Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer’s responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Installation Location Specification</td>
</tr>
<tr>
<td>2.2</td>
<td>Installation Component Specification</td>
</tr>
<tr>
<td>2.3</td>
<td>Installation Ready to Install Dialog Box</td>
</tr>
<tr>
<td>2.4</td>
<td>Lattice Neural Network Compiler Software for Windows Splash Screen</td>
</tr>
<tr>
<td>3.1</td>
<td>Project Settings Window</td>
</tr>
<tr>
<td>3.2</td>
<td>Example cmd for Post Processing</td>
</tr>
<tr>
<td>3.3</td>
<td>Proto File Selection Window</td>
</tr>
<tr>
<td>3.4</td>
<td>Project Implementation Options Window</td>
</tr>
<tr>
<td>3.5</td>
<td>Project Implementation window 2 (only for Advanced IP)</td>
</tr>
<tr>
<td>3.6</td>
<td>Project Window</td>
</tr>
<tr>
<td>3.7</td>
<td>Load Project Window</td>
</tr>
<tr>
<td>3.8</td>
<td>Python Code for Raw Input</td>
</tr>
<tr>
<td>4.1</td>
<td>Project Implementation Options Window</td>
</tr>
<tr>
<td>4.2</td>
<td>Analyze Results</td>
</tr>
<tr>
<td>4.3</td>
<td>Compile Results</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulate Results</td>
</tr>
<tr>
<td>4.5</td>
<td>Data Histogram for the Blob</td>
</tr>
<tr>
<td>4.6</td>
<td>Post Processing</td>
</tr>
<tr>
<td>4.7</td>
<td>Input network – TensorFlow or Keras</td>
</tr>
<tr>
<td>4.8</td>
<td>Close Tensorboard Process</td>
</tr>
<tr>
<td>4.9</td>
<td>Input network - Caffe</td>
</tr>
<tr>
<td>4.10</td>
<td>GUI Themes</td>
</tr>
<tr>
<td>4.11</td>
<td>HTML Log</td>
</tr>
<tr>
<td>4.12</td>
<td>Default View of HTML log</td>
</tr>
<tr>
<td>4.13</td>
<td>Search Functionality of Warning</td>
</tr>
<tr>
<td>4.14</td>
<td>Simulation Data Graph</td>
</tr>
<tr>
<td>5.1</td>
<td>Project Implementation Window – ECPS</td>
</tr>
<tr>
<td>5.2</td>
<td>Project Implementation Window – UltraPlus (1)</td>
</tr>
<tr>
<td>5.3</td>
<td>Project Implementation Window – UltraPlus (2)</td>
</tr>
<tr>
<td>5.4</td>
<td>Project Implementation Window – CrossLink-NX-Optimized</td>
</tr>
<tr>
<td>5.5</td>
<td>Project Implementation Window – CrossLink-NX-Compact</td>
</tr>
<tr>
<td>5.6</td>
<td>Project Implementation Window – CertusPro-NX-Optimized</td>
</tr>
<tr>
<td>5.7</td>
<td>Project Implementation Window – CertusPro-NX-Compact</td>
</tr>
<tr>
<td>5.8</td>
<td>Project Implementation Window – CertusPro-NX-Extended</td>
</tr>
<tr>
<td>5.9</td>
<td>Project Implementation Window – CertusPro-NX Advanced IP part 1</td>
</tr>
<tr>
<td>5.10</td>
<td>Project Implementation Window – CertusPro-NX Advanced IP part 2</td>
</tr>
<tr>
<td>5.11</td>
<td>Project Implementation Window – Avant Advanced IP part 1</td>
</tr>
<tr>
<td>5.12</td>
<td>Project Implementation Window – Avant Advanced IP part 2</td>
</tr>
<tr>
<td>5.13</td>
<td>On-the-Fly Post Processing Format</td>
</tr>
<tr>
<td>5.14</td>
<td>On-the-Fly Post Processing Data Flow</td>
</tr>
<tr>
<td>5.15</td>
<td>Tensor Graph Quantization Nodes</td>
</tr>
<tr>
<td>5.16</td>
<td>Activation Data Quantization Nodes</td>
</tr>
<tr>
<td>5.17</td>
<td>sensAI Security Flow: Encrypt Model</td>
</tr>
<tr>
<td>5.18</td>
<td>sensAI Security Flow: Encrypted Model Selection</td>
</tr>
<tr>
<td>5.19</td>
<td>sensAI Security Flow: Encrypt Model</td>
</tr>
<tr>
<td>6.1</td>
<td>Original TensorFlow Training Model</td>
</tr>
<tr>
<td>6.2</td>
<td>Simplified TensorFlow Inference Model</td>
</tr>
<tr>
<td>6.3</td>
<td>Tensorboard Visualization of Binarization</td>
</tr>
<tr>
<td>6.4</td>
<td>Binary Neural Network Modes in TensorFlow</td>
</tr>
<tr>
<td>7.1</td>
<td>Cypress Window</td>
</tr>
<tr>
<td>7.2</td>
<td>Radiant Programmer – Default Screen</td>
</tr>
<tr>
<td>7.3</td>
<td>Radiant Programmer Device Selection</td>
</tr>
</tbody>
</table>
Lattice sensAI Neural Network Compiler Software
User Guide

Figure 7.4. Radiant Programmer – Device Operation .. 77
Figure 7.5. Selecting Device Properties for CrossLink-NX .. 78
Figure 7.6. Output Console after Successful Flashing .. 79
Figure 7.7 Avant board with FX3 USB board ... 79
Figure 7.8. USB Debug Window ... 80
Figure 7.9. USB3-GigE VIP Board Label .. 84
Figure 7.10. CNX-VnV Board Label .. 84
Figure 7.11. CPNX-VnV Board Label .. 84
Figure 7.12. USB Debug Window .. 85
Figure 7.13. USB Debug Firmware generation .. 86
Figure 7.14. Upload FW, Input and Run USB-debugging ... 86
Figure 7.15. Read USB Data with blob Selected .. 87
Figure 7.16. Read USB Data without blob Selected ... 87
Figure 7.17. Save USB Data ... 88
Figure 7.18. Expected Values for Corresponding Blob ... 88
Figure 7.19. Show Expected Vs HW MAE ... 89
Figure 8.1. Model Zoo Window ... 90
Figure 8.1. Strided Slice Example .. 95
Figure G.1. Non-Quantized 3x3 CBSR or 3x3 Depthwise CBSR 103
Figure G.2. Quantized 3x3 CBSR or 3x3 Depthwise CBSR .. 104
Figure G.3. Non-Quantized 1x1 CBSR .. 104
Figure G.4. Quantized 1x1 CBSR .. 105
Figure G.5. Non-Quantized Add Block .. 105
Figure G.6. Quantized Add Block .. 106
Figure G.7. VGG toy model ... 106
Figure G.8. MobileNetV1 Block ... 107
Figure G.9. MobileNetV1 Toy Model ... 107
Figure G.10. MobileNetV2 Block 1 .. 108
Figure G.11. MobileNetV2 Block 2 .. 108
Figure G.12. ResNet Toy Model ... 109
Figure G.13. ResNet Block 2 Variation 1 .. 109
Figure G.14. ResNet Block 2 Variation 2 .. 110
Figure G.15. ResNet Block 2 Variation 3 .. 111
Figure G.16. GoogleNet Inception Block 1 ... 112
Figure G.17. GoogleNet Inception Block 2 ... 112
Figure G.18. Init Block ... 113
Figure G.19. DownSample Block .. 113
Figure G.20. Regular Block ... 114
Figure G.21. Upsample Block ... 114
Tables

Table 3.1. Arguments and Usage ... 19
Table 5.1. Unsigned 8-bit Quantization ... 57
Table 5.2. Signed 8-Bit Quantization .. 58
Table 5.3. Quantization Details with Device Type ... 58
Table 5.4 Quantization Support in Layers ... 58
Table 5.5. sensAI Security Flow: File Extension Mapping ... 65
Table G.1. Enet Example Architecture .. 115
Acronyms in This Document

A list of acronyms used in this document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNN</td>
<td>Binarized Neural Networks</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional Neural Network</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>LRAM</td>
<td>Large Random-Access Memory</td>
</tr>
<tr>
<td>HRAM</td>
<td>Hyper Random-Access Memory</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RTL</td>
<td>Register Transfer Level</td>
</tr>
<tr>
<td>CNX</td>
<td>CrossLink-NX</td>
</tr>
<tr>
<td>CPNX</td>
<td>Certus-Pro-NX</td>
</tr>
<tr>
<td>NNC</td>
<td>Lattice Neural Network Compiler tool</td>
</tr>
</tbody>
</table>
1. Introduction
This document describes the usage and troubleshooting of Lattice Neural Network Compiler software.

1.1. Prerequisites
The hardware, software, connection, and general requirements for this demonstration are provided in the following sections.

1.1.1. Hardware Requirements
The software requires the following hardware components:
• PC with either Windows 10 x64 or newer; or PC with compatible Ubuntu x64 distribution for running software flow only.
• Lattice Inference Machine-compatible FPGA.

1.1.2. Software Requirements
This software product requires the following software components:
• Lattice Neural Network Compiler Software for Windows or Linux.
• Diamond Programmer System software for downloading the FPGA bitstream.
• Lattice Diamond® Design Software for modifying the platform and regenerating the bitstream.
• Radiant Programmer System software for downloading the FPGA bitstream.
• Lattice Radiant® Design Software for modifying the platform and regenerating the bitstream.

1.1.3. Connection Requirements
Programming the device and running Lattice Neural Network Compiler Software directly from the GUI requires a Windows installation and a Windows-compatible connection, such as the USB driver for Lattice FPGA development boards.

1.1.4. General Requirements
This document requires some knowledge of the following:
• Familiarity with Caffe, TensorFlow, or Keras Machine Learning Frameworks.
• Familiarity with Lattice FPGA development, including basic concepts and troubleshooting skills, and experience establishing basic connectivity between the device and computer, or else utilizing some other hardware (such as an SD card) for transferring data onto the intended hardware.

1.1.5. IP Requirements
• Neural Network Compiler 6.1 supports the current IP cores for the ECP5, iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant device families.
• For ECP5, use CNN Accelerator IP Core v2.1.
• For iCE40 UltraPlus, use Compact CNN Accelerator IP Core v2.0.0.
• For CrossLink-NX, use the Crosslink-NX CNN Accelerator IP Core v3.0.
• For CertusPro-NX, use the CertusPro-NX CNN Accelerator IP Core v3.0.
• For Avant, use the Advanced CNN Accelerator IP Core v3.0.
• The IP cores from previous releases may not work correctly with this release. Ensure that you are using the versions provided by Lattice for Neural Network Compiler 6.1.
1.2. Purpose
This application shows the ability and features of Lattice Neural Network Compiler Software to:
• Analyze and compile a neural network for use with selected Lattice Semiconductor FPGA products.
• Simulate hardware to obtain expected fixed and floating-point output.
• Download and run neural networks directly on hardware via USB debugging.
• Manage multiple implementations per project to view the effects of different strategies.

1.3. Limitations
The following cautions apply to the software as a whole:
• Operations are conducted in fixed point notation on the hardware as a result of floating point values being converted to and from fixed point representation.
• Specific neural network features, such as layers or functions, require certain configurations to function or may not be supported.
2. Installing the Software

The demonstration package of the Lattice Neural Network Compiler Software is available as an executable installer for Windows and Linux systems. The software is installed on Windows by using the Machine Learning Software Setup executable installer (.exe) or on Ubuntu Linux by using the run file (.run). Launch the installation process and customize the options, as detailed in this section.

To install Lattice Neural Network Compiler Software:

1. Close all applications before starting the Lattice Neural Network Compiler Software installation.
2. Double-click on the Lattice Neural Network Compiler Software installer you downloaded.
4. Click Next to select the Installation folder.
5. On Windows, the default destination folder is C:\lsc\ml\6.1. On Linux, the default installation directory is ~/lsc/ml/6.1. Click Browse to change the destination (Figure 2.1).

![Figure 2.1. Installation Location Specification](image)

6. Click Next to open the Product Options dialog box (Figure 2.2).
7. Select the Machine Learning Software components that you want to install by selecting or clearing each of the listed options.
8. Click **Next** to open the License Agreement dialog box.
9. Read the license agreement. If you agree, click **I accept the license** to open the Start Menu shortcuts dialog box.
10. Click **Next** to open the Select Program Folder dialog box. The default name is Lattice Machine Learning Software 6.1. If you want to change the name, change it in the Program Folder text box.
11. Click **Next** to display the Ready to Install dialog box (Figure 2.3). Review the current settings, including the destination folder and components selected. If everything is correct, select **Install** to start the installation.
12. In the Installation Wizard Complete dialog box, read the confirmation note and click Finish.

13. Run the executable, either by using the desktop or start menu shortcut if created, or by navigating to your installation directory and running `lsc_ml_compl.exe` on Windows or `lsc_ml_compl` on Ubuntu Linux. You can then see the main window, as shown in Figure 2.4.

The installed software is now ready for use.
3. Getting Started

In this chapter, you can learn how to use Lattice Neural Network Compiler Software to create new projects and edit existing projects.

3.1. Creating a New Project

A project is a collection of all the files necessary to create and download your design to the selected device. The New Project window guides you through the steps of specifying a project name and adding existing sources to the new project.

To create a new project:

1. From the main window, click File > New. The Project Settings window opens, as shown in Figure 3.1.

![Figure 3.1. Project Settings Window](image)

2. Enter a project name into the Project field at top-left.
3. Select a framework for your design. Currently, sensAI supports Caffe, TensorFlow, and Keras.
4. Select the device you intend to run this network on.
5. Enter an optional post processing command. Post Processing commands use the following format:

   ```
   python test.py [<script-arg1> <script-arg2> ...] <input-data-file> <simulation-npy-data-file>
   ```

![Figure 3.2. Example cmd for Post Processing](image)
The input-data-file and simulation-npy-data-file arguments displayed in the angle brackets are added by the sensAI tool in this command.

The script-arg parameters displayed in the brackets [] are script-dependent argument parameters.

1. Select a class for your network. SensAI supports Convolution Neural Network (CNN) and Binary Neural Network (BNN).
2. Select the MOBILENET mode checkbox if you want to use a model with the Mobilenet IP for ECP5 devices using the CNN class. See the Advanced Topics section for more information on Mobilenet mode. Similarly, select Compact mode, Optimized mode, or Extended mode from the drop-down list if you want to use a model for the respective IPs of the CrossLink-NX device and the CertusPro-NX device.
3. Click on Network File. The Proto File Selection window opens, as shown in Figure 3.3.

![Figure 3.3. Proto File Selection Window](image)

4. Navigate to your proto file and select it in the window.
5. Click Open to load the proto file into your project.
6. Click on Model File and follow a similar process to steps 3-5, selecting your model file this time.
7. Click Image/Video Data and follow a similar process to steps 3-5, this time selecting your image or video file. You can check the Scan Data Layer to let the software attempt to locate your data file if it is defined in your network.
8. Click Next to open the Project Implementation Options Window, as shown in Figure 3.4.
Project Implementation Options Window

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Name</td>
<td>Impl 0</td>
</tr>
<tr>
<td>Scratch Pad Memory Block Size</td>
<td>8192</td>
</tr>
<tr>
<td>Enable Paired Convolution Engine</td>
<td>(Dual Core Mode)</td>
</tr>
<tr>
<td>On-Chip Large Memory Size</td>
<td>131072</td>
</tr>
<tr>
<td>Register out</td>
<td>(Output register for LRAM)</td>
</tr>
<tr>
<td>Debug mode Enable</td>
<td>Result Readout</td>
</tr>
<tr>
<td>Enable Embedded Mode</td>
<td>(Embedded mode)</td>
</tr>
<tr>
<td>External memory interfaced (in bytes)</td>
<td>8388608</td>
</tr>
<tr>
<td>Data Section Base Address</td>
<td>7240032</td>
</tr>
<tr>
<td>Code Section Base Address</td>
<td>0</td>
</tr>
<tr>
<td>Store Input</td>
<td>Store Output</td>
</tr>
<tr>
<td>GPO ID</td>
<td>0x0610</td>
</tr>
<tr>
<td>Mean Value for Data Pre-Processing</td>
<td>0</td>
</tr>
<tr>
<td>Scale Value for Data Pre-Processing</td>
<td>0.0078125</td>
</tr>
</tbody>
</table>

Figure 3.4. Project Implementation Options Window
9. The Project Implementation Window is automatically filled with default settings for the Implementation Name, as well as the parameters. You can change the name and parameters if desired. For more information on how each parameter works and their limitations, read the Project Implementation Settings section.

10. Click **Ok** to create your project. The Project Window opens, as shown in Figure 3.6.
3.2. Opening an Existing Project

1. Use one of the following methods to open an existing Lattice Neural Network Compiler Software project:
 - In the Main Window, click the Open Project button.
 - From the File menu, choose Open.

 The Open Project Window opens, as shown in Figure 3.7.
2. Navigate to an existing LDNN type file and select it.
3. Click Open to open the project.

3.3. Saving a Project

When working on a project you want to save, click on the floppy disk icon or navigate to File > Save in order to save your project. This can save the files with the project name into the project directory, as specified in your project settings.

3.4. Inputs

In addition to images, sensAI supports other types of input data as well.

3.4.1. Audio Input

The tool only accepts .wav files with a minimum length of 1 second. There is no preprocessing performed on audio input as of version 6.1.

3.4.2. Raw Input

By enabling the Raw Input option when creating a new project, you can pass input data in the form of .npy array. The array size should match exactly with the inputs in the network. This is because the array is directly fed to the network without performing any preprocessing. For example, mean and scale are not used on raw input data. Preprocessing can be performed in Python and then passed as a saved numpy array to sensAI.

To save an array, A, in a file, `raw_input.npy`, it only requires two lines of Python code, as shown in Figure 3.8 below.

```python
import numpy as np
np.save("raw_input.npy", A)
```

Figure 3.8. Python Code for Raw Input

Note: For image input as raw input, the data must be in BGR format.

3.5. Help

For more software help, the Help menu contains links to relevant help topics.

3.5.1. About

To find out more version and license information, navigate to Help > About to bring up the About window, which has tabs for different software information sections. The About tab contains information about the software. Your current version and build number are displayed here. The License tab provides a convenient way to view the license agreement.

3.5.2. User Guide

This user guide is routinely updated and may not be the latest version. To quickly go to the Lattice Semiconductor web page, which contains the latest version of the User Guide as well as supplemental material, navigate to Help > User Guide, and you will be taken to the correct page.

3.6. Command Line Interface

The executable can be used from a command line interface if you prefer not to use the GUI. To execute a command, launch the executable from the command line and pass it the arguments you wish to use.
For example, to bring up the help Windows CLI in Cygwin, the command is:
```
lsc_ml_compl.exe --help
```
While on Linux, execute it as:
```
./lsc_ml_compl --help
```
This brings up the help menu for the CLI. You can see the usage and arguments in the following sections of this chapter.

