
LatticeMico32 Software
Developer User Guide

June 2012

ii LatticeMico32 Software Developer User Guide

Copyright
Copyright © 2013 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Movile Device,
DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman,
iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD,
ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA,
PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest, Speedlocked,
Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK,
sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex
Design, TraceID, TransFR, UltraMOS, and specific product designations are either
registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best
Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico32 Software Developer User Guide iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide v

Contents

Chapter 1 LatticeMico System Overview 1

LatticeMico System Design Flow 1
Device Support 3
Design Flow Steps 4

About LatticeMico System Software Projects 6
Project/Build Management 6
Application Debugging 6
Software Deployment 7

Related Documentation 7

Chapter 2 Using the LatticeMico System Software 9

LatticeMico System Software Overview 9
About the LatticeMico System Tools 9
LatticeMico System Requirements 10
Running LatticeMico System 10
LatticeMico System Perspectives 10

Using C/C++ SPE to Develop Your Software 15
Starting C/C++ SPE 15
Creating Software Projects 17
Basic Project Operations 20
Understanding the Build Process 24
Building Your Software Project 25
Setting Project Properties 26
Rebuilding Your Software Project 30
Performing Builds Automatically 30

Using LatticeMico System as a Stand-Alone Tool 31

Running the Debugger on Your Code 32
Debugging and Executing Your Code 34
Common Debugging Tasks 41

Running the Software from the Command Line 42
Opening the SDK Shell 42

CONTENTS

vi LatticeMico32 Software Developer User Guide

Command-Line Managed Project Builds 43
Command-Line Unmanaged Project Builds 44

Chapter 3 LatticeMico Run-Time Environment 45

Build/Compilation Utilities 45

Run-Time Libraries 45
Newlib C and Math Libraries 46

Device Drivers and Services 52
Services Available at Run Time 53
Device Driver APIs 56

Basic Program Structure 57
Creating a Blank Project 58
Adding a Source File to the Project 59
Adding Source to the Source file 61
Building the Application 62
Boot Sequence and crt0ram.S 64
The int main(void) Function 73
Context Save/Restore in Interrupt Exception 73

Boot Sequence 76
EBA and DEBA 77
Boot Code Sequence Flow 79

LatticeMico32 Microprocessor Usage 80
Data Types 80
Byte Order 80
Interrupt Management 81
Cache Management 88
Sleep (Busy) Functions 89
Microprocessor Control Register Access 90
Macros 90

Run-Time Services 91
Device Lookup Service 91
LatticeMico System Timer Services 95
LatticeMico File Service 98
CFI Flash Device Service 105

Chapter 4 Device Driver Framework 121

Overview 121

Supported Components 122

Modifying Existing Device Drivers 123
Overriding Default Driver Initialization Sequence 123
Overriding Default Driver Implementation 124
Enhancing CFI Flash Service 125
Making Devices Available to Lookup Service 130

File Operations 131
File Operations Functions 131
File Device and LatticeMico File Service 132
Maximum File Descriptors 136

Developing File Device Drivers 137
Implementing the Operation Functions 138
Registering the Driver as a File Device 139
File Device Function Handlers 142

CONTENTS

LatticeMico32 Software Developer User Guide vii

Chapter 5 Managed Build Process and Directory Structure 145

Creating Managed Build Applications 145

LatticeMico C/C++ Project Build Flow 146
The Build Process 147
Build Directory Structure 148

Platform Library-Generated Source Files 155
DDStructs.h File 157
DDStructs.c File 159
DDInit.c File 160
System_Conf.h File 161
Component Software Elements 168

Chapter 6 Advanced Programming Topics 175

Linker Script and Memory Sections 175

Software Deployment 178
Deployment Strategies 178
Deploying to On-Chip Memory 179
Deploying to Multiple On-Chip Memory 190
Deploying to a Flash Device 193
Deploying to SPI Flash Using Deployment Tool 199
Deploying Applications Across Different Memory Components 211

Device Drivers and Multitasking 244

Standard-Make Projects 244
Creating a LatticeMico Library Project 245
Creating a LatticeMico Standard-Make Project 250

Chapter 7 Software Development Utilities 281

Build Tools 281
lm32-elf-ar 281
lm32-elf-as 283
lm32-elf-gcc 285
lm32-elf-ld 287
lm32-elf-nm 292
lm32-elf-objcopy 293
lm32-elf-objdump 296
lm32-elf-size 298

Debug Tools 299
lm32-elf-gdb 299

Glossary 301

Index 307

CONTENTS

viii LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide 1

Chapter 1

LatticeMico System Overview

This software developer’s guide describes the flow of tools involved in
creating, debugging, and deploying the software application code for the
LatticeMico32 embedded microprocessor. In addition, it familiarizes you with
the LatticeMico run-time environment, the managed build environment, and
its associated directory structure. “Device Driver Framework” on page 121
describes the device driver framework and the advanced issues related to
developing custom device drivers. Some treatment is also given to a
command-line approach in “Using the LatticeMico System Software” on
page 9, with “Software Development Utilities” on page 281 containing tool
syntax and options for usage.

This guide is targeted to software programmers who are interested in learning
the fundamentals of programming the embedded soft-core microprocessor.
For a list of related documents on the LatticeMico32 microprocessor, refer to
“Related Documentation” on page 7.

LatticeMico System Design Flow
This section lists the major steps involved in designing a LatticeMico32
embedded microprocessor. In addition to running the FPGA flow in Lattice
Diamond, you will use the LatticeMico System software to build both
hardware and software features of your embedded soft-core microprocessor.

The LatticeMico System software is composed of three bundled applications:

 Mico System Builder (MSB)

 C/C++ Software Project Environment (C/C++ SPE)

 Debugger

These applications work in the background through the user interface and can
be accessed through different “perspectives” in the LatticeMico System

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

2 LatticeMico32 Software Developer User Guide

software. Perspectives are a prearranged and predefined set of user
functions that can be accessed within the software user interface. You toggle
different perspectives on and off by clicking on perspective tabs. Perspectives
are described in more detail in “LatticeMico System Perspectives” on
page 10.

MSB is used by hardware designers to create the microprocessor platform for
both hardware and software development. A platform generically refers to the
hardware microprocessor configuration, the CPU, its peripherals, and how
these components are interconnected. This functionality in the LatticeMico
System software can be accessed by using the MSB perspective in the
interface. The default MSB perspective is completely separate in terms of
function from the other two perspectives. For complete information about
using MSB, refer to the LatticeMico32 Hardware Developer User Guide.

You can use the C/C++ Software Project Environment (SPE) to develop the
software application code that drives the platform. The Debugger is used to
analyze and correct your code. You can access these programs by enabling
the C/C++ and Debug perspectives, respectively. However, these two
perspectives overlap in terms of functionality. Many of the same functions and
views available in the C/C++ perspective are also available in the Debug
perspective because the functions are so intertwined.

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

LatticeMico32 Software Developer User Guide 3

Figure 1 shows the interaction of the three LatticeMico System applications
with Lattice Diamond in the microprocessor development design flow.

As noted earlier, you can learn more about perspectives in “LatticeMico
System Perspectives” on page 10. In addition, the LatticeMico32 Tutorial
gives step-by-step instructions on creating a sample microprocessor platform,
downloading hardware images to your device, creating your application code,
and deploying your application code to on-chip or flash memory. It covers all
relevant topics to enable you to run through a complete LatticeMico design
flow. It is highly recommended that you start out with the tutorial.

Device Support
The Lattice FPGA devices that are currently supported in this design flow are
the following:

 LatticeECP

 LatticeEC

 LatticeECP2

Figure 1: LatticeMico System Development Software Tool Flow

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

4 LatticeMico32 Software Developer User Guide

 LatticeECP2M

 LatticeECP3

 LatticeXP

 LatticeXP2

 LatticeSC

 LatticeSCM

Design Flow Steps
The major steps involved in designing a LatticeMico32 soft-core
microprocessor are the following:

1. Create a project in Lattice Diaimond that targets the desired device family.

2. Use the Mico System Builder (MSB) in the LatticeMico System software to
create and develop a microprocessor platform. You access this in the
MSB perspective. Creating a platform involves generating an .msb file,
selecting component peripherals, and connecting them to the LatticeMico
platform. For complete instructions, refer to the LatticeMico32 Hardware
Developer User Guide.

3. In the MSB perspective, designate and develop drivers as necessary for
available peripherals and add them to the platform you created.

4. In the MSB perspective, generate a platform build, which automatically
creates a build structure with associated makefiles and an appropriate
linker script. This process involves the device drivers and any other
software components other than the user application.

5. In C/C++ SPE, use the C/C++ perspective to write the C/C++ user
application software and build your application.

6. Using the Debugger in the LatticeMico System software, test your code on
the target hardware, configure the target hardware, find issues with your
code, and correct them. You access the Debugger in either the
C/C++ perspective or the Debug perspective.

7. In Diamond, download the executable code to on-board flash memory.
You can deploy the application providing a boot loader that straps onto the
application for loading the application from slow, non-volatile storage
(flash memory device) to fast volatile storage (on-chip or off-chip RAM),
without having to rebuild the application.

8. Repeat steps 3 through 7 for any new application development or
modification to the platform in step 2.

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

LatticeMico32 Software Developer User Guide 5

Figure 2 shows the LatticeMico System design flow.

Figure 2: LatticeMico System Design Flow

LATTICEMICO SYSTEM OVERVIEW : About LatticeMico System Software Projects

6 LatticeMico32 Software Developer User Guide

About LatticeMico System Software Projects
The LatticeMico System project concept enables you to develop your
embedded microprocessor in an integrated environment that automates some
of the tasks described in “LatticeMico System Design Flow” on page 1 and
makes other tasks more manageable for you.

A LatticeMico System project is a managed project, which means that the
software generates a set of makefiles and build management utilities for you
to ensure that your software project is built and generated properly, making it
unnecessary for you to modify any files to perform this task.

The software system consists of three major functional parts:

 Project/build management

 Application debugging

 Software deployment

Project/Build Management
The project/build management function of the software does the following:

 Automatically selects Lattice Semiconductor-provided, platform-specific
drivers (operating system and other selectable software components)
based on the .msb file that defines your platform, user selections, or both.

 Automatically creates the appropriate makefiles for building the
application, as well as included drivers and software components, without
user intervention.

 Provides default project settings, as well as build configuration, to enable
you to successfully generate basic platforms and requirements.

 Enables easy manipulation of linker section location for platforms
containing a multitude of memory regions through an intuitive user
interface.

See “Managed Build Process and Directory Structure” on page 145 for details
on the managed build process.

Application Debugging
The application debugging function of the software does the following:

 Provides a default debug session configuration that builds the application
in a way that allows you to run and diagnose issues within your application
code.

 Provides an intuitive source-level debugging environment that gives you a
comprehensive look at the application/CPU during a debug session.

See “Running the Debugger on Your Code” on page 32 and all relevant
subsections for information on application debugging.

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

LatticeMico32 Software Developer User Guide 7

Software Deployment
The software application can be deployed in three different ways:

 To boot from a flash device

 To boot from an on-chip memory peripheral component

 To boot from multi on-chip memory

See “Software Deployment” on page 178 and relevant procedures in “Using
the LatticeMico System Software” on page 9 for deploying your software.

Related Documentation
You can access the LatticeMico System online Help and manuals by choosing
Help > Help Contents in the LatticeMico System interface. These manuals
include the following:

 LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including
configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

 LatticeMico32 Hardware Developer User Guide, which provides
instructions for using the MSB perspective to develop and configure a
hardware platform using the LatticeMico32 microprocessor, peripherals,
and IP.

 LatticeMico32/DSP Development Board User Guide, which describes the
features and functionality of the LatticeMico32/DSP development board.
This board is designed as a hardware platform for design and
development with the LatticeMico32 microprocessor, as well as for the
LatticeMico8 microcontroller, and for various DSP functions.

 Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench.

 LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

 LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

 LatticeMico On-Chip Memory Controller, which which describes the
features and functionality of the LatticeMico on-chip memory controller

 LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

 LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

 LatticeMico Master Passthrough, which describes the features and
functionality of the LatticeMico master passthrough.

 LatticeMico Slave Passthrough, which describes the features and
functionality of the LatticeMico slave passthrough

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

8 LatticeMico32 Software Developer User Guide

 LatticeMico SDR SDRAM Controlller, which describes the features and
functionality of the LatticeMico SDR SDRAM controller

 LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

 LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico serial peripheral interface (SPI) flash memory controller

 LatticeMico Timer, which describes the features and functionality of the
LatticeMico timer

 LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

 Lattice Diamond <release_number> Installation Notice, which explains
how to install the LatticeMico System software for the current release

 LatticeECP/EC FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeEC and LatticeECP devices

 LatticeECP/EC Family Data Sheet

 LatticeECP2 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP2 devices

 LatticeECP2 Family Data Sheet

 LatticeECP2M Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP2M devices

 LatticeECP2M Family Data Sheet

 LatticeECP3 Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP3 devices

 LatticeECP3 Family Data Sheet

LatticeMico32 Software Developer User Guide 9

Chapter 2

Using the LatticeMico System
Software

This chapter introduces you to the LatticeMico System software, describes
portions of its software user interface, and provides in-depth procedures for
performing common and advanced user tasks. The instructions for performing
key operations are presented in the order that they occur in the design flow,
and the user interface is introduced appropriately. See the LatticeMico
System online Help for more details on the user interface.

This chapter assumes that you have read “LatticeMico System Overview” on
page 1 and are familiar with the general high-level steps in this product flow.
This chapter also assumes that you have not customized the user interface.

LatticeMico System Software Overview
This section provides a brief synopsis of the functional tools included in the
software and teaches you the basic concept of user “perspectives” in the
software that are designed to simplify access to command functionality.

About the LatticeMico System Tools
As noted in “LatticeMico System Overview” on page 1, the LatticeMico
System software is composed of the following bundled, functional software
tools:

 Mico System Builder (MSB), which is used to create the microprocessor
platform

 C/C++ Software Project Environment (C/C++ SPE), which is used to
create the software application code that drives the microprocessor
platform

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

10 LatticeMico32 Software Developer User Guide

 Debugger, which enables you to analyze the software application code to
identify and correct errors

The LatticeMico tools share the same Eclipse workbench, which provides a
unified graphical user interface for the software and hardware development
flows. You use MSB to define the structure of your microprocessor or your
hardware platform. C/C++ SPE enables you to develop and compile your
code in a managed and well-structured build environment. The Debugger
includes tools that analyze your code for errors and simulates instruction calls
within the software environment or to an actual programmed device on a
circuit board.

You will learn more about how these functions are encountered in the
software throughout this chapter. This chapter assumes that you have
installed all of the necessary software and have not modified your default
perspectives in any way.

LatticeMico System Requirements
System requirements for installing Lattice Diamond, LatticeMico System, and
Stand-Alone Programmer, are included in the Lattice Diamond Installation
Notice, available on the Lattice Web site for Windows and Linux.

Refer to the “Installing LatticeMico Development Tools” chapter for
information about LatticeMico System’s system requirements and installation.

Refer to the “Installing Stand-Alone Programmer” section for information
about Stand-Alone Programmer’s installation.

Running LatticeMico System
Now you will run the software so that you can take a quick survey of the user
interface to understand its basic structure.

To run the LatticeMico System from your PC desktop:

 From the Windows desktop Start menu, choose Programs > Lattice
Diamond > Accessories > LatticeMico System.

The LatticeMico System interface initially opens with the MSB perspective
active by default. After that, the software opens to the last opened
perspective.

LatticeMico System Perspectives
Before you begin learning about the basic tasks that you can perform in the
LatticeMico System software, it is important to understand the concept of
“perspectives” in the software and how to access the three integrated

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-00-25&source=sidebar
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-00-25&source=sidebar

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

LatticeMico32 Software Developer User Guide 11

functional tools, MSB, C/C++ SPE, and the Debugger, within the user
interface. Do not confuse the underlying functional tools in the LatticeMico
System software with the various perspectives in the user interface.

There are three default perspectives in the LatticeMico System software:

 MSB perspective

For complete information about using the MSB perspective to configure
the microprocessor hardware platform and peripherals, refer to the
LatticeMico32 Hardware Developer User Guide.

 C/C++ SPE perspective, shown on Figure 5 on page 16

 Debug perspective, shown in Figure 15 on page 33

Within the Eclipse framework, the three functional tools appear as different
user interfaces or “perspectives” integrated into the same framework. A
“perspective” in the LatticeMico System software is a separate combination of
views, menus, commands, and toolbars in a given graphical user interface
window that enables you to perform a set of particular, predefined tasks. For
example, the Debug perspective has views that enable you to debug the
programs that you developed using the C++ SPE tool. For an overview on
Eclipse workbench concept and terminologies, refer to the Eclipse Reference
Manual.

When you first open LatticeMico System, the MSB perspective is the active
perspective by default. After working in the interface, the software defaults to
the last opened perspective. The Eclipse workbench that is integrated into the
LatticeMico System software has three activation buttons for quickly toggling
back and forth between the MSB, C/C++, and Debug perspectives. These
buttons are shown in Figure 3. They enable you to switch between
perspectives by clicking on them. Figure 3 also shows the activated C/C++
perspective. The current active perspective is displayed in the upper left of the
window’s title bar.

The three different perspectives—the MSB, the C++ SPE, and the Debug—
include overlapping tool functions that you access through various commands

Figure 3: Perspective Activation Buttons

http://help.eclipse.org/help30/

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

12 LatticeMico32 Software Developer User Guide

and interactive views, as illustrated in Figure 4. You can find more information
on these commands and views later in this document and in the online Help.

In Figure 4, the C/C++ perspective and the Debug perspective arrows
indicate that they share many of the same or similar command functions, so
you can perform the same exact operation in either perspective. By default,
these two perspectives share many functions because these tasks are very
closely related to each other. If you perform some changes in a view such as
the Editor view in one perspective, it will affect what you see in another
perspective that contains the same view. Do not assume that a given
command function in the LatticeMico System is only accessible or viewable
from one perspective.

The LatticeMico System software enables you to customize existing default
perspectives, create your own perspectives, and control what views are open
in a given perspective. The following procedures tell you how to customize,
define, and reset perspectives. These procedures assume that you have not
changed the default perspective settings.

Customizing Default Perspectives
It is possible to customize existing default perspectives in LatticeMico System
by changing the existing set of commands ascribed to each perspective.

Figure 4: Tool Functions Accessed in Perspectives

Note

Particular views and options within a given perspective are described in more detail
throughout this chapter as they are encountered in the design flow. More information
on the graphical user interface, views, windows, dialog boxes, and so forth are
described in more detail in the LatticeMico online Help.

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

LatticeMico32 Software Developer User Guide 13

To customize an existing perspective:

1. From within a given perspective, choose Window > Customize
Perspective.

2. In the Customize Perspective dialog box, select shortcut options in the
Shortcuts tab and command options in the Commands tab.

3. Click OK.

You should see the results of any changes in the interface.

Creating Custom Perspectives
In addition to the three existing default perspectives, you can also add your
own custom perspective with custom options to the user interface.

To create a new perspective:

1. From within a given perspective, choose Window > Save Perspective
As.

2. In the Save Perspective As dialog box, rename an existing default
perspective in the Name text box and click OK to save it.

3. Choose Window > Customize Perspective to customize the new
perspective that you created.

Deleting Custom Perspectives
You can delete perspectives that you defined yourself, but you cannot delete
the default perspectives that are delivered with the software workbench
environment.

To delete a custom perspective:

1. From within a given perspective, choose Window > Preferences.

The Preferences window opens.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

3. From the Available perspectives list, select the desired perspective and
click Delete.

4. Click OK.

Changing Default Perspectives
After you create a new perspective, you may want to make the new
perspective a default perspective that will automatically be available when
you return to the program.

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

14 LatticeMico32 Software Developer User Guide

To change the default perspective:

1. From within a given perspective, choose Window > Preferences.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

3. Select the perspective that you want to define as the default and click
Make Default.

The default indicator moves to the perspective that you selected.

4. Click OK.

Resetting Default Perspectives
After customizing default perspectives, you can revert back to the original set
of command options for a given perspective by resetting them in the software.

To reset your default perspectives:

1. From within a given perspective, choose Window > Reset Perspective.

2. In the Reset Perspective pop-up dialog box, click OK.

This action returns all default perspectives back to their original option
settings.

Closing and Opening Views in Perspectives
In each perspective, views are defined for each perspective that allow you to
interactively perform a task. These views are described later in this chapter
for each perspective.

At times, you may want to close views to make more space for working in a
desired view. For example, after you add all of the components that you need
in your platform, you may opt to close the Available Components view in the
MSB perspective.

To close a view in a given perspective:

 In a given perspective, click on the Close icon that appears as an “X” at
the upper right corner of the view that you wish to close.

The view closes. In some cases where the two views did not overlap, an
adjacent view moves into the vacated area in the interface, making the
adjacent view larger.

To reopen a view that you previously closed:

 In a given perspective, choose Window > Show View and select the view
that you wish to reopen from the submenu.

The view is reopened in its original area in the interface.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 15

Using C/C++ SPE to Develop Your Software
After creating your hardware microprocessor platform, you must create the
software application code that defines how it processes data. This section
outlines how to use the LatticeMico C/C++ Software Project Environment
(SPE), the primary tool that you use to develop your microprocessor
application code. You do tasks that use C/C++ SPE in the C/C++ perspective
in the user interface.

The C/C++ perspective enables you to do the following tasks:

 Create and build new LatticeMico C/C++ software projects.

 Develop and compile your software application code to create
executables using its workbench.

 Test or debug your software application code by directly analyzing the
development board.

 Access software deployment options such as deploying to on-chip
memory or a parallel flash device.

 Launch iProgrammer configuration software for downloading the FPGA
bitstream to a hardware target device.

Starting C/C++ SPE
C/C++ SPE is another functional part of LatticeMico System, and you can
access its commands in the C/C++ perspective. You can also access C/C++
commands from other perspectives. See “LatticeMico System Perspectives”
on page 10 to understand how command options for various functional parts
of the software are accessed in the software.

Before opening the C/C++ perspective, have the software running, as
described in “Running LatticeMico System” on page 10.

To open the C/C++ perspective:

 From the default MSB perspective, click the C/C++ activation button
at the top left.

Alternatively, you can choose Window > Open Perspective >
C/C++.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

16 LatticeMico32 Software Developer User Guide

The C/C++ perspective now becomes active and enables you to access
C/C++ SPE commands. The current active perspective is shown in the upper
left of the window’s title bar, as shown in Figure 5.

The C/C++ perspective consists of the following views:

 C/C++ Projects view, which lists C/C++ SPE projects that have been
created

 Navigator view, which shows all of the file system files under the
workspace folder

 Editor view, which displays your editable files in the window. Each file is
displayed within a separate tab within the view.

 Outline view, which displays the structure of the file currently open in the
Editor view. See the online Help for more details.

 Problems view, which displays error, warning, or informational messages
output related to your build

 Console view, which displays informational messages output by the
C/C++ SPE build process

 Properties view, which displays the attributes of the item currently
selected in the Projects view. This view is read-only.

Figure 5: C/C++ Perspective

Editor View

Outline
View

C/C++
Projects
View

Problems View, Console View (shown),
Properties View, Search View

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 17

 Search view, which displays the results of a search when you choose the
Search > Search menu command

 Tasks view, which shows the tasks running concurrently in the background

 Make Targets view, which allows you to create your own custom
makefiles. This ability is not necessary for managed make projects.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation of the available
views, refer to the online Help.

Creating Software Projects
There are three main types of software projects:

 LatticeMico managed make C/C++ project

 LatticeMico library project

 LatticeMico standard make C/C++ project

A LatticeMico managed make C/C++ project is the easiest to use for getting
started, because it manages the build environment, including linker scripts,
boot code, sources, header files, and even makefiles. It also extracts
platform-dependent information from the LatticeMico32 microprocessor
platform and creates the appropriate files required for a build.

