST	Out	2		Fixed 2'b01.
AXI_MST_DATA_ARLOCK	Out	1		Fixed 1'b0.
AXI_MST_DATA_RID	In	1		Not used.
AXI_MST_DATA_RDATA	In	32		_
AXI_MST_DATA_RRESP	In	2	AXIA Macter Read Data Chappel	_
AXI_MST_DATA_RLAST	In	1		Not used.
AXI_MST_DATA_RVALID	In	1		_
AXI_MST_DATA_RREADY	Out	1		-

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

2.3.3. Interrupt Interface

Table 2.13. Interrupt Ports

Name	Туре	Width	Description
EXT_IRQ_Sx	In	2~14	Peripheral interrupts.

2.4. Attribute Summary

The configurable attributes are shown in Table 2.14 and are described in Table 2.15.

The attributes can be configured through the Propel Builder software.

Attribute	Selectable Values	Default	Dependency on Other Attributes
General			
Processor Mode	Balanced	Balanced	—
Debug Enable	Disabled, Enabled	Enabled	_
JTAG Channel Selection	14, 15, 16	14	_
Number of User Interrupt Requests	2~14	8	_
Interrupt for Supervisor Mode	Disabled, Enabled	Disabled	_
Width of PLIC Priority Register	2, 3	3	_
Reset Assertion	sync, async	sync	—
Enable UART Instance	Disabled, Enabled	Disabled	_
System Clock Frequency (MHz)	2 - 200	100	_
Serial Data Width	5, 6, 7, 8	8	_
Stop Bits	0, 1	1	_
Parity Enable	Disabled, Enabled	Disabled	_
UART Standard Baud Rate	2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000, 57600, 115200	115200	_

Table 2.14. Configurable Attributes

Table 2.15. Attributes Description

Attribute	Description
Processor Mode	Balanced Mode offers RV32IMC with some other feature sets (not user accessible) to get most comprehensive performance.
Debug Enable	Whether to enable Debug module or not.
JTAG Channel Selection	Select the channel of harden JTAG block.
Number of User Interrupt Requests	Number of Interrupt for peripherals.
Interrupt for Supervisor Mode	Whether or not to enable interrupt for Supervisor mode. If not, then all external interrupts go to Machine mode only.
Width of PLIC Priority Register	Data width of PLIC priority register. Default to 3 bits, so 8 priority levels in total.
Reset Assertion	Configure the reset mode to be either sync or async.
Enable UART instance	Disabled, Enabled.
System Clock Frequency (MHz)	Specifies the target frequency of system clock. This is used for baud rate calculation.
Serial Data Width	Specifies the default data bit width of UART transactions.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Attribute	Description
Stop Bits	Specifies the default number of stop bits to be transmitted and received.
Parity Enable	Specifies the absence/presence of parity.
UART Standard Baud Rate	Selects between Standard Baud Rate and Custom Baud Rate for the reset value of Divisor Latch Register. The selected baud rate is used to set the reset value of Divisor Latch Register as follows: {DLR_MSB, DLR_LSB} = System Clock Frequency (MHz) x 1000000 / Selected Baud Rate.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

2.5. Memory Map

To achieve better overall performance, this IP separates the whole 4G memory range into several sections with some usage convention, refer to Table 2.16. The region #0 is mandatory because it is cacheable range. Other regions are optional.

Table 2.16. SoC Memory Map

Base Address	Range	End Address	Description		
Region #0 (0x0000_0000 - 0x0FFF_FFFF) - RISC-V RX IP					
0x0000_0000	128KB	0x0001_FFFF	TCM (enable TCM)/ User Memory extension (disable TCM).		
0x0002_0000	_*	0x0FFF_FFFF	User Memory extension.		
Region #15 (0xF000_0000 -	0xFFFF_FFFF) - RISC-	V RX IP			
0xF000_0000	1KB	0xF000_03FF	Local UART when UART_EN asserted; otherwise, reserved.		
0xF000_0400	32767KB	0xF1FF_FFFF	Reserved.		
0xF200_0000	1024KB	0xF20F_FFFF	CLINT & Watchdog Timer.		
0xF210_0000	NA	OxFBFF_FFF	Reserved.		
0xFC00_0000	4096KB	0xFC3F_FFFF	PLIC.		
0xFC40_0000	NA	0xFFFF_FFFF	Reserved.		
Region #1 (0x1000_0000 - 0	x1FFF_FFFF)				
0x1000_0000	1KB	0x1000_03FF	UART.		
0x1000_1000	1KB	0x1000_13FF	GPIO.		
	-*	*	_*		
Region #2 (0x2000_0000 - 0	x2FFF_FFFF)				
	_*	_*	_*		

*Note: The actual valid base address/range/end address is determined by the user SoC design.

The total 4G memory space is divided into 16 256-MB regions to ease potential (future) PMP settings.

Processor cache range is 0x0000_0000 to 0x0FFF_FFFF, so region #0 is the only region for cacheable components. The first 128 KB (0x0000_0000 to 0x0001_FFFF) are reserved for TCM. The remaining spaces are for user external memory extension, either on-chip EBR-based memory or off-chip memory like flash and SDRAM.