3.6.1. Arguments and Usage

Table 3.1. Arguments and Usage

<table>
<thead>
<tr>
<th>Programming Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--h, -h</td>
<td>Show this help message and exit</td>
</tr>
<tr>
<td>--cryptography</td>
<td>To run encryption/decryption flow</td>
</tr>
<tr>
<td>--input_file_path</td>
<td>Input model path that user wants to Encrypt/Decrypt</td>
</tr>
<tr>
<td>--input_file_path</td>
<td>Output model path to store encrypted/decrypted model</td>
</tr>
<tr>
<td>--password</td>
<td>Password to perform encryption/decryption</td>
</tr>
<tr>
<td>--mode</td>
<td>To select mode from encrypt/decrypt</td>
</tr>
<tr>
<td>--gui [GUI]</td>
<td>Invoke GUI tool</td>
</tr>
<tr>
<td>--cmd [CMD]</td>
<td>Valid commands are analyze, compile, simulate, download, run, and all</td>
</tr>
<tr>
<td>--framework {TensorFlow,Keras,Caffe}</td>
<td>Framework used to train the network. Currently, Caffe, TensorFlow, and Keras are supported.</td>
</tr>
<tr>
<td>--network_file NETWORK_FILE</td>
<td></td>
</tr>
<tr>
<td>--model_file MODEL_FILE</td>
<td></td>
</tr>
<tr>
<td>--image_files IMAGE_FILES</td>
<td></td>
</tr>
<tr>
<td>--num_conv_eng NUM_CONV_ENG</td>
<td>Number of convolution engines used. Only for CPNX and AVANT devices with Advanced CNN IP 4*N number of output channels are getting generated in parallel. N = 1 for CPNX and N = 1-4 for AVANT devices</td>
</tr>
<tr>
<td>--ebf blk_size 16384,32768,65536</td>
<td>Size of each embedded block ram for UltraPlus.</td>
</tr>
<tr>
<td>--crosslink_scratch_pad_blk_size 1024,2048,4096,8192</td>
<td>CrossLink-NX and CertusPro-NX scratch embedded block RAM size.</td>
</tr>
<tr>
<td>--crosslink_lram_size 65536,131072,262144</td>
<td>CrossLink-NX and CertusPro-NX On-chip large RAM size.</td>
</tr>
<tr>
<td>--cross_link_external_mem_size CROSS_LINK_EXTERNAL_MEM_SIZE</td>
<td>CrossLink-NX and CertusPro-NX External memory (dram/hyper ram) interfaced size.</td>
</tr>
<tr>
<td>--crosslink_code_base_addr CROSSLINK_CODE_BASE_ADDR</td>
<td>CrossLink-NX and CertusPro-NX Code/Binary base address of external memory.</td>
</tr>
<tr>
<td>--crosslink_data_base_addr CROSSLINK_DATA_BASE_ADDR</td>
<td>CrossLink-NX and CertusPro-NX data base address of external memory.</td>
</tr>
<tr>
<td>--hyper_ram {0,1}</td>
<td>Use hyper RAM as external memory in CrossLink-NX or CertusPro-NX.</td>
</tr>
<tr>
<td>--extmem_start_addr EXTMEM_START_ADDR</td>
<td>Starting address of external DRAM to store data.</td>
</tr>
<tr>
<td>--mean MEAN</td>
<td>Mean value used to preprocess data during training.</td>
</tr>
<tr>
<td>--scale SCALE</td>
<td>Scale value used to preprocess data during training.</td>
</tr>
<tr>
<td>--sample_rate SAMPLE_RATE</td>
<td>Sample rate value used for sampling the audio file.</td>
</tr>
<tr>
<td>--down_sampling DOWN_SAMPLING</td>
<td>Down sampling value used for down sampling the audio file.</td>
</tr>
<tr>
<td>--extmem_off {0,1}</td>
<td>Turn off using external memory to store data. By default, external memory is used to store input/output and scratch data.</td>
</tr>
<tr>
<td>Programming Code</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>--load_from_extmem {0,1}</td>
<td>By default, data is loaded from external memory to internal memory. If this option is '0', it makes sure data is directly loaded to EBR from sensor or host.</td>
</tr>
<tr>
<td>--store_to_extmem {0,1}</td>
<td>By default, data is output to external memory. If this option is '0', it makes sure to read data from internal memory.</td>
</tr>
<tr>
<td>--project_name PROJECT_NAME</td>
<td>Sets the project name.</td>
</tr>
<tr>
<td>--project_dir PROJECT_DIR</td>
<td>Project Directory.</td>
</tr>
<tr>
<td>--device {UltraPlus, ECP5, CrossLink-NX, CertusPro-NX, AVANT}</td>
<td>Sets the Device to ECPS, UltraPlus, CrossLink-NX, CertusPro-NX or Avant.</td>
</tr>
<tr>
<td>--mobilenet_mode {0, 1}</td>
<td>Enable MOBILENET mode by setting value to 1. Default is 0.</td>
</tr>
<tr>
<td>--nnMode {0,1}</td>
<td>Sets class CNN(0)/BNN(1).</td>
</tr>
<tr>
<td>--bnn_sign_mode {0,1}</td>
<td>Quantization mode for BNN(0: “0/1” and 1: “+1/-1”)</td>
</tr>
<tr>
<td>--enable_hw_sim {0,1}</td>
<td>Enable Hardware simulation. Default is 1.</td>
</tr>
<tr>
<td>--enable_fixed_sim {0,1}</td>
<td>Enable Fixed-point simulation. Default is 1.</td>
</tr>
<tr>
<td>--enable_float_sim {0,1}</td>
<td>Enable Floating-point simulation. Default is 1.</td>
</tr>
<tr>
<td>--collapse_layer {0,1}</td>
<td>Collapse layers. Default is 0.</td>
</tr>
<tr>
<td>--enable_dualcore {0,1}</td>
<td>Enable Dual core functionality. Default is 1.--enable_dualcore {0,1}</td>
</tr>
<tr>
<td>--enable_quadcore {0,1}</td>
<td>Enable Quad core functionality for CertusPro-NX Optimized Only. Default is 0.</td>
</tr>
<tr>
<td>--enable_embedded_mode{0,1}</td>
<td>Enable Embedded Mode. Default is 0.</td>
</tr>
<tr>
<td>--input_ebr INPUT_EBR</td>
<td>Specify comma separated input EBR numbers.</td>
</tr>
<tr>
<td>--output_ebr OUTPUT_EBR</td>
<td>Specify comma separated output EBR numbers.</td>
</tr>
<tr>
<td>--reg_out {0,1}</td>
<td>Enable Register out functionality for CrossLink-NX, CPNX and Avant device. Default: 0.</td>
</tr>
<tr>
<td>--required_output_depth_range</td>
<td>Specify Required Output Depth Range. For example, “7-13” only processes the 7th to 13th filters of the output convolution layer.</td>
</tr>
<tr>
<td>--user_added_yml USER_ADDED_YML</td>
<td>Specify User added yml file.</td>
</tr>
<tr>
<td>--conv1x1_mode {single, quad, dual}</td>
<td>Specify conv1x1 mode like quad, dual or single. Default single for iCE40 UltraPlus, CrossLink-NX and CertusPro-NX Compact.</td>
</tr>
<tr>
<td>--arg_max {4096, 8192}</td>
<td>Size of memory block RAM for arg max operation. Functionality for Extended and advanced CNN only. Default: 4096.</td>
</tr>
<tr>
<td>--otf_post_processing {0,1}</td>
<td>Specify on the fly post processing for UltraPlus. Default: 0.</td>
</tr>
<tr>
<td>--enable_debug_mode {0,1}</td>
<td>Enable debug mode or not. Supported only in CNX, CPNX and Avant devices. Default: 0.</td>
</tr>
<tr>
<td>--segment_number</td>
<td>LRAM Segment numbers we want to use . Iram size will be equal to (number of segments x segment size) value ranges from 1 to 7 for CPNX Advanced CNN and 1 to 16 for Avant Advanced CNN IP. Default value : 16.</td>
</tr>
<tr>
<td>--segment_size</td>
<td>Size of segment for advanced CNN IP. For CPNX and Avant device, advanced IP, with 32 bit datapath size segment size has fixed value of 65536. For Avant device, for 64 bit datapath size, segment size is 131072.</td>
</tr>
<tr>
<td>--ve_spd_number</td>
<td>Number of the VE scratchpad in advanced CNN IP. Values ranges from 1 to 8.</td>
</tr>
<tr>
<td>--multi_port</td>
<td>Multi-Port Parallel Values for advanced CNN IP. Values : {2,4}.</td>
</tr>
<tr>
<td>--kmax_pooling_kernel</td>
<td>Kernel size of KMAX pooling for the advanced CNN IP.</td>
</tr>
<tr>
<td>--datapath_width {32, 64}</td>
<td>Width of datapath for transferring of data within IP. More datapath width means more bytes of data transferred in each transaction.</td>
</tr>
<tr>
<td>--lut_input_bit</td>
<td>Input bits for LUT for activation function. Only available in Advanced IP.</td>
</tr>
<tr>
<td>--lut_output_bit</td>
<td>Output bits of data given by LUT of activation function.</td>
</tr>
<tr>
<td>--msb_clip_enable {0,1}</td>
<td>Clip MSB of input data bit for LUT of activation function.</td>
</tr>
</tbody>
</table>
3.7. Design Restrictions

There are a few constraints and restrictions that should be kept in mind when designing a neural network with sensAI. The general hardware, software, and framework restrictions are listed below.

3.7.1. General Restrictions

The mean operation is not performed in the network itself. It must be implemented in your RTL. For more information, see the Data Preprocessing section.

To support asymmetric padding on hardware, the convolution layer should be followed by BatchNorm operation.

3.7.2. ECP5 Restrictions

- Mean is not supported in firmware.
- Binary Convolution and Convolution: The maximum kernel size for Convolution is 9x9, while Binary Convolution has a maximum size of 3. The pad is recommended to be 1.
- If there is asymmetric padding in the convolution layer, then the convolution layer should be followed by Batch-Normalization layer.
- Pooling
 - Global Average Pooling
 - The kernel must be symmetric.
 - The stride must be 1. The pad must be 0.
 - Max Pooling
 - The kernel must be symmetric.
 - The recommended size is 2 x 2.
 - The pad must be symmetric. It is recommended to use a kernel size of 9 x 9 or smaller to reduce the number of cycles used.
- For leaky_ReLU, the negative activation slope is fixed to 1/16 in hardware. Models must be trained with alpha = 0.0625 (1/16) in leaky_ReLU.

3.7.3. ECP5 - Mobilenet Mode Restrictions

In addition to the previously-stated ECP5 restrictions, Mobilenet mode has a few additional restrictions to consider.

- Depth wise convolution only supports kernel sizes of 3 x 3, with stride restricted to 1 or 2, and pad values restricted to 0 or 1.
- 1 x 1 convolution must have the pad set to 0.
- Mobilenet mode supports branching and merging using eltwise addition. Both inputs and outputs of eltwise addition must be in the same format [either in 16b or in 8b].
- The Depth wise kernel input is restricted to 8,192. For given channels (C, H, W), this means that (W * H/2) must be less than or equal to 8,192.
- The number of engines cannot be changed. sensAI disables the ability to change this number to prevent generating an invalid firmware file. The number of engines used is eight convolution engines, eight depthwise convolution engines, and 64 1 x 1 convolution engines.
 - Because the eight Convolution engines are in dual core configuration, there are only four dual core engines. This is less than the limit of the normal ECP5 mode, meaning that the number of output EBRs is four when using the dual core engines instead of eight.
 - There are still eight output EBRs when using the eight depthwise convolution engines.
- ReLU6 is not supported in Neural Network Compiler 6.1. Ensure that the model does not contain this activation.
- Currently, if Mobilenet is trained with TensorFlow and the first convolution layer uses padding, the hardware simulation results may be inexact when compared to the actual hardware output. Test the hardware in this situation.
 The TensorFlow implementation of padding introduces differences from the present implementation employed in hardware.
3.7.4. UltraPlus Restrictions

- Binary Convolution and Convolution: When using a CNN design in UltraPlus, the Convolution Layer should have a weight size of less than or equal to three and a stride (conv_stride) of 1. It is recommended to keep the pad size at 1, while larger pad sizes can be supported. There may be data lost due to the fixed-point width losing significant figures as the padding size increases. When using a BNN design on UltraPlus, the BinaryConvolution Layer has the same constraints as the standard Convolution Layer.
 - Kernel sizes are restricted to 3 × 3 for BNN and 3 × 3 and 1 × 1 for CNN.
- Pooling: The Pooling layer must have a stride (pool_stride) and kernel (pool_ksize) size of two, and a pad (pool_pad) of 0.
- Mean and Scale are not supported in firmware.
- All intermediate data in a model except the output is represented in unsigned 8-bit format in the hardware, using the format 1.7 to represent the data. Because of this, you should use Mean = 0 and Scale = 0.0078125 in settings for UltraPlus for any design you intend to run on the UltraPlus IP.
- Bias is not supported for the Convolution layer.
- BNN supports input dimensions of 32 × 32.
- CNN supports the 32 × 32, 64 × 64, 128 × 128, and 160 × 160 input dimensions. 160 × 160 support requires Quad SPRAM.
- Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1 × 1 convolution, then the software will automatically generate firmware for handling Mobilenet.
- ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

3.7.5. CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions

- CrossLink-NX and CertusPro-NX devices only support CNN designs. At this time, there is no support for BNN-based networks. Use ECP5 or UltraPlus if binary network support is required.
- Weights and activations must be quantized for CrossLink-NX and CertusPro-NX. Refer to the Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant sections for more details on how to quantize your network correctly.
- 3 × 3 and 1 × 1 are the only supported convolution kernel sizes. The stride required to be 1 for both types. The pad can be 0 or 1 for 3x3 kernels, and the pad is required to be 0 for 1 × 1 convolution.
- Depthwise Convolution only supports 3 × 3 kernel size, with the stride required to be 1, and the pad can be either 0 or 1.
- Bias is supported in any convolution layer.
- 2 × 2 is the only supported pooling kernel size. The stride is required to be 2, and the pad is required to be 0. Odd input to the pooling layer is not supported.
- ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The QuantReLU must be present before each ReLU.
- QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.
- The fully connected layer is only supported at last (no intermediate fully connected is supported).
- The last layer must be fully connected, or CBSR. In CBSR, convolution types should be normal, depthwise, or 1 × 1 convolution.
- Mean and Scale are not supported in the firmware.
- Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1 × 1 convolution, then the software automatically generates firmware for handling Mobilenet.
- ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.
- Branching or merging structures, such as Concat and ELTwise addition, are not supported in compact mode. Use either the optimized mode or extended mode if you wish to use the ELTwise or Concat operations. Also, both inputs and outputs of eltwise addition must be in 8b quantized format.
• CrossLink-NX and CertusPro-NX utilize external memory by allowing the base address for the data and code to be specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory available for the data or the firmware. If the data base section address leaves insufficient room for the data, the analysis stage produces an error indicating this. Likewise, if the code base address leaves insufficient room for the code, the analysis stage produces an error stating as much. In either case, the address must be changed to allow for sufficient space.
• Depths/Channels used in Crosslink-NX and CertusPro-NX are recommended to be multiples of 4 for depthwise and 1x1 convolution for better performance.
• CrossLink-NX with Quad LRAM (i.e., 262144 bytes) on-chip large memory size is available only for the CLNX-17k device, and due to the limitation of EBR on the 17k device, it will be available with a 1k scratch pad size only. The user must not use firmware compiled with a Quad LRAM size for the CLNX-40k device. For CertusPro-NX, all the scratch pad sizes are supported with Quad LRAM.
• Large input resolutions like VGA and QVGA are only supported in CrossLink-NX optimized, CrossLink-NX extended mode, CertusPro-NX optimized mode, and CertusPro-NX extended mode.
• Embedded mode is only supported for CrossLink-NX Optimized and CertusPro-NX Optimized devices.
• Embedded mode only allows dual or Quad LRAM (i.e., with Embedded Mode on, the user cannot use 64 KB of LRAM).
• Embedded mode does not allow users to use external memory. If you observe the memory error, please reduce the filter size or model dimension, or else the user can run the model with Embedded Mode off.
• Branching structure with Concat layer is not supported in the Embedded mode.

3.7.6. CertusPro-NX and Avant Advanced CNN IP Restrictions
• Currently, the CertusPro-NX, and the Avant devices advanced CNN only support the following layers.
• Convolution (kernel size : 7x7, 5x5, 3x3, 1x1)
• Eltwise addition
• Concat
• FC
• Pooling (2x2 kernel, stride 2, pad 0)
• Pooling (K x K kernel, stride 1, pad K/2)
• Multiply, subtract, divide and reciprocate.
• The focus layer is currently implemented using RTL and has to be part of pre-processing. It is always supported after the input layer.
• Resize operation
• CPNX and Avant devices only support CNN designs. At this time, there is no support for BNN-based networks. Use ECP5 or UltraPlus if binary network support is required.
• Weights and activations must be quantized for CPNX and Avant devices. Refer to the Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant sections for more details on how to quantize your network correctly.
• 3 x 3, 1 x 1, 5 x 5, and 7x7 are the only supported convolution kernel sizes. The stride required to be 1 for a 5 x 5 type pad is 2. The 3 x 3, stride = 2, pad is supported asymmetrically in order to get the output dimension (H/2, W/2). Currently, Pad 0 is not supported with the 3x3 kernel.
• Depthwise Convolution supports 5x5, 3x3 kernel size, with the stride required to be 1, and the pad 1.
• The 2 x 2 kernel is supported for pooling. The stride is required to be 2, and the pad is required to be 0. Odd input to the pooling layer is not supported.
• For pooling with a K x K kernel, stride needs to be 1, and padding required should be half of K.
• ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The QuantReLU must be present before or after each ReLU.
• QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.
• The fully connected layer is supported as the last and intermediate layer. The intermediate fully connected layer should be followed by the fully connected layer. The intermediate fully connected layer should be quantized.
• The last layer must be fully connected, CBSP, or resized bilinear. In CBSP, convolution types should be normal, depthwise, or 1 x 1 convolution.
• Mean and Scale are not supported in the firmware.
• Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1×1 convolution, then the software automatically generates firmware for handling Mobilenet.
• ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.
• CPNX and Avant devices utilize external memory by allowing the base address for the data and code to be specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory available for the data or the firmware. If the data base section address leaves insufficient room for the data, the analysis stage produces an error. Likewise, if the code base address leaves insufficient room for the code, the analysis stage produces a warning stating as such. In either case, the address must be changed to allow for sufficient space for both data and code.
• Depths/Channels use in CPNX and Avant are recommended to be multiples of 4 for depthwise and 1×1 convolution for better performance.
• Currently, 2 and 4 multiport modes are supported. This takes more resources but speeds up the 1×1 conv layer execution.
• The focus layer is supported as the first layer only.

3.7.7. Caffe Restrictions
SensAI supports reading the current Caffe prototxt format. Older keywords, such as using layers instead of layer, are not supported.
See the Supported and Added Caffe Layers section for more requirements for individual layers.

3.7.8. Keras Restrictions
See the Supported Keras Layers section for more requirements for individual layers.

3.7.9. TensorFlow Restrictions
Versions 1.14, 2.0, 2.3, 2.5, and 2.9 of TensorFlow are supported by sensAI. Networks designed for other versions may not be compatible.
See the Supported TensorFlow Operations section for more requirements for individual operations.

3.7.10. AutoKeras Restrictions
• The model training was done considering a multiclass CLASSIFICATION task only.
• The model architectures were experimented with an input size of $32 \times 32 \times 1$.
• The optimizer that AutoKeras choose sometimes has a very small initial learning rate, and sometimes it is used along with learning rate decay, which affects training accuracy and loss. Hence, a constant optimizer was used (SGD with an initial LR=0.1 and a learning rate scheduler callback option).
• For now, the only hyperparameter that is varying is the number of channels (depth) in each layer. If the number of layers is kept as a hyperparameter, then it tries to go for a very large depth near the FC layer, and this creates the FC output value to explode. So the number of layers is now fixed.
• The max model size parameter is tested with a few experiments (with a given seed and resolution) to create a model (.bin file size) smaller than the limit for certain devices like UltraPlus.
• For reproducibility, when the seed is provided, it searches through the same hyperparameter combinations every time we run the script. However, the loss value that the AutoKeras get might differ slightly, and as a result, they may not have the same architecture as earlier. But the accuracy remains approximately within the +/-3% range.
• Note that if FC layer output crosses the range of [-32,+32], then we may experience a little higher MAE in the Neural Network Compiler, which is expected.
Refer to AutoKeras Reference Design document to know about training a model in AutoKeras for NNC.