The LatticeMico library project and the LatticeMico standard-make project are
described in “Advanced Programming Topics” on page 175. These two project
types enable you to create your own build environment in which you can
provide the desired make structure, as well as make files. This document
refers to the managed-build process for all topics unless explicitly stated
otherwise.

Creating a project is the first step in using C/C++ SPE. You select a target
platform generated by MSB in the .msb file that you already created and
create the software application code that controls the microprocessor and
attached components. At the same time, C/C++ SPE generates system
libraries based on the MSB platform, your selections, or both. Use the File >
New >Mico Managed Make C/C++ Project menu command to create a
software project.

Before using C/C++ SPE, you must define an MSB platform to select the
drivers and the available memory for the linker. C/C++ SPE references one
and only one MSB platform definition. You can retarget the same software
application code to another MSB platform without having to recreate the
project or without having to rewrite the software application code. The

Note

The folder in which the C/C++ SPE project is saved cannot reside at the same
directory level as the folder in which the MSB project is saved. The C/C++ SPE folder
can reside at a higher or lower directory level than the MSB project folder.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

18 LatticeMico32 Software Developer User Guide

components used by the software application code must reside in both
platforms to ensure a successful build.

To facilitate development, you can select a project template to use in creating
the software application code in C/C++ SPE and then modify this code. But
once you create a project, you cannot change the template, because some
templates have platform dependencies.

To create a new software project:

1. From the MSB perspective, click the C/C++ button in the upper left.

The C/C++ perspective opens.

2. In the C/C++ perspective, choose File > New >Mico Managed Make C/
C++ Project.

The New Project dialog box opens, as shown in Figure 6.

3. In the Project Name box, enter the name of your new project.

The Location text box points the top-level project folder where your
software project’s contents will be stored, including your sources as well
as the managed build files. The name of your project is automatically
appended to the default folder location. To override the default
assignment, first enter the project name and then enter the desired
location.

Figure 6: New Project Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 19

4. In the MSB System text box, browse to the location of the .msb file, select
the .msb file, and click Open.

This file is located within this MSB platform folder, where there will be an
\soc folder that contains an .msb file.

If you switched to C/C++ after opening an MSB platform or creating a new
MSB platform, the MSB platform selection will, by default, contain the file
name and path of that MSB platform description.

5. In the Select Project Templates list box, select the template for the
application code.

This list box allows for selection of available software templates for a quick
start on software development. Software templates provide a collection of
software project files that are copied into your project’s folder. These
provide you a starting point for creating your application. If you intend to
create a blank project that contains no pre-existing files, select the blank
project template. The Templates Description box provides information on
selected platform component requirements and other relevant
information.

6. Click Finish.

Your software project has been created.

Your new project will appear in the C/C++ Projects view.

7. Click on the project name to select it in the C/C++ Projects view on the
left.

8. Choose Project > Build Project.

If you had selected a project template of the “hello world” variety during
project setup, you would get the HelloWorld Projects view, as shown in
Figure 7. The project folder in the view is shown expanded for illustrative
purposes.

As you can see in Figure 7, this project contains source files copied over as
part of the template specification. Subsequent parts of this document describe
the relevant project files, such as the ones shown here. See “Managed Build
Process and Directory Structure” on page 145 for a discussion of the directory
structure with a special focus on its relevance to the managed build process.

Figure 7: Hello World Projects View

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

20 LatticeMico32 Software Developer User Guide

Basic Project Operations
This section describes some of the most commonly used operations for
project development. The C/C++ SPE software enables you to perform a
given operation in various ways, such as selecting from a pop-up menu or
selecting from the application menu. This section describes the most common
ways of performing these operations.

Adding New Source Files or Folders
This section describes how to add new source files and folders to your C/C++
SPE project. Source files refer to .c files that contain your C programming
code and are input into the C compiler to generate your object files. Source
folders refer to directories that contain a host of .c files. Adding or creating a
resource file in your project can refer to any file.

To add new source files to your C/C++ project:

1. In the C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source File from the
pop-up menu.

3. In the New Source File dialog box, browse to your source file and click
Finish.

To add new source folders to your C/C++ project:

1. In the C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source Folder from the
pop-up menu.

3. In the New Source Folder dialog box, browse to your source folder and
click Finish.

To add new file resources to your C/C++ project:

1. In the C/C++ perspective, click on your project in the Projects view to
select it.

2. Right-click on the project icon and choose New > Source File from the
pop-up menu.

3. In the New File dialog box, browse to you source folder and click Finish.

Note

LatticeMico C/C++ SPE is derived from Eclipse CDT, so basic project operations that
apply to the Eclipse CDT perspective also apply to LatticeMico C/C++. Refer to the
LatticeMico online Help for details on all available project manipulation operations.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 21

You can create subfolders within your project folder for organizing your source
files. The managed build environment copies in the source files from these
subfolders during the build process.

Deleting Software Project Contents
You can delete selected project contents in the Projects view. Deleting a
project item does not erase the file from your hard disk. It simply deletes the
visible project item in the C/C++ SPE interface.

To delete a C/C++ software project item:

1. In the C/C++ perspective, click on the project item in the Projects view to
select it.

2. Right-click on the project it and choose Delete from the pop-up menu.

This deletes the item from project definition, but not from your hard disk.

Renaming Software Project Contents
You can rename selected project contents in the Projects view. This section
describes how to rename project items. Renaming a project item does not
change its name on your hard disk. It simply changes the visible name of the
project item in the C/C++ SPE interface.

To rename a C/C++ project item:

1. In the C/C++ perspective, click on the project item in the Projects view to
select it.

2. Right-click on the project it and choose Rename from the pop-up menu.

The project icon’s title box appears highlighted. It is editable.

3. Type the desired new name of the project item and click anywhere outside
of the highlighted field or click Enter.

The new name is established.

Adding Existing Files/Folders to a Project
You can add existing files or folders to your C project using Windows Explorer
by directly copying and pasting or dragging and dropping them into your
project.

To copy and paste existing files or folders into your software project:

1. In Windows Explorer, right-click on the files, folders, or both that you wish
to copy into your project and choose Copy in the pop-up menu or use the
Ctrl+C keyboard combination.

This step copies the files, folders, or both to your Windows clipboard.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

22 LatticeMico32 Software Developer User Guide

If you wish to copy multiple files or folders, you can select them by using
the Shift-click or Ctrl-click functionality.

2. In the C/C++ perspective's Projects view, right-click on the project folder
and choose Paste from the pop-up menu or use the Ctrl+V keyboard
combination.

The file or folder appears in the hierarchy underneath the project folder.

To drag and drop files and folders into your software project:

1. In Windows Explorer, click on the files or folders or both that you wish to
copy into your project. You can select multiple files for copying at once
using the Shift-click or Ctrl-click functionality.

2. Drag the files over into your C/C++ perspective's Projects view onto a
project folder until you see a plus sign on a “mouse over” with your cursor.

3. Release the mouse button.

The selected files or folders are copied into the targeted folder in the
Projects view.

Deleting a Project
If you have created projects in your LatticeMico workspace that you want to
remove, you can delete them from the Projects view.

To delete a software project:

1. In C/C++ perspective's Projects view, right-click on the folder of the project
that you want to delete.

2. In the pop-up menu, choose Delete.

The Confirm Project Delete dialog box shown in Figure 8 now asks you if
you are certain that you want to delete the project in the event that you
selected this option by accident.

3. Click Yes.

Figure 8: Project Deletion Confirmation Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 23

If you select the option button to delete the contents of the folder as well,
the project is deleted from your workspace on your hard disk, as well as
from your Projects view.

By default, as shown in Figure 8, the “Do not delete contents” option is
selected. It only removes the folder in the Projects view. If you just remove
the project from the Projects view, you have the option of importing the
project back into your workspace later.

Importing an Existing Project
You can use the Import Wizard to copy a project from a different workspace or
copy a project that previously existed in your workspace and import it into the
LatticeMico software workbench. You cannot import a project that has the
same project name as an existing project into the Projects view.

To import an existing project:

1. From within a given perspective, choose File > Import. You can also right-
click on your project icon in the Projects view and select Import from the
pop-up menu.

The Import dialog box opens in Select mode, as shown in Figure 9.

2. Expand the General folder and select Existing Project into Workspace,
and click Next.

Figure 9: Import Dialog Box in Select Mode

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

24 LatticeMico32 Software Developer User Guide

The Import dialog box changes to Import Projects mode, as shown in
Figure 10.

3. Choose either Select root directory or Select archive file and click the
associated Browse button to locate the folder or file containing the project
that you wish to import.

4. Under Projects, select the project or projects that you would like to import.

5. Click Finish to start the import.

If the project is successfully imported, it will appear in the Projects view.

Understanding the Build Process
Once you develop the software application code, you must compile and link it
to generate an executable.

Building a project involves compiling, assembling, and linking the software
application code, as well as the system library code generated by the C/C++
SPE. Each step in this process has associated settings that affect the build. A
group of such settings is called a build configuration.

Typically you might expect a default build configuration for building software
application code that can be debugged. You might also expect a default build
configuration for building optimized software application code that is

Figure 10: Import Dialog Box in Import Projects Mode

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 25

unsuitable for debugging with a debugger tool because it may contain
optimized code and may not include debug symbols.

A newly created C/C++ SPE project provides two default configurations:

 A debug build configuration for generating an executable that can be
debugged

 A release build configuration for generating an optimized executable
devoid of any debug information

The build process involves creating makefiles and then performing a make
operation on the top-level makefile that, in turn, pulls in the required
makefiles. This process creates makefiles for the software application code
structure (typically subfolders for code organization) and creates makefiles for
the platform library.

The linker settings depend on the MSB platform for locating the various
compiler-dependent sections, for example, the text section that contains the
executable code. These section settings become especially important for
platforms that contain multiple memory components. The LatticeMico System
managed project enables you to make selections for the location of the
executable section, read-only data section, and read/write data section.

The section settings are updated when a change to the MSB platform file is
detected and when you attempt to access the section setting. If the .msb file
changes and the application is built without accessing the sections settings,
the build will fail if the user-selected section memory does not exist in the
updated .msb file.

The system library settings, as well as the linker section settings, are the
same for all build configurations.

Building Your Software Project
This section describes how to build your software project, that is, to create all
of the necessary files that you must have in place to properly deploy your
software application code.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

26 LatticeMico32 Software Developer User Guide

To build your project:

1. In the C/C++ perspective, right-click the desired project folder in the
Projects view on the left. In the example in Figure 11, the highlighted
project folder in the Projects view is called HelloWorld.

2. In the pop-up menu, choose Build Project. Alternatively, you can build a
project by choosing the Project > Build Project menu command, as
illustrated in Figure 11.

If the build has potential warnings or errors, Eclipse CDT might place an
information icon next to the project folder in the Projects view.

The Console view in the C/C++ perspective displays the project build
messages. The Problems view in the C/C++ perspective displays problems
encountered during the build. Along with other icons, the Problems view may
display a warning or error icon:

 The warning icon indicates that there was an associated warning
message that was generated by the build process.

 The error icon indicates that there was an associated error message
generated by the build process.

For a complete list of icons in the user interface that may be displayed and
their meanings, refer to Eclipse/CDT and the LatticeMico System online Help.

Setting Project Properties
You can set up your project properties in the Properties dialog box. Project
properties include various project parameters, for example, file encoding
parameters, build configuration options, and platform settings. The Project
Property dialog box is dynamic in that it enables you to select different “tabs”
from the list box at left, which changes the display parameter set in the main
option area of the dialog box.

Figure 11: Build Project Selection

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 27

To set project properties:

1. In the C/C++ perspective, right-click the desired project folder in the
Projects view on the left. In the example in Figure 11 on page 26, the
project is entitled HelloWorld.

2. In the pop-up menu, choose Properties.

The Properties dialog box appears, as shown in Figure 12.

The Properties dialog box enables you to set the C/C++ build settings through
the C/C++ build tab and the platform preferences through the Platform tab.
See the list box on the left side of the Properties dialog box, as shown in
Figure 12.

Figure 12: Properties Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

28 LatticeMico32 Software Developer User Guide

The C/C++ build tab, as shown in Figure 13, enables you to set build
properties for the project.

The C/C++ build tab enables you to set compiler and linker options for a given
build. This tab contains several options:

 Configuration Setting – This option allows you to select the active build
configuration, as well as to modify the default settings. It also enables you
to define your own configurations. LatticeMico C/C++ SPE uses the GNU
C/C++ tool chain for project compilation and linking. A set of C/C++ build
settings is known as a build configuration.

The C/C++ SPE has two predefined configurations, Debug and Release.
The default Debug build configuration is set to maximize debug visibility
with compiler optimizations turned off. The release configuration is set to
maximize program efficiency with no debug visibility. To define your own
configurations, refer to the Eclipse CDT documentation.

 Tool Setting– This tab enables you to view or modify the compiler or linker
settings, the run-time library, and printf selections.

 "Use Small-C" and "Use standalone small-printf" affect the run-time C
library selection and the printf selection, respectively. These two
options are described in “Run-Time Libraries” on page 45.

 "System Library Settings same as application" enables you to select
application compiler settings and use these settings as system library
compilation settings. You can apply separate compiler settings for the
application and the system library build by clearing this option and
selecting appropriate settings. The system library build is part of the
managed build process described in “Managed Build Process and

Figure 13: C/C++ Build Tab of Properties Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

LatticeMico32 Software Developer User Guide 29

Directory Structure” on page 145. The LatticeMico linker settings
affect the generation of the application executable.

Figure 14 shows the platform settings that are accessible in the Platform tab
of the Properties dialog box.

The Platform tab is further subdivided into the following fields:

 Target Hardware Platform – This option shows the currently selected
platform for the selected project in the MSB System text box. You can
retarget this software application to another platform by using the Browse
button to select the appropriate platform. You must make sure that the
platform that you select and your software applications are compatible
with each other.

 Linker Script – By default, C/C++ SPE always generates a linker script
usable for linking the selected project. This default linker script is
generated on the basis of the selected platform.

You can provide your own linker script by selecting the Use Custom Linker
Script button. If you use the default linker script generated by C/C++ SPE,
you can choose the memories in which different linker sections will be
placed. C/C++ SPE explores the selected platform and identifies memory
components and their attributes, making them available for user selection
in this field.

 Program Memory – This memory, which can be a read/write memory
or a read-only memory, contains the application instructions for
LatticeMico.

Figure 14: Platform Tab of the Properties Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Using C/C++ SPE to Develop Your Software

30 LatticeMico32 Software Developer User Guide

 Read Only Data Memory – This memory, which can be a read/write
memory or a read-only memory, contains the read-only application
data.

 Read/Write Data Memory – This memory contains read/write data
required by the program, as well as the microprocessor stack and
application heap. C/C++ SPE makes available only those memories
marked as read/write. Memories marked as read-only are not made
available by C/C++ SPE.

Whether you choose to use the default linker script or provide your own,
C/C++ SPE always generates a default linker script.

 Stdio Redirection – This group of options enables you to select an
appropriate file device to handle standard input/output requests from the
software application.

The C/C++ SPE inspects the .xml file of each component included in the
platform to identify which components are capable of handling the
standard input/output streams. Refer to the section “Creating Custom
Components” in the LatticeMico32 Hardware Developer User Guide for
instructions on how to make a component instance available for handling
standard input/output operations through this Platform tab.

In addition to marking the component description file to make the device
appear in this Platform tab selection, the component-specific software
must be configured as a file device to handle file-operation requests from
the LatticeMico File Service. Refer to “LatticeMico File Service” on
page 98 for details on the LatticeMico File Service and how to create a file
device.

Rebuilding Your Software Project
After you create your project, you can perform subsequent builds by right-
clicking the project name in the C/C++ perspective’s Projects view and
choosing Build Project from the pop-up menu.

A release build configuration is for generating an optimized executable devoid
of any debug information.

In the Eclipse/CDT, you can change the default settings that the C/C++ SPE
remembers for the project, and you can create new build configurations with
customized settings.

Performing Builds Automatically
You can set up the software workbench to automatically perform incremental
builds whenever sources are saved.

To indicate that you want the software to perform incremental builds
whenever resources are saved:

 Within a given perspective, choose Project > Build automatically.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using LatticeMico System as a Stand-Alone Tool

LatticeMico32 Software Developer User Guide 31

The workbench automatically performs incremental builds of resources
modified since the last build. Whenever a resource is modified, another
incremental build is run.

Using LatticeMico System as a Stand-Alone Tool
The software developer can use C/C++ SPE to develop software application
code without having to install Lattice Diamond, as long as the directory
structure and appropriate files have been provided by the hardware
developer. The files that the hardware designer provides to the software
developers are the Mico System Builder project file, the LatticeMico32
microprocessor driver files and GNU files, the component driver files, and the
FPGA's configuration bitstream.

The hardware developer needs to have both Diamond and LatticeMico
System installed in order to generate the files and provide them to the
software developer. The software developer needs Diamond Programmer
installed, as well as LatticeMico System.

The following scenario shows the tasks involved:

Hardware Developer The hardware developer performs the following
tasks:

1. Uses Lattice Diamond to create an FPGA development project.

The Diamond software is used to generate the FPGA bitstream containing
the LatticeMico32 microprocessor and peripherals.

2. Generates the platform for the project using LatticeMico System Builder.

3. Imports the platform’s RTL source files into the project in Diamond and
generates the FPGA's configuration bitstream.

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

32 LatticeMico32 Software Developer User Guide

4. Sends all software developers the Mico System Builder project directory.

For example:

5. Sends the software developers the FPGA bitstream file (.bit) that was
generated using Diamond.

Software Developer The software developer performs the following tasks:

1. Uploads the files sent from the hardware developer:

a. Launches the LatticeMico Mico System Builder.

b. Loads the <platform_name>.msb file provided by the hardware
engineer.

2. Creates a new managed make or standard make project in C/C++ SPE.

3. Implements the LatticeMico32 firmware.

4. Compiles the LatticeMico32 firmware using the Project > Build all
command.

5. Runs and debugs the application.

Running the Debugger on Your Code

You can run the Debugger as described in the following procedure, and as
shown in Figure 15 on page 33.

To use the Debug perspective to run the Debugger on your code:

 In the upper left-hand corner of the MSB graphical user interface, select
the Debug activation button to switch to the Debug perspective.
Alternatively, you can choose Window > Open Perspective > Debug.

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

LatticeMico32 Software Developer User Guide 33

To run the Debugger tool from within the C/C++ perspective:

1. In the Projects view of the C/C++ perspective, click on the project folder
name to select and choose Run > Debug Configuration.

2. To create a new configuration, click the New launch configuration icon
on the toolbar above the left pane.

The Debug dialog box now appears with hello_world_0 highlighted.

3. In the Debug dialog box, click Debug.

4. In the Confirm Perspective Switch box, click Yes.

The Debug perspective consists of the following views:

 Debug view, which displays the function calls made so far

 Variables view, which displays the variables that are used in the source
code functions

 Breakpoints view, which appears when you insert a breakpoint

 Source view, which displays the source code when you click on a thread
in the Debug view

 Outline view, which displays the functions in the source code

Figure 15: Debug Perspective

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

34 LatticeMico32 Software Developer User Guide

 Console view, which displays the output of the debugging session

 Tasks view, which is not used

 Modules view, which displays the modules of the executable loaded. If
you click on a module, C/C++SPE displays all the functions that compose
that module.

 Registers view, which displays the registers in the CPU. It also shows the
values on the registers at the breakpoints. Values that have changed are
highlighted in the Registers view when your program stops.

 Signals view, which enables you to view the signals defined on the
selected debug target and how the debugger handled each one

 Memory view, which enables you to inspect and change multiple sections
of your process memory

 Expressions view, which is activated if you right-click in the Source view,
choose Add Watch Expression, and enter a variable in the Add
Expression dialog box

 Disassembly view, which shows the source code in assembly language
with offsets. It shows the instructions that reside at each address.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation on the available
views, refer to the online Help.

Debugging and Executing Your Code
C/C++ SPE provides a GUI-based debugging environment. It uses the GNU
GDB debugger for controlling program execution and debug activities. It also
uses a Lattice Semiconductor-provided application to facilitate a
communication channel between the LatticeMico32 microprocessor debug
module and GDB. You can choose either to run the application or to debug
the application.

For information about performing functional simulation of a LatticeMico32
platform, refer to the LatticeMico32 Hardware Developer User Guide.

C/C++ SPE provides two means of exercising the final executable:

 Debugging the software application code. To debug your application, the
LatticeMico32 microprocessor instance in your platform must have the
debug capability turned on. Additionally, you must enable generation of
debug symbols (–g2 or –g3 compiler option) when compiling your
application, as is done for the default debug build configuration. For a
thorough debug session, you should disable compiler optimizations (-O0)
so that the compiler does not rearrange the code.

Note

It is important that the platform generated using MSB include a CPU with its debug
option enabled so that C/C++ SPE can download and debug an application.

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

LatticeMico32 Software Developer User Guide 35

When you debug an application, the C/C++ SPE perspective changes to
the Debug perspective, which provides views for inspecting CPU
registers, watching disassembled code, watching the stack trace, and so
forth. Debugging typically allows you to “pause” the application being
debugged and to place a breakpoint at a predefined symbol to stop
execution at a predetermined location when it downloads and runs the
code.

 Running the software application code. When you run the software
application code, C/C++ SPE simply downloads the executable and
executes it without changing the view. It does not insert any breakpoints
and executes the code without allowing you to debug the application.

C/C++ SPE requires information about the target connection (for example,
JTAG), the executable to be used, debug information (for example, the choice
of breaking at a predetermined symbol), and the source location for a debug
session. This collection of information forms a target configuration.

C/C++ SPE provides one target configuration for a JTAG connection to the
target that you can use without having to enter or modify the default settings.
If you are an advanced user, you can modify the default settings. The created
configurations are saved so that you do not have to recreate the configuration
for a given project every time.

To run a debug session:

1. In the C/C++ perspective’s Projects view, click the Project folder name to
select it and choose Run > Debug.

The Debug dialog box now appears, as shown in Figure 16. It enables
you to choose your target connection from the configurations list on the
left

Figure 16: Debug Launch Configuration Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

36 LatticeMico32 Software Developer User Guide

2. In the sentence on the bottom right, click the Perspectives link to open
the Perspective dialog box, shown in Figure 21

3. The Perspectives dialog box enables you to specify the associated
perspective for this instance of the launch configuration. You should not
change the associated perspective selection (set to Debug in Figure 17)
for debug sessions, because the Debug perspective provides a complete
debug environment.

3. Click OK to return to the Debug Configuration dialog box.

4. In the target configuration list on the left, select the desired target
configuration—mico32 hardware.

5. Click the “New launch configuration” button on the toolbar to create a
launch configuration based on your selections.

Figure 17: Perspectives

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

LatticeMico32 Software Developer User Guide 37

The dialog box changes, displaying the configuration tabs, as shown in
Figure 18.

This dialog box includes the following tabs:

 Main tab – You select the project and its associated executable in this
tab. Only those projects that are part of the C/C++ Projects view are
available for selection. However, you can choose an executable (.elf)
file that may or may not be associated with the selected p roject.

If you launched the Debug configuration after selecting the project you
wish to debug, the options in this tab will contain default settings
based on the selected project. You must make sure that the
appropriate C/C++ application is selected if you have multiple
applications for the same project.

 Hardware Connection tab – This tab is available only for the mico32
hardware configuration. It enables you to specify a scan chain

Figure 18: Main Tab of Debug Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

38 LatticeMico32 Software Developer User Guide

configuration (.xcf) file generated by Diamond Progammer when you
want to program devices in a JTAG daisy chain.