Region #15 is reserved for RISC-V RX IP – local UART, CLINT, Watchdog Timer and PLIC are assigned to this region.

All the other regions are for user extension.

3. RISC-V RX CPU IP Generation

This section provides information on how to generate the CPU IP Core module using Propel Builder.

To generate the CPU IP Core module:

- 1. In Propel Builder, create a new design. Select the CPU package.
- 2. Enter the component name, as shown in Figure 3.1. Click Next.

NIDGUIE/IP BIOCK WIZ	ard	
Generate Compon This wizard will Enter the followi	ent from IP riscv_rtos Version 2.0.0 guide you through the configuration, generation and instantia ng information to get started.	tion of this Module/IP.
C		
Component name:	rx_core	\otimes
Create in:	rx_core D:/propel_test/rx2_hello_world/rx2_soc_test	8
Create in:	IX_core D:/propel_test/nx2_hello_world/nx2_soc_test	8
Create in:	rx_core D:/propel_test/nx2_hello_world/nx2_soc_test	Next > Cancel

Figure 3.1. Entering Component Name

3. Configure the parameters, as shown in Figure 3.2. Click Generate.

^{© 2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

iagram rx_core	Configure rx_core:	
	Property	Value
	▼ General	
	Processor Mode	Balanced
	▼ Debug Configuration	
	Debug Enable	
	JTAG Channel Selection for Certain Devices [14 - 16]] 14
	 Tightly Coupled Memory(TCM) Configuration 	
	TCM Enable	~
	TCM Base Address: 0x	0000000
	▼ Instruction/Data Configuration	
rx_core	Instruction Port Enable	
	System Bus Type for Data and/or Instruction port	AXI4
	AXI Instruction Base Address: 0x	00200000
AXI_M_INSTR	AXI Register Slice Type	0
	▼ PLIC Configuration	
LOCAL_BUS_M_INSTR	Number of User Interrupt Requests. [1 - 30]	1
rstn_i	Interrupt for Supervisor Mode	
,	Width of PLIC priority register [2 - 3]	3
riscv_rtos	▼ NMI Configuration	
	Non-maskable interrupt enable	
	▼ Optional Local slaves	
	Enable UART instance	
	▼ Local UART	
	System Clock Frequency (MHz) [2 - 200]	100
	Serial Data Width	8
	Stop Bits	1
	Parity Enable	
	UART Standard Baud Rate	115200

Figure 3.2. Configuring Parameters

4. Verify the information, as shown in Figure 3.3. Click **Finish**.

heck Generated Result	
Check the generated component results in the panel below. Uncheck option 'Insert to project' if you o your design.	to not want to add this component to
Component 'rx core' is successfully generated.	
P: riscv_rtos Version: 2.0.0	
/endor: latticesemi.com	
anguage: Verilog	
Senerated files:	
P-XACT_component: component.xml	
P-XACT_design: design.xml	
olack_box_verilog: rtl/rx_core_bb.v	
fg: rx_core.cfg	
P package file: rx_core.ipx	
emplate_verlidg: misc/rx_core_tmpi.v	
lenendency_file: testbench/dut_narams.v	
emplate vhdl: misc/rx core tmpl.vhd	
op_level_system_verilog: rtl/rx_core.sv	
Insert to project	
insert to project	

Figure 3.3. Verifying Results

5. Confirm or modify the module instance name, as shown in Figure 3.4. Click **OK**.

🔅 Define Instance X			
Instance Name:	rx_core	_inst	
Instance Reference: rx_core:2.0.0			
	ОК	Cancel	

Figure 3.4. Specifying Instance Name

6. The CPU IP instance is successfully generated, as shown in Figure 3.5.

Figure 3.5. Generated Instance

^{© 2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Appendix A. Resource Utilization

Table A.1. Resource Utilization in CertusPro-NX Device

Configuration	LUTs	Registers	sysMEM EBRs
Processor core	4715	2326	18
Processor core + PLIC + CLINT + Watchdog	5846	2873	18

Note: Resource utilization characteristics are generated using Lattice Radiant software.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

References

- RISC-V Instruction Set Manual Volume I: Unprivileged ISA (20191213)
- RISC-V Instruction Set Manual Volume II: Privileged Architecture (20211203)
- RISC-V Privileged Specification Version 1.12
- RISC-V Platform Specification Version 0.2
- RISC-V Platform-Level Interrupt Controller Specification Version 1.0
- SiFive Interrupt Cookbook v1.2
- RISC-V Watchdog Timer Specification Version 1.0-draft-0.5
- AMBA 3 AHB-Lite Protocol v1.0
- AMBA AXI and ACE Protocol Specification vF.b
- Local Bus Specification
- Lattice Propel Builder 2022.1 User Guide (FPGA-UG-02177)

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Revision History

Revision 1.0, November 2022

Section	Change Summary
All	Production release.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

www.latticesemi.com