3.8. Next Steps
Now that you have created or opened a project, you are ready to edit your project and run through the design flow, as detailed in the next section.
4. Working with Projects

4.1. Implementations
Implementations organize the structure of your design and allow you to try alternate structures and tool settings to determine which one can give you the best results. To help determine which scenario best meets your project goals, try using a different implementation of a design with different settings. Each implementation has associated active settings. When you create a new implementation, you must select its active settings.

4.1.1. Creating a New Implementation
To try a new implementation with different strategies within an existing project, you must create a new implementation.
1. Choose File > Add Impl to bring up the Implementation Options window.
2. The Implementation Options window has the same parameters as the one you encountered when creating your project initially. You can change the implementation name to a unique string if desired. Within the project, each implementation must have a unique name.
3. Change the implementation settings from the default settings, if desired.

4.1.2. Editing an Implementation
You can edit an existing implementation to change the specific input and output files, as well as the implementation settings.
1. Choose File > Edit Impl to bring up the Project Settings window.
2. The Project Implementation Settings Window opens, as shown in Figure 4.1.

![Figure 4.1. Project Implementation Options Window](image-url)
3. Edit your existing settings and click OK to apply them to your Project Implementation. For more information on parameters and their limitations, refer to the Project Implementation Settings section.

4.2. Project Flow

4.2.1. Analyze

You must first run the Analyze function on your project before you can progress to the Compile or Simulate stages. It analyzes your code to verify compatibility with the Lattice CNN Compiler. You can run the Analyzer by selecting Process > Analyze.

After successfully analyzing a neural network file, the implementation window is updated with a set of columns listing the properties of your neural network under the current settings.

- **Blobs**: Each blob that is detected and implemented by the software is listed in this column. Some blobs that are in the network file are not implemented in the hardware, such as those used for external data processing, and are not listed here.

- **Data Format**: This column lists the breakdown of the fixed-point representation of the blob. The number preceding the period is the number of bits used to represent the integer component of the number, while the number following it is the number of bits used in the fractional component. For signed data, the total number of bits is one less than the total number of bits used, as one bit is always used for signage.

 - For clarification, the following represents a 16-bit signed number, using 15 bits to represent the integer and fraction:
 - 3.12 represents a signed number with 3 integer bits and 12 fractional bits. The sum of the two values is 15. The software thus uses a 16-bit signed format.

 - For a signed 8-bit number, the total would be 7, as shown:
 - 5.2 represents a signed number with 5 integer bits and 2 fractional bits. The sum of the two values is 7. The software thus uses an 8-bit signed format. Finally, unsigned numbers can be used in 8-bit format.
5.3 represents an unsigned number. The sum of the two values is 8. The software thus uses an 8-bit unsigned format. SensAI only supports unsigned 8-bit and signed 8- and 16-bit formats. Some settings, such as layer collapse, force a certain combination of integer and fractional bits.

Stored Data Format: This column is a user-editable list of the fixed-point representations of each blob. It is populated with the default values that are automatically calculated by the software. Values are written in the same format as the signed data format entry above. In order to edit the stored data format for a blob, double-click the entry in that column for the blob in question.

You can allocate how many bits you want dedicated to the integer and fractional components for EBR storage for the specified blob. You have to specify whether the EBR accepts 16-bit mode or 8-bit mode. To use 16-bit mode, your two values need to add up to 15. To use 8-bit mode, your two values need to add up to 7.

- 12.3 represents EBR storage in 16-bit mode with 12 integer bits and 3 fraction bits.
- 6.1 represents EBR storage in 8-bit mode with 6 integer bits and 1 fraction bit.

Required Memory Bytes: The memory required to implement each blob is listed in this column. See the Project Implementation Settings section for more details on the effects your settings may have on this.

- **UltraPlus:** Lists the required SPRAM.
- **CrossLink-NX, CertusPro-NX, and ECPS:** Lists the required internal (LRAM/EBR), and external (HRAM/DRAM) memory.

Distribution of Input Data into memory blocks

During the analysis process, input data is divided into memory blocks based on the input layer dimension. The following subsections explain the details of how this division is handled. This example uses a three-channel BGR input, though your input data may use more or less than three channels.

- **Fraction setting of the input layer:** If the input values can fit in 8 bits, then the fraction settings to store input data are in 8-bit (byte mode). Hence, 16384 (for ECPS) input values can fit in a single memory block; otherwise 8192 values can be stored in one memory block.

- **Based on the values that can fit into a single memory block (16384 total values for byte mode on ECPS), there could be four different conditions:** cases where all the channels fit into a single memory block, cases where at least one channel can fit into a single memory block, cases where a single channel cannot fit into a memory block, and cases when memory blocks are not sufficient to fit input data.

 - **All the channels (BGR) can fit in a single memory block.**
 - If the input dimensions are $3 \times 32 \times 32$, then the total number of input values is 3,072, which is less than 16,384 values.
 - In this case, all the data values are stored in a single memory block in sequential order. In this example, input data is stored in the first memory block, from address 0 to address 3071.

 - **At least one channel can fit in a single memory block:**
 - There is also the case where all of the channels cannot fit into a single memory block, but it is still possible to put one or more channels into one.
 - For cases where only a single channel can fit within a memory block, consider a case where the input dimension is $3 \times 128 \times 128$. This corresponds to 49,152 entries, which cannot fit into a single memory block. However, a single channel has a size of $1 \times 128 \times 128$. This is 16,384 values, which can fit within a single memory block.
 - In this case, data is divided into 3 memory blocks, and each memory block can have a single channel of data values.

Note: Even if there is some extra space remaining in the memory block, the next channel values are not stored in that space unless a second channel could fit within, as explained in the next subsection.

In another example, consider an input dimension of $3 \times 90 \times 90$. Once again, all three channels correspond to a size (24,300), which cannot fit within a single memory block. Even though two channels would take up $2 \times 90 \times 90$, or 16,200 entries, which can fit in a single memory block, data is divided into memory blocks equally.

In this case, the data is divided into three memory blocks. The first memory block has the data from the first (B), the second memory block has the second (G) channel, and the third memory block has the data from the third (R) channel.

In this case, the last 8,284 values of each memory block are not used.
A single channel cannot fit in a single memory block, but memory blocks are sufficient to fit input data. Consider a larger network with input dimensions of $3 \times 224 \times 224$. In this case, there are 150,528 input values, which is far too large for a single memory block. Additionally, a single channel ($1 \times 224 \times 224$) has 50,176 values, which is still too large for a single memory block. Because of this large size, the Analyze stage attempts to divide each single channel into smaller pieces that can fit in each memory block using the following three steps:

1. Calculate the required memory per depth:

 Number of memory blocks = Ceiling $\left(\frac{[224\times224]}{16,384} \right) = 4$

 In this case, the memory per depth is 4.

2. Calculate the height per memory block:

 Height per memory block = Total height / memory per depth value

 For a total height of 224 divided by a depth of 4, this results in a height per memory block of $224/4$, which is 56 in one memory block.

3. Because there are 4 memory blocks per depth and 3 channels, a total of 12 memory blocks are used to store the input data.

Because each memory block stores the values of 56 heights (56×224), it uses 12,544 entries per memory block, and the remaining space in each memory block is unused. In this case, the data is divided as listed below:

- 1st memory block: Channel 0 (B) 0 – 55 height values
- 2nd memory block: Channel 0 (B) 56 – 111 height values
- 3rd memory block: Channel 0 (B) 112 – 167 height values
- 4th memory block: Channel 0 (B) 168 – 223 height values
- 5th memory block: Channel 1 (G) 0 – 55 height values
 ...
- 11th memory block: Channel 2 (R) 112 – 167 height values
- 12th memory block: Channel 2 (R) 168 – 223 height values

Memory blocks are not sufficient to fit input data. Consider a larger network with input dimensions of $3 \times 300 \times 300$. In this case, there are 270,000 input values, which is too large for all memory blocks, where the total memory size of all blocks is 162,144 (16×16384). In cases where the total memory block size is not enough to store all input channels, DRAM is required to store input data. For the input layer, you need to enable the *Store Input* option. For intermediate layers, the DRAM address is auto assigned. During processing, data is copied from DRAM to EBR. Because of this large size, the Analyze stage attempts to divide each single channel into smaller pieces that can fit in one memory block, as above. Analyze flow assigns one or more memory blocks to process data in the engine. As data is already in DRAM, the same memory block(s) can be reused for the next piece. So even if data cannot fit into assigned memory blocks, it is not overwritten. In this case, the data is divided as listed below:

- 1st memory block: Channel 0 (B) 0 – 50 height values
- 1st memory block: Channel 0 (B) 51 – 100 height values
- ...
- 1st memory block: Channel 0 (B) 251 – 300 height values
- 2nd memory block: Channel 1 (G) 0 – 50 height values
- 2nd memory block: Channel 1 (G) 51 – 100 height values
- ...
- 2nd memory block: Channel 1 (G) 251 – 300 height values
- 3rd memory block: Channel 2 (R) 0 – 50 height values
- 3rd memory block: Channel 2 (R) 51 – 100 height values
- ...
- 3rd memory block: Channel 2 (R) 251 – 300 height values
4.2.2. Analyzer for USB Debugging

To debug ECP5 via the USB interface, this checkbox should be enabled. The analyzer adds the required external memory address information to the output files.

For ECP5, layer outputs are read out after running. As a result, the outputs of layers that have their outputs overwritten by subsequent layers cannot be read directly.

4.2.3. Compile

You can create a firmware file for your analyzed network by running the compilation flow. This generates an lscml-type file, which can be used to download the network to your hardware by the software or by another tool. You can run the compiler by selecting Process > Compile.

![Compile Results](image)

Figure 4.3. Compile Results

After your network has been successfully compiled, you are presented with performance information. ECP5 designs also report details on channel/height storage and the start/end addresses for each input EBR. The cycles used by your neural network given the specified settings are reported, with a breakdown of cycles spent on DRAM access, convolution, pooling, fully connected, and scale.

- **DRAM**: These are the cycles that are spent accessing or storing data in the DRAM. Designs that use more of the EBR for storage will have fewer cycles used in the DRAM stage, and this number will increase as your settings offload more storage from the EBR to the DRAM.
- **Conv**: The cycles used in performing convolution are reported here. In a conventional neural network, this represents the standard convolution cycle. In a binary neural network, it displays the cycles used during binary convolution. In designs utilizing EBR, it typically represents the largest share of cycles in your design.
- **Pool**: These cycles are used to implement pooling in your neural network.
- **FC**: This entry corresponds to cycles used to implement fully connected (or inner product) vector operations.
- **Scale**: Scaling cycles are spent performing the scale operation.
4.2.4. Simulate

It is recommended that you run the simulation to verify the results. This is not a required step to compile your project. You can simulate your analyzed network using the Simulate feature. By selecting the green or red check boxes in the process window of the left pane, the simulation type can be changed between the floating-point network, fixed-point network, or inference engine model. By default, all types of simulation are selected. You can run the simulator by selecting Process > Simulate.

![Simulate Results](image)

The inputs and outputs of the simulation are determined by your neural network and your source file. The total cycles reported are identical to those found in the compilation stage.

Data Histogram Graph

After the analysis is complete, you can double-click on the blob name in the implementation window to view the data histogram for the particular blob.
A data histogram provides information on the minimum and maximum values and distribution of data. The histogram also helps to derive the proper fraction for the blob. Clicking on **Apply** can select a frac value, so it can store the maximum (on both positive and negative) possible values.

Note: The data histogram is only available for ECP5 and UltraPlus devices.

4.2.5. Post Processing

If the Post Processing command is configured in the project setting as shown in Figure 3.1, this operation runs the post processing script on the input data (a selected image or `.npy`) with the simulation result `.npy` file. You can run post processing by selecting **Process > Post Processing** as shown in Figure 4.6.
Lattice sensAI Neural Network Compiler Software
User Guide

4.2.6. Download
Lattice Neural Network Compiler Software is capable of directly downloading a project to a compatible board that is connected to the computer. The test board must be connected via USB. You can run the download tool by selecting Process > Download. See the USB Debugging section for more information on the USB debugger.

4.3. Views
The View menu in the software allows you to view the input network, analyzed network, log file, and simulation data graph in different windows. Also, it allows users to select GUI themes.

4.3.1. Input Network
The Input Network view displays a visualization of your input network, consisting of the layers, blobs, and connections in your network file.

TensorFlow-Keras Input network
This option opens the TensorBoard graph in your default browser, as seen in Figure 4.7.
Close Tensorboard

When you return to the sensAI tool, you are asked if you wish to close the Tensorboard process. If you choose not to close, you can close it later from upper left corner tool bar as shown in **Figure 4.8**.
Caffe Input Network
This option displays your input Caffe network, as seen in Figure 4.9.

4.3.2. Analyzed Network
The Analyzed Network View displays a visualization of your analyzed network. This is only available after the analyze stage of the project flow. In addition to its entry in the view menu, you can also click the View Analyzed Network button to the right of the Run button to bring up the display.

4.3.3. GUI Themes
The GUI Themes menu (Figure 4.10) allows you to update the look of sensAI. Simply click on one of the many options to choose the theme that suits you.
4.3.4. Log File

The Log File view allows you to view the output log of your project. This is a history of operations you have initiated and the output that was generated as a result. If you would prefer to use a text viewer of your choice, the contents of your log file are stored in a .log file in your project directory.

4.3.5. HTML Log File

This HTML log file is simply a view of log files in HTML pages. You can open the HTML log in two ways. You can open an HTML log webpage by clicking View > HTML log, as shown in Figure 4.11. When you open the same project multiple times, new HTML pages are created. When you open the HTML log in your browser, there are four log sections: debug, info, warning, and error. There are refutations of each section's arguments. The default view of this webpage is a combination of four sections. Whenever you click on any section, they show the log of each section donly. There is a search option available for each section. Figure 4.12 shows the default view of the HTML log. Figure 4.13 shows the search option for the warning. The background colors for each portion are different.
Figure 4.11. HTML Log

Figure 4.12. Default View of HTML log

Figure 4.13. Search Functionality of Warning
4.3.6. Simulation Data Graph

The simulation data graph (Figure 4.14) shows the comparison of the predicted values of the floating-point network, fixed-point network, and hardware after running the simulation step. This view is accessible after completing a software simulation. The graph can zoom in or out, and it allows you to configure subplots and export them as an image or a PDF file.

![Simulation Data Graph](image)

Figure 4.14. Simulation Data Graph

4.4. Example Projects

This section provides project samples that you can work on to become more familiar with the software before starting your own project.

The Neural Network Compiler includes several example projects as a reference for using the tool. The CatDog and HumanPresence projects can be loaded from the sensAI user interface and run through the analysis, compilation, and simulation stages. The post processing, meanwhile, contains a Yolo vehicle detection post processing operation script for the given input image and last layer output data (.npy).

4.4.1. Catdog

This `catdog` example network can take an input image of size $32 \times 32 \times 3$ and determine whether it is a picture of a cat or a dog, with accuracy depending on the images it was trained with and the test image used.

To launch the `catdog` project:

1. Launch the sensAI Neural Network compiler software.
2. Click on **File > Open**. You can also click the **Open File** button.
3. Navigate to the `examples/catdog` directory, and select `catdog.ldnn`. Click **Open**. This loads the `catdog` project.
Now that the project is loaded, you are able to use several features of the software. To analyze, compile, and simulate the project:

1. Choose Process > Analyze from the menu.
2. After the network is analyzed, compile the project. Click Process > Compile from the menu.

 Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network Compiler software analyzes and then compiles the network with a single click.
3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The Floating Point Model is the only option with a green checkmark at this point.
4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types at one time. For this example, click on the x marks to the left of the Fixed Point and Inference Model to re-enable them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point model.

4.4.2. Humanpresence

The humanpresence example network can take an input image of size $64 \times 64 \times 3$ and determine humans in it. The accuracy depends on the images it was trained with and the test image used.

To launch the humanpresence project:

1. Launch the Lattice sensAI Neural Network Compiler software.
2. Click on File > Open. You can also click the Open File button.
3. Navigate to the examples/humanpresence directory and select humanpresence.ldnn. Click Open.

 This loads the humanpresence project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the menu.

 Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network Compiler software analyzes and then compiles the network with a single click.
3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of simulation. Click on the checkmarks to the left of the Fixed Point Model and Inference Model to disable them. The Floating Point Model is the only option with a green checkmark at this point.
4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types at one time. For this example, click on the x marks to the left of the Fixed Point and Inference Model to enable them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point model.
4.4.3. GoogleNet

This GoogleNet network example can take an input image of size 224 × 224 × 1 and determine the number of humans in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this GoogleNet project:
1. Launch the Lattice sensAI Neural Network Compiler software.
2. Click File > Open. You can also click the Open File button.
 Navigate to the examples/GoogleNet directory, and select GoogleNet.ldnn. Click Open. This loads the GoogleNet project.

Now that the project is loaded, you are able to use several of the features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. You can click Process > Compile from the menu.
 Note: You can combine these steps by clicking the Analyze and Compile button in the GUI. The Lattice sensAI Neural Network Compiler software analyzes and then compiles the network with a single click.
3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the Simulate (Optional) category on the left-hand side of the GUI in order to enable and disable different types of simulation. Click on the checkmarks to the left of the Fixed Point Model and Inference Model to disable them. The Floating Point Model is the only option with a green checkmark at this point.
4. Click Project > Simulate from the menu.
5. When the process is completed, you can view the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types at one time. For this example, click on the x marks to the left of the Fixed Point and Inference Model to re-enable them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point model.

4.4.4. SqueezeDet

This SqueezeDet example network can take an input image of size 224 × 224 × 1 and determine the number of humans in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this SqueezeDet project:
1. Launch the Lattice sensAI Neural Network Compiler software.
2. Click on File > Open. You can also click the Open File button.
 Navigate to the examples/SqueezeDet directory, and select SqueezeDet.ldnn. Click Open. This loads the SqueezeDet project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.
 Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network Compiler software analyzes and then compiles the network with a single click.
3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of simulation. Click on the checkmarks to the left of the Fixed Point Model and Inference Model to disable them. The Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types at one time. For this example, click on the x marks to the left of the Fixed Point and Inference Model to re-enable them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point model.
5. **Advanced Topics**

5.1. **Project Implementation Settings**

Each project has several main settings for customizing your neural network implementation. These settings are accessed either during new project creation (see the Creating a New Project section) or by editing an existing implementation (see the Editing an Implementation section). These settings are visible in the Project Implementation Window, as shown in **Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.11** below.