 Debugger tab – The default debugger settings are configured
appropriately and generally should not be modified. You can specify
whether you want your initial breakpoint at the application main routine

Figure 19: Hardware Connection Tab

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

LatticeMico32 Software Developer User Guide 39

(main()) or at the device driver initialization routine (LatticeDDInit) that
is called before the application main routine.

Additionally, you can always open the appropriate source file in the
C/C++ perspective and put in a breakpoint before launching a debug
session. The Remote Target option specifies the address that GDB
will use when connecting to the Lattice Semiconductor-provided target
communication executable. You should not modify the default setting
for this field.

 Source tab – By default, this tab contains all the necessary information
for a debug session. It enables you to specify any additional folder or
source that the Debugger should look up to find source information.
By design, all source files pertaining to the C/C++ SPE device driver
framework are contained within the project, as discussed in
subsequent chapters of this document.

Figure 20: Debugger Tab of Debug Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

40 LatticeMico32 Software Developer User Guide

If you have source files that do not reside within the C/C++ project,
you can provide lookup paths for the Debugger through this tab.

After you have configured the appropriate tabs, click the Apply button to
save the debug launch configuration that you have defined for future use.

For additional information, refer to the Eclipse/CDT documentation.

6. Select the appropriate launch configuration in the Configurations list box
on the left.

If you have multiple launch configurations, you must select an appropriate
launch configuration before starting a debug session.

7. In the Debug dialog box, click Debug.

8. In the Confirm Perspective Switch box, click Yes.

This procedure activates the Debug perspective and downloads the .elf file
into the FPGA. In addition, the Debug perspective allows a more robust

Figure 21: Source Tab in Debug Launch Configurations

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Debugger on Your Code

LatticeMico32 Software Developer User Guide 41

environment for all aspects of debugging the application code and testing it
before it is ready for download.

After starting the debug session for hardware targets, C/C++ SPE launches a
Lattice Semiconductor-provided communications executable for
communicating with the microprocessor and the GDB, which is customized in
LatticeMico for controlling the debug process.

Common Debugging Tasks
This section summarizes common debug tasks. Additional information can be
found in the Workbench User’s Guide Help system that is available in the
software interface.

 Step over – Click the icon in the Debug view to step over a source
line.

 Step in – Click the icon in the Debug view to step into a function.

 Step out – Click the icon in the Debug view to step out.

 Instruction stepping – Open the Disassembly view. Click the icon in
the Debug view to activate instruction-level stepping, then use the
stepping functions. To return to source-level stepping, deactivate
instruction stepping by clicking the same icon.

 Inserting breakpoints – In the Source view or the Disassembly view, click
on the line where you wish to insert/remove the breakpoint, then select
Run > Toggle Line Breakpoint.

 Terminate – Click the icon in the Debug view to terminate the
execution of your application code.

 Pause – To pause a running application, click in the Disassembly or
Source view or select the thread of execution in the Debug view to
activate the Pause icon and click on it. This icon will be unavailable if
the execution cannot be paused (that is, the application is already paused
at a breakpoint) or if the appropriate thread is not selected.

 Resume – To resume a paused execution, click the icon in the
Debug view.

Note

A debug session is useful only if the executable being debugged contains debug
information at a minimum. Debugging an executable built with non-debug compiler
settings in the build configuration will not fail, but it will not be very valuable.

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Software from the Command Line

42 LatticeMico32 Software Developer User Guide

Running the Software from the Command Line
In addition to using the LatticeMico System’s graphical user interface, you can
also run through the flow using the SDK shell that is available in the
LatticeMico System software. This section describes the command-line
interface, how to access it, and the basic flow involved in using the command
line as a primary interface.

Opening the SDK Shell
You run command line directives from the LatticeMico System SDK shell. This
shell is a Cygwin Bash shell and is already configured with the proper
environment variables and path definitions.

To open the LatticeMico System SDK shell:

 From the Windows desktop Start Menu, choose Start > Programs >
Lattice Semiconductor > Accessories > LatticeMico System SDK
Shell.

A command-line interface window appears, as shown in Figure 22.

Use this LatticeMico System SDK shell to invoke the managed build and
debug GNU tools that are described in more detail in “Software Development
Utilities” on page 281. This appendix provides complete command-line syntax
and tool descriptions.

Figure 22: LatticeMico System SDK Shell

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Software from the Command Line

LatticeMico32 Software Developer User Guide 43

Command-Line Managed Project Builds

The LatticeMico managed build application invoked from the C/C++ SPE
interface generates the application makefile. This application makefile in turn
relies on other makefiles and Perl scripts for generating and copying
appropriate platform-specific content, such as the source files, header files,
and the default linker script.

The application makefile is created in the project’s build configuration folder,
as explained in detail in “Managed Build Process and Directory Structure” on
page 145. The entire build process for this configuration is driven through this
application makefile.

Cleaning Your Project
Once the managed build has created the application makefile, you can build
your application from the LatticeMico System Cygwin shell. To clean the
project, use the “make clean” command, as shown in Figure 23. In the figure,
the LatticeMico managed build project is named “HelloWorld,” and the build
configuration is named “Debug.”

The “make clean” command cleans the intermediate project, as well as the
associated platform library’s files. It also removes the system library and the
application executable, if they exist.

Figure 23: Cleaning the Project

USING THE LATTICEMICO SYSTEM SOFTWARE : Running the Software from the Command Line

44 LatticeMico32 Software Developer User Guide

Building Your Project
The next step after ensuring that you have a clean project environment is to
build your project. To build the project, use the “make all” command, as shown
in Figure 24.

When you run the “make all” command, the software goes through the
process of building the platform library, which includes copying appropriate
device driver sources and generating the default linker script, as well as the
executable.

Command-Line Unmanaged Project
Builds
You can also use a makefile generated by a C/C++ SPE managed build
process as a starting point to create an unmanaged make project. However,
you must still adhere to the rules for peripheral.mk component makefiles. The
build process relies on extracting peripheral information from the .msb file.

The entire build process, the library as well as the application, relies on the
application makefile and the user.pref file, as discussed in “Managed Build
Process and Directory Structure” on page 145. As part of the C/C++ SPE
build process, these two files are automatically generated and can be used as
starting points for creating an unmanaged make project.

Figure 24: Building the Project

LatticeMico32 Software Developer User Guide 45

Chapter 3

LatticeMico Run-Time
Environment

This chapter describes LatticeMico System’s run-time environment, takes you
through an example of a simple program, and introduces you to various utility
functions in the supported Newlib C library.

Build/Compilation Utilities
C/C++ SPE is built on the GNU GCC compiler tool chain customized for
LatticeMico32 microprocessor. It contains the standard GNU GCC executable
utilities, such as objdump, gcc, g++, and ld. The names of these utilities all
contain the “lm32-elf” prefix. For example, the GNU GCC compiler executable
customized for the LatticeMico32 microprocessor is called lm32-elf-gcc, and
the objdump utility customized for the LatticeMico32 microprocessor is called
lm32-elf-objdump.

Used by the Eclipse-based C/C++ SPE managed build environment, these
utilities can be accessed from the LatticeMico System SDK shell, as
described in “Running the Software from the Command Line” on page 42.
Refer to “Software Development Utilities” on page 281 for more information
on compilation and build utilities and valid options for them.

Run-Time Libraries
This section describes the Newlib C library (libc.a) and the Small Newlib C
library (libsmallc.a).

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

46 LatticeMico32 Software Developer User Guide

Newlib C and Math Libraries
The LatticeMico C/C++ SPE managed build uses the Newlib C library, as well
as the Newlib math library as part of application executable generation.

Both libraries are precompiled for the different possible CPU configurations
that affect the generated code, such as the barrel shifter, which affects shift
instructions, and the hardware multiplier, which affects multiplication
operations. You can find these precompiled libraries in the
<install_dir>\micosystem\gtools\lm32-elf\<lib_file_path>.

This library folder contains various subfolders, each depicting a CPU
configuration. Each of these subfolders contains a libc.a archive file, which is
the precompiled Newlib C library archive file, and a libm.a archive file, which
is the precompiled Newlib math library archive file. As part of the application
generation by the C/C++ SPE, the archive file appropriate for the CPU
configuration is picked by the lm32-elf-gcc utility.

The Newlib C library depends on certain function calls for completing the
functionality of the invoked ANSI standard C function. Although the
LatticeMico development framework does not currently provide an “out-of-the-
box” operating system, it does include implementations for such expected
function calls. Refer to Newlib C documentation for a description of the
expected functionality of these subroutine calls.

Table 1 lists the functions expected by the Newlib C library.

Table 1: Functions Expected by the Newlib C Library

Function Notes

_exit Functionality implemented as part of the platform library

close Functionality implemented as part of the platform library file
service

environ Dummy functionality provided

execve Dummy functionality provided

fork Dummy functionality provided

fstat Functionality implemented as part of the platform library file
service

getpid Dummy functionality provided

isatty Functionality implemented as part of the platform library file
service

kill Dummy functionality provided

link Dummy functionality provided

lseek Functionality implemented as part of the platform library file
service

open Functionality implemented as part of the platform library file
service

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

LatticeMico32 Software Developer User Guide 47

Implementation details about the “dummy” functions listed in Table 1 are
contained in the libnosys.a archive file, which can be found in the
<install_dir>\micosystem\gtools\lm32-elf\lib file path. Similar to libc.a and
libm.a, this library is precompiled for the different possible CPU configurations
that affect the generated code.

The managed build process picks the appropriate libnosys.a archive file
based on the platform’s CPU configuration. The dummy functions are
essentially “stub” functions that act as placeholders for the compilation
process to succeed by providing definitions of the functions expected by the
Newlib C library. These dummy functions do not contain any functionality.

The managed build process does not link in the dummy functions unless your
application calls them directly or calls them indirectly through the Newlib C
library. The compilation process generates a warning message in the C/C++
perspective’s Problems view if any of these dummy functions are linked into
the final application through a direct call or indirectly through Newlib C library
function calls.

For example, generating an application based on the code shown in Figure 25
generates the compiler warning shown in Figure 26.

read Functionality implemented as part of the platform library file
service

sbrk Functionality implemented as part of the platform library file
service

stat Functionality implemented as part of the platform library file
service

times Dummy functionality provided

unlink Dummy functionality provided

wait Dummy functionality provided

write Functionality implemented as part of the platform library file
service

Figure 25: Code That Generates Compiler Warning

int main(void)
{

int i;
i= getpid();

return
}

Table 1: Functions Expected by the Newlib C Library (Continued)

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

48 LatticeMico32 Software Developer User Guide

Although the application was built successfully, the value of “i” subsequent to
the getpid function call is meaningless.

Those functions that are implemented as part of the platform library can be
overridden, as described in “Overriding Default Driver Implementation” on
page 124. The interaction of Newlib C file functions is described in
“LatticeMico File Service” on page 98. Table 2 lists functions known to
generate compile-time warnings because of dummy functionality
implementation.

Stand-Alone Printf Functionality
If your application relies on standard I/O functionality only for the printf
function instead of standard I/O for full file functionality, you can significantly
reduce the amount of code in your project by using the stand-alone printf
function that Lattice Semiconductor provides. The stand-alone printf function
provides stand-alone printf, puts, and putc implementations that are not

Figure 26: Compiler Warning in Problems View

Table 2: Functions that Generate Compile-Time Warnings

Function Header file

abort stdlib.h

mktemp, mkstemp stdio.h

remove stdio.h

rename stdio.h

tmpfile stdio.h

tmpnam, tempnam stdio.h

clock time.h

raise signal.h

signal signal.h

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

LatticeMico32 Software Developer User Guide 49

dependent on the functions contained in the C library. These functions are
compiled as part of the platform library, described in “Platform Library-
Generated Source Files” on page 155.

You can enable or disable this stand-alone printf feature by selecting the “Use
standalone small printf” option for new projects in the project’s C/C++
Properties for Trace dialog box, as shown in Figure 27. Deselect this option to
disable the stand-alone printf feature.

No code changes are required when you enable and disable this functionality.
To use the stand-alone printf function, simply call “printf” in your application
code, as you normally do.

Note

Although the stand-alone printf functionality is turned on by default for new projects, it
significantly reduces size only if you do not intend to use other file operation functions,
such as fopen, fread, and fwrite, defined in stdio.h. If you plan to use file operation
functions, disable the stand-alone small printf function and consider using the small C
library, described in “Reduced-Functionality Small Newlib C Library” on page 50.

Figure 27: Enabling the Stand-Alone Printf Feature

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

50 LatticeMico32 Software Developer User Guide

The stand-alone printf function has the following limitations:

 Only the s, c, u, d, i, x, X, o, and p type specifications are supported. All
other type specifications, such as f and e, are ignored and generate
spurious characters.

 The format specifications (-, +, #, , 0) provided for the type specifications
just given are ignored.

 Width and precision specifications for the type specifications just given are
ignored.

 fflush has no impact on standard output. You must print a newline
character to explicitly flush standard output.

You can support width and precision specifications, in addition to the format
specifications of the supported printf type specifications, by using the
_SHRINK_LSCC_PRINTF_SPACE_FMTS_ preprocessor definition in the
project’s C/C++ Properties for Trace dialog box, as shown in Figure 28.

This function is not re-entrant and is not suitable in a multi-tasking
environment. However, the source for this reduced printf function is provided
in printf_shrink.c, located in the platform library source directory of the project.
You can modify it to suit your particular needs, even to make it re-entrant.

Reduced-Functionality Small Newlib C Library
The Small Newlib C library is based on the Newlib C library source, but its
functionality is reduced for the standard I/O functions defined in stdio.h,
specifically the file functions (including standard input, output, and error), the

Figure 28: Supporting Width and Precision Specifications

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Libraries

LatticeMico32 Software Developer User Guide 51

formatted input functions (printf, fprintf, and so forth), and the formatted output
functions (scanf, fscanf, and so forth), as described in this section. The C
library functions defined in header files other than stdio.h are identical to
those in other libraries.

The Small C library option is turned off by default for new projects. To enable
this functionality, select the Use Small-C option in the project’s C/C++
Properties dialog box, as shown in Figure 29. When you select this option, the
managed-build process modifies the project makefile to use libsmallc.a
instead of libc.a.

The small C library has the following limitations:

 “ungetc” is not supported, and any function calling it will cause a linker
error to be issued.

 The “scanf” family of functions is not supported, including the following
functions. These functions internally call functions that, in turn, call
“ungetc”:

 “fscanf”

 “scanf”

Note

If you select the Small C library and the stand-alone printf option, the stand-alone printf
function is used in the generated code, and the printf function from the Small C library
is ignored. However, if your application also uses fprintf, the code size resulting from
selecting the Small C library and the stand-alone printf function is larger than the code
size resulting from selecting just the Small C library.

Figure 29: Selecting the Small C Library

LATTICEMICO RUN-TIME ENVIRONMENT : Device Drivers and Services

52 LatticeMico32 Software Developer User Guide

 “sscanf”

The unsupported functions cause a linker error to appear in the build
console, as shown in Figure 30. The linker errors for all the unsupported
functions indicate an inability to find reference to a “scanf” function type
(__svfscanf_r in Figure 30) or a missing reference to “ungetc.”

 “asiprintf” and “asprintf” are not supported, so invoking them causes a
linker error to be issued.

 Buffered files have a buffer of 16 bytes for the small C library. The normal
C library has a buffer of 1024 bytes.

 The “printf” function has the following limitations:

 Only the s, c, u, d, I, x, X, o, and p type specifications are supported.
All other type specifications, such as f and e, are ignored and
generate spurious characters.

 The format specifications (-, +, #’, “, 0) provided for the type
specifications just given are ignored.

 Width and precision specifications for the type specifications just given
are ignored.

Device Drivers and Services
The Mico System Builder (MSB) generates platforms that allow the
LatticeMico32 microprocessor to interact with a wide range of possible
devices. Also, there can be multiple instances of the same device. The piece
of code that directly interacts with these devices to convert the more general
I/O instructions of the operating system to messages that the device type can
understand is known as the device driver. The device drivers bundled with
LatticeMico are not meant for use in a multi-threading environment.

Some of these devices, either the same device type present as multiple
instances or different devices providing similar functionality, can be grouped
so that you do not need to know the specifics of a device. For example, you

Figure 30: Linker Error

LATTICEMICO RUN-TIME ENVIRONMENT : Device Drivers and Services

LatticeMico32 Software Developer User Guide 53

can perform standard I/O operations without having to know what the device
driver does or what the specific device characteristics are, even though the
device handling the standard I/O may be either an RS-232 UART driven by an
RS-232 UART device driver or the microprocessor’s JTAG UART module
driven by the LatticeMico JTAG UART device driver. These software
abstractions that hide detailed device functionality are known as services.

The device-specific software device driver information for direct manipulation
of the device can be found in the device’s component data sheet available as
a part of the LatticeMico documentation set.

Services Available at Run Time
This section lists the functions available to use from your application. It does
not list the functions that would be needed to develop your own device
drivers. For developing device drivers, see “Modifying Existing Device
Drivers” on page 123.

Newlib C Library and Newlib Math Library
Functions
You can use the Newlib C library and Newlib math library routines, including
the file input/output routines, as mentioned in the “Newlib C and Math
Libraries” on page 46. For file operations, including standard I/O operations,
you can use these routines irrespective of the platform; that is, your program
will still successfully compile and link.

However, if your platform does not contain a microprocessor with debug
enabled or a UART, your file operations and standard I/O operations will fail
unless you have implemented a file device. Refer to “LatticeMico File Service”
on page 98, which describes LatticeMico File Services in detail.

Microprocessor-Related Services
Table 3 lists the available microprocessor-related functions that you can use
at run time. For detailed description on these functions, refer to the sections
just mentioned.

Table 3: Microprocessor-Related Functions Available at Run Time

Functional Category Functions Header File

Interrupt Management mico_status MicoRegisterISR(unsigned int IntLevel, void
*Context, ISRCallback Callback);

MicoInterrupts.h

mico_status MicoDisableInterrupt(unsigned int IntLevel);

mico_status MicoEnableInterrupt(unsigned int IntLevel);

unsigned int MicoDisableInterrupts(void);

void MicoEnableInterrupts(unsigned int intrMask);

LATTICEMICO RUN-TIME ENVIRONMENT : Device Drivers and Services

54 LatticeMico32 Software Developer User Guide

Device Lookup Services
The device lookup services shown in Table 4 are available as part of your
platform, as long as your .msb file contains a LatticeMico32 microprocessor in
its definition. The return values depend on whether any device within your
platform actually registers itself as available for device lookup by name. Refer
to “Device Lookup Service” on page 91 for more details on the device lookup
service.

Cache Management

Note: You can use these functions
in your program, even though your
microprocessor may be configured
not to use caches.

void MicoFlushInstrCache(void); LatticeMico32.h

void MicoFlushDataCache(void);

Sleep

Note: These are software loops
approximating a “delay” and do not
depend on a timer peripheral.

void MicoSleepMicroSecs(unsigned int timeInMicroSecs); MicoUtils.h

void MicoSleepMilliSecs(unsigned int time InMilliSecs);

Macros MILLISECONDS_TO_TICKS(X_MS) MicoMacros.h

MICROSECONDS_TO_TICKS(X_MICROSECS)

Platform Clock Speed Macro

Note: The managed build process
based on the platform configuration
dynamically identifies this value.

MICO32_CPU_CLOCK_MHZ

Identifies CPU Clock speed (in MHz, e.g.
66000000)

DDStructs.h

Table 3: Microprocessor-Related Functions Available at Run Time

Table 4: Device Lookup Summary

Functional Category Functions Header File

Lookup Device By Name void *MicoGetDevice(const char *name)

void *MicoGetFirstDev(const char *deviceType, DevFindCtx_t
*FindCtx)

void *MicoGetNextDev(DevFindCtx_t *FindCtx)

LookupServices.h

Device Registration unsigned int MicoRegisterDevice(DeviceReg_t *pDevReg) LookupServices.h

LATTICEMICO RUN-TIME ENVIRONMENT : Device Drivers and Services

LatticeMico32 Software Developer User Guide 55

System Timer Services
System timer services are available as part of your platform, as long as they
contain at least one timer instance. If your platform does not contain a timer
instance and your code invokes the functions listed in this section, you will
receive a compilation error. You must explicitly register a timer instance as the
system timer, using the API listed in Table 5.

CFI Flash Device Service
While a flash device is read just as a normal read/write memory device,
writing to a flash device involves configuring the flash device through a
sequence of flash accesses, as specified by the CFI command set for the
flash component. This section lists the available CFI flash device service APIs
for writing to, erasing, and obtaining sector information for a flash component.

Although the functions listed in Table 6 are available to use, their actual
functionality depends on the configuration driver available and the end points
that it supports. For example, the only flash configuration driver available is
the two 16-bit flash components supporting the AMD standard command set.
Although you can use these APIs for a different flash configuration, these
APIs will return run-time error codes, if you have not provided a configuration
device driver.

When the flash or parts of flash are erased, the erased flash memory contents
are set to logical 1. After this process, the 1 can be converted to a 0 by
performing a write operation. However, once a 1 is written to a 0, it cannot be
rewritten to a 1. The only way to write new data that requires a 1 to be
converted to a 0 is by erasing the affected location and then writing the new
data. So, once a flash location is “programmed” or “written to,” it must be
erased before writing new data at the same location.

Table 5: System Timer Summary

Functional Category Functions Header File

System Timer
Registration

Note: You must explicitly
register a timer device
using this API as a
system timer.

MicoTimerCtx_t* RegisterSystemTimer(MicoTimerCtx_t *ctx,
unsigned int TickInMS);

MicoTimerService.h

System Timer Callback
Registration

Note: This function has
meaning only after
registering a system
timer.

void MicoRegisterActivity(MicoSysTimerActivity_t activity, void
*ctx);

MicoTimerService.h

CPU Tick Retrieval

Note: This function has
meaning only after
registering a system
timer.

void MicoGetCPUTicks(unsigned long long int *ticks); MicoTimerService.h

LATTICEMICO RUN-TIME ENVIRONMENT : Device Drivers and Services

56 LatticeMico32 Software Developer User Guide

The difference between the FlashWrite functions and the FlashProgram
function listed in the read/write functional category is this: FlashWrite
functions assume that you have erased the affected flash regions before
invoking them, but the FlashProgram function erases the affected sectors
before writing the requested data.

Device Driver APIs
The device driver APIs are device-specific functions. The Mico System
Builder (MSB) includes device drivers for the following components:

 RS-232 UART

 Timer

 GPIO

 DMA

 SPI

The APIs directly manipulate these devices, along with their register layout
structures, as described in the respective component data sheets. These data
sheets also contain component usage examples.

Table 6: CFI Flash Device Services

Functional
Category

Functions Header File

Read/Write
Operations

unsigned int LatticeMico32CFIFlashWrite(CFIFlashDevCtx_t *ctx,
unsigned int ByteOffset, unsigned char *Data, unsigned
int Bytes);

LatticeMico32CFI.h

unsigned int LatticeMico32CFIFlashWrite32
(CFIFlashDevCtx_t *ctx, unsigned int ByteOffset, unsigned
int Data);

unsigned int LatticeMico32CFIFlashWrite16(CFIFlashDevCtx_t *ctx,
unsigned int ByteOffset, unsigned short int Data);

unsigned int LatticeMico32CFIFlashWrite8(CFIFlashDevCtx_t *ctx,
unsigned int ByteOffset, unsigned char Data);

unsigned int LatticeMico32CFIFlashProgramData(
CFIFlashDevCtx_t *, unsigned int ByteOffset, unsigned char *pData,
unsigned int bytes);

Erase Operation unsigned int LatticeMico32CFIFlashEraseDevice(CFIFlashDevCtx_t
*ctx);

LatticeMico32CFI.h

unsigned int LatticeMico32CFIFlashEraseBlock(CFIFlashDevCtx_t
*, unsigned int ByteOffset);

Flash Query unsigned int LatticeMico32CFIFlashSectorInfo(CFIFlashDevCtx_t *,
unsigned int ByteOffset, unsigned int *SAddr, unsigned int
*ByteLen);

LatticeMico32CFI.h

Flash Reset unsigned int LatticeMico32CFIFlashReset(CFIFlashDevCtx_t *ctx); LatticeMico32CFI.h

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 57

The availability of device-driver APIs is platform-dependent. These APIs can
be used directly from your application, provided the platform description
contains the corresponding components.

Basic Program Structure
This section uses a simple “hello world” program to illustrate the program
structure and the behind-the-scene activities of a program. The platform
diagram from the MSB Editor view shown in Figure 31 illustrates the example
platform structure.

The example used in this section depends on the following criteria:

 The LatticeMico Managed C/C++ build process is used for building the
“hello world” application.

 The “HelloWorldPlatform” platform consists of the following components:

 Timer instance named “timer”

 UART instance named “uart”

 LatticeMico32 microprocessor instance named “lm32”

 Asynchronous memory component named “sram”

 The UART is selected as the standard input, output, or error device in the
Platform tab in the C/C++ perspective’s Properties dialog box. It is
configured to use interrupts.

See information in “Setting Project Properties” on page 26 for details on
platform settings.

Figure 31: HelloWorld Platform

Note

The procedures presented in this section are not a substitute for the LatticeMico32
tutorial but work together in a task-oriented way to provide a quick way to learn some
key points about programming in this environment.

Note

The “hello world” application explained here is not related to the “hello world”
software template that is available in the software.

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

58 LatticeMico32 Software Developer User Guide

 All linker sections are mapped to SRAM.

Creating a Blank Project
As the first step, you must create a project based on the platform criteria
outlined previously in “Basic Program Structure” on page 57.

To create a blank project in the Project Wizard:

1. In the C/C++ SPE perspective, choose File > New > Mico32 Managed C
Project to bring up the New Project dialog box.

2. In the Project name text box, enter HelloWorld.

3. Select the Project contents folder using the Browse button in the Location
text box.

4. Select the HelloWorldPlatform target hardware platform, using the
Browse button in the MSB System text box.

This is an example .msb file that is packaged with the software.

5. Select Blank Project in the Select Project Templates list box in the lower
left portion of the dialog box.

The New Project dialog box should now resemble the illustration in
Figure 32.

Figure 32: New Project Dialog Box

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 59

6. Click Finish.

This newly created project should now be visible in the C/C++ perspective’s
Projects view, as shown in the Figure 33.

Adding a Source File to the Project
You will now add a new source file to your newly created project. Source files
refer to your source C language files.

To add a source file to your project:

1. In the C/C++ perspective, click on the HelloWorld project in the Projects
view.

2. In the pop-up menu, choose File > New > Source File.

Figure 33: New Project in Projects View

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

60 LatticeMico32 Software Developer User Guide

3. In the New Source File dialog box, shown in Figure 34, enter
HelloWorld.c in the Source File text box.

This new file is now visible beneath the project in the C/C++ perspective’s
Projects view, as shown in Figure 35.

In addition, you may see the user.pref file, which is automatically
generated by the C/C++ SPE managed build process and should not be
modified or deleted. The user.pref file is described in in “C/C++
Perspective Project Folder File Contents” on page 148.

Figure 34: New Source File Dialog Box

Figure 35: Source File In Projects View

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 61

Adding Source to the Source file
Now you will want to add source to your source .c file. At this point, you are
interested in using a generic Hello World application that uses ANSI C
standard I/O function (for example, printf) to simply print “hello world.” To do
this, add the following code in the Helloworld.c source file that you created in
the prior step.

The lines shown in this code example are described following:

 Item 1 – These two #include statements declare the header files needed
to verify the function prototypes of the functions used in the code. The
stdio.h value refers to the ANSI C-defined header file that contains
prototype declarations for the standard I/O functions used in the code.
The MicoUtils.h value refers to the standard LatticeMico32 header file that
contains the prototype declaration of the function listed in item 4.

 Item 2 – The int main(void) parameter is the “main” function that is
executed when you execute your program. This is the main entry point of
the application code. This “main” does not receive any argument, and it
passes back an integer value that has no significance for the current
release. The sequence of code leading to invocation of “main” is
described in “The int main(void) Function” on page 73.

 Item 3 – Use the printf parameter to print a sequence of characters to the
standard I/O device. Subsequent sections show how the UART
component is designated as the standard I/O device.

 Item 4 – Since you are using the UART with interrupts enabled (as
selected during platform configuration in MSB), you must wait a
reasonable amount of time for the interrupt service routine to send all the
characters that you have queued for sending through the printf statement.
Typically, the UART baud rate is much slower than the CPU speed, so this
delay is required. This function is part of the LatticeMico32 platform library,
specifically the CPU service, and its prototype is declared in the
MicoUtils.h header file.

 Item 5 – Since you are finished with your application, you must pass back
control to the calling process. Once you do this, the calling process as

Figure 36: Helloworld.c Source Code

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

62 LatticeMico32 Software Developer User Guide

described in a subsequent section will terminate. For typical embedded
systems, your application would never return control back from your
“main.”

Building the Application
At this point in the example, you are ready to build your application using the
C/C++ SPE managed build process.

To build the application:

1. In the C/C++ perspective, right-click on the project folder in the Projects
view.

2. In the pop-up menu, choose Build Project to initiate the managed build
process, as described in “Managed Build Process and Directory Structure”
on page 145.

The Projects view in the C/C++ perspective is updated to show the
generated artifacts, as shown in Figure 37.

Figure 37: Projects View After Build Process Run

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 63

Figure 38 shows the contents of the platform library for the example.

“Platform Library Folder” on page 151 describes the various items within the
Platform Library folder.

Figure 38: Contents of Platform Library

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

64 LatticeMico32 Software Developer User Guide

Boot Sequence and crt0ram.S
An assembly language file named crt0ram.S in the platform library folder
contents contains the boot-up sequence. The code in crt0ram.S is shown in
the example sections in Figure 39.

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 65

.

Figure 39: Boot-Up Sequence in the Assembly .S File

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

66 LatticeMico32 Software Developer User Guide

For a more general description of the boot-up sequence, refer to “Boot
Sequence” on page 76.

The first piece of the boot code in crt0ram.S shown in Figure 39 corresponds
to the exception vector table. The boot code is executable code; that is, it
contains LatticeMico32 instructions. This code is located at the start of the
program memory, which is selected through the Platform tab by the default
linker script generated by the managed build process. The first piece of code
in the “.text” linker section is the exception vector table.

As described in the LatticeMico32 Processor Reference Manual, two
important registers dictate the exception vector locations: EBA (exception
base address) and DEBA (debug exception base address). The debug port
address assigned by MSB is the DEBA value and corresponds to the
exception vector table of the debug module. The EBA is configured through
the Processor Configuration dialog box.

The EBA and DEBA point to identical exception tables for handling the eight
different exception types. The difference between EBA and DEBA is that the
DEBA table is used for debug exceptions, such as breakpoints and
watchpoints, and the EBA is used for non-debug exceptions, such as the
reset vector and external interrupts. The LatticeMico32 debug module
implements default handlers for all exception vectors.

The debug vectors are handled by code in the debug module that responds to
breakpoints and watchpoints. Other exceptions halt operation and display an
error message such as a “Divide-by-Zero Error.” The Reset vector is directed
to the boot code of the LatticeMico System. The External interrupt vector
invokes a handler that dispatches to your registered ISR callback. In an MSB
managed build project, the application does not have to directly handle any of
these interrupt vectors, and you should only use the interrupt management
APIs to register or deregister an ISR. The total space available for each
exception vector code in the vector table is limited to eight 32-bit locations.

The following sections describe items illustrated in Figure 39.

Reset Exception Handling
For the first item shown in Figure 39, the reset exception handling is invoked
on microprocessor power-up. On power-up, the microprocessor jumps to the
address contained in the EBA register. This EBA register is configured at the
platform design phase in MSB. Since there are only eight 32-bit locations, the
reset exception handling must be deferred to routines located elsewhere in
memory that do not overlap with the exception vector table.

As part of a debug session, the Debugger downloads the application code in
the appropriate memory, as specified by the linker script, then makes the
microprocessor resume execution from that application’s “_start” location.
This “_start” is a label in the crt0ram.S assembly source that marks the reset
exception vector as the start location.

The default code within the reset vector table does the following:

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 67

 Resets R0 register to 0 – The GNU GCC compiler expects R0 to always
contain 0. Since LatticeMico32 microprocessor implementation does not
hardwire R0 to 0, the first operation performed is to set the value of
register R0 to 0.

 Disables interrupts – Until the software has a chance to reinitialize the
system (for example, initialize components and register ISRs), interrupts
are disabled at this stage. If the software on the microprocessor is reset
without reprogramming the FPGA with the configuration bitstream, the
associated platform peripherals will not be in a known reset state. It is
therefore possible for a component to have a pending interrupt as the
microprocessor comes alive and executes code from the reset location.
The default handler, MicoISRHandler, takes care of disabling interrupts
that do not have a corresponding interrupt handler, as is the case until the
user application or device drivers actually register an interrupt service
routine.

 Reloads the EBA value – As mentioned earlier, the EBA value is
configured through the Processor Configuration dialog box. This EBA
typically contains the memory address for the final deployed software.
However, for debug situations, you can download the application in a
volatile memory location, but the EBA may point to a non-volatile memory
location (such as flash memory) that will contain the final deployed
software application.

If, as part of the debug session, this EBA is not modified to point to the
downloaded application’s vector table, the EBA will point to a memory
location that does not contain the application that is being debugged. In
this case, any interrupt raised by a component will not be handled by the
downloaded application that is being debugged. The EBA must be set to
the running application’s reset vector location, that is, the start of the
exception vector table.

 Invokes crt0 – Once the processes just listed are completed, execution
jumps to the crt0 label, which takes care of hosting the user application.
“The crt0 Function” on page 68 describes this piece of code.

Interrupt Exception
Since the amount of space is limited to eight 32-bit locations, the interrupt
processing must reside in a memory not overlapping with the vector table
locations.

The default code for the interrupt exception performs the following functions:

 Saves the return addresses as the default interrupt process making
function calls.

 Preserves the state of the CPU registers before performing interrupt
processing so that these can be restored when returning from interrupt
processing. This is described in detail in a subsequent section.

 Calls the MicoISRHandler function. This function is implemented in
MicoInterrupts.c and can be overwritten by following the instructions
mentioned in “Overriding Default Driver Implementation” on page 124.
This MicoISRHandler is the default interrupt handler and calls back the

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

68 LatticeMico32 Software Developer User Guide

appropriate interrupt routines that are registered through
MicoRegisterISR, described in “Interrupt Management” on page 81.
MicoISRHandler acknowledges the microprocessor interrupt by setting
the appropriate bit in the Interrupt Pending register once the user-
registered callback returns.

The default interrupt handling does not allow interrupt nesting; that is, it
does not interrupt a user-registered ISR callback routine. It services the
interrupts on a highest-interrupt-first basis, so bit 0 of the Interrupt
Pending register is treated as the highest-priority pending interrupt, and
bit 31 of the Interrupt Pending register is treated as the lowest-priority
pending interrupt.

The default interrupt handler performs the logical AND function of the 32-
bit interrupt pending register, and the 32-bit interrupt mask register tries to
determine if there are valid interrupts that need servicing. The default
interrupt handler, MicoISRHandler, performs this check each time after
calling the user-registered ISR for the highest priority pending interrupt,
thereby implementing a highest-priority-first interrupt servicing policy. The
default interrupt handler does not perform a “return from interrupt” until
there are no more interrupts left to service.

 Restores the state of the CPU registers before returning from the interrupt
ISR. This restores the state of the registers for the thread of execution that
was interrupted. The return-from-interrupt call from “restore_all,”
described in “Context Save/Restore in Interrupt Exception” on page 73,
enables the interrupt-enable bit in the interrupt enable register of the
microprocessor.

Other Exception Handlers
This section describes items illustrated in Figure 39 on page 65. As shown in
the figure, item 2 and item 4 are missing. They are not included because item
2 is a breakpoint exception and item 4 is a watchpoint exception. These two
exceptions are debug exceptions and are handled by the debug module,
vectored through DEBA.

Items 3, 5, 6, and 8 correspond to an instruction bus exception, data bus
exception, divide-by-zero exception, and the system call exception. The
default implementation is to branch to the debug module’s exception handling
implementation. The way it performs this, as illustrated in the code example in
Figure 39, is that it reads the DEBA register value, adds the appropriate offset
to the DEBA value, and then branches to that address. This address
corresponds to the exception’s vector location in the debug module. The
debug module’s implementation for these exceptions is to indicate the
occurrence of the exception in the Debugger.

The crt0 Function
The crft0 function, or label, in crt0ram.S is the actual boot-up code that is
executed as a result of a call from the microprocessor reset vector code. The
code implemented as part of crt0 is responsible for calling the LatticeDDInit

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 69

managed-build, driver-initialization routine that, in turn, invokes your “main”
program. The example code in this section shows the contents of this function
as implemented in crt0ram.S.

The steps performed as part of crt0, shown in Figure 40, are as follows:

 Establishes the stack pointer – The microprocessor’s stack pointer must
point to a valid memory location. This location, _fstack, is defined in the
default linker script generated by the managed build process and is the
topmost address (largest value) of the read/write memory selection in the
C/C++ SPE platform settings.

 Clear BSS section – This section contains variables that are used in the
application and must be zeroed out before the "main" application is
executed.

 Calls constructors – GCC allows for the declaration of functions as
constructors. Constructors must be called before the application body is
executed.

 Calls LatticeDDInit – The crt0 call invokes LatticeDDInit, which is
dynamically generated by the managed-build process. This function, as
further described in “LatticeDDInit” on page 70, invokes the device-driver
routines and then invokes your “main” program implementation. On
returning from the “main” implementation, LatticeDDInit returns to crt0.

 Calls exit – Since the application execution is complete, crt0 proceeds to
call the registered destructor functions. Once crt0 has completed calling

Figure 40: Steps Performed as Part of crt0

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

70 LatticeMico32 Software Developer User Guide

the registered destructor functions, it invokes _exit, which passes control
over to the Debugger.

LatticeDDInit
The LatticeDDInit function is dynamically generated by the managed build
process on the basis of the .xml file for each component that is defined in the
platform. This function resides in the DDInit.c source file.

You can override the default implementation of LatticeDDInit that is
dynamically generated. The primary function of LatticeDDInit is to call the
initialization function that specifies the device driver initialization routines for
each component in the platform. The name of the function called for a given
component is specified in that component’s particular .xml file. If no function
was specified in the .xml, none is called. A component’s initialization function
is called for each instance of that component in the platform.

In the example code shown later in this section, LatticeDDInit calls the
initialization routines for the microprocessor, timer, and the UART, in no
specific sequence. Since there is a single instance of each component,
LatticeDDInit calls the initialization routine only once. The initialization routine
is specified in the .xml file, along with the argument type. The argument type
is the component information structure declaration, declared in DDStructs.h,
and the argument is a pointer to the unique instance of the component
information structure, defined in DDStructs.c. See “DDStructs.h File” on
page 157 and “DDStructs.c File” on page 159 for more details on this
component information.

For multiple instances of the same component, the initialization routine for
that component is invoked once for each instance, with each invocation
having a unique component-specific information structure as the argument.
What the initialization routine for each component does is specific to that
component’s device driver implementation. The device driver calls are
responsible for triggering the initialization of services that they are associated
with, if necessary, because the services do not have explicit initialization
routines that are invoked. For example, the microprocessor initialization
routine or the UART initialization routine can trigger initialization of the
LatticeMico File Services.

Note

LatticeMico32 interrupt management functions can be invoked at any step in
LatticeDDInit, that is, in the component initialization routines or your “main”
implementation invoked by LatticeDDInit.

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 71

The LatticeDDInit code is shown in Figure 41:

Once the device driver initialization routines have been completed,
LatticeDDInit proceeds to call the user-implemented int main(void) function.

Microprocessor Initialization Routine
LatticeDDInit invokes the microprocessor initialization routine when the
microprocessor’s .xml file contains a request that it be invoked. The details of
the microprocessor initialization routine can be found in the LatticeMico32.c
source file.

Since all platforms are expected to have a microprocessor, the
microprocessor initialization routine’s key activity is the setup of the
microprocessor’s JTAG UART as a file device if the debug module is included
with the CPU. This initialization results in a call to the LatticeMico File Service
to register the microprocessor’s JTAG UART as an available file device, which
in turn causes the LatticeMico File Service to initialize itself.

UART Initialization Routine
The UART initialization routine implementation performs the following
activities:

 Registers itself as an available file device with the LatticeMico File
Service.

Figure 41: LatticeDDInit Code

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

72 LatticeMico32 Software Developer User Guide

 Registers the UART instance as an available UART device with the
lookup services.

 Initializes the UART instance for transmission and reception of data.

Timer Initialization Routine
The timer initialization routine implementation performs the following
activities:

 Registers the timer instance as an available timer device with the lookup
services

 Initializes the timer instance for use by your application

Setting Standard I/O
The managed build process generates a file, MicoStdStreams.c, which
contains the name of the device that is assigned during platform generation. It
must handle a given standard stream, that is, input, output, or error. Figure 42
shows the contents of MicoStdStreams.c file.

This file is generated according to the C/C++ SPE settings. These constants
are used by the LatticeMico File Service to detect the correct device when a
new device registers itself as an available file device. If a device with a
matching name registers itself as a file device, the LatticeMico File Service
requests that the registering device prepare itself to handle the appropriate
standard stream. See “LatticeMico File Service” on page 98 for additional
details on LatticeMico File Service.

The microprocessor with its debug module and associated JTAG UART both
register themselves as available file devices as part of their initialization
routine. As part of this registration with LatticeMico File Service, the
LatticeMico File Service identifies the UART instance on the basis of
information in MicoStdStreams.c as the device to handle all of the streams

Figure 42: MicoStdStreams.c Code

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 73

and then accordingly invokes the file device interface functions to prepare the
UART instance for handling the standard streams.

If no device with a matching name is found, standard I/O function calls such
as printf, gets, and scanf will return with the appropriate error codes.

The int main(void) Function
LatticeDDInit invokes your “main” function. You are responsible for
implementing the “main” function, which serves as an entry point to your
application.

The contents of “main” are application-specific. Within “main” or any user
function, you can use the Newlib C library and Newlib math library function
calls, as well as the services described in “Run-Time Libraries” on page 45.
Additionally, you can directly interact with the platform’s components, using
the provided device drivers and user-supplied drivers, or by performing read
and write operations using C language pointers. The content of your “main”
application is illustrated in “Adding Source to the Source file” on page 61.

Context Save/Restore in Interrupt
Exception
This subsection introduces you to the context save/restore calls in the
crt0ram.S file.

When an exception occurs, the normal execution of the microprocessor—that
is, the main thread of execution—is interrupted to execute the exception-
handling code. The first operation that must take place is to save the “context”
of the interrupted thread of execution. The term “context” used here refers to
the microprocessor state at the point of the exception. By saving this
microprocessor state before exception handling, this state can be restored
once the exception is handled. This behavior allows the interrupted thread to
resume processing without any problems.

There are three main types of registers: caller-saved, callee-saved, and
machine-status registers, such as the exception address register and the
return address register. The compiler tool chain takes care of generating code
so that the necessary caller-saved registers are saved before a function call
and that in a function call, the appropriate callee-saved registers are saved
onto the stack. When the function call returns just before returning, the callee-
saved registers that were modified are restored from the stack. After
performing the function call return, the caller-saved registers that were used
are restored from the stack.

The compiler tool chain cannot take into account an exception because an
exception can occur at any time. The compiler must depend on the exception-
handling code to save the appropriate state. At a minimum, the exception-
handling code must save the caller-saved registers. The callee-saved
registers are saved as part of function calls. For a non-multitasking

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

74 LatticeMico32 Software Developer User Guide

environment, it is essential to save only the caller-saved and machine-status
registers.

In the code example shown in Figure 43, the code listed for _save_all shows
the registers that are saved onto the stack. Normally, as part of the managed
build process, only the caller-saved and status registers are saved onto the
stack. If you wish, you can save the entire stack by defining that in the
MICO32_FULL_CONTEXT_SAVE_RESTORE preprocessor definition.

LATTICEMICO RUN-TIME ENVIRONMENT : Basic Program Structure

LatticeMico32 Software Developer User Guide 75

Figure 43 shows the context save code that is called as part of the interrupt
exception handling.

Once the exception is processed, the saved registers must be restored to
reset the microprocessor state for resuming execution of the thread of
execution that was interrupted.

Figure 43: Context Save Code in Interrupt Exception Handling

LATTICEMICO RUN-TIME ENVIRONMENT : Boot Sequence

76 LatticeMico32 Software Developer User Guide

Figure 44 shows the context restore code. This function basically reverses the
steps performed by the _save_all code that saved the context, restoring it to
its previous state.

Boot Sequence
You have already seen a detailed illustration of sample boot code in “Boot
Sequence and crt0ram.S” on page 64. This section generically describes the
boot-up sequence, as well as the layout of the boot section. This section

Figure 44: Context Restore Code

LATTICEMICO RUN-TIME ENVIRONMENT : Boot Sequence

LatticeMico32 Software Developer User Guide 77

assumes that you are familiar with the LatticeMico32 microprocessor
architecture. The LatticeMico32 Processor Reference Manual contains a full
description of the microprocessor architecture.

EBA and DEBA
From a software boot perspective, the most important parameter in the
LatticeMico32 microprocessor configuration is the EBA, also known as the
exception base address. As you would expect, this parameter is used to deal
with run-time errors caused by unexpected events and even predictable
errors or unusual results. The address location value of the EBA is set by the
Location of Exception Handlers option in the Add LatticeMico32 dialog box.
See Figure 135 on page 185 and related instructions on resetting this value.
On platform generation, the address location of the EBA is assigned.

The 32-bit address value entered for the EBA dictates the address at which
the exception vector table resides. All LatticeMico32 exception vectors are
located at a relative offset from the EBA. Table 7 summarizes the exceptions
and their offsets relative to the EBA address. There are 32 bytes between the
offsets, providing the ability to fit eight instructions per exception.

The value entered in the Processor Configuration dialog box, shown in
Figure 135 on page 185, is the microprocessor power-up value for EBA. Once
the microprocessor is up and running, you can later modify the EBA to allow
the “relocation” of the exception vector table. This relocation enables you to
deploy your code in non-volatile storage by setting the EBA to the non-volatile
memory address. Once the microprocessor boots up, the code in the non-
volatile memory can copy itself to volatile memory and change the EBA value
to the volatile memory location to allow exceptions to be handled from volatile
memory, improving responsiveness.

The assembly code excerpt shown in Figure 45 shows how to set the EBA at
run time. It sets the EBA location to the _reset_handler address.

Table 7: Exception Offsets from EBA Address Bytes

Exception Type Offset from EBA Address
(Bytes)

Reset (power-up) 0

Breakpoint 32

Instruction bus error 64

Watchpoint 96

Data bus error 128

Divide by zero 160

Interrupt 192

System call 224

LATTICEMICO RUN-TIME ENVIRONMENT : Boot Sequence

78 LatticeMico32 Software Developer User Guide

At power-up, the microprocessor fetches the first instruction from the location
set in EBA. This location in the EBA is dictated at platform generation time, as
noted earlier. Although the microprocessor supports 32 interrupts, the
interrupt exception is generated.

You can enable the microprocessor debug module as part of microprocessor
configuration when generating the platform in the Mico System Builder (MSB).
If you do so, the debug address that is assigned as part of platform address
generation plays an important role in handling some of the exceptions listed in
Table 7 on page 77. This debug address, called the debug exception base
address, is known as the DEBA.