![Project Implementation Window – ECP5](image)

Figure 5.1. Project Implementation Window – ECP5

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
Project Implementation Window

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Name</td>
<td>impl0</td>
<td></td>
</tr>
<tr>
<td>Number Of Convolution Engines</td>
<td>1</td>
<td>Fixed for Ultra Plus device</td>
</tr>
<tr>
<td>On-Chip Memory Block Size</td>
<td>16384</td>
<td>1K/32K/64K 16-bit entry</td>
</tr>
<tr>
<td>Conv1x1</td>
<td>single</td>
<td>single, dual, quad modes. Applicable only for 1x1</td>
</tr>
<tr>
<td>Scratch Memory Size</td>
<td>4096</td>
<td>Quad mode uses 2x scratch size</td>
</tr>
<tr>
<td>Input Memory Assignment</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Output Memory Assignment</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Off-Chip Memory Address</td>
<td>0</td>
<td>Do Not Use</td>
</tr>
<tr>
<td>Store Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO ID</td>
<td>0x0510</td>
<td></td>
</tr>
<tr>
<td>Mean Value for Data Pre-Processing</td>
<td>0</td>
<td>Keep Default values to bypass preprocessing</td>
</tr>
<tr>
<td>Scale Value for Data Pre-Processing</td>
<td>1.0</td>
<td>Operands: Input Data = (Input Data - Mean) x Scale</td>
</tr>
<tr>
<td>On-the-fly post processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required output depth range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.2. Project Implementation Window – UltraPlus (1)
Figure 5.3. Project Implementation Window – UltraPlus (2)
Project Windows

<table>
<thead>
<tr>
<th>Implementation Name:</th>
<th>impl0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scratch Pad Memory Block Size:</td>
<td>8192</td>
</tr>
<tr>
<td>Enable Paired Convolution Engine:</td>
<td>[] (Dual Core Mode)</td>
</tr>
<tr>
<td>On-Chip Large Memory Size:</td>
<td>131072</td>
</tr>
<tr>
<td>Register out:</td>
<td>[] (Output register for LRAM)</td>
</tr>
<tr>
<td>Debug mode Enable:</td>
<td>[] Result Readout</td>
</tr>
<tr>
<td>Enable Embedded Mode:</td>
<td>[] (Embedded mode)</td>
</tr>
<tr>
<td>External memory interfaced (in bytes):</td>
<td>00000000</td>
</tr>
<tr>
<td>Data Section Base Address:</td>
<td>73400000</td>
</tr>
<tr>
<td>Code Section Base Address:</td>
<td>0</td>
</tr>
<tr>
<td>[] Store Input</td>
<td>[] Store Output</td>
</tr>
<tr>
<td>GPO ID</td>
<td>0x0610</td>
</tr>
<tr>
<td>Mean Value for Data Pre-Processing:</td>
<td>0</td>
</tr>
<tr>
<td>Scale Value for Data Pre-Processing:</td>
<td>0.0076125</td>
</tr>
<tr>
<td>On-the-fly post-processing</td>
<td>[]</td>
</tr>
<tr>
<td>Required output depth range:</td>
<td></td>
</tr>
</tbody>
</table>

![Project Implementation Window – CrossLink-NX-Optimized](image)

Figure 5.4. Project Implementation Window – CrossLink-NX-Optimized
Project Window

<table>
<thead>
<tr>
<th>Implementation Name: Impl 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv1X1: quad (Applicable only for 1x1)</td>
</tr>
<tr>
<td>Scratch Pad Memory Block Size: 8192 (Quad mode uses 2x scratch size)</td>
</tr>
<tr>
<td>On-Chip Large Memory Size: 131072 (64K/128K/256K Byte entry)</td>
</tr>
</tbody>
</table>

- Register out: [] (Output register for LRAM)
- Debug mode Enable: [] Result Readout
- External memory interfaced (in bytes): 6365600, [] HyperRAM
- Data Section Base Address: 7940032
- Code Section Base Address: 0
- [] Store Input, [] Store Output
- GPO ID: 0x0510, [] Store
- Mean Value for Data Pre-Processing: 0 (Keep Default values to bypass preprocessing)
- Scale Value for Data Pre-Processing: 0.0070125 (Operational Input Data = (Input Data - Mean) x Scale)
- [] On-the-fly post processing
- Required output depth range:

Figure 5.5. Project Implementation Window – CrossLink-NX-Compact
Project Implementation Window

- **Implementation Name:** Impl0
- **Scratch Pad Memory Block Size:** 6132
- **Enable Paired Convolution Engine:** Dual Core Mode
- **Enable Quad Convolution Engine:** Quad Core Mode
- **On-Chip Large Memory Size:** 131072
- **Debug mode Enable:** Result Readout
- **Enable Embedded Mode:** Embedded mode
- **External memory interface (in bytes):** 8388608
- **HyperRAM**
- **Data Section Base Address:** 7340032
- **Code Section Base Address:** 0
- **Store input:** Store Output
- **GPIO ID:** 0x0010
- **Mean Value for Data Pre-Processing:** 0
- **Scale Value for Data Pre-Processing:** 0.0078125
- **Operation Input Data = Input Data - Mean] x Scale**
- **On-the-fly post processing**
- **Required output depth range:**

![Project Implementation Window – CertusPro-NX-Optimized](image)

Figure 5.6. Project Implementation Window – CertusPro-NX-Optimized
Figure 5.7. Project Implementation Window – CertusPro-NX-Compact
Figure 5.8. Project Implementation Window – CertusPro-NX-Extended
Figure 5.9 Project Implementation Window – CertusPro-NX Advanced IP part 1

Figure 5.10 Project Implementation Window – CertusPro-NX Advanced IP part 2
Figure 5.11 Project Implementation Window – Avant Advanced IP Part 1

Figure 5.12 Project Implementation Window – Avant Advanced IP part 2
The settings that are visible and can be adjusted depend on the device, network type, and framework. For example, UltraPlus has a single convolution engine with a fixed size (Figure 5.2), causing those options to be grayed out, while the option for changing your quantization type is only available for BNN projects.

5.1.1. Number of Convolution Engines
You can change the number of convolution engines used by your design, whether they are standard convolution engines or binary convolution engines, to be less than the maximum amount supported on your device. The ability to use less than the maximum depends on the specific device. For example, certain LatticeECP5 products can support up to eight CNN engines, allowing you to reduce your usage. For CertusPro-NX and Avant devices, with Advanced CNN IP 4*N, a number of output channels are generated in parallel. N = 1 for the CertusPro-NX device, and N = 1-4 for Avant devices.

5.1.2. Enable Dual Core Mode
Selecting Enable Dual Core Mode enables dual core mode in ECP5, CrossLink-NX (Optimized, Extended), or CertusPro-NX (Optimized, Extended) devices. When enabled, it uses two DSP blocks per convolution engine. This option is checked and enabled by default. This feature is only supported in ECP5, CrossLink-NX (Optimized, Extended), and CertusPro-NX (Optimized, Extended) devices.

5.1.3. Enable Quad Core Mode
Selecting Enable Quad Core Mode enables quad core mode in CertusPro-NX (optimized) devices. When enabled, it uses four DSP blocks per convolution engine. This option is checked and enabled by default. This feature is only supported in CertusPro-NX (optimized) devices.

5.1.4. On-Chip Memory Block Size
The On-Chip Memory Block size option is only visible for projects targeting iCE40 UltraPlus devices, allowing you to select from three entries from the drop-down menu: 16,384, 32,768, and 65,536. These correspond to three possible memory configurations.

- 16,384 - 16k, 16-bit (32 Kilobyte) Single SPRAM
- 32,768 - 32k, 16-bit (64 Kilobyte) Dual SPRAM
- 65,536 - 64k 16-bit (128 Kilobyte) Quad SPRAM

When using single SPRAM mode, the rest of the memory, over 128 kilobytes, can be used for storing firmware. When using Quad SPRAM, provide external memory for storing firmware.

5.1.5. Number of On-Chip Memory Blocks
The Number of On-Chip Memory Blocks setting specifies the number of discrete blocks in the EBR that are utilized in the DNN Inference Machine. On ECP5 devices, you are required to have a minimum of one plus an additional one for each convolution engine used by your design. For designs using the iCE40 UltraPlus device, the number of blocks is fixed.

5.1.6. Mobilenet Mode for iCE40 UltraPlus, CrossLink-NX Compact, and CertusPro-NX Compact
Mobilenet Mode allows you to select Conv1x1 mode for devices. Three modes, single, dual, and quad, are available to perform 1 × 1 convolutions for iCE40 UltraPlus devices. Quad mode provides the best performance and highest resource consumption. The single mode is the slowest among the three but uses the least resources.
For CrossLink-NX Compact and CertusPro-NX Compact, only quad mode is available.

5.1.7. Argmax Memory Size
The Argmax Memory Size option allows you to select memory 4k/8k for Argmax pooling metadata, which can be reused while unpooling. This option is available for Extended and Advanced CNN IPs only.
5.1.8. Scratch Memory Size

The Scratch Memory Size option is only visible for projects targeting iCE40 UltraPlus, CrossLink-NX, and CertusPro-NX devices, allowing you to select from two entries in the drop-down menu: 1,024, 2048, 4096, and 8192 based on selected devices. These four options select whether the design uses 1K, 2K, 4K, or 8K of the scratch memory. For iCE40 UltraPlus, the default is 4K and is the recommended setting, though in some cases that require reduced resource utilization, 1K can be selected. Whereas for CrossLink-NX and Certus-NX devices, 8192 is the default and recommended setting. Some designs that utilize less resources may wish to select the other options.

Note: For iCE40 UltraPlus devices, with Quad mode as Conv1x1 mode, all other convolutions (except 1 x 1 convolution) use 2x scratch size. For example, if you select a 2048-byte scratch size internally, 3 x 3 convolutions use 4096-byte scratch memory, and 1 x 1 convolution uses two separate convolutions with a 2048-byte scratch size each.

5.1.9. Debug Mode Enable

This Debug Mode Enable option can be used to enable the write/debug signal on post processing RTL. If unchecked, write mode is enabled; otherwise debug mode is enabled.

5.1.10. Embedded Mode for CrossLink-NX Optimized and CertusPro-NX Optimized

This option is only visible for projects targeting CrossLink-NX Optimized and CertusPro-NX Optimized devices. This option allows you to run your model without using external memory when embedded mode is enabled. Embedded mode also supports branching structures (only residual blocks, not concat structures) and multiple-output networks like single-shot detector (SSD) architectures.

Note: If you observe a memory error, such as a particular layer requiring more memory than the current LRAM size, you can try with a higher LRAM size (for example, QUAD LRAM if currently DUAL LRAM is being used). If it is not possible, reduce the filter or dimension. To run the same model, turn off embedded mode so the tool can use external memory.

5.1.11. Input Memory Assignment

This setting specifies which EBR memory blocks should be used to store input data in cases where specific memory blocks should be used. The values must be comma-separated. For example, “1, 2” specifies that EBR 1 and 2 should be used. If left blank, the software automatically assigns memory blocks.

5.1.12. Output Memory Assignment

Similar to input memory assignment, the output memory assignment setting identifies which EBR should be used when specified and is automatically assigned when left blank.

5.1.13. Off-Chip Data Memory Start Address

This setting determines the memory address in DRAM where the convolution design starts storing and loading data. The amount of DRAM required depends on your neural network and your EBR settings, with larger networks or implementations with lower EBR usage requiring more DRAM. If you intend to read or write input or output to a memory location, you must have storage enabled, while having it disabled requires you to provide input and output from something external to the provided IP block.

Do Not Use (ECP5 Only)

The Do Not Use option disables all DRAM usage. In addition to not storing the input or output in DRAM, it also disables the ability to store data from intermediate stages in the DRAM. This mode may not be compatible with all networks.

Store Input

Enabling Store Input indicates that external memory (HyperRAM/DRAM) is used for input rather than another source. Disabling this setting prevents external memory from being used to store input. In this case, you need another way of providing input into your design.
Store Output
Similar to Store Input, the Store Output option indicates that external memory (HyperRAM/DRAM) is used for output rather than another source.

5.1.14. Collapse Layer
The Collapse Layer option enables you to merge the layers Convolution, BatchNorm, and Scale during the Compile and Simulation stages, implementing them as a single Convolution layer in hardware. This feature is applicable for networks with convolution, batch norm, and scale layer architectures. Designs using this optimization should see a reduction in scale cycles, and a possible reduction in memory access cycles.

5.1.15. Data Preprocessing
The supported preprocessing is shifting (mean), scaling (scale), and resizing. For demo designs, some preprocessing is already applied to the hardware. Refer to the IP documentation to learn more about the preprocessing in a specific design. Scaling of the input data can be implemented using the firmware. The stored_frac bit is adjusted to perform scaling of the input data. For more information, check the Lattice sensAI Human Counting AI Demo, where scaling of the input image from 0-255 to 0-2 is performed on the firmware by setting the stored_frac bits to 1.7 in sensAI.

Note: The shifting (mean) preprocessing must be done using the preprocessing RTL, not sensAI firmware. It is included in the user interface for testing purposes, but the final implementation of your network must have the mean preprocessing performed in your RTL design and your mean set to 0 in sensAI. The iCE40 UltraPlus device does not support scaling in sensAI. Scaling and resizing are supported in sensAI.

For example, an input image with a range of 0 to 255, a scale of 0.0078125, and a mean of 128. The input data range is from -1 to 1. When the firmware is generated, only the scaling is performed using the stored_frac value in sensAI, which results in a range of 0 to 1. This is because the signed format (0.7) in stored_frac is not being shifted. Perform the shifting operation in the preprocessing RTL to implement the mean. To bypass Mean/Scale preprocessing, use the default values of mean = 0 and scale = 1.0.

For designs with input image data, preprocessing can be managed in the source files used by sensAI. In Caffe, the preprocessing is part of the prototile, while in TensorFlow and Keras, preprocessing can be added with extra node operations.

For a given mean and scale, the final output feed to the network is:
Output Pixel = (Input Pixel – Mean) x Scale
Mean subtraction is always carried out before scaling. The mean value is an integer, and the scale value data is a float.

For a better understanding of how sensAI (not the firmware) calculates ranges, consider the following examples:
- Input image pixel range is 0 to 255, Mean is 128, and Scale is 1/256 (0.00390625):
 - Output pixel range is: –0.5 to 0.5.
- Input image pixel range is 0 to 255, Mean is 0 (default value), and Scale is 1/256 (0.00390625):
 - Output pixel range is: 0 to 1.
- Input image pixel range is 0 to 255, Mean is 128, and Scale is 1.0 (default value)
 - Output pixel range is: –128 to 127.
- Input image pixel range is 0 to 255, Mean is 0 (default value), and Scale is 1/128 (0.0078125)
 - Output pixel range is: 0 to 2

The final type of preprocessing is resizing. Resizing is required, and the input image is automatically resized into the input data blob using the interpolation function. You cannot bypass it.
Mean Value for Data Pre-Processing

The Mean Value is used for normalizing input data. You must specify a value or use the default. If you wish to use something other than the default, it must be specified in this setting. It is not inferred from your neural network files. The mean value is subtractive. For example, a mean value of 1 subtracts 1 from all of your results. The default is 0, which does not manipulate the output. As mentioned in the previous section, the final implementation of your network must have the mean preprocessed performed in your RTL design. Your mean is set to 0 in sensAI.

Scale Value for Data Pre-Processing

The Scale Value is used for scaling data values. You must specify a value or use the default. If a value other than the default is used, it must be specified in this setting. It is not inferred from your neural network files. The scale value is multiplicative. For example, a mean value of 0.5 multiplies all of your results by 0.5. The default is 1, which does not scale the output. The maximum scale value supported by sensAI (without using additional RTL preprocessing) is 1.0. For this reason, it is recommended to do your scaling in your preprocessing RTL in most cases.

When using a scale value with a mean value, note that the mean is subtracted first, and then the scale is applied to the result.

Output Pixel = (Input Pixel - Mean) x Scale

Note: If your preprocessing RTL is handling scaling, it must be set to 1.0 in sensAI.

5.1.16. GPO ID

The GPIO ID option is available for communication from firmware to outside blocks. The total value of the GPO ID is 32 bits. The first 16 bits are fixed and indicate the sensAI tool version. You can configure the last 16 bits.

5.1.17. On the Fly Post Processing

The On-the-Fly-Post-Processing option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices only. Readout single data at a time for on-the-fly post-processing of the result without storing complete output on the post-processing side RTL. It is only applicable to detection-type of networks. It is useful for reducing on-chip memory utilization in post-processing RTL. The expected output depths are shown below in order for the N class.

<table>
<thead>
<tr>
<th>Conf [1depth/anchor]</th>
<th>class prob[N depth/anchor]</th>
<th>Bbox [4 depth x,y,w,h / anchor]</th>
</tr>
</thead>
</table>

Figure 5.13. On-the-Fly Post Processing Format

Select the on-the-fly post processing checkbox and provide the number of classes in the number of classes for detection field. The number of anchors and grid dimension are calculated using the dimension of the output and the number of classes provided by the user, as follows:

If output dimension is \((D,H,W)\) and number of classes are \(N\): then

Number of anchors = \(D/(\text{conf} + \text{class probabilities} + (x,y,h,w)) = D // (1 + N + 4)\)

And grid size = \(H \times W\)

For example, if the number of classes for detection is 2, then the NNC compiler will postprocess the data flow with a single anchor and grid as per the below order and repeat it for all other results.

<table>
<thead>
<tr>
<th>Confidence</th>
<th>Class – 0</th>
<th>Class – 1</th>
<th>X – Offset</th>
<th>Y – Offset</th>
<th>W – Offset</th>
<th>H – Offset</th>
</tr>
</thead>
</table>

Figure 5.14. On-the-Fly Post Processing Data Flow
5.1.18. Required Output Depth Range
The option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices only. If the last layer in a network is a convolution layer, this option allows for only processing selected filters from that convolution layer. This sets weight_slice, i_weight_slice, and output_data_length values in the .yml file at the time of analysis.
For example, if the required ‘output depth range’ value is ‘7-13’, then it processes only the 7th to 13th filters (including the 13th) and stores the output at the output address.

5.1.19. Sample Rate for Data Pre-Processing
If the input data is audio data (.wav), this option is displayed in the implementation window. This feature reflects the sample rate of audio data. The equation used for audio preprocessing is: window_duration = (network_input_dimension/sample_rate) * down_sampling. The following example demonstrates this.

Sample Rate

| Network_input_dimension = [1,1,8320,1], sample_rate = 8000 ,down_sampling = 1 |
|----|----|----|
| window_duration = (8320/8000)*1 |
| window_duration = 1.04 |

5.1.20. Down Sampling for Data Pre-Processing
If the input data is audio data (.wav format), this option is displayed in the implementation window. This feature samples the audio data.

5.1.21. On-Chip Large Memory Size
CrossLink-NX, CertusPro-NX, and Avant devices only. This option selects the size of the Large Random-Access Memory (LRAM) block available. For Crosslink-NX and CertusPro-NX devices and IP other than Advanced IP, this option allows you to select from three entries from the drop-down menu: 65,536, 131,072, and 262,144 (Quad LRAM). These correspond to two possible IP-dependent memory configurations:
• 65,536 - 0.5 megabytes (16384 x 32)
• 131,072 - 1 megabyte (32768 x 32)
• 262144 - 2 megabyte (65536 x 32)
For Advanced IP, you can select the size of Large Random-Access Memory (LRAM) by giving the number of segments. For Advanced IP with a 32-bit datapath, each segment size is 65,536 bytes, and with a 64-bit datapath, the segment size is 131072 bytes.
For Certus-Pro devices with Advanced IP, the range of segments you can choose from is from 1 to 7. For Avant Device, you can choose segment numbers from 1 to 16.

5.1.22. External Memory Interfaced (In bytes)
CrossLink-NX, CertusPro-NX, and Avant devices only. This option specifies the size of the external memory in bytes.

HyperRAM
This option enables addressing for HyperRAM rather than DRAM for external memory. HyperRAM is enabled by default, but designs for setups that do not utilize HyperRAM wish to disable this feature.

5.1.23. Code Section Base Address
CrossLink-NX, CertusPro-NX, and Avant devices only. This setting determines the memory address in external memory where the firmware is stored.
5.1.24. Register Out
CrossLink-NX devices only. This parameter in the GUI is equivalent to the LRAM_OREG configuration parameter in Optimized CNN and Compact CNN IP [Crosslink-NX device].

For Crosslink-NX device,
- Register Out is Unchecked: Do not use the output register for LRAM. The firmware will be backward compatible, and it can be utilized with older IPs.
- Register Out is Checked: If you use the output register option for LRAM, NNC will generate ML firmware to compensate for the latency produced by registering the output of LRAM.

Using the output register option in CNN IP for LRAM will provide better timing with less than 1% cycle degradation.

For the CertusPro-NX device, the output register is always used for LRAM, and by default, NNC generates proper firmware to compensate for the latency of that device.