The DEBA represents the start of the debug exception table in the debug
module that corresponds to the layout of the EBA exception table shown in
Table 7 on page 77. The DEBA is used for vectoring the debug exceptions, in
particular breakpoint and watchpoint exceptions, and the EBA is used for
vectoring non-debug exceptions: the reset exception, divide-by-zero
exception, rinstruction bus error exception, data bus error exception, interrupt
exception, and system call exception.

Figure 45: Setting the EBA at Run Time

mvhi r1, hi(_reset_handler)
ori r1, r1, lo(_reset_handler)
wcsr EBA,r1

LATTICEMICO RUN-TIME ENVIRONMENT : Boot Sequence

LatticeMico32 Software Developer User Guide 79

Boot Code Sequence Flow
This section provides an overview of the boot sequence and its steps. Refer
to the detailed illustration of sample boot code in “Boot Sequence and
crt0ram.S” on page 64. Figure 46 illustrates the boot sequence.

The primary actions that the boot-up initialization code must perform are as
follows:

 Flush the instruction and data caches as necessary.

 Set the R0 register to zero because the compiler expects it to always
contain the value 0.

 Establish a valid EBA in the event that the code was copied from another
location.

The boot code must also lay out the exception vector table. The default
LatticeMico32 boot code is provided in the crt0ram.S file. This implementation
vectors debug exceptions to the address contained in the DEBA register to
allow the debug module to handle them. The boot code calls on the
MicoISRHandler routine to handle interrupt exceptions. The MicoISRHandler
routine is part of the LatticeMico32 interrupt management driver.

Figure 46: Boot Sequence

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

80 LatticeMico32 Software Developer User Guide

You can use the code contained in the crt0ram.S file as a starting point to
write your own boot code. The DDInit.c file is called by crt0 as part of CPU
reset in the DDStructs.c file, which tells the platform library to call the
component instance initialization routines during boot-up. The flow diagram in
Figure 46 outlines the steps performed by the boot code. Refer to “Boot
Sequence and crt0ram.S” on page 64 to view the sample boot code.

LatticeMico32 Microprocessor Usage
The LatticeMico platform is based on the LatticeMico32 microprocessor. To
ease software development, the C/C++ SPE managed build includes
microprocessor-specific drivers that provide access to microprocessor
registers and manage the interrupt handling flow. This section lists the
available microprocessor-specific functionality included as part of a managed
C/C++ SPE build. For details on the LatticeMico32 architecture, refer to the
LatticeMico32 Processor Reference Manual.

Data Types
The LatticeMico compiler tool chain is a GNU C/C++ compiler tool chain
customized for the LatticeMico32 microprocessor. The data types that can be
used as basic building blocks for programs are similar to those used in this
tool chain. Table 8 lists well-known intrinsic data types that are supported in
this development flow.

Byte Order
The byte order used for data operations by the LatticeMico32 microprocessor
is big endian. For multi-byte objects, data is stored in memory with the most
significant byte (MSB) first, that is, at the memory location with the lowest

Table 8: Supported Data Types

Data Type Bit Width

char 8

unsigned char 8

short int 16

unsigned short int 16

int 32

unsigned int 32

unsigned long long int 64

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

LatticeMico32 Software Developer User Guide 81

address. The code excerpt shown in Figure 47 demonstrates the difference in
behavior between a big-endian and a little-endian microprocessor from a
software programmer’s perspective in its comment lines.

Interrupt Management
The LatticeMico32 microprocessor accepts 32 external interrupt lines from
external components. To facilitate handling interrupts and acknowledging
them, the LatticeMico32 microprocessor device driver provides a framework
for registering interrupt handlers and controlling interrupt generation.

As part of system boot-up, the driver disables all interrupts in the interrupt
mask and waits for the application to register for an interrupt handler or
enable interrupts. The interrupt management driver turns off any interrupt
source (0 through 31) that does not have a corresponding registered interrupt
handler (registered by either the user application or a driver).

The default interrupt handler provided as part of the LatticeMico32 interrupt
management driver implements a high-priority-first scheme, where the
component connected to interrupt line 0 of the LatticeMico32 microprocessor
has the highest priority and the component connected to interrupt line 31 has
the lowest priority. This priority is implemented in the default interrupt handler.
Additional details on the exception/interrupt vector table are provided in
“Other Exception Handlers” on page 68 and “Interrupt Exception” on page 67.

Figure 47: Difference Between Little Endian and Bit Endian

Microprocessor

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

82 LatticeMico32 Software Developer User Guide

Nested interrupts are disabled as part of the default interrupt handler. You can
provide your own interrupt handling scheme, which overrides the default
implementation that could service a high-priority interrupt arriving while a
lower-priority interrupt is being serviced.

Registering/Deregistering an Interrupt Handler
You can register for an interrupt handler from either your application or from a
device driver. You must know the interrupt line of the microprocessor that your
component of interest is connected to, from 0 through 31. The API shown in
Figure 48 is used for registering an interrupt handler.

The specific interrupt that is being registered is enabled once the user-
provided handler is registered. If the interrupt handler is unregistered, the
interrupt will be disabled after completion of the function call.

The prototype for the callback is shown in Figure 49.

The callback’s first argument is the interrupt line, and the second parameter is
the pointer context provided at registration. The callback is called at the
interrupt level, so the processing must be kept to a minimum to avoid interrupt
responsiveness penalties.

Enabling a Specific Interrupt
You can enable a specific interrupt from 0 through 31, using the API provided
in Figure 50. If you enable an interrupt that does not have a registered
interrupt handler, the interrupt management software will disable that enabled
interrupt if it receives an interrupt from that line.

Figure 48: API Used to Register an Interrupt Handler

Figure 49: Callback Prototype

/* isr-callback typedef */
typedef void(*ISRCallback) (unsigned int intLevel, void *pUserPointer);

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

LatticeMico32 Software Developer User Guide 83

Disabling a Specific Interrupt
You can disable a specific interrupt from 0 through 31, using the API provided
in Figure 51. Only the interrupt being disabled is disabled.

Disabling All Interrupts
You can disable all interrupt sources (0 through 31) using the API listed in
Figure 52. The function essentially masks out all the interrupts. Though the
components may generate interrupts, the LatticeMico32 microprocessor
effectively ignores them because its interrupt mask is set to all zeros. As a
return parameter, the function returns a 32-bit value that must be passed to
the MicoEnableInterrupts function to restore the interrupts to the state that
they were in before this function was called.

Figure 50: API Used to Enable a Specific Interrupt

Figure 51: API Used to Disable a Specific Interrupt

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

84 LatticeMico32 Software Developer User Guide

Enabling All Interrupts
You can enable multiple interrupt sources simultaneously or restore the
interrupt mask to its state before all interrupts were disabled, using the API
shown in Figure 53.

If you called the MicoDisableInterrupts function to disable all interrupts, the
32-bit returned value can be used as the argument to the function shown in
the example code in Figure 54 to restore the interrupt-enable state.

Figure 52: API Used to Disable All Interrupts

Figure 53: API Used to Enable All Interrupts

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

LatticeMico32 Software Developer User Guide 85

Enabling/Disabling Interrupts
The code example shown in Figure 54, part of timer services, shows how to
enable and disable interrupts.

Figure 54: Enabling and Disabling Interrupts

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

86 LatticeMico32 Software Developer User Guide

The code example in Figure 55 shows how to register an interrupt handler for
a device using LatticeMico32 interrupt management.

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

LatticeMico32 Software Developer User Guide 87

Figure 55: Using Interrupt Management to Register Interrupt Handler

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

88 LatticeMico32 Software Developer User Guide

Cache Management
You can configure the LatticeMico32 microprocessor with or without the data
cache or the instruction cache. The caches are write-through caches; that is,
writing to a cached location is also translated as writing to the supporting
memory. The cache implementation in LatticeMico is a simple implementation
with the software supporting the ability to flush the caches, which invalidates
the cache contents. Refer to the LatticeMico32 Processor Reference Manual
for more details on cache-sizing parameters.

During the boot-up sequence, these caches are flushed to make sure there is
no other instruction or data present in the cache. For example, in a typical
situation, you would have multiple applications executing sequentially, such
as a boot copier followed by the "main" application. It is far more common to
flush the data cache, for example, reading status data from a flash device,
which is a memory device mapped to a cached region.

Normally you do not want the peripherals that perform input and output
operations to be in a cached region because it increases the execution speed
for the rest of your instructions. Also, driver development becomes tedious if
the input and output peripheral, such as a timer, is placed in a cached region.
The Mico System Builder (MSB) places all non-memory peripherals in a non-
cached region and all memory peripherals in a cached region. The drivers
provided by MSB assume the peripherals are in a non-cached region.

The CPU does not monitor access to cached region locations performed by
other masters such as DMA, so you are responsible for managing the cache,
that is, invalidating the cache by flushing it in multi-master situations that may
share address space.

Data Cache Flush Routine
You can flush the data cache using the API shown in Figure 56. There is no
control to lock cache lines, and you cannot flush a cache selectively.

Figure 56: API Used to Flush Data Cache

/*
* Flushes data cache
*/
void MicoFlushDataCache(void);

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

LatticeMico32 Software Developer User Guide 89

Instruction Cache Flush Routine
You can flush the instruction cache using the API shown in Figure 57. There is
no control to lock cache lines, and you cannot flush a cache selectively.

Sleep (Busy) Functions
To aid development, two functions, MicoSleepMicroSecs and
MicoSleepMilliSecs, enable you to perform a “sleep” function. These sleep
routines do not really put the microprocessor to sleep. The implementation
involves a tight loop of instructions that aim to spend as much time as
possible to that desired effect. These functions should be used only for
approximate needs and not in situations where precision is required.

Figure 58 shows the MicoSleepMilliSecs function.

Figure 57: API Used to Flush Instruction Cache

/*
* Flushes instruction cache
*/
void MicoFlushInstrCache(void);

Note

These sleep functions are highly dependent on the memory controller latencies, as
well as presence of instruction cache. These functions may be off significantly in the
absence of the instruction cache or if the memory controller exhibits several cycles’
worth of latency.

Figure 58: MicoSleepMicroSecs and MicoSleepMilliSecs Functions

LATTICEMICO RUN-TIME ENVIRONMENT : LatticeMico32 Microprocessor Usage

90 LatticeMico32 Software Developer User Guide

Figure 59 demonstrates the usage of the MicoSleepMilliSecs function.

Microprocessor Control Register
Access
Some functions are provided for accessing some of the LatticeMico control or
status registers. The C functions listed in Figure 60 are wrappers for
assembly-level routines that can be used to write functions that operate on
other control or status registers. You should not have to directly access the
microprocessor’s control or status registers.

Macros
Some macros aid in the conversion of time units to microprocessor ticks.
These macros are defined in the MicoMacros.h header file. They are shown in
Figure 61.

Figure 59: Usage of the MicoSleepMilliSecs Function

/* “sleep” i.e. wait for 2 seconds */
MicoSleepMilliSecs(2000);

Figure 60: C Functions That Control Register Access

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 91

The value of MICO32_CPU_CLOCK_MHZ is defined in the DDStructs.h file
as part of the C/C++ SPE managed build.

Run-Time Services
This section refers to “services” in the run-time environment that are available
to you as you program your microprocessor application code. Services refer
to software abstractions that facilitate device functionality through their usage,
making it unnecessary for you to know specific device information to carry out
certain functions.

Device Lookup Service
As part of the Mico System Builder (MSB), components that are added to a
platform definition must have a unique name. Each component in the
LatticeMico managed build framework must have a <component_name>.xml
file. As described earlier, the build process extracts this information, creates
component-specific information structures, and fills in the values.

LatticeMico32 device drivers rely on this instance-specific component
information for manipulating the component. This instance-specific
component information allows a single device driver function to handle
multiple instances of the same component.

From an application perspective, you must provide this instance-specific
information to the device drivers. The LatticeMico lookup service allows easy
access to this instance-specific information by looking up registered devices
by name.

The component device driver registers the component instance with the
LatticeMico lookup service as part of the component’s initialization routine,
making it available for lookup before the start of your “main” routine.

The LatticeMico lookup service exposes intuitive API to find named devices or
named services and provides component instance-specific information that
you can use when manipulating a device or a service through the API made
available by the relevant services or devices.

Figure 61: Macros Used in Converting Time Units to Ticks

/*
* MACROS FOR TIME CONVERSION
*/
#define MILLSECONDS_TO_TICKS(X_MS)

(X_MS*(MICO32_CPU_CLOCK_MHZ/1000))

#define MICROSECONDS_TO_TICKS(X_MICROSECS)
(MILLISECONDS_TO_TICKS(X_MICROSECS)/1000

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

92 LatticeMico32 Software Developer User Guide

Using the Lookup Service
The lookup service makes API available to the user application to invoke. This
section describes the usage of this API.

Finding a Device by Name The MicoGetDevice function shown in
Figure 62 enables you to look up a device by name. The device name is case-
sensitive. It returns a pointer to the component’s instance-specific information
structure.

Since the components are selected and named at the time of platform
generation, you should be aware of the component information structure type
for the named device, and you are expected to typecast the returned pointer
to an appropriate information structure type.

The Mico System Builder (MSB) software only allows you to generate a
platform that contains unique names for all of its defined components. In turn,
the managed build process also does not permit duplicate component names
in a platform. The lookup service works on the assumption that component
names in the platform are unique. Only those devices and services that follow
the guidelines for developing device drivers are available for device lookup,
as discussed in “Modifying Existing Device Drivers” on page 123.

The code example in Figure 63 illustrates how to use the MicoGetDevice
function to find a GPIO named “LED” (case-sensitive) in the platform.

Iterating Through a List of Devices For a platform with multiple instances
of components, each component instance is registered with the lookup
service. As part of registration information, the device driver must provide a
device type to which the component instance belongs. The device type
enables your application to iterate through all available instances of a given
service type or through all component instances that are available for lookup.

Figure 62: MicoGetDevice Function Example

/*
* Finds a device (that is registered with a registered
* service)
* Arguments:
* const char *Name: pointer to a character string
* representing device name (case-sensitive)
* Returns:
* void *: pointer to the looked-up device’s instance-specific

information. Will be 0 if no device with matching name
is found.

*/
void *MicoGetDevice(const char *Name);

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 93

The application must call the MicoGetFirstDev function, as shown in
Figure 64.

The first argument is a pointer to the device type name. This pointer can
either be a specific named service type or a device type, or it can be a null
pointer. If this pointer is null, the LatticeMico32 lookup service assumes the
intent is to iterate through all the registered component instances, irrespective
of the device types.

Figure 63: Using MicoGetDevice Function to Find a GPIO

#include “MicoGPIO.h”
#include “LookupSrevices.h”

int main(void)
{

/* fetch LED GPIO by name: name is case-sensitive */
MicoGPIOCtx_t *pLED;
pLED = (MicoGPIOCtx_t *)MicoGetDevice(“LED”);
if(pLED == 0) {

/* platform does not contain a registered GPIO named
“LED” */
printf(“failed to fetch GPIO (LED) instance\r\n”|;
return(-1);

}

return(0);
}

Figure 64: Using MicoGetFirstDev Function to Iterate Through a List of

Devices

/*
* Finds the first device (that is registered) of the specified
* type
* Arguments:
* const char *deviceType : points to named device type. If this
* pointer is a null pointer, the first context of the
* first device in the list of registered devices is
* returned, irrespective of the type under which the
* device is registered. If a non-null pointer, it must
* point to a valid string (case-sensitive).
*
* DevFind_st *FindCtx: pointer to a valid allocation of
* DevFind_st that will be referenced by MicGetFirstDev
* for future invocations to MicGetNextDev
*
* Returns:
*
* void *: pointer to device context (is null if no matching
* device is found).
*/
void *MicoGetFitrsdtDev(const char *deviceType, DevfindCtx_t
* FindCtx);

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

94 LatticeMico32 Software Developer User Guide

If this pointer is not null, LatticeMico32 attempts to find the first registered
component instance of that device type. The second argument to this function
is a pointer to a valid structure of type DevFindCtx_t. This structure is filled in
by MicoGetFirstDev and should not be modified by the application. This
function parameter can be used in subsequent calls to MicoGetNextDev to
retrieve the next component instance of the desired type. The return value of
this function is a void pointer to the device’s instance-specific component
information structure. This pointer is null (zero) if no matching registered
device is found.

On a successful completion call to MicoGetFirstDev—that is, the returned
pointer is not null—the application can then call the MicoGetNextDev function,
as shown in Figure 65, to retrieve a pointer to the next matching device’s
instance-specific component information structure. This function takes a
single parameter, a pointer to the DevFindCtx_t structure type that was
provided to the MicoGetFirstDev function call. The values of the structure
referenced by this pointer must not be modified by the application. If the
LatticeMico lookup service is successful in finding the next matching
registered device, it returns a pointer to the matching device’s instance-
specific component information structure.

The CFIFlashPrgrmr.c flash programming software template demonstrates
usage of the functions previously referenced for iterating through a list of
registered devices of a specific type (for example, the CFI flash device type in
the example). This flash programming software template is located in the
following path:

<install path>\micosystem\utilities\templates\CFIFlashProgrammer

List of Device Types
LatticeMico Mico System Builder (MSB) uses the following device types:

 CFIFlashDevice: LatticeMico CFI flash component type

Figure 65: Using MicoGetFirstDev Function to Find Pointer to Instance-

Specific Component Information Structure

/*
* Finds the next registered device that matches the find
criteria provided in the prior MicGetFirstDev invocation
*
* Arguments:
* DevFind_st *FindCtx: pointer to a valid allocation of
* DevFind_st that was provided to MicoGetFirstDev
* invocation. Caller must not modify the structure
* referenced by this pointer.
*
* Returns:
*
* void *: pointer to device context (is null if no matching
* device is found).
*/
void *MicoGetNextDev(DevFindCts_t *FindCtx);

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 95

 GPIODevice: LatticeMico GPIO component type

 UARTDevice: LatticeMico UART component type

 TimerDevice: LatticeMico timer component type

 SPIDevice: LatticeMico SPI component type

 DMADevice: LatticeMico DMA component type

The component device drivers and their example usage are provided in the
respective component data sheets available through the MSB user interface.
The section “Making Devices Available to Lookup Service” on page 130
explains the steps required of the driver to make a component instance
available to the LatticeMico lookup service.

See also “Accessing Component Help and Data Sheets” in the LatticeMico
System Hardware User Guide.

LatticeMico System Timer Services
In addition to making the timer component available to the lookup service, the
LatticeMico timer software also enables you to register a LatticeMico timer
instance as the system timer and register for a callback on a system tick.

Registering System Timer
Before you can use the system timer facility, you must register a LatticeMico
timer instance as the system timer. Use the API shown in Figure 66 to register
a LatticeMico timer as the system timer.

Once you register a system timer, you cannot deregister this timer to register
another system timer. Also, you must not use the system timer for any other
purpose. The service programs the system timer in a continuous mode with
interrupts enabled and handles the timer expiration interrupt. The system
timer helps maintain a crude 64-bit system time, which measures the elapsed
ticks since registering the system timer. You must ensure that the timer width
(bits) is appropriate to hold the suitable TickInMS value.

Figure 66: Registering a LatticeMico Timer Instance as the System Timer

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

96 LatticeMico32 Software Developer User Guide

Registering a System Tick Callback
Once you have registered a system timer, you can register for a callback that
is called as part of the system timer’s interrupt service routine (ISR). Use the
API shown in Figure 67 to register a callback on a system tick expiration
event.

The callback is part of the system timer ISR, so the activities performed as
part of the callback must be kept to a minimum. For reduced indirection, you
can directly manipulate the timer instance by using the LatticeMico timer
device driver routines instead of using the system timer.

Retrieving CPU Ticks
The system timer facility keeps track of the elapsed CPU ticks from the time of
registration of the system timer. The maintained CPU tick value is a 64-bit
value but is somewhat skewed because the service should also account for a
timer count rollover. The timer width is limited to 32 bits. The tick count is
therefore imprecise, but it is accurate to some degree and useful for most
purposes. For a highly accurate 64-bit count, you can implement an integral
64-bit high-resolution counter WISHBONE peripheral that is not part of the
Mico System Builder (MSB) distribution.

Use the API shown in Figure 68 to fetch CPU ticks.

System Timer Usage
The code example shown in Figure 69 shows how to use the system timer
facilities as part of LatticeMico System timer services.

Figure 67: Registering a Callback on a System Tick

/*
* Registers system tick periodic activity
* Arguments:
* MicoSysTimerActivity_t: activity function pointer as described by the
* prototype:
*
* void (* MicoSysTimerActivity_t) (void *);
*
* void *ctx: pointer to user data that will be passed back on system tick.
*/

void MicoRegisterActivity(MicoSysTimerActivity_t activity, void *ctx);

Figure 68: Retrieving CPU Ticks

*/
* Retrieves 64-bit tick count, if a system timer is
* registered. Else, it returns 0.
*/
void MicoGetCPUTicks(unsigned long long int *ticks);

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 97

Figure 69: System Timer Usage Sample Code

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

98 LatticeMico32 Software Developer User Guide

LatticeMico File Service
The managed build software development environment provides Newlib C
standard C library support (libc.a) that is made available at the managed build
application link step. The implementation of standard C file operations, such
as printf, scanf, fopen, fprintf, fgets, fwrite, and fread, is provided through the
Newlib C library.

The LatticeMico File Service provides endpoint connectivity to these Newlib C
file operation routines, thereby allowing the flexibility to add devices that can
be used for such file operations. This section describes the devices that
support such file operations and also describes the internal operations of the
file services framework. The next section describes how you can add your
own file operations-capable device to the LatticeMico File Services.

LatticeMico Devices Supporting File Operations
LatticeMico software supports two devices capable of limited file operations:
the LatticeMico32 microprocessor's JTAG UART and the LatticeMico UART.
Other devices and other capabilities can also be included, as discussed in
subsequent sections.

LatticeMico32 Microprocessor JTAG UART File Device
The LatticeMico32 microprocessor software support includes support for file
operations by way of the JTAG UART microprocessor and the microprocessor
debug module.

This software connects with the microprocessor’s debug module to
communicate with the GNU GDB debugger (GDB) running on a host or
development computer through the microprocessor’s JTAG UART. This
connection allows the programs running on the LatticeMico32 microprocessor
to access the file system on the computer hosting the LatticeMico Eclipse-
based GDB debugger. The microprocessor software support uses the
microprocessor instance name, as declared in the platform when registering
itself as a file device.

Figure 70 shows how the connection and software components are laid out.

Note

This support is available only if the debug module is included with the microprocessor
and only if the LatticeMico Debugger is running on a remote computer and is
connected to LatticeMico32 microprocessor debug module.

If the application code relies on the LatticeMico32 microprocessor file device for file
operations, the Debugger must be running on the host and must be actively connected
to the microprocessor.

 If the Debugger is disconnected, the application will appear to have hung when it
performs file operations to the LatticeMico32 microprocessor file device as the
software expects a Debugger to communicate with it.

 If the platform is modified so that the microprocessor does not contain the debug
module, file operations relying on LatticeMico32 microprocessor file device will fail.

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 99

Figure 70: Layout of Connection/Software Components

Maximum Simultaneously Opened Files The LatticeMico32 JTAG UART
file support must maintain a mapping between the development computer’s
file ID and the local LatticeMico32 file descriptor. To avoid dynamic memory
allocation, the space required for this map is allocated at compile time. The
example code shown in Figure 71, located in LatticeMicoUart.c, shows the
default value for the macro.

Figure 71: Default Macro Value

/* declare MICO_GDB_MAX_FILES if it is not already done */
#ifndef MICO_GDB_MAX_FILES
#define MICO_GDB_MAX_FILES (5)
#else
/* make sure there is space for at least 3 files */
#if MICO_GDB_MAX_FILES < 3
#define MICO_GDB_MAX_FILES (3)
#endif
#endif

Development (Host) Computer

LatticeMico32 Platform on a Lattice device on a board

User Application

NewLib C Library

Standard C
I/O API

LatticeMico32 File Service

LM32
JTAG UART
File Device

LatticeMico32
UART

File-Device

LatticeMico32
Debugger
Application

Development Computer Operating System

File System

LM32
Debug Module

JTAG
Connection

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

100 LatticeMico32 Software Developer User Guide

You can override this default macro value by defining it through the project’s
C/C++ SPE build properties (LatticeMico32 compiler preprocessor
definitions). This limit is independent of the maximum file limit imposed by the
LatticeMico File Service, as described later in this document.

Disabling a LatticeMico32 JTAG UART File Device To reduce the code
size, you may want to exclude the JTAG UART file device code in the final
executable. To do so, you must define the
_MICOCPU_FILESUPPORT_DISABLED_ macro, which disables the code at
compilation time. Also, this support is automatically disabled if the debug
module does not reside in the microprocessor configuration.

LatticeMico UART Component The LatticeMico UART component is
available to the LatticeMico File Service through the UART software services
implementation. This UART file operations support is limited to console input/
output, even though it can be treated as a file device through the standard C
library functions such as fopen, fprintf, and so forth. The UART file service
ignores the file name in an fopen function call.

Figure 72 shows how the software components and physical components are
laid out for the UART file operations usage.

Figure 72: Layout of Software Components for UART File Operations

Development (Host) Computer

LatticeMico32 Platform on a Lattice device on a board

User Application

NewLib C Library

Standard C
I/O API

LatticeMico32 File Service

LM32
JTAG UART
File Device

LatticeMico32
UART

File-Device

RS-232 terminal
Application

Development Computer Operating System

LM32
UART

Component

RS 232
Connection

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 101

Disabling a LatticeMico UART File Device To reduce the code size, you
may want to exclude the LatticeMico UART file device code in the final
executable. To do so, you must define the
_MICOUART_FILESUPPORT_DISABLED_ macro, which disables the
associated LatticeMico UART file device code at compilation time.

Usage and File Name/Device Name Conventions
The conventions described in this section apply to Newlib C file operation
APIs, such as fopen and fprintf. These file operation functions, as you would
expect, perform operations on a file.

From a user perspective, the file is a named device; that is, it has a name.
The syntax for the fopen standard C function is as follows:

FILE *fopen(const char *filename, const char *mode);

This API expects a file name (or filename parameter). Typically the file name
is the name of a file associated on a disk drive. For the LatticeMico File
Services, filename has two parts:

 Name of the file to open

 Name of the device on which to open the file, such as the CPU instance
name for opening a file using the LatticeMico32 JTAG UART file support
or the UART instance name for opening a file using a LatticeMico UART
instance

The name of the device is optional. If it is not provided, the LatticeMico File
Service passes on the fopen request to the default file device. If the name of
the device is specified, the LatticeMico File Service attempts to identify a
device that has a matching device name and then passes on the file name to
that device’s file support routine for opening that file.

The LatticeMico File Service adheres to the following conventions:

 Devices: When the file service accesses devices, the device name must
be preceded by two backslashes (\\). For example, when the file service
opens a uart_0 UART file device, the device must be addressed as
\\uart_0 or \\uart_0\. In C/C++ code, since a single backslash (\)
represents an escape character, it translates to \\\\uart_0 or \\\\uart_0\\.

 Files: When the file service opens files on a specific device, the device
name must include the file name. For example, when the file service
accesses file_0 on device uart_0, the file must be addressed as
\\uart_0\file_0. When the file service opens files on the default file device,
it can simply address the file by its name rather than including the default
file device’s name in the string.

The example code shown in Figure 73 illustrates the file name and device
name usage. The example assumes that the LatticeMico32 JTAG UART file
support is the default file device and that there is an instance of LatticeMico
UART named “uart” in the platform, along with a LatticeMico32
microprocessor instance named LM32.

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

102 LatticeMico32 Software Developer User Guide

Figure 73: File Name/Device Name Usage Example

Setting the Default File Device
If the debug module is included and the LatticeMico32 CPU file service is
enabled, the JTAG UART registers itself as the default file device with the
LatticeMico File Service. It also registers itself under the microprocessor’s
instance name (for example, “LM32”) with the file services. Subsequent file
open requests that do not specify a device name are passed on to the
LatticeMico32 JTAG UART file device software.

You can modify the default file device at run time, as demonstrated by the
example code shown in Figure 74.

Figure 74: Modifying the Default File Device

/* Set the UART instance “uart” as the default file device */
if(MicoFileSetDefFileDevice(“uart”) != 0){

printf(“failed to set uart as the default file device\n”);
}

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 103

If this function call returns without any error—that is, if it returns a value of
zero—a subsequent file-open operation where the device name is absent is
passed to this newly registered device instead of the previous default device.

The API listed shown in Figure 75 is declared in MicoFileDevices.h.

As illustrated in Figure 75, the device name convention that is used with fopen
does not apply to this API.

File Name/Device Name Length
The LatticeMico File Service’s file-open implementation must extract device
and file name information. For this, it allocates stack space instead of
dynamically allocated memory. To contain the stack space allocated by this
function, which is freed once the function returns, the LatticeMico File Service
imposes restrictions on file name and device name length.

If no prior definition exists, the following two macros, defined in
MicoFileDevices.h, govern the maximum file name length and device name
length.

It is possible for a file device to have a longer name than the imposed limit;
however, the LatticeMico File Service uses the maximum-length parameter
for comparison when identifying matching named devices. The file name

Figure 75: Setting the Default File Device

Figure 76: Macros Governing Maximum File and Device Name Length

#define MICO_FILE_DEVICES_MAX_DEV_NAME_LEN (12)
#define MICO_FILE_DEVICES_MAX_FILE_NAME_LEN (32)

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

104 LatticeMico32 Software Developer User Guide

restriction applies to the file device’s open parameter; the file name provided
in the fopen API is truncated to the maximum file name length when passing
to the file device by the LatticeMico File Service.

By default, if these macros are not defined, the file name length is set to 32
bytes, including the null terminator, and the maximum device name length is
set to 12, including the null terminator. The minimum length for device names
is restricted to 12 bytes, including the null terminator, and the minimum length
for file names is restricted to 13 characters, including the null terminator. You
can override the values for these macros by defining these macros through
the project’s C/C++ SPE build properties, which defines the LatticeMico32
compiler’s preprocessor options. See “Setting Project Properties” on page 26
for details on changing these build properties.

Standard I/O Device
Standard input, output, and errors must be directed to a registered file device.
You can establish a standard I/O device in two ways:

 Platform tab in the Properties dialog box in C/C++ SPE – See Figure 14
on page 29. This tab lists the available devices that you can configure to
serve as standard I/O device for any of the standard streams (in, out, and
error).

 Run-time selection – You can set a registered file device to handle any of
the standard streams by using the API in Figure 77. It is declared in
MicoFileDevices.h.

Figure 77: API Used to Set a Registered File Device

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 105

This API allows setting any registered name device to handle any or all of the
standard streams.

You can specify that your named device handle any of the standard streams
by including the piece of code shown in Figure 78 in your user-application
source file, which defines the constants as listed. These constants are used
by the LatticeMico File Services to identify devices at device registration time
that should be set to handle standard I/O streams.

By specifying these constants in your user-application source file, you
override the constants defined in the dynamically generated
MicoStdStreams.c file. The constants in MicoStdStreams.c are generated by
the managed build on the basis of settings chosen in the Project Properties
dialog box accessible in the C/C++ perspective.

In the example code shown in Figure 78, a UART device named “uart” is
chosen to handle the standard I/O streams. You can replace “uart” with the
name of your registered file device.

As illustrated in Figure 78, the device name convention that is used with fopen
does not apply to this API.

CFI Flash Device Service
The common flash interface (CFI) is an industry standard that allows software
the flexibility of “adapting” to different CFI-compliant flash devices by storing
the device characteristics on the flash device itself. The software uses
parameters such as erase regions and timeout values stored on the flash
device to perform modifications like erasing and writing.

Additionally, CFI flash devices manufactured by different manufacturers may
support different erasing and programming algorithms, such as the Intel basic
command set and the AMD command set. This information is also retrieved
from the CFI parameters stored in the flash device. The CFI information is
stored as tables in the flash device and can be accessed by performing reads
from fixed device offsets, as dictated by the CFI specification.

Figure 78: UART Device Handling Standard I/O Streams

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

106 LatticeMico32 Software Developer User Guide

While the CFI specification lists the offsets in terms of device offsets, the
translation of these device offsets to memory addresses accessible by the
microprocessor depends on two combined factors:

 Operating mode of the flash (8-bit, 16-bit, or 32-bit modes)

 Layout of the flash components (for example, two 16-bit flash parts
operating in 16-bit modes)

The combination of the operating mode or layout and the command set used
by the flash device is called a flash configuration in discussions of the
LatticeMico32 CFI flash device service.

The LatticeMico32 CFI flash device service hides such device-specific details
from your application, which makes your application more portable across
different CFI-compliant flash devices, as well as configuration. The service
provides API for writing and erasing flash data, as well as for obtaining flash
geometry information, for example, sector sizes and sector addresses.

Structure of the CFI Flash Device Service
The LatticeMico32 CFI flash device service comprises three main functional
pieces, as shown in Figure 79.

These three pieces of software are the following:

 CFI flash service, which is the main software module that you interact with
to perform flash manipulation operations. The LatticeMico32 flash device
driver is part of this group of software.

 Configuration-specific flash driver, which implements the main
functionality of the common flash operations, that is, erase and write
operations. For each configuration, that is, the orientation of the flash
devices and the command set used, there must be a configuration-
specific flash driver. Currently the Mico System Builder (MSB) supports
one configuration, a 2 x 16-bit CFI-compliant flash device operating in 16-
bit mode using the AMD command set. The supported driver is
documented in the LatticeMico flash component documentation.

 CFI flash reader, which is called by the CFI flash service as part of the
parallel flash driver initialization routine. The CFI flash reader is

Figure 79: CFI Flash Device Service Structure

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 107

responsible for identifying the flash configuration, that is, the number of
flash devices operating in parallel and the mode of operation using
heuristics. From this information, it computes the addresses that must be
generated for reading the flash device CFI information.

This CFI information is included in the flash device as part of the CFI
specifications. The CFI information includes the CFI command set used
by the flash part, in addition to other programming information, such as
device timeouts for write and erase operations. The CFI flash service uses
the flash configuration, that is, parallel devices and mode of operation
such as 8-, 16-, 32-bit, along with the programming command set (for
example, Intel and AMD) to select the appropriate flash configuration
driver.

The LatticeMico CFI flash reader currently supports identifying two 16-bit
flash devices operating in 16-bit mode. The current LatticeMico software
support exists only for this configuration and AMD standard command set
flash devices.

The CFI flash device service attempts to be “hardware-neutral,” so it does not
use interrupt-driven programming, as some Intel flash devices do. The flash
service does not support sector protection features.

Using the CFI Flash Service
The CFI flash service implements basic flash operation primitives, such as
erasing a device and erasing a sector or programming data to the flash
device. For programming data, it does not perform a sector read,
superimpose, or program because there may be memory constraints. If you
want to write at non-sector boundary offsets, you must read the affected
sector, superimpose the overlapping data, and use the primitive to erase or
program the data. The primitives also enable you to access information on
sector regions for sector read facilitation.

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

108 LatticeMico32 Software Developer User Guide

Program Data The LatticeMico32CFIFlashProgramData function, shown in
Figure 80, enables you to program a chunk of data to the flash component, if
supported by the flash configuration driver. If the flash configuration driver
does not support the functionality, an appropriate error is returned, as shown
in this section.

This function erases the affected sectors and programs the new data. It does
not save data in those sectors that are only partially affected. These sectors
are usually the first sector or the last sector for program operations that are
not on sector boundaries. The function does not save data in these sectors
because the driver would otherwise need a minimum of one sector’s worth of
memory storage, which can range from a few bytes to many kilobytes. For
partial sector programming operation, you must first read the affected sector,
impose the new data on the read data, and use this data in the function call to
program data.

The configuration driver may impose restrictions on the offset, the amount of
bytes to program, or both. For example, a dual 16-bit flash configuration may
require the byte offset to be aligned to a 32-bit word boundary and that the
amount of data be a multiple of four bytes.

Figure 80: Programming Data to the LatticeMico Flash Component

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 109

Erase LatticeMico Flash Component The
LatticeMico32CFIFlashEraseDevice function, shown in Figure 81, enables
you to erase the entire flash region, if the flash configuration is identified and it
supports erasing the entire flash region.

Erase LatticeMico32 Flash Sector The LatticeMico32CFIFlashEraseBlock
function, shown in Figure 82, enables you to erase the sectors containing the
provided offset.

Write Data The functions shown in Figure 83 enable you to write data in
well-known sizes to the supplied byte offset in the flash region. Depending on
the flash configuration, not all functions may be supported and will return the
appropriate error value. These write functions assume that the affected

Figure 81: Erasing the LatticeMico Flash Component

Figure 82: Erasing the Sectors Containing an Offset

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

110 LatticeMico32 Software Developer User Guide

sectors have been erased before calling them, unlike the
LatticeMico32CFIFlashProgramData function call described earlier, which
erases the affected sectors and writes the data.

For example, two 16-bit flash devices operating in 16-bit mode cannot support
an 8-bit write primitive. To achieve an 8-bit write for such a configuration, the
driver would have to read the affected 32-bit data that would contain just the
8-bit data and then would have to make a copy of the entire sector,
superimpose the 8-bit data, and then write the entire sector back.

So not all configurations support the aforementioned data sizes. The
configuration driver may impose restrictions on the byte offset alignment; for
example, a 32-bit write may expect the byte offset to be aligned on a 32-bit
boundary.

Write Block of Data The LatticeMico32CFIFlashWrite function, shown in
Figure 84, enables you to write a block of data to a flash component. The
configuration driver may or may not support this functionality, which results in
an appropriate error code being returned. Also, the configuration driver may
impose restrictions on the amount of bytes to program and the offset (that is,
the byte offset) of where to program.

Figure 83: Writing Data to LatticeMico Flash Component

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 111

For example, a two 16-bit flash device region may require the amount of data
to be a multiple of four bytes. Also, it may impose a restriction that the byte
offset be aligned on a 32-bit boundary.

Figure 84: Writing a Block of Data to the LatticeMico Flash Component

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

112 LatticeMico32 Software Developer User Guide

Obtaining Sector Information The LatticeMico32CFIFlashSectorInfo
function, shown in Figure 85, enables you to obtain sector information. You
can use this function to identify a sector and read its contents.

Flash Component Reset Some flash devices have a soft reset command
that is used especially if there is an error during a programming operation or
erase operation. You can use the LatticeMico32CFIFlashReset function,
shown in Figure 86, to reset a flash component, if it is supported by the flash
configuration driver.

Figure 85: Obtaining Sector Information

Figure 86: Resetting the LatticeMico Flash Component

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 113

CFI Flash Service Usage
The CFI flash programmer provides an example of using the CFI flash
service. This application template is located under the following folder in the
file path:

<install_dir>\micosystem\utilities\templates\CFIFlashProgrammer

Enhancing CFI Flash Service
For the current release of LatticeMico Mico System Builder (MSB), the only
supported flash configuration consists of two 16-bit flash devices operating in
16-bit mode, providing an effective 32-bit data bus width. Also, the only
supported flash command set is the basic AMD command set.

The steps required to enhance the LatticeMico32 CFI flash service for
supporting a custom configuration are as follows:

 Enhance the CFI flash configuration identification algorithm.

 Write your configuration-specific routines, as required by LatticeMico32
CFI flash service.

 Register your configuration information.

Enhance the CFI Flash Configuration Algorithm You must first enhance
the provided flash configuration identification algorithm by updating the
following three specific functions:

 CFIIdentifyConfiguration function

The CFIIdentifyConfiguration function resides in CFICfgIdentifier.c. It is
responsible for identifying the flashboard configuration, specifically the
number of flash modules operating in parallel and the mode they are
operating in, and must complete this information in the
FlashBoardCfgInfo_t structure referenced by the pointer argument to this
function. The CFI functions assume that you are using the same flash
component in parallel, that is, that the programming characteristics of the
flash devices operating in parallel are identical.

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

114 LatticeMico32 Software Developer User Guide

The CFIIdentifyConfiguration function is shown in Figure 87.

The FlashBoardCfgInfo_t structure is shown in Figure 88.

In the FlashBoardCfgInfo_t structure, the first parallels element identifies
the total flash devices operating in parallel. The second element, mode,
identifies the mode (8, 16, 32) in which the devices are operating. This
board configuration information is used to select the appropriate
configuration functions, as described in subsequent sections.

 GetCFICfgAddressMultiplier

The GetCFICfgAddressMultiplier function resides in CFICfgIdentifier.c. It
returns the address multiplier that obtains the physical address offsets for
the CFI tables when the CFI device offsets specified by the CFI
specification are multiplied.

For example, for two 16-bit flash devices operating in 16-bit mode, the CFI
address multiplier is four; that is, the standard CFI address offsets must
be multiplied by four to compensate for the board configuration and flash
operational mode. You must use the BoardInfo parameter to identify the
board configuration and provide the appropriate address multiplier as the
return value.

The GetCFICfgAddressMultiplier function is shown in Figure 89:

 ValidateCFIBoardCfg

The ValidateCFIBoardCfg function resides in CFICfgIdentifier.c. It is used
by the CFI routines to avoid using invalid board information.

The ValidateCFIBoardCfg function is shown in Figure 90.

Figure 87: CFIIdentifyConfiguration Function

Figure 88: FlashBoardCfgInfo_t Structure

typedef struct st_FlashBoardCfgInfo {
unsigned int parallels; /* total flash devices sharing address bus */
unsigned int mode; /* 8-bit mode, 16-bit mode, etc. */

} FlashBoardCfgInfo_t;

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 115

Implement Configuration-Specific Routines The LatticeMico32 CFI flash
service relies on the configuration-specific function implementations shown in
Table 9:

Figure 89: GetCFICfgAddressMultiplier Function

Figure 90: ValidateCFIBoardCfg Function

Table 9: Functions for the CFI Flash Service

Function Description

ProgramData Erases appropriate sectors and writes bulk data

SectorInfo Retrieves sector-offset and sector-size that contains a specified
offset

WriteData Writes bulk-data (assumes affected sectors are erased)

WriteData8 Writes a byte at a given offset

WriteData16 Writes two bytes (short int) at a given offset

WriteData32 Writes four bytes (unsigned int) at a given offset

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

116 LatticeMico32 Software Developer User Guide

The prototypes for the expected functionalities are defined in the
st_FlashCfgFnTbl structure in the LatticeMico32CFI.h header file. This
structure is the flash configuration function table.

These function implementations must return 0 if the operation is successfully
completed. If the operation is not successfully completed, they must return a
non-zero value. You must allocate a static instance of this flash configuration
function table structure and fill in the function pointers to the corresponding
function implementation. You can set the function pointers of the structure
element to zero (null) if your configuration does not need a corresponding
functional implementation. This static instance is used in the next step as part
of registering your configuration functions.

EraseChip Erases entire flash region

EraseSector Erases sector containing a given offset

FlashReset Resets the flash parts in a flash region

FlashInit Initializes flash parts in a flash region

Table 9: Functions for the CFI Flash Service (Continued)

Note

You can use AmdSCS_2_16_16.c and AmdSCS_2_16_16.h as a reference for
implementing your configuration-specific routines. These files implement a 2 x 16 x 16
flash configuration, that is, two 16-bit flash devices operating in 16-bit mode, using the
AMD command set. The routines in this file have been tested on Macronix
29LV128MBT flash device configuration. These files are located in
asram_top\drivers\device folder in your LatticeMico components repository.

Figure 91: st_FlashCfgFnTbl Structure

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 117

These function prototypes take the CFI flash device context structure as an
argument. This structure is shown in Figure 92.

Your function implementation does not need to populate information within
this structure, because it is filled in by the LatticeMico32 CFI flash service.
The two important elements of this structure are as follows:

 CFIInfo_t CFIInfo

This element is the CFI information structure as defined in the
CFIRoutines.h header file and contains CFI information for the identified
flash part, such as timeout-values for writing and erasing and sector
layout information that you can use as part of your function
implementation.

 void *cfgFnTbl

This element is a pointer to your FlashCfgFnTbl_t structure, which you
provide as part of registering your configuration’s functional routines.

Register the Configuration Function Table Once you have implemented
the configuration routines, you must register this configuration information
with the LatticeMico32 CFI flash service. This registration must occur before
you use any of the LatticeMico32 CFI flash service APIs for writing or erasing
the flash device. Registration allows the LatticeMico32 CFI flash service to
refer to the functions provided in the function table for flash operations once
the flash configuration has been identified.

There are two ways to register:

 Modify the InitializeCFIConfigurations function located in the
CFIFlashConfigurations.c source file to register your function table using
the LatticeMico32RegisterFlashCfg function.

 Call the LatticeMico32RegisterFlashCfg function from your application
before calling any of the LatticeMico32 CFI flash service APIs for writing
or erasing the flash device.

Figure 92: CFI Flash Device Context Structure

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

118 LatticeMico32 Software Developer User Guide

The LatticeMico32RegisterFlashCfg function is shown in Figure 93.

This function takes a single parameter that is a pointer to a
FlashConfiguration_st structure, shown in Figure 94. You must allocate a
static instance of this structure and provide its pointer as part of registration.

This structure has three elements:

 VendorCSId – You must fill in this structure element with the value
corresponding to the supported CFI flash command-set identification.

 BoardInfo – This is a pointer to a static allocation of the
FlashBoardCfgInfo_t structure described earlier. You must fill in the
elements of this structure with the expected flash layout information
(number of flash devices in parallel and operating mode).

 cfgFnTbl – This is a pointer to a static allocation of the FlashCfgFnTbl_t
structure that you created in the previous step. This structure contains
pointers to your flash configuration’s function implementation.

The LatticeMico32 CFI flash service uses the command-set identification and
the board information that you provided to register your flash configuration’s
functional implementation to determine if the CFI flash device that it finds has
a corresponding functional implementation. Then it fills this information in the
CFI flash device context structure. This information is filled in the first time that
an application calls a LatticeMico32 CFI flash-service API function. If a

Figure 93: LatticeMico32RegisterFlashCfg Function

/*
* This function registers a flash configuration with
* LatticeMico32 CFI Flash Service. This function must be called
* prior to performing any of the LatticeMico32 CFI Flash
* Service API (write/erase/program).
*
* Arguments:
* FlashConfiguration_st * pCfg: pointer to a valid flash
* configuration information structure. This structure must
* not be modified once registered.
*
* Return Values:
* unsigned int 0: If configuration was successfully
* registered.
*/
unsigned int LatticeMico32RegisterFlashCfg
(FlashConfiguration_st *pCfg);

Figure 94: FlashConfiguration_st Structure

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

LatticeMico32 Software Developer User Guide 119

configuration function table that matches the command-set identification and
the flash layout information is not found, the LatticeMico32 CFI flash APIs
return failure codes, as described in “CFI Flash Device Service” on page 105.

The LatticeMico32 CFI flash service APIs invoke the functions pointed to by
the flash configuration function table contained in the CFI flash device context
to perform write, erase, and program operations on the flash device.

Flash Memory Configurations
The CFI programming code supports several flash memory configurations,
which are shown in Table 10.

The ability to switch between big-endian mode and little-endian mode is only
available in the 1x16x16, 2x16x32, and 1x32x32 PROM configurations. If you
have a platform with any one of these PROM configurations, you can connect
them in either big-endian mode or little-endian mode.