5.1.25. Data Section Base Address
CrossLink-NX, ECP5, CertusPro-NX, and Avant devices only. This setting determines the memory address in external memory where the convolution design is to be stored and loaded.

For example, below are the default memory sizes in ECP5 DRAM:
- code section size is 240MB – (0 to 251658240/0xF000000)
- data section size is 16MB – (251658240/0xF000000 to 268435456/0x10000000)
- data section base address – 251658240/0xF000000

By changing the data section base address to lower values, you can increase the memory allocated for data (the same amount of memory allocated for code is decreased). To allocate 48MB to the data section, the data section base address should be 218103808 (0xD000000).
- code section size 208MB (256-48) – (0 to 218103808/0xD000000)
- data section size 48MB - (218103808/0xD000000 to 268435456/0x10000000)
- data section base address - 218103808/0xD000000

5.1.26. Number of Segments
For CertusPro-NX and Avant devices, Advanced IP only. This setting determines the total LRAM size available. Valid values range from 1 to 7 for CPNX Advanced and 1 to 16 for Avant Advanced. LRAM size will be equal to (number of segments x segment size). The default value of the number of segments is 16 for advanced.

5.1.27. Segment Size
For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the segment size, which, along with the number of segments, determines the LRAM size. For the CPNX device, the advanced IP segment size is fixed to 65536 bytes. For the Avant device, if 64-bit datapath mode is selected, segment sides will be 131072 each.

5.1.28. Number of VE SPD
For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the number of VE spd, for 1x1 and Eltwise addition operations. The valid value ranges from 1 to 8. The default value is 8.

5.1.29. Multiport Parallel
For CertusPro-NX, advanced IP, and Avant devices only. This setting determines the input data bandwidth for 1x1 operations. A parallel port will speed up the execution of 1x1 operations, but at the cost of increased resource utilization.
5.1.30. Kmax Kernel Pooling
For CertusPro-NX and Avant devices, advanced CNN IP only. This setting determines the maximum pooling kernel size (KxK) for pooling operations.

5.1.31. Datapath width
This setting is only available for Avant devices and advanced IP. This setting determines the width of the datapath inside the IP. As the datapath width increases, more bytes will be transferred in each memory transaction cycle.

5.1.32. Lut Input Bits
Setting for input bits for the LUT of the sigmoid or DivNoNan function. Input ranges from 5 to 12 bits.

5.1.33. Lut output Bits
Output bits for the LUT of sigmoid or DivNoNan function.

5.1.34. LUT MSB Clip
Clip MSB from the number of LUT input bits. If function output saturates on both higher and lower values of input, we can consider those saturating values as constant and clip the MSB if input bits for less resource utilization by LUT and also better performance, and now LUT instead of k bits of input uses k-1 bits.

5.2. Quantization
The data in sensAI can be quantized using the QuantReLU layer in Caffe or the predefined quantization function in TensorFlow to perform quantization on unsigned 8-bit activation data in the training phase. Neural Network Compiler 6.1 only supports using 8-bit data to represent quantized data.
SensAI automatically calculates the number of fraction bits and decimal bits needed to store the quantized data, which can be found in the stored_frac section of the report panel in the main window. If you would like to quantize the activation data yourself, for example, with min = 0.0 and max = 2.0, then use the 8-bit calculation to take place (after the ReLU layer) as follows:
Neural Network Compiler dedicates 0 bits for signs (all positive values), 1 bit for decimal, and 7 bits for fractions, resulting in the representation of data in hardware having a range of 0.0 to 1.9921875. You should use a maximum range that is a power of 2 (5 or 7 values), as there is no dedicated hardware for quantization. The following tables show the ranges that are powers of two and the respective fraction bits and decimal bits.

Table 5.1. Unsigned 8-bit Quantization

<table>
<thead>
<tr>
<th>Min (Protofile)</th>
<th>Max (Protofile)</th>
<th>Sign Bits</th>
<th>Decimal Bits</th>
<th>Fraction Bits</th>
<th>Min (Hardware)</th>
<th>Max (Hardware)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0.99609375</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1.992188</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>3.984375</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>7.96875</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>15.9375</td>
</tr>
</tbody>
</table>
Table 5.2. Signed 8-Bit Quantization

<table>
<thead>
<tr>
<th>Min (Protofile)</th>
<th>Max (Protofile)</th>
<th>Sign Bits</th>
<th>Decimal Bits</th>
<th>Fraction Bits</th>
<th>Min (Hardware)</th>
<th>Max (Hardware)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>−1.98438</td>
<td>1.984375</td>
</tr>
<tr>
<td>−4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>−3.96875</td>
<td>3.96875</td>
</tr>
<tr>
<td>−8</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>−7.9375</td>
<td>7.9375</td>
</tr>
</tbody>
</table>

As seen in the above tables, increasing the quantization range results in the data representation becoming less accurate. For this reason, the suggested range is 0 to 2.

Table 5.3. Quantization Details with Device Type

<table>
<thead>
<tr>
<th>Quantization</th>
<th>Type*</th>
<th>Device</th>
<th>CrossLink-NX, CertusPro-NX, and Avant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation</td>
<td>16b</td>
<td>Default- Post processing</td>
<td>Default- Post processing Quantization in tool</td>
</tr>
<tr>
<td></td>
<td>8b</td>
<td>Quantization-aware training is required</td>
<td>Quantization-aware training is required</td>
</tr>
<tr>
<td>Weights</td>
<td>16b</td>
<td>Default- Post processing</td>
<td>Default- Post processing Quantization in tool</td>
</tr>
<tr>
<td></td>
<td>8b</td>
<td>Not supported</td>
<td>Quantization-aware training is required</td>
</tr>
</tbody>
</table>

*Note: Except for the above-mentioned type, the Lattice sensAI stack does support 1b [BNN] and 4b quantization. Contact Lattice representatives to get more information.

As seen in the above Table 5.3, the NNC compiler internally uses the default 16b for representing data if no supported 8b quantization structure is used in the input network [except image input; the NN compiler always uses 8b for the input image].

Note: The quantization techniques is one of the best optimization technique available in the market, and we always recommend users use the provided quantization techniques and functions for better performance in terms of FPS and power consumption.

Table 5.4 provides layer-wise support for quantization.

Table 5.4. Quantization Support in Layers

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Quantization Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution layer</td>
<td>The user can train with 8b quantization. We generally support a -0.5 to +0.5 data range for convolution layer weight quantization, and input to convolution can be 16b or 8b quantized. For 8b activation quantization, the generally supported range is 0 to 2.</td>
</tr>
<tr>
<td>MaxPooling or AveragePooling</td>
<td>There is no dependency on the input type.</td>
</tr>
<tr>
<td>Batch norm layer</td>
<td>Do not use 8b quantization due to saturation. Always use 16b or more for representing parameters.</td>
</tr>
<tr>
<td>Fully Connected layer</td>
<td>The user can train with 8b quantization. We generally support a -0.5 to +0.5 data range for fully connected layer weight quantization, and input to convolution can be 16b or 8b quantized.</td>
</tr>
<tr>
<td>Eltwise Layer</td>
<td>Input data type should be equal to output data type, i.e., if output has been quantized to 8b, then both inputs should be in 8b quantized format.</td>
</tr>
<tr>
<td>ReLU or LeakyReLU</td>
<td>There is no dependency on the input type.</td>
</tr>
</tbody>
</table>
5.2.1. Quantization Training in Caffe

In Caffe, quantization can be implemented with the QuantReLU layer. The following example demonstrates how the layer is used.

Caffe QuantReLU Layer

```plaintext
layer {
    name: "fire1/div"
    type: "QuantReLU"
    bottom: "Scale1"
    top: "Scale1"
    quantize_param {
        num_bit: 8
        min: 0.0
        max: 2.0
        resolution: 256.0
    }
}
```

5.2.2. Quantization Training in TensorFlow

For TensorFlow, quantization can be implemented using the quantization function.

TensorFlow Quantization Function

```python
def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5):
    min_clip = tf.rint(min_rng*256/(max_rng-min_rng))
    max_clip = tf.rint(max_rng*256/(max_rng-min_rng))

    wq = 256.0 * w / (max_rng - min_rng)  # to expand [min, max] to [-128, 128]
    wq = tf.rint(wq)                       # integer (quantization)
    wq = tf.clip_by_value(wq, min_clip, max_clip)  # fit into 256 linear quantization
    wq = wq / 256.0 * (max_rng - min_rng)  # back to quantized real number, not integer
    wclip = tf.clip_by_value(w, min_rng, max_rng)  # linear value w/ clipping
    return wclip + tf.stop_gradient(wq - wclip)
```
The corresponding Tensor graph resembles the figure below (Figure 5.15).

![Figure 5.15. Tensor Graph Quantization Nodes](image)

5.2.3. Quantization Training in Keras
8-bit activation quantization can be done by using a Lambda layer from tf.keras.layers, and weight quantization can be done using kernel constraints. Both methods are explained in the snippet below.

Keras Quantization Function

```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Lambda
from tensorflow.keras import Model, Input
from tensorflow.keras import backend as K

def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5):  ## 8-bit activation quantization in Keras using Lambda layer
    if min_rng==0.0 and max_rng==2.0:
        min_clip = 0
        max_clip = 255
    else:
        min_clip = -128
        max_clip = 127
    wq = 256.0 * w / (max_rng - min_rng)              # to expand [min, max] to [-128, 128]
    wq = K.round(wq)                                  # integer (quantization)
    wq = K.clip(wq, min_clip, max_clip)     # fit into 256 linear quantization
    wclip = wq / 256.0 * (max_rng - min_rng)       # back to quantized real number, not integer
    wclip = K.clip(w, min_rng, max_rng)   # linear value w/ clipping
```

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
5.2.4. Quantization Training in AutoKeras

8-bit activation and weight quantization are supported in AutoKeras customized layers (similar to the ones in Keras). The user can enable the flags `quantrelu` (for activation) and `kernel_quant` (for weight) for quantization. AutoKeras custom layers support both quantized and non-quantized models to support all the devices supported by NNC. Please refer to the AutoKeras Reference Design script to use the AutoKeras quantization.

5.2.5. Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant

The Neural Network Compiler 2.1 UltraPlus IP, 4.0 CrossLink-NX IP, and 4.0 CertusPro-NX IP are created by considering input/output data quantization with a range of \([0, 2]\) (2 is non-inclusive, and it is represented in 1.7 fractional format) and a weight quantization range of \([-0.5, +0.5]\) (+0.5 is non-inclusive). You must train your network using the quantization function. After training your network in this way, you cannot manually adjust your fractions afterwards in sensAI. The output of all CNN models for UltraPlus in Neural Network Compiler 6.1 is in signed 16-bit format, represented in 5.10 fractional format.

Note that while training models, you must use quantization for all the activations simultaneously. A single data activation is interpreted as all the activations being quantized. This also applies for weight quantization.

Weight quantization is supported in the Keras and TensorFlow platforms, and a script is provided for your use. This script, shown below for convenience, can be used to perform the data and weight quantization.
TensorFlow Data and Weight Quantization for iCE40 UltraPlus

#This code is taken directly from the TensorFlow script, w is a tensor here
def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5,res=256 , offset=-1):
 with tf.Session() as sess:
 min_clip = tf.rint(min_rng*res/(max_rng-min_rng))
 max_clip = tf.rint(max_rng*res/(max_rng-min_rng)) + offset # 127, 255

 wq = (1.0*res) * w / (max_rng - min_rng) # to expand [min, max] to [-128, 128]
 wq = tf.rint(wq) # integer (quantization)
 wq = tf.clip_by_value(wq, min_clip, max_clip) # fit into 256 linear quantization
 wq = wq /(1.0* res) * (max_rng - min_rng) # back to quantized real number, not integer
 wclip = tf.clip_by_value(w, min_rng, max_rng) # linear value w/ clipping
 qw=sess.run(wclip + tf.stop_gradient(wq - wclip))
 sess.close()
 #print(qw)
 return qw
The quantization of the activation data is represented in Figure 5.16 below.

![Figure 5.16. Activation Data Quantization Nodes](image)

5.2.6. Quantization Requirements and Suggestions

The following are further requirements and suggestions for quantization. Consult this list to troubleshoot your designs.

- **Always use the collapse layer option when using quantization for ECP5.**
- **When using Caffe, always use an in-place QuantReLU layer before ReLU activation and after a Batchnorm layer.**
- **The input Blob is always considered an 8-bit signed/unsigned type if the decimal range of the input data is less than or equal to 256. You can force the use of the 16-bit signed type by overriding the value in stored_frac for the input blob in your report window. Supported formats are 15.0 for 16-bit signed, 8.0 for 8-bit unsigned, and 7.0 for 8-bit signed.**

Learned Step Quantization (LSQ) is supported in Advanced IP Only.
5.3. Optimization Modes

5.3.1. Mobilenet Mode for ECP5

When creating or modifying a project, ECP5-targeted designs can enable Mobilenet mode to target designs intended to run on the Convolutional Neural Network (CNN) Mobilenet Accelerator IP that has been generated in Mobilenet mode. Unlike the default configuration, the Mobilenet mode is optimized to run Mobilenet designs by implementing the Depthwise and 1x1 Convolution engines in place of some of the standard Convolution engines. This mode is configured to use eight convolution engines, eight Depthwise Convolution engines, and 64 1x1 Convolution engines. Additionally, it always uses 16 EBRs in this mode.

Note: Mobilenet mode IP generation is required to run designs compiled to make use of Mobilenet mode. Check the information and files available on the sensAI website to ensure that you have the files for Neural Network Compiler 6.1 and to ensure that you are aware of the performance and resource utilization.

When using Mobilenet mode, there are two additional recommendations for your design and setting. First, it is recommended that the number of features (number of kernels) in both Depthwise and 1x1 Convolution is a multiple of 8. Secondly, it is recommended that you enable the collapse layer feature.

5.3.2. Compact Mode for CrossLink-NX and CertusPro-NX

When creating or modifying a project, CrossLink-NX-targeted designs and CertusPro-NX-targeted designs can enable compact mode to use a reduced-resource version of the CrossLink-NX IP and CertusPro-NX IP.

Note: The performance of compact mode is usually lower than that of optimized mode. It is recommended to use compact mode only to reduce hardware resource usage. Optimized mode generally performs better than compact mode.

5.3.3. Embedded Mode

When creating or modifying a project, CrossLink-NX and CertusPro-NX targeted designs can enable embedded mode in the Impl options window to restrict the use of external memory.

Note: One can use embedded mode only if the input and output of each layer can be stored inside internal memory when the layer is being executed.

5.4. sensAI Security Flow

sensAI supports the encryption and decryption of models. One can encrypt a model through the sensAI compiler and provide it for secure use. When an encrypted model is provided as input, sensAI will decrypt it internally, minimal information is visible, and no weights or network information can be extracted while generating firmware through sensAI. Model encryption and decryption flow are only available for the Caffe, Tensorflow, and Keras frameworks.

5.4.1. Model Encryption

Sample command to encrypt the model.

```
$ ./lsc_ml_compl --cryptography --input_file_path <input_model_path>.pb --output_file_path <output_model_path>.elpb --password <Password> --mode encrypt
```

```
$ ./lsc_ml_compl --cryptography --input_file_path ~/model.pb \  
--output_file_path ~/model.elpb --password SomePassword123 --mode encrypt
```

File encrypted successfully and saved at /home/user/model.elpb

![Figure 5.17. sensAI Security Flow: Encrypt Model](image)
Table 5.5. sensAI Security Flow: File Extension Mapping

<table>
<thead>
<tr>
<th>Framework</th>
<th>Input Extension</th>
<th>Encrypted Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keras</td>
<td>.h5</td>
<td>.elh5</td>
</tr>
<tr>
<td>Tensorflow</td>
<td>.pb</td>
<td>.elpb</td>
</tr>
<tr>
<td>Caffe</td>
<td>.proto</td>
<td>.elproto</td>
</tr>
<tr>
<td></td>
<td>.caffemodel</td>
<td>.elcaffemodel</td>
</tr>
</tbody>
</table>

Note: The encrypted model can be directly used in the sensAI compiler. It will internally decrypt the model and will not expose any weights or network details.

To use an encrypted model in the compiler, please select the encrypted model option in the *files of types* section of the model selection window, as shown below.

Using an encrypted model does not change any other flow during the compilation.

![Figure 5.18. sensAI Security Flow: Encrypted Model Selection](image)

5.4.2. Model Decryption

To decrypt the model, the user needs to have the password used during encryption.

```
$ ./lsc_ml_compl --cryptography --input_file_path ~/model.elpb --output_file_path ~/model_decrypted.pb --password SomePassword123 -m decrypt
```

![Figure 5.19. sensAI Security Flow: Encrypt Model](image)

Note:

Without the correct password, the model cannot be decrypted.

The firmware generation from the sensAI compiler model doesn’t need to be decrypted. It is for utility purposes only.
6. Supported Frameworks

Currently, the Lattice Neural Network Compiler Software supports the Caffe, TensorFlow, and Keras machine learning frameworks. Caffe protosfiles are natively supported, while TensorFlow requires creating a frozen deployment model file. Each supported framework is clearly defined in the appendix sections. These following sections explain how to customize or alter the neural network.

6.1. Caffe

Lattice Neural Network Compiler Software supports Caffe. This is done by using the provided tool for analyzing and converting Caffe neural networks into a compatible Onnx model internally. You can quickly import a Caffe neural network if you have the required files. You are required to provide a protofile (.proto), a caffemodel file (.caffemodel), and a reference data file (such as a .jpg image or .mp4 video file). For detailed information regarding the Caffe Framework and in-depth explanations of features and limitations, see Appendix A. Supported and Added Caffe Layers.

You must follow these requirements when creating your protofile:

- Do not include blobs intended for training purposes only, such as accuracy or loss.
- An input layer with a clearly defined input size must be present in the network.
- ReLU must be an in-place layer. Its top and bottom blobs must be the same.
- Every BatchNorm layer must have a scale layer immediately following it.

In addition to the above requirements, you may find the following guidelines useful for protofile creation:

- The first blob should include the input layer to indicate to the tool that it is the desired first blob and potentially improve runtime by reducing the number of cycles required for operations.
- Mean and Scale are not read from the protofile. They must be specified in the tool itself. Otherwise, the default values are used. The default mean value is 128, and the default scale value is 255.
- Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation constraints of hardware.
- It is recommended to use an input size that is a power of 2 for better computational speed and to minimize memory alignment issues.

6.1.1. Binary Neural Networks

The software utilizes a custom implementation of Caffe for incorporating Binary Neural Networks. The Binarize, BinaryInnerProduct, and BinaryConvolution layers are not supported in official Caffe releases and cannot be trained using those distributions. You are required to use a version of Caffe that has been supplemented by these layers in order to train binary neural networks.

6.2. TensorFlow

Lattice Neural Network Compiler Software is able to run designs made using the TensorFlow framework. This is done by using the provided tool for analyzing and converting TensorFlow neural networks into a compatible Onnx model internally. You are required to provide a TensorFlow inference frozen model file that contains both graph and parameter values (.pb file), and this model file must already be optimized by removing all the nodes related to data processing or training. All parameter variables needed for inference must be converted to constants.

The frozen .pb file requires both network topology and constant weights that are made for the purpose of inference. Follow the instructions specified in the Training to Inference Conversion section to convert a training .pb model to an inference frozen .pb model.

You must follow these requirements when creating your TensorFlow inference frozen model file:

- Data pre- or post-processing related subgraphs and operations are ignored. A separate script is required to preprocess input data so that it is used directly as input when testing your TensorFlow model in Lattice Neural Network Compiler Software.
• Only one placeholder exists as data input, and the shape of the placeholder must be explicitly specified in the TensorFlow standard 4-dimension image input format and dimension order.