Two .lpf files are provided that permit the asynchronous data bus to be
configured in big-endian or little-endian mode. For each platformX, where X is
A, B, C, D, E, F, G, or H, there is an ecp or ecp2 subdirectory that contains the
HPE_MINI.lpf file. The HPE_MINI.lpf file is configured for little-endian mode,
and the HPE_MINI.be.lpf file is configured for big-endian mode. The default is
to use the little-endian version, but you can choose either for the
LatticeMico32 HPE boards.

Once you build your platform and have an FPGA bitstream, you must match
your CFI Flash Programmer C source code to the .lpf file that you are using.
The C source code uses a #define variable to determine how to interpret the
data being returned by the flash memory. By default, this variable is not
defined, so the CFI Flash Programmer code uses little-endian encoding for
the data.

If you right-click on the project name and select Properties > C/C++ Build >
LatticeMico C++ Compiler > Preprocessor Options, and then use the
LM32_BIG_ENDIAN_CONNECTION value to add a LatticeMico32
preprocessor definition and then (re)build the source code, the CFI Flash
Programmer will expect the connections to the flash memory to be in big-
endian form.

Table 10: Flash Memory Configurations

Number of PROMs Number of Data Bits Data Bus Width

1 8 8

2 8 16

4 8 32

1 16 16

2 16 32

LATTICEMICO RUN-TIME ENVIRONMENT : Run-Time Services

120 LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide 121

Chapter 4

Device Driver Framework

This chapter describes the device driver framework in the LatticeMico System
software, which is used by the run-time environment described in “LatticeMico
Run-Time Environment” on page 45. This chapter offers alternatives for
creating your own custom device drivers.

Overview
The LatticeMico32 platform functionality is based on the structure that is
defined in the .msb file. In addition to the CPU and primary peripherals, there
may also be memory components for code and data storage and some
components for input and output control, such as the DMA component or the
SPI component, that must be considered.

The flexibility of the Mico System Builder (MSB) tool in LatticeMico System
enables you to easily change parameters of these components at the system
builder level. As documented in more detail in “Managed Build Process and
Directory Structure” on page 145, the .xml file provides a mechanism to
automatically extract the relevant information from the platform into the C/C++
SPE for software development.

The LatticeMico32 device driver framework provides the following facilities:

 Ability to specify component device driver information as part of the
platform build

 Ability to extract instance-specific component information from MSB into a
managed build software application

 A “Lookup” framework for easy access to instantiated components by
name

 LatticeMico32 microprocessor interrupt framework

DEVICE DRIVER FRAMEWORK : Supported Components

122 LatticeMico32 Software Developer User Guide

 Service to redirect standard input, output, and error streams to available
character mode devices

 Prepackaged sample device drivers with easy-to-use APIs for
components such as the LatticeMico timer and the LatticeMico parallel
flash controller

To ensure that software application functionality remains unaffected by any
changes to the platform, the MSB software provides ready-made device
drivers that interact with these components, using the information that is
automatically extracted from the .msb file. These device drivers enable you to
control instantiated components without having to know component-specific
details, such as register layout. It also basically protects the application from
the negative effects of changes like altering a component’s base address.

These device drivers can handle multiple instances of a component using the
component-specific information structure. However, as part of your
application development, you must still tell the device driver which
instantiated device’s instance-specific information to use. The device driver
framework provides you with a device lookup service to access this instance-
specific component information by simply providing the name of the device.

In addition to the device lookup service, the device driver framework provides
some well-known services, such as the following:

 It can redirect standard I/O to character-mode devices.

 It can implement a device interrupt management structure as part of the
LatticeMico32 device driver. This service enables you to develop your
own device drivers for your custom components.

 It can handle the initialization of the microprocessor and call appropriate
component initialization routines.

Supported Components
The LatticeMico software framework provides lookup service for all registered
devices. This lookup service is described in “Device Lookup Service” on
page 91. This framework provides extensive microprocessor support, such as
interrupt management and APIs for cache management, as well as access to
some of the microprocessor registers.

In addition, the LatticeMico software framework attempts to provide
generalized “services” for some generic features, such as being able to
redirect standard I/O streams to available character-mode devices and
providing the ability to select a system timer. These services are as follows:

 Redirection of standard I/O to character mode devices:

 LatticeMico UART

 LatticeMico JTAG Debugger UART

 System timer service

 LatticeMico timer component

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

LatticeMico32 Software Developer User Guide 123

 Flash devices

 Common flash interface (CFI) compliant flash devices

Without knowing their end application, you cannot easily generalize all
components into such abstract, application-level functionality, such as
grouping SPI and I2C components. In such cases, the LatticeMico System
software provides device drivers for these components. Each component
provides a lookup service capability to allow ready access to the instance-
specific component information required to access the device driver functions.
These components are as follows:

 LatticeMico DMA component

 LatticeMico SPI master/slave component

 LatticeMico GPIO component

Beyond device drivers, the LatticeMico software framework incorporates
Newlib C library support. The information on supported components in this
section is subject to change in future releases of the LatticeMico System
software. Check the Lattice Semiconductor Web site at www.latticesemi.com
for updates or to obtain technical support.

Modifying Existing Device Drivers
This section shows you how to override the default behavior of the device
drivers, as well as enhance the CFI flash services to support custom flash
configurations. For information on creating device drivers for custom
components using the C/C++ SPE for managed builds, see the section
“Creating Custom Components” in the LatticeMico32 Hardware Developer
User Guide.

Overriding Default Driver Initialization
Sequence
As noted in earlier chapters, the boot-up sequence invokes LatticeDDInit,
which initializes the components before invoking your main() implementation. If
you want to override the default LatticeDDInit implementation, perform the
following steps:

1. As part of your application source, create a file named DDInit.c.

2. Within DDInit.c, implement the void LatticeDDInit(void) function.

http://www.lattice.com

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

124 LatticeMico32 Software Developer User Guide

A sample skeleton of what your DDInit.c file should look like is shown in the
code example in Figure 95.

These steps override the default implementation of LatticeDDInit, bypassing
the LatticeMico C/C++ SPE build-process-generated driver initialization
routine. You can then dictate your own initialization sequence by placing code
in your DDInit.c file. For more information on the DDInit.c file, see “DDInit.c
File” on page 160.

Overriding Default Driver
Implementation
You can override the default driver implementation by providing your own
source files that match the name of the driver source files that you want to
override. You must implement all of the functions in the source file that you
want to override. If you do not and if any of the functions you have not
rewritten are called by another code module, the compiler will attempt to pull
in the source file objects that you attempted to override and generate compiler
errors.

You can also override the default interrupt management implementation and
implement your own scheme that handles nested interrupts.

Some library files become part of the application build process instead of the
library build process, such as crt0ram.S. The implementation in these files
cannot be overridden as part of the LatticeMico C/C++ SPE managed build
process.

Figure 95: DDInit.c File

#include “DDStructs.h”

#ifdef __cplusplus
extern “C”
{
#endif /* __cplusplus */

void LatticeDDInit(void)
{

/* PUT YOUR OWN IMPLEMENTATION HERE */

/* invoke application’s main routine */
main();

}

#ifdef __cplusplus
};
#endif /* __cplusplus */

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

LatticeMico32 Software Developer User Guide 125

Enhancing CFI Flash Service
Currently, the only supported flash configuration consists of two 16-bit flash
devices operating in 16-bit mode, providing an effective 32-bit data bus width.
Also, the only supported flash command set is the basic AMD command set.

Figure 96 shows the sequence that provides functional implementation to the
CFI flash service user API calls. The first four steps shown in Figure 96
include the code associations with the corresponding steps shown in the
diagram.

If your requirements involve a different flash configuration, a different
registered CFI command set, or both, follow these three steps to enable your
application to use the CFI flash service:

1. Enhance the flash configuration identification algorithm.

2. Write your configuration-specific routines

3. Registering your configuration’s function table.

These steps are described in detail in the following sections.

Figure 96: CFI Flash Service Flow

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

126 LatticeMico32 Software Developer User Guide

Enhancing the Flash Configuration Identification
Algorithm
You must first enhance the provided flash configuration identification
algorithm. There are three specific functions that you must update to achieve
this. The first is shown in the following example code:

unsigned int CFIIdentifyConfiguration(unsigned int Base,
FlashBoardCfgInfo_t *BoardInfo

This function is responsible for identifying the flashboard configuration,
specifically the number of flash modules operating in parallel and the mode in
which they are operating. The CFI functions assume that you are using the
same flash component in parallel, that is, that the programming
characteristics of the flash devices operating in parallel are identical.

This following function returns the address multiplier. As part of CFI
specifications, the CFI tables are located at fixed device offsets.

unsigned int GetCFICfgAddressMultiplier(FlashBoardCfgInfo_t
*BoardInfo)

These offsets must be adjusted by a multiplier to account for the flash
configuration. Multiplying the device offset with this address multiplier gives
the effective address for the specific configuration. For example, two 16-bit
flash devices operating in 16-bit mode cause the CFI table to be located at an
effective address that is four times the individual device offset.

This multiplier is used by the CFI routines to fetch CFI information. As
mentioned earlier, the CFI functions assume that you are using the same
flash component in parallel, that is, that the programming characteristics of
the flash devices operating in parallel are identical.

The following function inspects the board configuration parameters and
returns 0 if the board configuration is valid:

unsigned int ValidateCFIBoardCfg(FlashBoardCfgInfo_t
*BoardInfo)

If the board configuration is invalid, it must return a non-zero value. This is
used by the CFI functions to ensure that the board configuration is valid
before accessing the flash devices.

To enhance these functions, copy the CFICfgIdentifier.c source file to your
project folder. This file is located in the asram_top\drivers\device directory
path located in your LatticeMico System components repository folder. This
file contains the implementation of the functions. By making this file part of
your project, you effectively override the default platform library functional
implementations.

The following function takes the base address of the flash component as an
argument:

unsigned int CFIIdentifyConfiguration(unsigned int Base,
FlashBoardCfgInfo_t *BoardInfo)

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

LatticeMico32 Software Developer User Guide 127

This function is responsible for identifying the flash configuration and returns 0
if it has successfully identified the CFI flash configuration and fills in the
FlashBoardCfgInfo_t structure pointed to by this function’s argument. The
description of this structure is shown in Figure 97:

The first element, parallels, identifies the total flash devices operating in
parallel. The second element, mode, identifies the mode (8, 16, or 32) in
which the devices are operating. This board configuration information is used
to select the appropriate configuration functions, as described in subsequent
sections. You must use the provided base address to identify the flash
configuration.

The following function validates the information provided in
FlashBoardCfgInfo_t. You must enhance this function to return 0 if the board
information contained in it is invalid.

unsigned int ValidateCFIBoardCfg(FlashBoardCfgInfo_t
*BoardInfo)

The next function returns the address multiplier that must be used for
accessing CFI-specific structures:

unsigned int GetCFICfgAddressMultiplier(FlashBoardCfgInfo_t
*BoardInfo)

For example, for the two 16-bit flash devices operating in 16-bit mode, the CFI
address multiplier is four. That is, the standard CFI address offsets must be
multiplied by four to compensate for the board configuration and flash
operational mode. You must use the BoardInfo parameter to identify the board
configuration and provide the appropriate address multiplier as the return
value. This function is not invoked if the board configuration is invalid as part
of the ValidateCFIBoardCfg function call.

Writing Your Configuration-Specific Routines
The next step is to write your configuration-specific programming routines.
Essentially, you will be providing implementation for the configuration function
table.

Figure 97: FlashBoardCfgInfo_t Structure

typedef struct st_FlashBoardCfgInfo {
unsigned int parallels;
unsigned int mode;

}FlashBoardCfgInfo_t;

Note

You can use AmdSCS_2_16_16.c and AmdSCS_2_16_16.h as a reference for
implementing your configuration-specific routines. These files implement a 2 x 16 x 16
flash configuration, that is, two 16-bit flash devices operating in 16-bit mode using the
AMD command set. The routines in this file have been tested on a Macronix
29LV128MBT flash device configuration. These files are located in the
asram_top\drivers\device folder in your LatticeMico components repository.

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

128 LatticeMico32 Software Developer User Guide

The code shown in Figure 98 is the flash configuration function table structure
that is used by the CFI flash service API.

These functions correspond to the CFI flash service API function calls. You
must provide appropriate implementation for the applicable functionality. You
do not need to implement a function if it is not applicable to your flash
configuration. Each function has two points in common:

 Each function returns a value of 0 if it is successful and non-zero if
unsuccessful.

 Each function takes a pointer to the CFIFlashDevCtx_t structure. This
structure corresponds to the LatticeMico flash component instance and
contains the instance-specific information described in this section.

The CFIFlashDevCtx_t device structure is illustrated in the code example in
Figure 99.

The cfgFnTbl pointer is set to the appropriate configuration function table,
described in a later step. Your functional implementation can use the CFIInfo
structure element to access the CFI-specific features identified for the CFI
flash component. The CFI specific structures are defined in the CFIInfo_t.h

Figure 98: Flash Configuration Function Table Structure

Figure 99: CFIFlashDevCtx_t Device Structure

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

LatticeMico32 Software Developer User Guide 129

and CFIRoutines.h header files that can be found in the
.\asram_top\drivers\device file path.

Once you have implemented the functions required of the configuration
function table, you must implement a registration function that populates a
static instance of the FlashCfgFnTbl_t structure with the appropriate function
pointers. This registration function is used in “Registering Your Configuration’s
Function Table” on page 129. The function to register your configuration-
specific function table is as follows:

unsigned int
LatticeMico32RegisterFlashCfg(FlashConfiguration_st *pCfg)

You must call this function with a static pointer to FlashConfiguration_st so
that the pointer is not invalidated after exiting the context within which this
function is called. The description of the FlashConfiguration_st structure is
given in Figure 100:

The FlashConfiguration_st structure has three parameters:

 VendorCSId, which is the registered CFI command set identification that
your configuration-specific function implementation supports. For
example, a value of 2 indicates that the command set is for the AMD/
Fujitsu standard command set. Refer to the CFI publication for a
comprehensive list of registered CFI command set identification numbers.

 BoardInfo, which is a pointer to your board configuration information. This
pointer must point to a static structure instance, that is, non-local, so that it
remains valid for the duration of the program.

 cfgFnTbl, which is a pointer to your configuration-specific function table
structure. This structure must be a static declaration so that it is valid for
the duration of the program and not just the function within which it is
referred.

Registering Your Configuration’s Function Table
You must register your configuration’s function table as an available
configuration to the LatticeMico flash component device driver. To do this, you
must modify the following function implementation:

void InitializeCFIConfigurations(void)

This function is called by the LatticeMico32 device driver before device
identification. This function calls the registration functions of the available
configurations, making them available for configuration identification by the
LatticeMico32 device driver.

Figure 100: FlashConfiguration_st Structure

DEVICE DRIVER FRAMEWORK : Modifying Existing Device Drivers

130 LatticeMico32 Software Developer User Guide

This function is implemented in the CFIFlashConfigurations.c source file
located in the .\asram_top\drivers\device file path in your LatticeMico
components repository. Copy this file to your project to override the default
implementation. Modify this copy to invoke the registration function defined in
“Writing Your Configuration-Specific Routines” on page 127.

Making Devices Available to Lookup
Service
Any LatticeMico32 platform can have multiple instances of the same
component. For example, a platform can have multiple instances of a timer
component. The managed build process creates instance-specific component
information structures. LatticeMico32 device drivers receive a pointer to the
appropriate component information structure as a function argument, allowing
them to operate on multiple instances of the same component.

The LatticeMico32 device lookup service enables you to fetch pointers to
these component instance-specific information structures by simply providing
the instance name specified when you create the platform in MSB. The
component device driver must register the component instance with the
LatticeMico lookup service to enable this feature and to allow your application
access to the instance-specific component information. This section lists the
steps required of the component device driver.

The LatticeMico lookup service provides a simple function,
MicoRegisterDevice, to the device drivers for registering component
instances. Example function code that illustrates this function for registering
component instances is shown in Figure 101:

This function must be called by the device driver with a pointer to a valid
DeviceReg_t structure allocation. This structure is used by the LatticeMico
lookup service and must not be modified after calling MicoRegisterDevice.
The code example in Figure 102 shows the contents of the DeviceReg_t
structure type.

Note

You can refer to any of the LatticeMico32 device software implementations for an
example of writing device drivers that use the LatticeMico lookup service. The GPIO
lookup service is an ideal example of the device lookup service implementation.

Figure 101: Function for Registering Component Instances

/* Function for registering a device for lookup by name.
* Arguments:
* DeviceReg_t *pDevReg: Pointer to a valid allocation of
* DeviceReg_t structure. This must remain valid and
* should not be modified for the duration of the
* application.
*/
unsigned int MicoRegisterDevice(DeviceReg_t *pDevReg);

DEVICE DRIVER FRAMEWORK : File Operations

LatticeMico32 Software Developer User Guide 131

The device driver must fill in the following structure members:

 const char *name

Specifies a unique name of the component instance (for example, timer0).
The MicoGetDevice function uses this field when retrieving a named
device.

 const char *deviceType

Specifies the name of the device type to which the component belongs
(for example, TimerDevice). The LatticeMico lookup service’s
MicoGetFirstDev and MicoGetNextDev functions use this device type
name when searching for a list of devices belonging to a device type.
Refer to “List of Device Types” on page 94 for a list of names used by
LatticeMico32 device drivers.

 void *priv

The device driver must provide a non-null (non-zero) pointer to this field,
typically a pointer to the instance-specific component information
structure. This pointer is returned by the LatticeMico32 device lookup
functions.

File Operations
This section describes the file operations support in LatticeMico System.

File Operations Functions
The Newlib C library expects implementation of certain functions at the
system-call level. Although the Newlib C standard C library is well
documented, the list in Table 11 summarizes some of the basic system
support that the Newlib C library requires to enable end-to-end functionality of
the standard C library routines, specifically the I/O routines. In addition, the
table lists the source files in which the system call functionality exists.

Figure 102: Contents of the DeviceReg_t Structure

/* device registration structure */
typedef struct DeviceReg_st{

const char *name; /* name of the device */
const char *deviceType; /* device type */
void *priv; /* device-specific context */

/* information */
void *prev; /* USED BY LATTICEMICO32 LOOKUP */

/* IMPL. */
void *next; /* USED BY LATTICEMICO32 LOOKUP */

/* IMPL. */
}DeviceReg_t;

DEVICE DRIVER FRAMEWORK : File Operations

132 LatticeMico32 Software Developer User Guide

Table 11 lists only those functions required for file operations. Refer to Table 1
on page 46 for a comprehensive list of function implementations required by
the Newlib C library.

The flow for standard C I/O operations originates at the Newlib C library level,
which then calls the appropriate system call implementation to achieve the
expected functionality. The LatticeMico File Service is a minimal, lightweight
implementation of a system-level file device management layer. This service
manages the list of available devices that support file operations. It also
implements a basic “file” concept, as described in this section.

The system call functions are implemented in a separate file per function,
allowing you to modify their implementation. The source files listed in Table 11
are part of LatticeMico32 microprocessor service source files and can be
found in the LatticeMico32 microprocessor component software source folder.
The core implementation of file devices management and file management
can be found in the MicoFileDevices.c source file.

File Device and LatticeMico File Service
A device that supports file operations, as summarized in Table 11, is called a
file device. A file device must implement the functionality summarized in
Table 11 and explained in “Developing File Device Drivers” on page 137 for

Table 11: System Call Source Files and Functionality

System Call Source File Expected Functionality

_exit MicoExit.S Exits a program without cleaning up
files.

_close MicoFileClose.c Closes a file.

_fstat MicoFileStat.c Gives status of an open file.

i_satty MicoFileIsAtty.c Queries output stream to see if it is a
terminal.

_link Not supported Establishes a new name for an
existing file.

_lseek MicoFileSeek.c Sets position in a file.

_open MicoFileOpen.c Opens a file

_read MicoFileRead.c Reads from a file.

_sbrk MicoSbrk.c Increases program data space.

_unlink Not supported Remove a file’s directory entry.

_write MicoFileWrite.c Writes a character to a file.

DEVICE DRIVER FRAMEWORK : File Operations

LatticeMico32 Software Developer User Guide 133

the file device to be used by LatticeMico File Service for file operations.
Figure 103 shows how the various software components layer themselves to
provide end-to-end file operations support.

A file device can register itself with LatticeMico File Service using the function
shown in Figure 104.

Figure 103: Component Layers for File Operations Support

DEVICE DRIVER FRAMEWORK : File Operations

134 LatticeMico32 Software Developer User Guide

As part of file device registration, a pointer to a valid MicoFileDevice_t
structure is passed as an argument. This structure must remain valid for the
duration of the program since the LatticeMico File Service repeatedly
accesses it.

This structure description is provided in the example code shown in
Figure 105:

This registration information contains a pointer to the MicoFileFnTable_t
structure, which provides LatticeMico File Services access to the registering
device’s file operations functions. The device must implement only the desired
file support functionality that it intends to serve. It can leave the rest of the

Figure 104: Registering a File Service

Figure 105: st_MicoFileDevice_t Structure Description

DEVICE DRIVER FRAMEWORK : File Operations

LatticeMico32 Software Developer User Guide 135

functions unimplemented and mark their entries in this structure, described
following, with a 0 value.

The LatticeMico File Service function calls, invoked by the Newlib C library,
look up appropriate devices based on the file names and call the registered
device’s function as provided in the registration data, providing end-to-end file
operations support.

Newlib C library’s _open function invocation expects an integer return value
that represents an “opened file.” If file operations are to support the concept of
a "file" on the interface between LatticeMico File Service and the registered
file components, there must be information that is unique per “open”
invocation.

The MicoFileFnTable_t structure is illustrated in Figure 106.

This unique information can then be used for the other file operations, such as
the read, write, and close operations. For example, it can help the file
components recognize which “file” is being operated on, especially if a
component can open multiple “files” simultaneously. For example, a UART
operating as a simple I/O device does not support the concept of multiple files
and it does not need to “open” a file or “close” a file. On the other hand, a full-
featured file system typically supports concepts of multiple files, so it must
know on which file the operations are being performed.

The LatticeMico File Service provides this unique, per-file information through
the MicoFileDesc_t pointer parameter in the file operations routines
implemented by the file device. The st_MicoFileDesc_t structure is shown in
Figure 107.

Figure 106: MicoFileFnTable_t Structure

DEVICE DRIVER FRAMEWORK : File Operations

136 LatticeMico32 Software Developer User Guide

The st_MicoFileDesc_t structure is allocated by the LatticeMico File Service
on a file-open function call. A pointer to it is provided as an argument to the
file device function calls, allowing the devices to uniquely identify the file on
which the function must operate. The LatticeMico File Service maintains an
internal one-to-one mapping between the integer file identification that it
passes to Newlib C library and the file descriptor parameter that it allocates.

This file descriptor has two parameters, void *priv and void *pData, which the
file device can use to maintain the file-specific information.

Maximum File Descriptors
The LatticeMico File Service allocates static array for available file
descriptors, allowing accurate estimate of the resources being used. The
maximum available file descriptors are dictated by the value of the
MICO_FILE_DEVICES_MAX_DESCRIPTORS macro defined in the
MicoFileDevices.h file. You can override this value by specifying an alternate
value in the C/C++ SPE Project Properties dialog box, as described in
“Setting Project Properties” on page 26.

The code in MicoFileDevices.c enforces a minimum value of 3, because it
needs a minimum of three file descriptors for the standard streams. If the
value of MICO_FILE_DEVICES_MAX_DESCRIPTORS is set to 5, three of
these descriptors are used for the standard streams, and the rest are
available for general file operations.

Figure 107: st_MicoFileDesc_t Structure

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

LatticeMico32 Software Developer User Guide 137

The code example shown in Figure 108 shows the definition of this macro in
the MicoFileDevices.h header file.