• Using a frozen model from a training session or checkpoint folder is not supported and cannot be directly used to create a compatible project. Training to inference optimization conversion must be done for any training model you wish to use with sensAI.

• Data post-processing operations such as softmax, and sigmoid are not supported. Supported output layers are Conv2D, Matmul (for Inner Product and Full Connect), and Global Average.

The following guidelines are not required but strongly recommended:

• Call tf.reset_default_graph() immediately before initializing a new inference session. Within the inference session, only do inference-related TensorFlow operations. Use tf.train.write_graph to save the session graph definition as a .pb file, and then the file can be further optimized and frozen for inference applications.

• Any data pre- or post-process, for example, mean and scale, from the .pb is ignored. It must be specified in the tool itself or in a separate Python script layer. It is recommended to process input data, and save the processed data as a raw array (.npy) file, and use the raw input array as input.

• Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation constraints of the hardware.

• Use an input size that is a power of 2 for better computational speed and to minimize memory alignment issues.

6.2.1. Training to Inference Conversion

TensorFlow training models must be converted to inference models to be compatible with sensAI. There are three main steps in the process for converting a TensorFlow training model (located in the checkpoint directory) into the supported TensorFlow inference frozen model, which are detailed below:

1. Identify the input and output nodes needed for inference. The input node should be the node after all pre-processes, and the output node should be the node right before the post-process, normally right after the conv2D or matmul node.

2. While using TensorFlow 1.x, use tensorflow.python.tools.optimize_for_inference_lib.optimize_for_inference to remove nodes that are not related to inference, and use tf.train.write_graph to save the output in the binary .pb format.

3. Copy the output of step 2 (the simplified inference .pb) into the checkpoint folder and use tensorflow.python.tools.freeze_graph to freeze the checkpoint weight as a TensorFlow inference frozen model file (.pb).

An example graph (Cifar10 Binary NN model before and after inference optimization) is shown in Figure 6.1 and Figure 6.2.
Figure 6.1 displays an example training model. This one is not yet frozen for inference and has many extraneous nodes. These nodes are not needed for inference. Nodes that are only related to preprocessing, training, or post-processing can all be removed without affecting the precision of the inference.

After following those three steps, the same model in Figure 6.1 is optimized for Figure 6.2. It is in the form of a supported binary inference frozen model, with only inference nodes in the graph.
Figure 6.2. Simplified TensorFlow Inference Model
A complete standalone demo script is provided in your sensAI installation directory in "\networks\TrainToInference\checkpoint\" to demonstrate the above method. If TensorFlow and Python are already installed on your system, you can directly run trainckpt2inferencepb.py to output a frozen inference .pb file (TrainToInference.ckpt_frozenInference.pb) for the checkpoint inside the demo. This script also supports using Docker to run on both Windows and Linux systems, allowing it to function even when Python and TensorFlow are not installed. Refer to README.txt and RUNDOCKER.txt inside the demonstration directory for more details.

There are two methods you can use to provide the input and output node information that is required for this script to run.

- **Method 1**: Directly provide the full name of the input and output nodes as the input parameters.
- **Method 2**: Use the pre-defined INPUTNODE_TAG and OUTPUTNODE_TAG as part of the node name.
 - The demo script assumes that only one input node has the “INPUTNODE_TAG” string as part of its name and that only one output node has the “OUTPUTNODE_TAG” string as part of its name. Exact input and output node names are not required as input parameters, as long as you use the following two tags pre-defined in the sensAI NN compiler:
 - INPUTNODE_TAG='_SensAI_BeginNode'
 - OUTPUTNODE_TAG='_SensAI_EndNode'

6.2.2. Binary Neural Networks (BNN)

TensorFlow does not provide an official implementation for binarization. Therefore, binarization support is experimental and limited only to three operations:

1. Sign operation
2. Conv2D
3. Matmul

Binary models created by open-source packages, for example, TensorLayer, need to have a similar computation topology to the BNN demo model. SensAI utilizes a custom implementation of Caffe for incorporating Binary Neural Networks, meaning that binary TensorFlow models must match the customized Caffe implementation.

Use this Python code to implement binarization for conv2D in TensorFlow to match the customized Caffe implementation:

Python Binarization Implementation

```python
tf.multiply(tf.sign(x), tf.reduce_sum(tf.abs(x), [0,1,2]) / tf.to_float(tf.size(x)/x.get_shape().as_list()[3]))
```
The Python code and TensorBoard representations may be difficult to understand. The following C++ code (inside customized Caffe) to implement the above computation topology is equivalent. It demonstrates how the binarization algorithm works.

Implementation C++ Code

```cpp
#define sign(x) ((x)>=0?1:-1)

const int div = weights->count() / weights->num();
for (int num = 0; num < weights->num(); num++) {
    if (normalized_weights) {
        A[num] = 0;
        for (int _c = 0; _c < weights->channels(); _c++)
            for (int _h = 0; _h < weights->height(); _h++)
                for (int _w = 0; _w < weights->width(); _w++)
                    A[num] += std::abs(weights->data_at(num, _c, _h, _w)) / Dtype(div);
    }
}
for (int index = 0; index < weights->count(); index++) {
    const int num = index / div;
    wb->mutable_cpu_data()[index] = A[num] * sign(weights->cpu_data()[index]);
}
```

Figure 6.3. Tensorboard Visualization of Binarization
In addition, due to the limitations of the hardware and precision of fixed point representation, you must follow these requirements when creating a binary TensorFlow inference frozen model:

- When using signed operations in a binary TensorFlow model, bear in mind that the hardware only supports either 0/1 or -1/1 quantization modes. Additional preprocessing must be implemented so that the subgraph can generate 0/1 or -1/1 as the output and produce the expected results in hardware. The constant “y” is equal to 0.5.

![0/1 Mode (UltraPlus)](image1)
![-1/1 Mode (ECP5)](image2)

Figure 6.4. Binary Neural Network Modes in TensorFlow

- A batch normalization operation is required right after conv2D operations (with binarized normalization).
- Currently, NNC does not support a mixed model. In binary TensorFlow models, all conv2D operations and all Matmul (full connect layer) need to be binarized (sign operations similar to Keras Sample Code below need to be part of weight loading). If a model is not a binary model, then the sign operation should not be present in the graph at all.

6.3. Keras

NNC supports implementing Keras networks in the form of “tensorflow.keras” designs shipped with TensorFlow 1.14, 2.0, 2.3, 2.5, and 2.9. The Keras/Keras-Team release version of Keras is unsupported. The slight implementation differences likely result in your design not being compatible with sensAI, if your model is created with the Keras team release instead of the TensorFlow release.

NNC requires a single HDF5 file (.h5 with both weight and architecture) for Keras models. It is recommended to set Keras to inference (tf.keras.backend.set_learning_phase(0)) before saving it as a .h5 file, as NNC only supports inference model format. If the .h5 is saved as a training format file, NNC attempts to convert it to inference. But it is not guaranteed that this converted Keras model can produce the same output as the original Keras model.

NNC uses the channel_first data format for intermediate graph representation. Simulation output as well as the engine provided output in NNC will be in channel_first format only. For raw numpy sample input, the user needs to provide channel_last formatted data for TensorFlow and Keras. In addition to these file requirements, Keras models are also subject to the same hardware limitations and parameter constraints as supported TensorFlow layers.
6.3.1. Using Keras

As an example of how to use Keras, the humanGesture design can be implemented in Keras using the following code. In some cases, it is required (for example, using the Lambda function for 8-bit quantization for Lattice NNC) that the user convert the Keras model (.h5) to the Tensorflow model (.pb) to avoid any bad marshal data type errors. To help convert the Keras model to TensorFlow format, please use the reference script at networks\TrainToInference\keras2tf_conversion\keras2tf.py.

Keras Sample Code

```python
def humanGesture(input_tensor, classNumer=4, epsilonBN=1e-3):
    a = Input( tensor=input_tensor)
    x=Conv2D(24, (3, 3),padding='same')(a)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)
    x=MaxPooling2D(pool_size=(2, 2))(x)
    x=Conv2D(20, (3, 3),padding='same')(x)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)           #Fire 3
    x=Conv2D(20, (3, 3),padding='same')(x)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)
    x=MaxPooling2D(pool_size=(2, 2))(x)
    x=Conv2D(22, (3, 3),padding='same')(x)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)           #Fire 5
    x=Conv2D(22, (3, 3),padding='same')(x)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)
    x=MaxPooling2D(pool_size=(2, 2))(x)
    x=Conv2D(24, (3, 3),padding='same')(x)
    x=BatchNormalization(epsilon=epsilonBN)(x)
    x=Activation('relu')(x)
    x=MaxPooling2D(pool_size=(2, 2))(x)
    x=Flatten()(x)
    x=Dense(classNumer, kernel_initializer='uniform')(x)
model = Model(inputs=a, outputs=x)
```
7. **USB Debugging**

The USB debugging feature in NNC allows you to debug iCE40, ECP5 (using the USB3-GbE VIP IO Board), CrossLink-NX, and CertusPro-NX designs. The DRAM and registers of the ECP5 device can also be accessed using this option.

7.1. **Hardware Configuration**

The following steps are required to configure the hardware before using it for USB debugging in the sensAI tool.

7.1.1. **ECP5**

1. Refer to the [USB3-Gigabit-Ethernet-Demo-User-Guide](#).
2. Configure the FX3 USB controller.
 - Follow Appendix B in the user guide document.
 - Select the image file mentioned in step 5 from the following location:
 `utils\drivers\lattice-usb\cyfxuvc.img`
3. Configure ECP5.
 - Follow the **ECP5 SPI Flash Programming** section in the user guide document.
4. Select the debugging bit file.
 - For all designs, select the bit file from the following location:
 `utils\drivers\lattice-usb\bitfiles.zip`
 - Refer: `utils\drivers\lattice-usb\README`
 - Note that as there is no DRAM on UltraPlus, USB debugging must be done using ECP5/CNX/CPNX hardware, and DRAM can be interfaced to see the input and output blob data only.

7.1.2. **CNX VVML, CPNX**

1. Flashing the FX3 USB .img file.
 - Connect the jumper to port **J13** of the Crosslink-NX or CPNX VVML Board (Rev B) and connect the board to the PC using a USB3 cable.
 - Connect the jumper to port **J4** of the Avant board and connect the board to the PC using a USB B-mini cable.
 - Open the USB control center application (the Cypress FX3 SDK needs to be installed for the same).
 - Press the push-button switch **SW2** on the board to reset the FX3 chip.
 - You can see the bootloader device, as shown in Figure 7.1.
Figure 7.1. Cypress Window

- Select the Cypress USB Bootloader.
- Select **Program > FX3 > I2C EEPROM** from the menu bar.
- Browse and select the USB debug file LSCVVML.img from the path `utils\drivers\lattice-usb`.
- Wait until **Programming of I2C EEPROM Succeeded** appears in the taskbar at the bottom of the window.
- Remove the jumper from port **J13**.
- Power off and power on the board. FX3 should boot from the I2C EEPROM.

2. Erasing the CNX VVML and CPNX prior to Reprogramming.

If the CrossLink-NX Voice and Advanced device is already programmed, either directly or loaded from SPI Flash, follow the given procedure to first erase the CrossLink-NX Voice and Advanced SRAM memory before re-programming the CrossLink-NX-Voice and Advanced SPI Flash. While doing this, keep the board powered ON when re-programming the SPI Flash so that it does not reload on reboot.

Note: Before erasing, disconnect the **J13** jumper.
• Launch the Lattice Radiant Programmer. Create a new blank project.

![Figure 7.2. Radiant Programmer – Default Screen](image)

• Select LIFCL for **Device Family** and LIFCL-40 for Crosslink-NX. Then select LFCNX for the CertusPro-NX device, as shown in **Figure 7.3**.

![Figure 7.3. Radiant Programmer Device Selection](image)

• Right-click and select **Device Properties**.
• Select **JTAG** for **Port Interface**, **Direct Programming** for **Access Mode**, and **Erase Only** for **Operation** as shown in **Figure 7.4**.
Click **OK** to close the Device Properties dialog box.

Now press the **SW5** push-button switch on the board before clicking the program button as given in the next step, and keep it pressed till you see the **Operation Successful** message in the Lattice Radiant Programmer log window.

In the Lattice Radiant Programmer main interface, click the **Program** button 🔄 to start the erase operation while keeping **SW5** pressed.

3. Programming Crosslink-NX VVML or CPNX board

All the bit files are included in the file at path `utils\drivers\lattice-usb\bitfiles.zip`. Unzip the file to select the bit file, as given in step 4 below. Also, please refer to readme for reference while selecting the bitfile. Before SPI flashing, disconnect the **J13** jumper that you connected while flashing the .img file.

- Ensure that the CrossLink-NX Voice and Advanced Device SRAM is erased by performing the steps given in the above section.
- In the Lattice Radiant Programmer main interface, right-click on Operation and select **Device Properties** to open the Device Properties dialog boxes, as shown in **Figure 7.5**.
Figure 7.5. Selecting Device Properties for CrossLink-NX

- Select SPI Flash for Target Memory, JTAG2SPI for Port Interface, and Direct Programming for Access Mode.
- Select the bit file you want to flash by extracting the zip file given at the path: utilis\drivers\lattice-usb\bitfiles.zip and selecting the bit file from there.
- For SPI Flash Options, make the selections in Figure 7.5 given above and select Macronix 25L12833F as the device.
- Click Load from File to update the data file size (bytes) value.
- Ensure that the following addresses are correct.
 - Start Address (Hex): 0x00000000
 - End Address (Hex): (Start Address + size of bit file)
- Click OK.
- On board, press the SW5 push button switch before clicking the program button in the step below and keeping it pressed till the Operation Successful message is seen in the Lattice Radiant Programmer log window as shown in Figure 7.6.
- From the Lattice Radiant Programmer main interface, click the Program button to start the programming operation.
7.1.3. Avant Device

For USB debugging on an Avant device, you will need a Cypress USB FX3 board. Connect the Avant board and USB FX3 board as shown in Figure 7.7.
• Upload the LSCVVML.img file to the Cypress FX3 USB board, keeping the jumper configuration as:
 • Jumper J4 being open.
 • Jumper J3 shorted.
• Upload the bitfile of Advanced IP to the board using the Lattice Radiant Programmer.
 • Using a USB port for the Avant board for uploading a bitfile to the FPGA.
• Use the FX3 port for reading HW values from the board.

7.2. Debug Window Options
To launch the USB debugging window from the SensAI GUI, click on Tools > USB Debugging from the main window. The USB debugging window (Figure 7.8) opens.

![USB Debug Window](image)

Figure 7.8. USB Debug Window

• **Status**: Indicates if the board is detected. Read and Write operation buttons are disabled until the board is detected by the software.
• **Detect board**: Click this to retry connecting to the board.
• **Yml file**: Provide a YML file to parse the blob layer name, Q-format, and starting address. After reading the YML file, **Select blob** displays available blob names, **Address** shows the starting address of the selected blob, **Length** shows the total size, and **Bit width** displays the bit width of data to read or write.
• **Refresh blob list**: Refreshes the blob list. Use this if the YML is changed while the debugger is running.
• **LSCML file**: The .lscml file path generated by the tool needs to be uploaded on board as firmware. The file is automatically detected if the current project already has an associated .lscml file.
• **Upload firmware**: Upload the firmware file to the board. This functionality is disabled until the board is detected.
• **Load Input Data**: Image or raw input file to load at the input blob. Accepts .jpg, .png and .npy format.
• **Upload Input**: Based on the resolution selected in the drop-down menu, image data is pre-processed and uploaded to the input blob address on board. Disable it until the board is detected. A valid YML file is required for this operation.
• **Reg list**: Drop-down option for all the register lists. Below is the table for all the registers with their address information.
• **Registers Read/Write:** Register read and write operations to and from addresses mentioned in the address box. Disable it until the board is detected. Addr and Data box values are in hexadecimal for read and write operations. More details on registers can be found in Appendix F. USB Debugging Register Map.

• **Run:** This operation runs the engine once. All the blobs are updated based on input image data.

• **Post Processing:** This option is enabled only when the USB debugging window is launched from an opened project. If the post processing command is configured in the project settings as shown in Figure 3.1, then this operation runs the post processing script on input data (a selected image or .npy) with the last blob .npy file.

• **Select blob:** Select a blob (by name) as the target of your read and write operations. Blob names are displayed based on the YML file.

• **Layer Info:** This button is enabled only when the USB debugging window is launched from an opened project. After selecting this button, a window with information about that blob is launched. This information includes the blob dimension, memblks, height_per_mem/depth_per_mem, DRAM address, output EBR list, and a table that shows the details on how values are divided into memblks/EBRs.

• **Address:** The starting address of DRAM. This is shown after selecting a blob name. The Blob address is based on a YML file. This DRAM address can be changed.

• **Length:** Total size of data to read or write. This is shown once a blob name is selected. The total blob length is based on the YML file. The length can be changed.

• **Display Data in:** Selects the format in which data should be read, either hexadecimal or floating point. Hex is the default setting. Selecting Float converts data into a floating point using the selected blob layer Q-format.

• **Show actual values:** This checkbox is enabled only when the USB debugging window is launched from an opened project. Enabling this checkbox filters out extra values that are read from the memblks of external DRAM and displays only the actual values of the blob.

• **Upload bit file:** Writes data in hex into a DRAM address. This option is only necessary when you wish to perform a write operation.

• **Data:** Displays the read operation data either in hex or float, and uploads bit file data in hex.

• **Read:** Performs a read operation.

• **Write:** Performs a write operation.

• **Clear:** Clears the data box.

• **Save:** Saves the displayed data in a file. Valid only for read operations.

• **Save All:** Saves all the blob data.

• **Exit:** Exits the debugging window.

7.3. Driver Installation

Due to requiring a USB driver to operate, your computer may not support USB debugging without first installing the device driver. This section covers the process for installing the required device driver in order to enable USB debugging.

7.3.1. Windows Driver

The driver for Windows is installed by running the lscvip.inf provided in the driver/pre-build folder of your sensAI installation. This can be done by right-clicking the file and selecting **Install**. To manually install the driver by selecting your USB device in Device Manager and selecting **Update Driver**, you need to navigate to the driver/pre-build directory and select the “lscvipvdr.dll” file.

Driver Signature Enforcement needs to be disabled to install this driver. If you encounter an error related to the driver signature, the following steps guide you through the process of disabling this temporarily for installation.
Driver Signature Enforcement settings for Windows
1. Get to the advanced boot options menu. You can hold down the Shift key while you click the “Restart” option in Windows 8 or 10. Your computer thus restarts into the advanced boot menu.
2. Select the Troubleshoot tile on the Choose an Option screen that appears.
3. Select Advanced Options.
4. Click on Startup Settings tile.
5. Click the Restart button to restart your PC on the Startup Settings screen.
6. Select the Disable driver signature enforcement option at the Startup Settings screen.
7. Your PC boots with driver signature enforcement disabled, and you can install unsigned drivers.
8. The next time you restart your computer, driver signature enforcement can be enabled again. You need to go through this menu again to disable it if you wish to reinstall the driver for any reason.

7.3.2. Linux Driver
For Linux systems, the libusb package needs to be installed. Use the following command in your terminal to install the libusb package on Ubuntu.

```
sudo apt-get install libusb-1.0-0
```

To avoid requiring super-user permission for USB debugging, each time you wish to run the software, the device entry in your system udev rules needs to be added. Add the following line to your udev rule file, which is typically found at `/etc/udev/rules.d/<file-name>.rules`. Restart your udev subsystem.

```
SUBSYSTEM=="usb", ATTRS{idVendor}=="1134", ATTRS{idProduct}=="aa01", MODE="0666"
```

To restart your udev subsystem, use the following command in the terminal.

```
sudo /etc/init.d/udev restart
```

7.4. USB debugging API interface
SensAI allows you to perform USB debugging through an API interface in the command line, which supports the same features as the GUI and requires the same driver as detailed in the previous section. An example Python file, `example_usb_debugging.py`, is provided in the sensAI installation directory to demonstrate the usage of the API interface for USB debugging.

Note that for Linux systems, using the tools via the command line without super-user permission, your driver must be installed along with making the udev changes detailed in the previous section.

7.4.1. Class Overview
To use the API interface, the usb_api class needs to be imported from `usb.lib.usb_api` using the command:

```
from usb.lib.usb_api import usb_api
```

The following methods are provided by the `usb_api` class:
- `load_dll()`
- Loads platform specific USB library dll/so for interfacing with ECP5 device. This method needs to be called before any further operations.
- Returns 1 on success and 0 on failure.
- `usbInit()`
- Detects the ECP5 device over USB interface and initializes if device is found.
- Returns 1 on success and 0 on failure.
• usbDeinit()
 • Releases the USB device. Only applicable on Linux machines.
• writeDram(address, length, bit_width, rData)
 • Writes data to the DRAM using the four required arguments.
 • address
 • Base address of the DRAM where the data is to be written.
 • length
 • The length of the rData specified in bytes.
 • bit_width
 • The bit width of the list elements of the rData. Data is written to the DRAM as per the bit width.
 • rData
 • The list of data to write.
• readDram(address, length, bit_width, sData)
 • Reads data from the DRAM. Following is the argument description:
 • address: Base address of the DRAM where the data is to be read.
 • length: The length of the sData, which is specified in bytes.
 • bit_width: The bit width of the list of elements of the sData. Data is read from the DRAM as per the bit width.
 • sData: The container for the data that is to be read.
• regRead(address)
 • Reads the register value of the register specified by address and returns it. Prints an error message in case of a failure.
• regWrite(address, data)
 • Writes the data to register specified by address.
• upload_firmware(lscml_file)
 • Reads a sensAI program (.lscml) file specified by lscml_file and uploads the firmware to the 0x0 address of the DRAM.
 • The .lscml file is generated by sensAI during the compile stage. You must use the path to a valid .lscml file as the argument.
• upload_input(yml_file, input_image)
 • Reads the mean, scale, and fraction of the input layer from the yml file and performs preprocessing based on it. Then it uploads preprocessed data to 0xf0000000 + <input-layer-extmem-address> in DRAM.
 • The arguments, input_image and yml_file, must be paths to valid .yml and input image files, respectively. The .yml file is generated in sensAI during the Analyze stage.
• run_engine()
 • This method writes registers to trigger the CNN IP to run once. Upon completion of a single run, output is generated at 0xf0000000 + <output-blob-extmem> in DRAM. Before running this step, the firmware and the input image should be uploaded to DRAM.
 • To save the output blob data from DRAM into a file on your computer, refer to the example steps provided in the example_usb_debugging.py file in your sensAI installation directory.
7.5. Board Detection Troubleshooting

If the board does not show up, try the following steps for troubleshooting your setup to attempt to resolve the issue:

1. Check the Board.
 - If using ECP5 for debugging, check that **USB3-Gbe VIP IO Board** is written on the bottom layer of the EVDK (Figure 7.9).

 ![Figure 7.9. USB3-GigE VIP Board Label](image1)

 - If using Crosslink-NX Voice and Advanced Board, check that **LIFCL-VVML-BRD** is written on the board.

 ![Figure 7.10. CNX-VnV Board Label](image2)

 - If using Certus Pro-NX Voice and Advanced Board, check that **LFCPNX-VVML-EVN** is written on the board.

 ![Figure 7.11. CPNX-VnV Board Label](image3)

2. Verify that you have installed the Cypress file into the Cypress chip and repositioned the jumper pins into the correct configuration.
3. For ECP5/CNX and CPNX devices, check that you have the correct bitstream programmed to the SPI Flash.
4. Ensure that the Micro USB 3.0 (not USB Mini) connector is connected from the bottom board and not the middle board.
5. For ECP5, after connecting the USB from the EVDK to the computer, press the sys_rst button on the top board.
6. Under Device Manager, you should now be able to see the board.
 If you still do not see the device and your computer is using Windows, you may need to disable the Windows driver certification to make it show up.

7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug

To debug USB values layer by layer, you can see all the layers in the blob list in the USB debugging window, as shown in Figure 7.12.

![USB Debug Window](image)

Figure 7.12. USB Debug Window

You can select one of the blobs to run USB debugging. Once you select any blob, sensAI generates USB debug firmware for the selected layer.
The USB debug window sets the USB debug firmware, bit width, address, and data length based on the blob configuration.

Now you can:
- upload Firmware
- upload Input
- run
 - To read data in the desired data type, you can select the datatype in Float or Hex.
Figure 7.15. Read USB Data with blob Selected

Notes:

- To read data from a specific address, you must select **None** in the blob list, and pass the address along with the length, and then read the data.
- On the new input data, you need to perform all the steps by first selecting the new input data and then performing all the steps.

Figure 7.16. Read USB Data without blob Selected
To save data, click **Save**. The save file dialog pops up. After saving the text file, sensAI Compiler finds the expected vs. USB Debug values MAE and shows them in a popup.

![USB Debugging Interface](image)

Figure 7.17. Save USB Data

Expected values for a given USB debug input are stored in the expected folder of the sensAI project directory.

![Expected Values for Corresponding Blob](image)

Figure 7.18. Expected Values for Corresponding Blob
Figure 7.19. Show Expected Vs HW MAE
8. Model Zoo

Model Zoo is a platform that provides a way to clone Lattice-supported models and train them with your own dataset and environment setup. It also provides a way to select the model based on different parameters. All the models are hosted on the Lattice GitHub page. This feature provides an interface between sensAI and GitHub. Visit https://github.com/LatticeSemi for the latest models.

8.1. Model Zoo Window Options

To launch the Model Zoo window from the sensAI GUI, click Tools > Model Zoo from the main window. The Model Zoo window opens, as shown in Figure 8.1, and displays several options to select from either drop-down menus or boxes.

![Figure 8.1. Model Zoo Window](image)

- **Open sensAI Project**
 - Opens existing sensAI project(.ldnn) from the selected repository in the workspace tab.

- **Model Selection Parameters**
 - Different model selection parameters are provided as a way to select the model that best suits your needs. These parameters are populated by cloning the Model Info repository from GitHub. This repository has a JSON file (model_info.json), which contains information regarding the models and their git url. The table is populated with models based on the selected parameters. The following are the selection parameters:
 - **Target Application** – This specifies the model application, such as object or face detection.
 - **Target Class** – The model class indicates whether it is a BNN or CNN.
 - **Input Dimension** – The input size such as 64x64, 128x128, or 224x224.
 - **Target Network** – This column displays the specific type of network being used, such as YOLO or SqueezeDet.
• Target Device – Lists whether the target device is ECP5 or UltraPlus.
• Target Framework – The framework is either TensorFlow or Keras.

• Model Zoo tab
 • This tab lists the models available on the Github page.

• Workspace tab
 • This tab lists the models available in the local workspace directory.

• Project Directory
 • The location where the selected model is to be cloned.

• Clone Model
 • Based on the model that is selected from the table, clicking this button fetches the Git URL. If this is the first time the model is being used, the model repository is cloned. If the model already exists locally, it pulls the latest updates into the project directory instead. All the logs are displayed in the log box below. This button is only active in the Model Zoo tab.

• Update Model
 • Similar to the Clone Model button, this button can update the models selected from the list and display the logs in the log box. This button is only active in the workspace tab.
Appendix A. Supported and Added Caffe Layers
This appendix is intended to provide information for all supported and added Caffe layers.

Accuracy
The accuracy layer is not internally supported by the software but can remain in your network file without causing an issue.

BatchNorm
The BatchNorm Caffe layer is supported for implementing batch normalization operations. You are required to put a scale layer in your network after each BatchNorm layer. See Scale below for more information.

Binarize
Binarize fulfills the same purpose in binary neural networks as the ReLU layer in standard neural networks. The Binarize layer should be used in your binary neural networks instead of ReLU, because there is no need for that method of rectification to be used. Binarize is only supported on the ECPS device. For a related layer on UltraPlus, see QuantReLU for more details.

BinaryInnerProduct
BinaryInnerProduct calculates the inner product for a binary network and should be used instead of the InnerProduct layer when dealing with binary neural networks.

BinaryConvolution
The BinaryConvolution layer is an added layer that functions similarly to the Convolution layer in Caffe, using binary weights and activations and employing the same parameters. Your design must implement the BNN Accelerator IP to utilize this functionality, as the CNN Accelerator IP cannot perform binary convolution.

Concat
The Concat layer is a utility layer that concatenates its multiple input blobs into one single output blob. The number of the memory blocks for this layer is the sum of memory blocks of the input blobs. The depth_per_mem for this blob must be equal to its input blobs.

Convolution
Convolution is the layer type utilized by the CNN Accelerator IP for implementing convolution into your neural network, and users who are already familiar with Caffe can use it as they normally without any major adjustments. Your design must implement the CNN Accelerator IP to utilize this functionality, as the BNN Accelerator IP cannot perform non-binary convolution. The group attribute is not fully supported, while the following parameters are supported by the CNN Accelerator IP for the convolution layer:
- kernel_size
- num_output
- bias_term
- pad
- stride

Eltwise
The Eltwise layer currently supports only the SUM operation. Other operations, such as MULT, are not implemented. In order to be implemented, Eltwise always requires DRAM. The number of EBRs being input into this layer must equal a power of two.
InnerProduct
The num_output parameter is supported for specifying the number of filters. The bias_term parameter is supported for training purposes only. Inference uses the bias from training during compilation.

The fully connected layer does not work when the input blob to the fully connected layer has a different format from the output of the fully connected layer. The input and output must have matching signage and be the same number of bits (8 or 16).

Input
The input layer is supported, along with the shape parameter. Supported input types are images (.jpg or .png format), video (.mp4 format), raw data NumPy arrays (.npy format), and audio files (.wav format). An input layer with a clearly defined input size must be present in the network.

Pooling
Pooling layers are supported, while average and stochastic pooling are unable to be implemented. The pooling layer supports the following Caffe parameters:

- MAX
- global_pooling
- kernel_size
- pad
- stride

Only square-shaped kernels are supported in the pooling layer. The parameters kernel_h, kernel_w, stride_h, stride_w, pad_h, and pad_w are ignored. The kernel and stride must both be 2, and the pad must be 0.

Python
The Python layer is used to implement a set of custom layers in your network that perform functions that are not part of their own discrete layer.

Transpose
This python layer implements the transpose operation.

QuantReLU
For BNN on ECP5, the threshold value for your QuantReLU layer determines the quantization mode. A threshold of 0 uses -1/+1 quantization. A threshold of 0.5 uses a quantization of 0/1. QuantReLU for BNN is only supported on ECP5. For a related layer on UltraPlus, see Binarize.

ReLU
The ReLU layer is supported for rectifying values. It supports the negative_slope parameter, which is suggested to be between 0 and 0.25. For leaky ReLU, the negative activation slope must be fixed to 1/16, corresponding to negative_slope = 0.0625.

Scale
The scale layer in Caffe is supported. You are required to put a scale layer in your network after each BatchNorm layer.
Appendix B. Supported Keras Layers

In general, the supported Keras layers need to be similar to the supported TensorFlow operations in compute topology, as described in Appendix C. Supported TensorFlow Operations, and have the same hardware constraints and parameter requirements.

This appendix currently only lists supported Keras layers without additional commentary. See the Keras demo designs in the sensAI network directory, and refer to the chapters on TensorFlow and Caffe for more information on how to utilize these layers in your own designs.

The layers supported for AutoKeras are same as Keras layers.

- AveragePooling2D
- BatchNormalization
- Conv2D
 - To perform 8-bit weight quantization in Keras, refer to Section 5.2.3 Quantization Training in Keras for details on implementation.
- Dense
- MaxPooling2D
- DepthwiseConv2D
- Input
- Lambda (only for 8-bit activation quantization)
 - We use the Lambda function for 8-bit quantization of activation in Keras. Refer to Section 5.2.3 Quantization Training in Keras for details on implementation. Please note that the Lambda function is dependent on the version of Python, and you might face issues regarding Marshal Data if the training and inferencing environments are different. Hence, it is advised that if the trained Keras model by the user has a Lambda function for activation quantization, convert the Keras model to TensorFlow in the same training environment. For this conversion, as a reference, you can refer to the ReferenceDesign/Training/keras-to-tf-converter folder of this Reference Design.
- LeakyRelu
- ReLU
- Concatenate
- Add (for elementwise addition)

Other than these layers, we use native TensorFlow operators in Keras to perform some of the operations in the Lattice Neural Network Compiler only for post-processing purposes. Following is a list of those operations and what they are used for:

- Tf.math.multiply : For scalar multiplication or eltwise multiplication with 1 constant tensor as a second operator
- Tf.math.subtract : For scalar subtraction or eltwise subtraction with 1 constant tensor as a second operator
- Tf.math.add: For scalar addition or eltwise addition with 1 constant tensor as a second operator
- Tf.math.reciprocal_no_nan : For reciprocal operation of the input tensor.
- Tf.math.power : For the power operation which currently supports the power of 2.
- Tf.strided_slice : This operation is used either alone for the strided_slice operation or along with Concat layer to implement the focus layer. While implementing strided slice, except for begin indices, no other indices can have 0. See the example below to see how to use strided slices and also implement the focus layer.
```python
def example_focus_layer(inputs, input_shape=None):
    if input_shape:
        out = []
        H, W, C = input_shape
        out.append(tf.strided_slice(inputs, [0, 1, 1, 0], [1, 160, 256, 3], [1, 2, 2, 1]))
        out.append(tf.strided_slice(inputs, [0, 0, 1, 0], [1, 160, 256, 3], [1, 2, 2, 1]))
        out.append(tf.strided_slice(inputs, [0, 1, 0, 0], [1, 160, 256, 3], [1, 2, 2, 1]))
        out.append(tf.strided_slice(inputs, [0, 0, 0, 0], [1, 160, 256, 3], [1, 2, 2, 1]))
        input_focus = Concatenate(axis=3)(out)
```

Figure B.1. Strided Slice Example
Appendix C. Supported Layer Configuration

This appendix is intended to provide information on the parameter configuration for each layer with each device type or mode.

Table C.1. Supported Layer Configuration

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Parameter</th>
<th>Optimized CNN</th>
<th>Compact CNN</th>
<th>Extended CNN</th>
<th>Advanced CNN</th>
<th>ICE40 UltraPlus</th>
<th>ECP5 – Dual</th>
<th>ECP5 – Mobilenet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel size</td>
<td>3 × 3</td>
<td>3 × 3</td>
<td>3 × 3</td>
<td>3 × 3</td>
<td>Up to 3 × 3</td>
<td>Up to 9 × 9</td>
<td>Up to 9 × 9</td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Depthwise Convolution</td>
<td>3 × 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Stride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 or 2</td>
</tr>
<tr>
<td>1x1 Convolution</td>
<td>1 × 1</td>
<td></td>
<td>1 × 1</td>
</tr>
<tr>
<td>Pad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>Stride</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Binary Convolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>3 x 3</td>
<td>3 x 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Pooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel size</td>
<td>2 × 2</td>
<td></td>
<td>Must symmetric</td>
</tr>
<tr>
<td>Pad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max Pooling K x K</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>K x K</td>
<td>Not supported</td>
<td></td>
<td>Not supported</td>
</tr>
<tr>
<td>Stride</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Average Pooling</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Must symmetric</td>
<td>Not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argmax Pooling</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>2 x 2</td>
<td>2 x 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaky ReLU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative slope</td>
<td>0.0625 (1/16)</td>
<td>0.0625 (1/16)</td>
<td>0.0625 (1/16)</td>
<td>0.0625 (1/16)</td>
<td>0.0625 (1/16)</td>
<td>0.0625 (1/16)</td>
<td></td>
<td>0.0625 (1/16)</td>
</tr>
<tr>
<td>Fully Connected layer</td>
<td>Number of inputs</td>
<td>Any (Must be last layer)</td>
<td><=1024</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Elementwise Addition</td>
<td>N/A</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Layer Name</td>
<td>Parameter</td>
<td>Device Type, Mode, and IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimized CNN</td>
<td>Compact CNN</td>
<td>Extended CNN</td>
<td>Advanced CNN</td>
<td>ICE40 UltraPlus</td>
<td>ECP5 – Dual</td>
<td>ECP5 – Mobilenet</td>
</tr>
<tr>
<td>Elementwise Subtraction</td>
<td>N/A</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Multiplication</td>
<td>N/A</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Focus</td>
<td>N/A</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Dilated Convolution</td>
<td>Dilation Parameter</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>2 or 4</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Resize Bilinear</td>
<td>N/A</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Unpooling</td>
<td>Kernel</td>
<td>Not supported</td>
<td>Not supported</td>
<td>2 × 2</td>
<td>2</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>Stride</td>
<td>Not supported</td>
<td>Not supported</td>
<td>2</td>
<td>0</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>Pad</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Appendix D. Supported TensorFlow Operations

This appendix is intended to provide information for TensorFlow operations currently supported. sensAI supports TensorFlow versions 2.9, 2.5, 2.3, 2.0, and 1.14, which are the versions used to test Network Compiler.

Batch Normalization

Currently, Rsqrt is the operation tag used to locate and analyze the batch normalization subgraph (a group of operations), based on the tf.nn.batch_normalization implementation. Therefore, the software does not support the model where Rsqrt is used in the graph but not for batch normalization. If you do not use tf.nn.batch_normalization to create a batch normalization subgraph, the batch normal subgraph should be in the same computation order and structure, as shown in the following Figure D.1. If variance epsilon (y in Figure D.1) of batch normalization is not provided, the default value 1e-3 should be used. If the offset (beta in Figure D.1) is not provided, the default value of 0.0 should be used.

Figure D.1. Batch Normalization

An optimized implementation such as fused batchnorm is also supported.
Conv2D
The software only supports regular Conv2D. The Conv2D node is required to be the bias node’s (BiasAdd) direct input in order to apply the bias to the Conv2D layer. Other convolution operations, such as stride > 1, are not generally supported. DepthwiseConv2dNative, dilated convolution, and quantized convolution are supported in certain topology contexts. For quantized convolution, refer to the Quantization Training in TensorFlow section. If you are creating a Conv2D layer with stride 2, it is recommended not to use an explicit padding layer just before Conv2D. Instead, use the padding option within the Conv2D layer such that the padding is asymmetric.

Channel Padding
Channel padding refers to the operation where the input tensor is padded with zeros on the channel dimension to increase the number of channels. This is performed by using the tf.pad operation.

Concat
This is performed by using the tf.concat operation.

Elementwise Add
Elementwise Add is only supported when being used in residual net, with two tensor objects as the only input where the coefficients for each are 1. In general, low-level elementwise operations such as, mul, div, sub, max, etc. are not supported.

Matmul
Matmul is only supported in regular, fully connected, or dense layers. Sparse, advanced transpose, and adjoint mode are not supported. Unofficial operations, TF contributions, customized open source, such as tf.contrib.layers.fully_connected, implementations are not supported.

Placeholder
Support is limited to inputs with a standard 4 or 3 dimension shape for images and 2 or 1 dimension for audio. Only one placeholder can exist in the optimized frozen inference graph. Preprocess operations on input are not supported. The expected input is a single image, gray or color, after preprocessing. Group image and video formats are not supported.

Pooling
The software currently supports three types of Pooling:
- Maxpool: tf.nn.max_pool
- Global Average Pooling: tf.reduce_mean
- MaxPoolWithArgMax: tf.nn.maxpool_with_argmax

ResizeBilinear
We use the ResizeBilinear operation to perform upsampling, replacing the deconvolution operation in encoder-decoder like network topologies by using tf.image.resize_bilinear. And this implementation uses half_pixel_centers as true. So far, the operation is supported only during segmentation.

Unpool
Unpooling is the opposite operation of pooling. This operation uses one of the outputs of MaxPoolWithArgMax, max indices, and performs unpooling with the help of multiple operations. The implementation example can be seen below.
def unpool(updates, mask, k_size=[1,2,2,1], output_shape=None, scope=""):
 with tf.variable_scope(scope):
 mask = tf.cast(mask,tf.int32)
 input_shape = tf.shape(updates, out_type=tf.int32)
 # Calculation enw shape
 if output_shape is None:
 output_shape = (input_shape[0], input_shape[1]*k_size[1],
 input_shape[2]*k_size[2], input_shape[3])
 # Calculation indices for batch, height, width and feature maps
 one_like_mask = tf.ones_like(mask, dtype=tf.int32)
 batch_shape = tf.concat([[input_shape[0]],[1],[1],[1]],0)
 batch_range = tf.reshape(tf.range(output_shape[0],dtype=tf.int32),
 shape=batch_shape)
 b = one_like_mask * batch_range
 y = mask//(output_shape[2]*output_shape[3])
 x = (mask//output_shape[3])%output_shape[2]
 feature_range = tf.range(output_shape[3],dtype=tf.int32)
 f = one_like_mask * feature_range
 # Transpose indics & reshape update values to one dimension
 updates_size = tf.size(updates)
 indices = tf.transpose(tf.reshape(tf.stack([b,y,x,f]),[4,updates_size]))
 values = tf.reshape(updates, [updates_size])
 ret = tf.scatter_nd(indices,values,output_shape)
 return ret

Figure D.2. Unpool Implementation

ReLU

The software currently only supports normal ReLU, which is implemented by tf.nn.relu (slope = 1 in the positive region and slope = 0 in the negative region).

For leaky ReLU (non-zero alpha slope in the negative region), sensAI supports tf.nn.leaky_relu and customized implementations based on tf.nn.relu. For example, tf.nn.relu(x) - alpha * tf.nn.relu(-x). The negative activation slope for leaky ReLU in a model must be fixed to 1/16, corresponding to alpha = 0.0625. Leaky ReLU is only supported on ECP5 devices.
Appendix E. USB Debugging Register Map

The following are the registers which can be read or write using the sensAI USB debugging interface.

Table E.1. USB Debugging Register Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Register Name</th>
<th>RW mode</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>dev_type_ver</td>
<td>RO</td>
<td>0x00010001</td>
<td>Indicates device type and version.</td>
</tr>
<tr>
<td>0x0010</td>
<td>gp_ctl00</td>
<td>RW</td>
<td>0x00000000</td>
<td>Bit[4]: continuous run. Bit[0]: single run.</td>
</tr>
<tr>
<td>0x0011</td>
<td>gp_ctl01</td>
<td>RW</td>
<td>0x00000000</td>
<td>Bit[8]: vid_reset Bit[0]: automatic gain control enable.</td>
</tr>
<tr>
<td>0x0012</td>
<td>gp_ctl02</td>
<td>RW</td>
<td>0x00000000</td>
<td>—</td>
</tr>
<tr>
<td>0x0013</td>
<td>gp_ctl03</td>
<td>RW</td>
<td>0x00000000</td>
<td>—</td>
</tr>
<tr>
<td>0x0014</td>
<td>gp_ctl04</td>
<td>RW</td>
<td>0x00000000</td>
<td>—</td>
</tr>
<tr>
<td>0x0020</td>
<td>gp_status00</td>
<td>RO</td>
<td>0x00000000</td>
<td>Bit[8]: single run request. Bit[7:0] ml_status</td>
</tr>
<tr>
<td>0x0021</td>
<td>gp_status01</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of cycles.</td>
</tr>
<tr>
<td>0x0022</td>
<td>gp_status02</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of commands.</td>
</tr>
<tr>
<td>0x0023</td>
<td>gp_status03</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of cycle for DMA access.</td>
</tr>
<tr>
<td>0x0024</td>
<td>gp_status04</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of DMA commands.</td>
</tr>
<tr>
<td>0x0025</td>
<td>gp_status05</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of loss time due to fifo underrun.</td>
</tr>
<tr>
<td>0x0026</td>
<td>gp_status06</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of cycles for convolution and pooling.</td>
</tr>
<tr>
<td>0x0027</td>
<td>gp_status07</td>
<td>RO</td>
<td>0x00000000</td>
<td>Number of cycles for full connecting.</td>
</tr>
<tr>
<td>0x0028</td>
<td>gp_status08</td>
<td>RO</td>
<td>0x00000000</td>
<td>GPO value</td>
</tr>
<tr>
<td>0x0029</td>
<td>gp_status09</td>
<td>RO</td>
<td>0x00000000</td>
<td>cycle for LDMA access (Only for CPNX advanced IP and Avant device)</td>
</tr>
<tr>
<td>0x002a</td>
<td>gp_status0a</td>
<td>RO</td>
<td>0x00000000</td>
<td>cycle for Advanced Engine ALU operation (Only for CPNX advanced IP and Avant device)</td>
</tr>
<tr>
<td>0x002b</td>
<td>gp_status0b</td>
<td>RO</td>
<td>0x00000000</td>
<td>cycle for scale operation (Only for CPNX advanced IP and Avant device)</td>
</tr>
<tr>
<td>0x002c</td>
<td>gp_status0c</td>
<td>RO</td>
<td>0x00000000</td>
<td>cycles of waiting (Only for CPNX advanced IP and Avant device)</td>
</tr>
<tr>
<td>0x0030</td>
<td>ba_code</td>
<td>RW</td>
<td>0x00000000</td>
<td>Base address for firmware.</td>
</tr>
<tr>
<td>0x0031</td>
<td>ba_input</td>
<td>RW</td>
<td>0x0f000000</td>
<td>Base address for input data (ICE40 UltraPlus device only).</td>
</tr>
<tr>
<td>0x0032</td>
<td>ba_output</td>
<td>RW</td>
<td>0x0f100000</td>
<td>Base address for output data (ICE40 UltraPlus device only).</td>
</tr>
<tr>
<td>0x0100</td>
<td>reg_waddr</td>
<td>RW</td>
<td>0x00000000</td>
<td>AXI write address.</td>
</tr>
<tr>
<td>0x0101</td>
<td>reg_wconf</td>
<td>RW</td>
<td>0x00000000</td>
<td>AXI write configure.</td>
</tr>
<tr>
<td>0x0110</td>
<td>reg_raddr</td>
<td>RW</td>
<td>0x00000000</td>
<td>AXI read address.</td>
</tr>
<tr>
<td>0x0111</td>
<td>reg_rconf</td>
<td>RW</td>
<td>0x00000000</td>
<td>AXI read configure.</td>
</tr>
<tr>
<td>0x0200</td>
<td>sw_i2c</td>
<td>RW</td>
<td>0x00000003</td>
<td>Software controlled I2C interface.</td>
</tr>
<tr>
<td>0x0300</td>
<td>hw_i2c_conf</td>
<td>RW</td>
<td>0x00000000</td>
<td>Hardware I2C master configure.</td>
</tr>
<tr>
<td>0x0301</td>
<td>hw_i2c_status</td>
<td>RO</td>
<td>0x00000000</td>
<td>Hardware I2C master status.</td>
</tr>
<tr>
<td>0x0302</td>
<td>hw_i2c_pack</td>
<td>RW</td>
<td>0x00000000</td>
<td>Bit[31:16]: I2C address. Bit[15:0]: I2C write data.</td>
</tr>
<tr>
<td>0x0303</td>
<td>hw_i2c_rdata</td>
<td>RO</td>
<td>0x00000000</td>
<td>Hardware I2C master data configure.</td>
</tr>
</tbody>
</table>
Appendix F. Network Topology and Device Table

The following table lists all known supported network topologies and which devices support them. For more details about layer restrictions, device restrictions, and required or suggested network implementation options, consult the Getting Started section and the Advanced Topics section.

Boxes that are green indicate a network/device combination that is available as part of Lattice’s Model Zoo, except for GoogleNet and SqueezeDet.

Table F.1. Network Topology and Device

<table>
<thead>
<tr>
<th>Network</th>
<th>ECP5</th>
<th>iCE40 UltraPlus</th>
<th>CrossLink-NX and CertusPro-NX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MobilenetV1</td>
<td>Supported - Mobilenet Mode only</td>
<td>Supported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>MobilenetV2</td>
<td>Supported - Mobilenet Mode only</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>ResNet</td>
<td>Supported</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>SSD</td>
<td>Supported – Dual engine mode</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>tinyVGG</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>VGG</td>
<td>Supported</td>
<td>Supported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>YOLOv1</td>
<td>Supported</td>
<td>Unsupported</td>
<td>Unsupported</td>
</tr>
<tr>
<td>TinySSD</td>
<td>Supported</td>
<td>Unsupported</td>
<td>Unsupported</td>
</tr>
<tr>
<td>MobileNetV2-SSD</td>
<td>Unsupported</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>GoogleNet</td>
<td>Unsupported</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>SqueezeDet</td>
<td>Unsupported</td>
<td>Unsupported</td>
<td>Optimized and Extended mode only</td>
</tr>
<tr>
<td>Enet</td>
<td>Unsupported</td>
<td>Unsupported</td>
<td>Extended mode only</td>
</tr>
<tr>
<td>Yolov5</td>
<td>Unsupported</td>
<td>Unsupported</td>
<td>Advanced mode Only</td>
</tr>
</tbody>
</table>

Note: Some modifications are required in models as per device or layer restrictions to support it in the NNC compiler.
Appendix G. Common CNN Blocks Used in Lattice NNC

This section shows how common modules and blocks used in CNN architectures are customized for Lattice NNC. For detailed information about each module parameter refer to the restriction sections of the particular device any model is run on.

Generic Blocks

The following are some of the generic modules used in our compiler.

- Relu refers to Relu2 in all the blocks in this and the next sections.
- Bias in convolution is supported only for ECP5.
- In the majority of cases, the convolution block will be followed by BatchNorm (with scale), QuantRelu (device-specific), and Relu. This structure, from here on, is referred to as CBSR.
- Generally, instead of using CBSR with Stride 2 (SAME padding), we use CBSR with Stride 1 (SAME padding), followed by MaxPool2D with Kernel 2 and Stride 2.
- For all the next sections in x.x, in all the diagrams, Q will be used for quantized and N will refer to Non-quantized.

![Diagram](image-url)

Figure G.1. Non-Quantized 3x3 CBSR or 3x3 Depthwise CBSR
Figure G.2. Quantized 3x3 CBSR or 3x3 Depthwise CBSR

Figure G.3. Non-Quantized 1x1 CBSR
Figure G.4. Quantized 1x1 CBSR

Figure G.5. Non-Quantized Add Block
VGG

For some devices (for classification), only a single dense layer is supported at the end instead of multiple dense layers.

Figure G.6. Quantized Add Block

Figure G.7. VGG toy model
MobileNetV1

![Diagram of MobileNetV1](image)

Figure G.8. MobileNetV1 Block

Figure G.9. MobileNetV1 Toy Model
MobileNetV2

Figure G.10. MobileNetV2 Block 1

Figure G.11. MobileNetV2 Block 2
ResNet

![Diagram of ResNet Toy Model](image1)

Figure G.12. ResNet Toy Model

![Diagram of ResNet Block 2 Variation 1](image2)

Figure G.13. ResNet Block 2 Variation 1
Figure G.14. ResNet Block 2 Variation 2
Figure G.15. ResNet Block 2 Variation 3
GoogleNet

Figure G.16. GoogleNet Inception Block 1

Figure G.17. GoogleNet Inception Block 2
ENET
The following figures show the four basic blocks used in ENET.
BSR in the Upsample block refers to BatchNorm + Scale + QuantRelu + Relu.

![Diagram of ENET blocks](image)

Figure G.18. Init Block

![Diagram of DownSample block](image)

Figure G.19. DownSample Block
Figure G.20. Regular Block

Figure G.21. Upsample Block
Table G.1. Enet Example Architecture

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>1x160x160</td>
</tr>
<tr>
<td>Init Block</td>
<td>12x80x80</td>
</tr>
<tr>
<td>Downsampling block</td>
<td>40x40x40</td>
</tr>
<tr>
<td>4xRegular Block</td>
<td>40x40x40</td>
</tr>
<tr>
<td>Downsampling Block</td>
<td>80x20x20</td>
</tr>
<tr>
<td>Regular + Dilated (d=2) Blocks</td>
<td>80x20x20</td>
</tr>
<tr>
<td>2x(Regular + Dilated (d=4))</td>
<td>80x20x20</td>
</tr>
<tr>
<td>Upsampling Block</td>
<td>40x40x40</td>
</tr>
<tr>
<td>Regular</td>
<td>12x80x80</td>
</tr>
<tr>
<td>Resize Bilinear + BSR</td>
<td>12x160x160</td>
</tr>
<tr>
<td>3x3 Convolution output</td>
<td>2x160x160</td>
</tr>
</tbody>
</table>
References

- Lattice Diamond 3.13 User Guide
- Lattice Radiant Software 2023.2 User Guide
- Lattice Diamond FPGA design software
- Lattice Radiant FPGA design software
- Lattice Insights for Lattice Semiconductor training courses and learning plans
Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.
Revision History

Revision 6.1, January 2024

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>• Add support for YoloV5 models and layers like Conv 7x7, Mul, and Sub in Advanced IP.</td>
</tr>
<tr>
<td></td>
<td>• Add the support of the 7x7 and 5x5 convolution kernels.</td>
</tr>
<tr>
<td></td>
<td>• Add the support of the Global Average Pooling operation.</td>
</tr>
<tr>
<td></td>
<td>• Add support for 64-bit datawidth in the Avant device Advanced IP.</td>
</tr>
<tr>
<td></td>
<td>• Add the support of a strided slice and a focus layer.</td>
</tr>
<tr>
<td></td>
<td>• Add the new Tensorflow native operations (Mul, Sub, Add, reciprocal_no_nan, Pow, Strided_Slice) as post-processing stand-alone nodes in Keras</td>
</tr>
<tr>
<td>Disclaimers</td>
<td>Updated this section.</td>
</tr>
<tr>
<td>Getting Started</td>
<td>Merged old subsection 3.6.1 Usage and subsection 3.6.2 Arguments into a new subsection 3.6.1 Arguments and Usage.</td>
</tr>
<tr>
<td>References</td>
<td>Add this section.</td>
</tr>
</tbody>
</table>

Revision 6.0, February 2023

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added advanced IP support in CertusPro-NX and Advant devices.</td>
</tr>
<tr>
<td>Introduction</td>
<td>• Added Avant device support to the IP Requirements section.</td>
</tr>
<tr>
<td></td>
<td>• Updated the description of downloading and running networks onto Hardware in the Purpose section.</td>
</tr>
<tr>
<td>Installing the Software</td>
<td>• Updated the default installation directory in Step 5.</td>
</tr>
<tr>
<td></td>
<td>• Updated Figure 2.1. Installation Location Specification and Figure 2.3. Installation Ready to Install Dialog Box.</td>
</tr>
<tr>
<td>Getting Started</td>
<td>• Updated Arguments for new device family support in the Command Line Interface section.</td>
</tr>
<tr>
<td></td>
<td>• Updated restrictions for new device family support in the CertusPro-NX and Avant Advanced CNN IP Restrictions section.</td>
</tr>
<tr>
<td></td>
<td>• Newly added supported TensorFlow Version 2.9 in the TensorFlow Restrictions section.</td>
</tr>
<tr>
<td>Working with Projects</td>
<td>Newly added the HTML Log File section.</td>
</tr>
<tr>
<td>Advanced Topics</td>
<td>• Updated all the figures in this section reflecting the new GPO ID.</td>
</tr>
<tr>
<td></td>
<td>• Newly added This option is available for Extended and Advanced CNN IP only to the Argmax Memory Size section.</td>
</tr>
<tr>
<td></td>
<td>• Added Avant device support to the following sections:</td>
</tr>
<tr>
<td></td>
<td>• On the Fly Post Processing</td>
</tr>
<tr>
<td></td>
<td>• Required Output Depth Range</td>
</tr>
<tr>
<td></td>
<td>• On the Fly Post Processing</td>
</tr>
<tr>
<td></td>
<td>• Required Output Depth Range</td>
</tr>
<tr>
<td></td>
<td>• On-Chip Large Memory Size</td>
</tr>
<tr>
<td></td>
<td>• External Memory Interfaced (In bytes)</td>
</tr>
<tr>
<td></td>
<td>• Code Section Base Address</td>
</tr>
<tr>
<td></td>
<td>• Data Section Base Address</td>
</tr>
<tr>
<td></td>
<td>• Newly added the following sections:</td>
</tr>
<tr>
<td></td>
<td>• Number of Segments</td>
</tr>
<tr>
<td></td>
<td>• Segment Size</td>
</tr>
<tr>
<td></td>
<td>• Number of VE SPD</td>
</tr>
<tr>
<td></td>
<td>• Multiport Parallel</td>
</tr>
<tr>
<td></td>
<td>• Kmax Kernel Pooling</td>
</tr>
<tr>
<td></td>
<td>• Added description about CertusPro-NX and Avant to the Number of Convolution Engines section.</td>
</tr>
<tr>
<td></td>
<td>• Updated to it uses four DSP blocks per convolution engine in the Enable Quad Core Mode.</td>
</tr>
</tbody>
</table>
Section | Change Summary
---|---
| • Added This option is available for Extended and Advanced CNN IP only to the Argmax Memory Size section.
• Added Avant device support to Table 5.3. Quantization Details with Device Type.
• Added Avant device support to the Quantization for iCE40 UltraPlus, CrossLink NX, CertusPro NX, and Avant section.
• Updated to Neural Network Compiler 6.0 in the Note in the Mobilenet Mode for ECP5 section.
• Added except Advanced CNN IP for CertusPro-NX in the Embedded Mode section.
USB Debugging | Added Avant device support to the CNX VVML, CPNX section.
Technical Support Assistance | Added Lattice Answer Database URL.
Supported Keras Layers | Updated description for Lambda (only for 8-bit activation quantization) section.
Supported Layer Configuration | Newly added the Advanced CNN column, Max Pooling K x K row, Argmax Pooling row of data to the table.
USB Debugging Register Map | Newly added the 0x0028, 0x0029, 0x002a, 0x002b, and 0x002c addresses.
Network Topology and Device Table | Newly added Yolov5 network.
Common CNN Blocks Used in Lattice NNC | Newly added Appendix.

Revision 5.0, June 2022
Section	Change Summary
All | Added Extended IP, Semantic Segmentation Support, Updated USB Debug with enhancements

Revision 4.1, November 2021
Section	Change Summary
All | Added support for CertusPro-NX device and upgraded TensorFlow version support to 2.5.0.
General editorial, style, and formatting update.

Revision 4.0, April 2021
Section	Change Summary
All | Added Concat and Large Input resolution support in CrossLink-NX device.

Revision 3.2, January 2020
Section	Change Summary
All | Added Quad LRAM support in CrossLink-NX device.

Revision 3.1, October 2020
Section	Change Summary
All | Added Mobilenet mode support for iCE40 UltraPlus device.

Revision 3.0, April 2020
Section	Change Summary
All | Added support for CrossLink-NX device.
Revision 2.1, September 2019

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Enhancements, bug fixes, and Mobilenet mode.</td>
</tr>
</tbody>
</table>

Revision 2.0, April 2019

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added new features and optimizations.</td>
</tr>
</tbody>
</table>

Revision 1.1, September 2018

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added support for iCE40 UltraPlus device.</td>
</tr>
</tbody>
</table>

Revision 1.0, May 2018

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>