Developing File Device Drivers
This section describes the steps required to develop a file device driver. A file
device driver resides between the LatticeMico File Service and a physical
device driver, such as a UART or a disk drive. The file device driver is
responsible for handling file operation requests from the LatticeMico File
Service as appropriate for the device it supports.

The steps involved in developing a file device driver are as follows:

1. Implement file operation functions required by the LatticeMico File
Service.

2. Register the driver as an available file device with the LatticeMico File
Service.

Figure 108: MICO_FILE_DEVICES_MAX_DESCRIPTORS Macro in the

MicoFileDevices.h Header File

/***
* *
* Declares max file descriptors, that is, max opened files*
* MUST BE A MINIMUM of 3 (stdio and stderr) *
* *

#ifndef MICO_FILE_DEVICES_MAX_DESCRIPTORS
#define MICO_FILE_DEVICES_MAX_DESCRIPTORS (5)
#endif

Note

LatticeMico32Uart.c and MicoUartService.c are sample file device implementations
available for reference as part of LatticeMico software support. LatticeMico32Uart.c
implements the LM32 JTAG UART file device, and MicoUartService.c implements the
UART lookup service as well as UART file device.

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

138 LatticeMico32 Software Developer User Guide

Implementing the Operation Functions
The example code in Figure 109 shows the file operation functions required of
any file device by LatticeMico File Service.

These function pointers are part of a structure definition shown in Figure 110:

Figure 109: File Operation Function Pointers

Figure 110: Function Operation Function Pointers Structure Definition

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

LatticeMico32 Software Developer User Guide 139

Detailed information about these file operation functions is given in the “File
Device Function Handlers” on page 142. The file device does not have to
implement all the function handlers. For those function handlers not
implemented, it must set the corresponding function pointers in the structure
to zero. The rest of the function pointer elements of the structure must point to
valid function implementations.

The file device must create the file handler structure shown in Figure 110 on
page 138 and populate the elements of the structure. The file device must
keep this structure for the duration of the program because the LatticeMico
File Service can access it anytime for the duration of the program. Once this
is done, it must provide the LatticeMico File Service with this information
using the MicoRegisterFileDevice function.

Registering the Driver as a File Device
The API for registering the driver as a file device with the LatticeMico File
Service is shown in Figure 111.

Figure 111: Registering a File Device

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

140 LatticeMico32 Software Developer User Guide

The MicoRegisterFileDevice function has a single parameter, as shown in the
code example in Figure 112.

The file device must create this registration structure, populate it, and provide
a pointer to it when registering itself with LatticeMico File Service. This
structure must remain valid for the duration of the program. As part of this
registration information structure, the file device can store any device-specific
information in the “priv” member. This “priv” member is passed to the file
device’s function handlers.

All of the file device function handlers are provided with a file descriptor
pointer as an argument. This pointer is provided by the LatticeMico File
Service. It is allocated when opening a file (fopen) and freed when the file is
closed (fclose). This descriptor remains valid between fopen and fclose and is
not reused during this period, guaranteeing the file device that this descriptor
will remain unique for an open file. Once the file is closed, the LatticeMico File
Service is free to recycle this descriptor and may be used for another open
file.

Figure 112: Structure for Registering a File Device

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

LatticeMico32 Software Developer User Guide 141

Figure 113 shows the contents of this file descriptor parameter passed to the
file device function handlers.

The parameters in this file are the following:

 mode

Corresponds to the mode parameter of the fopen function call.

 flags

Corresponds to the the flag parameter of the fopen function call.

 special

Is a special parameter. Normally, when the file device’s open function
handler is invoked as part of an fopen function call, this parameter is set to
a value other than 0, 1, or 2 and should be ignored. However, if the file
device’s open function handler is invoked as part of setting up the file
device to handle a standard stream (0 for standard input, 1 for standard
output, and 2 for standard error), this parameter is set to the appropriate
standard stream identifier (0, 1, or 2). For this open invocation, the file

Figure 113: File Descriptor Parameter Passed to File Device Function

Handlers

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

142 LatticeMico32 Software Developer User Guide

name is null. This special parameter helps to determine whether the open
invocation is part of redirecting a standard stream or opening a file.

 pFileOpsTable

Is a pointer to the file device’s registered function handler table that was
provided as part of the registration structure.

 pDevice

Is the pointer to the file device’s registration structure that was provided as
part of registering the device with LatticeMico32 file system.

 priv

Is a pointer to the file device’s device-specific parameter that was
provided in the registration structure as part of the file device registration
process. For example, a component such as the LatticeMico UART uses
this structure element to store the pointer to the UART instance-specific
component information structure. It is used by the LatticeMico UART file
device software routines to extract the instance-specific information when
performing file operations.

 pData

Is a structure element that can be used by the file device to store file-
specific information. For example, the LatticeMico32 microprocessor
JTAG UART uses this file-specific structure element to store the mapping
between the host development computer’s file ID and the file ID on the
LatticeMico32 microprocessor. This mapping, which is based on a per-
opened-file basis, allows the LatticeMico32 microprocessor JTAG UART
to perform file operations on multiple opened files simultaneously.

File Device Function Handlers
This section lists the file device’s function handlers that the LatticeMico File
Service uses.

open
int (*open) (MicoFileDesc_t *fd, const char *<name>);

The LatticeMico File Service invokes the open function handler when it
receives a request to open a file or a device through fopen (or open), or when
it needs the device to prepare itself for handling a standard stream.

The LatticeMico File Service strips the device name, if present, and provides
a pointer to the file name (path and name of the file) as the “name” argument
to the “open” function handler. This pointer is not valid beyond the scope of
the “open” function handler. Refer to “Usage and File Name/Device Name
Conventions” on page 101 for information on device- and file-naming
conventions.

The name of the file is provided in the <name> argument to this function. The
LatticeMico File Service handles the <filename> parameter of the C API to

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

LatticeMico32 Software Developer User Guide 143

extract the device name and the <filename> parameters. It passes only the
file name to this handler.

To keep the implementation of LatticeMico File Service small, no checks are
done on the mode and the flags. The LatticeMico File Service also does not
check to see if the requested file was already opened in an exclusive mode.
These checks are left to the file device’s open handler since not all devices
may need to perform these checks. The flag and mode parameters are stored
in the file descriptor passed as an argument to this function.

This handler must return a value of 0 if it was successfully able to open the file
(or the device itself). If it returns a value other than 0, the LatticeMico File
Service assumes that the device was not able to fulfill the open request. On a
failure, LatticeMico makes the file descriptor available for other open requests
and returns a failure to the Newlib C invocation.

If the LatticeMico File Service invokes this handler for preparing the device to
handle a standard stream, the stream ID is stored in the “special” element of
the file descriptor, and the file device must ignore the <filename>, <mode>,
and <flags> parameters of the file descriptor.

close
init (*close) (MicoFileDesc_t *fd);

The LatticeMico File Service calls the close function handler when closing a
file device as part of the fclose function call. The file device must perform any
cleanup required before file closure. Once this function call returns, the file
descriptor is made available for other open requests.

The LatticeMico File Service expects a return value of 0 for a success and a
non-zero value for a failure.

read
int (*read (MicoFileDesc_t *fd, char *buffer, unsigned int
bytes);

The LatticeMico File Service calls the read function handler when it is asked
to perform a file read operation. The file descriptor, provided as an argument
to this function, is the file descriptor provided on a successful open.

The LatticeMico File Service expects a positive value to represent the bytes
actually read by the file device. The file device can return 0 if it fails to read
any bytes and can return a negative value to signal an error.

write
int (*write) (MicoFileDesc_t *fd, const char *buffer, unsigned
in bytes);

DEVICE DRIVER FRAMEWORK : Developing File Device Drivers

144 LatticeMico32 Software Developer User Guide

The LatticeMico File Service calls the write function handler when it is asked
to perform a file write operation. The file descriptor, provided as an argument
to this function, is the file descriptor provided on a successful open.

The LatticeMico File Service expects a positive value to represent the bytes
actually written by the file device. The file device can return 0 if it fails to write
any bytes and can return a negative value to signal an error.

lseek
int (*lseek) (MicoFileDesc_t *fd, int ptr, int dir);

The LatticeMico File Service calls the lseek function handler as part of the
fseek invocation. Refer to the stdio.h header file or the Newlib C library
documentation for information on the ptr and dir parameters.

The LatticeMico File Service passes the return value to the Newlib C caller.

stat
int (*stat) (MicoFileDesc_t *fd, struct stat* buf);

The LatticeMico File Service calls the stat function handler when requested by
the Newlib C library’s stat invocation. Refer to the Newlib C library
documentation for information on the stat structure parameter.

isatty
int (*isatty) (MicoFileDesc_t *fd);

The LatticeMico File Service calls the isatty function handler when requested
by the Newlib C library implementation. This function should return a value of
0 or 1 to indicate whether the device is a terminal device (1) or not (0).

LatticeMico32 Software Developer User Guide 145

Chapter 5

Managed Build Process and
Directory Structure

The managed build process uses input user application code files and files
associated with the targeted platform to build an output executable for that
platform. It follows a specific directory structure for managing the different
types of files. It automatically generates certain application source files that
are specific to the platform and to its target application.

This chapter focuses on the process steps, file inputs, file outputs, and
directory structure associated with the managed build flow and the installation
of the LatticeMico System software. Besides giving you insights into how the
managed build process works, this information is required if you wish to add
any user-defined components to your platform using Mico System Builder
(MSB).

Creating Managed Build Applications
The LatticeMico C/C++ managed build process provides a framework for
developing software applications targeting a LatticeMico32 microprocessor.
The build process examines the platform definition that is specified in the
.msb file generated by Mico System Builder (MSB) and extracts component-
specific device-driver information, if present, in addition to memory
information specified for generating appropriate linker scripts. It uses this
information to automatically generate platform-specific source code for
platform initialization.

This framework also generates the necessary makefiles for building the
system’s platform library, which consists of startup and helper routines for the
microprocessor, as well as specified components, and the makefiles needed
for building the application.

The LatticeMico C/C++ managed build environment does the following:

 Extracts device driver information from instantiated components

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

146 LatticeMico32 Software Developer User Guide

 Creates a device-driver structures header (DDStructs.h) file and
component instance-specific device-driver structure instances based on
that header file in the device-driver structures source (DDStructs.c) file.
The DDStructs.c file creates information about the components that are in
the .msb file available to the C application and driver code. It also
generates a device-driver initialization source (DDInit.c) file that contains
the initialization sequence.

 Creates and manages required makefiles

 Creates a default linker script by identifying memory components in the
platform

LatticeMico C/C++ Project Build Flow
This section outlines the steps in the managed build process and describes
the directory structure and the relevant contents of the generated folders
created by the build.

To clarify the build flow, a build example is provided in this chapter. It is based
on the following information:

 LatticeMico C/C++ managed build project name: MyProjectName

 LatticeMico32 project folder: <user_dir>\MyProjectName

 LatticeMico32 platform name: PlatformE

 LatticeMico32 build configuration name: Debug

 Application source code file name: LEDtest.c

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

LatticeMico32 Software Developer User Guide 147

The Build Process
The LatticeMico managed build process is centered on information contained
in the .msb file generated by MSB as part of platform generation. Figure 114
illustrates the steps in the process of building an application from the .msb file
that you initially create in MSB.

All of the steps presented in Figure 114, particularly 2 through 7, do not
necessarily occur in the order in which they are shown. They are presented in
the manner shown for illustrative purposes.

These steps occur when building or rebuilding your project. In the C/C++
perspective, you build a project by choosing Project > Build Project. See
“Understanding the Build Process” on page 24 and “Building Your Software
Project” on page 25 and for more details.

Figure 114: Managed Build Process Diagram

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

148 LatticeMico32 Software Developer User Guide

Build Directory Structure
The folder in which the C/C++ SPE project is saved cannot reside at the same
directory level as the folder in which the MSB project is saved. The C/C++
SPE folder can reside at a higher or lower directory level than the MSB project
folder.

LatticeMico C/C++ SPE splits a project build into two parts: the application
build and platform library build. The platform library build outputs a platform
library archive (<platform>.a) file that is referenced by the application build. It
enables you to override any default software implementation by providing
your own source file as part of the application build. Additionally, it helps
maintain the demarcation between your source files and the device library
source files that are used automatically by the software.

Figure 115 shows the top-level outline for the project, as viewed within the
C/C++ perspective’s Projects view, after performing a build.

The Binaries and Archives folders in the Projects view do not actually exist in
the project folder on the hard disk but contain certain files that are used by the
project and are accessible here. Specifically, the Archives folder contains a
platform library archive, and the Binaries folder contains an executable .elf
file.

Figure 116 on page 149 shows how this top-level application structure in the
Project view as shown in Figure 115 maps to the to the actual file system on
your hard disk at the project folder level, that is, MyProjectName in the
example.

Figure 115: Top-Level Application Structure Outline

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

LatticeMico32 Software Developer User Guide 149

C/C++ Perspective Project Folder File Contents
This section introduces you to the actual contents on your hard disk of what is
represented in the project folder that is viewable in the C/C++ perspective’s
Projects view. Figure 116 shows the directory structure that you would view in
Windows Explorer, in contrast to similar information on project content that
you will view in the C/C++ perpective’s Projects view, as shown in Figure 115.

The project folder contains an application output (debug) folder, a platform
library folder, and various project information and user files.

Application Output Folder
The application output folder, named debug in Figure 116 on page 149,
contains the files that LatticeMico C/C++ SPE generates as it builds a
particular software configuration, such as the final executable and compiled
and assembled object files. The name of this folder corresponds to the name
of a build configuration currently being used. If you switch between multiple

Figure 116: Project Folder Contents

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

150 LatticeMico32 Software Developer User Guide

build configurations, multiple directories are generated, with each named for
the chosen build configuration. Figure 117 shows the contents of the
application output folder.

The application output folder contains the following files:

 Application build makefiles: These makefiles enable the building of the
application.

 drivers.mk is similar to the drivers.mk makefile used by the library
build. It includes component makefiles that provide header file relative
path information for your source files. It also contains information that
identifies driver sources that must be built as part of the application.

 makefile is the application build makefile. It pulls in other makefiles
that allow the generation and build of the platform library. It is
responsible for generating the final executable image. This file is
automatically generated and should not be modified.

 subdir.mk identifies user sources contained within the project folder,
as well as subdirectories in the project folder. It is automatically
generated and maintained by Eclipse/CDT.

 Application executable is a result of linking the application and the
platform library object file. It is an executable in ELF format that can be
downloaded and executed by using the GNU debugger. For each build
configuration, there is a unique application executable in the
corresponding application output folder. If this application is targeted to

Figure 117: Application Output Folder Contents

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

LatticeMico32 Software Developer User Guide 151

another platform, the application executable and all associated files will be
overwritten.

 Application object files are your source object files that have been
compiled and assembled from their source C files. Figure 117 shows a
single object file, LEDTest.o, in the directory structure that corresponds to
its single source file as part of the application. If source subfolders are part
of the project folder, the build process will contain similarly named folders
containing object files generated from the source files that are present.

 Platform library object files are grouped into a subfolder that has the same
name as the application output folder, for example, debug. They are put
into this subdirectory to separate them from the application files in this
directory structure. This folder contains the following files:

 Platform library object (.o) files are the compiled outputs of the library
source files. As explained earlier, these library source files are
contained in the platform library folder.

 Platform library archive (.a) file is derived from the platform library
object files. The name of this archive file is automatically generated,
prefixed with the “lib” string, with the root of the name corresponding to
the name of the selected platform. This archive file is used when
linking the application executable to resolve platform functions used
by the application.

Platform Library Folder
The platform library folder contains the following:

 Source code files relevant for software support for the components
specified in the platform

 Makefiles for building the project library archive (<platform_name>.a)
file

 Makefiles that are referenced by the application makefile. These
makefiles provide the following information to the application makefile:

 Compiler flags that are activated when the following components
are selected: hard multiplier, barrel shifter, sign-extend unit, and
divider. These automatically activated compiler flags prevent you
from having to manually set the appropriate compiler flags based
on the CPU configuration.

 Linker script selection (that is, the default or user-defined)

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

152 LatticeMico32 Software Developer User Guide

As shown in Figure 118, the platform library folder (PlatformE in the example)
contains a subfolder named debug, the name of the build configuration used
for this example. This folder contains the platform library contents, source,
makefiles, and linker scripts.

The contents of the platform library folder are dynamically created and
populated and should not be modified. The platform library folder and its
associated contents are generated when you build the project for the first
time.

The files and subfolders in the platform library folder are as follows.

 The build configuration folder (or debug folder in the example) contains all
the files specific to that particular build configuration. As you would
expect, these files can differ between build configurations that you might
create in your project.

Figure 118: Platform Library Directory Structure

platform E

debug

drivers.mk

inherited_settings. mk

linker.ld

linker_settings.mk

makefile

platform_rules.mk

settings.xml

.c/.s

*.h

ddinit.c

ddstructs.c

ddstructs.h

crtoram.s

Platform library directory

Build-configuration platform library output
directory

Makefile that identifies peripheral
makefiles for library build

Build settings inherited from application
build settings

Makefile identifying linker script to use

Makefile for building platform library

Platform build variables inherited from
application settings

Default linker script for this platform

Platform library build-settings file

Platform-specific driver sources

Platform-specific driver header files

Driver initialization source file

Peripheral instance-specific data
structures

Peripheral-specific data structures

LatticeMico boot/startup assembly source
file

system_conf.h System configuration manifest header file

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

LatticeMico32 Software Developer User Guide 153

 The platform-specific component device driver source and header files
are either copied from the components directories in the installation path
or are automatically generated. The copied files, based on the .msb file,
are described in the “Platform Library-Generated Source Files” on
page 155. The DDinit.c file is an example of a file that is automatically
generated. All platform library sources become part of the application
project, aiding debug and source visibility.

 The project settings .xml file contains information about the parent project
and its settings, as well as information on the platform referenced by the
parent project. It is used to derive the makefiles for the platform library.

 The default linker script, linker.ld, is the default linker script for the
particular platform or project combination and can be used as a starting
point for creating a custom linker script file. The linker sections identified
in this script are derived from the platform settings (user.pref) file.

 The makefiles are necessary for building the platform library, as well as for
providing information to the application build. These makefiles facilitate
building the application through the LatticeMico C/C++ SPE and the
LatticeMico Cygwin shell. The platform library can be built independently
of the application, using the LatticeMico Cygwin shell once the contents
are populated. The following points provide a summary of the relevant
makefiles:

 makefile is the platform library makefile. It contains the commands that
define the targets, rules, and dependencies that tell the make utility
how to construct the software build from its sources.

 drivers.mk includes relevant component makefiles. These component
makefiles identify the sources and paths for the corresponding
component device drivers. This makefile is referenced only by the
platform library makefile. It is derived from information present in the
.msb file.

 inherited_settings.mk contains compiler settings derived from the
build configuration. These settings can be changed in the user
interface, as shown in Figure 12 on page 27. In addition to compiler
settings, this file also contains the location for depositing the built
platform library archive (.a) file and its associated compiled or
assembled object files. This file is referenced only by the platform
library makefile.

 linker_settings.mk identifies which linker script to use, that is, either
the default or a user-defined makefile. This file is referenced by the
application makefile and is not used by the platform library makefile. It
is derived from information present in the platform settings (user.pref)
file.

 platform_rules.mk contains compiler switches. It is referenced by the
application makefile, as well as the platform library makefile. These
compiler switches are extracted according to the microprocessor
configuration information contained in the .msb file.

If another build configuration is created and used in addition to the default
debug configuration, the managed build process generates a new platform
library for each configuration. The files for this new library all reside in the
platform library folder.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : LatticeMico C/C++ Project Build Flow

154 LatticeMico32 Software Developer User Guide

If you create a new build configuration, a new build configuration subfolder is
created in the platform library folder.

In Figure 118 on page 152, a newly generated build configuration folder would
be placed under the PlatformE folder at the same level as the debug build
configuration folder. This new build configuration folder would hold the files
specific to that particular build, its makefiles, and linker scripts. All the platform
library source files are held in the platform library folder. This single copy of
the source is used across all defined build configurations.

Perl scripts invoked from makefiles, included by the application build makefile,
generate the contents of the platform library folder. Figure 117 on page 150
shows an outline of the application output folder contents.

Project Information and User Files Folder
The project information and user files are the following:

 Eclipse/CDT project information files should not be modified:

 .cdtbuild

 .cdtproject

 .project

 User files that you create or provide as part of the project. The source files
contained in the project folder or any subfolder become part of the build
process without you having to explicitly specify them.

 Template source file, LEDTest.c, is a C programming source file.

 Template description file, LEDTest.txt, is an ASCII-formatted text file.

 The platform settings file, user.pref, contains platform information for the
platform used by this project. It is generated by the managed build
process. It dictates how the executable is targeted to your platform,
because it stores information that you set in the Platform tab in the
Properties dialog box. See Figure 14 on page 29. For example, it contains
information on your settings that tell the platform build to use the default or
a user-defined linker script in the linker section.

 The platform library folder contains platform-specific device-driver sources
for the chosen platform. It is explained in “Platform Library Folder” on
page 151. It also contains the default linker script and makefiles that are
needed for building the platform library, as well as those used by the
application build. The name of this folder, PlatformE, shown in Figure 117
on page 150, is derived from the referenced platform. If you target your
project to different platforms, there will be multiple platform library
directories that are given a name that corresponds to the referenced

Note

The user.pref file is automatically generated during the build process, so it is not
recommended that you modify a user-defined version of this file in its present
location or it will be overwritten. You should copy any custom versions of this file to
another area to maintain your user-defined preferences.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 155

platform. Refer to Figure 118 on page 152, which outlines the platform
library folder contents.

Platform Library-Generated Source Files
This section explains how platform-library-generated source files associated
with components used in the platform (for example, driver code) are brought
into the build process so that the application code that directly (or indirectly)
uses this component-specific code can be linked properly. In the managed
build process, some C source files are automatically generated and put into
the platform library folder, as shown in Figure 118 on page 152. The contents
of these source files depend on what components are in the platform being
targeted. See the section “Creating Custom Components” in the
LatticeMico32 Hardware Developer User Guide for more information on how
these files are created when you add components.

A key mechanism to enable linking of the application code properly during the
build process is the .msb file created in Mico System Builder (MSB). Each
component in the platform is represented in the .msb file. The information
about each component in the .msb file includes details about the component’s
C source files that must be included in the build process. This component
information is called the component information structure declaration and
originates from the <component_name>.xml file in the installation directory.
For more information on this component information structure declaration, see
“DDStructs.h File” on page 157.

If a component is instantiated in a platform, the contents of that component’s
.xml file are included in the .msb file.

To enhance the description of the concepts presented here, this section uses
a build example based on the following information:

 LatticeMico C/C++ Managed Build Project Name: MyProjectName

 LatticeMico32 Platform: PlatformE

 LatticeMico32 Build Configuration: Debug

There are four main source/header files whose contents are platform-specific
and are automatically generated as part of the platform library:

 DDStructs.h

 DDStructs.c

 DDInit.c

 system_conf.h

Figure 119 illustrates the following:

 In MSB, a platform is created using two instances of Component A, called
“A_1” and “A_2,” and one instance of Component B, called “B_1.”

 Steps 1 and 2 are performed by the MSB tool when the .msb file is saved.

 ComponentA.xml information is copied twice into the .msb file.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

156 LatticeMico32 Software Developer User Guide

 ComponentB.xml information is copied into the .msb file.

 Additional information is also added into the .msb file, for example,
how the components are connected in the platform.

 During the managed build process, steps 3, 4, and 5 are completed.

 All the C files on the right in Figure 119 are automatically generated
and are deposited into your platform folder, along with your .msb file.
The device driver structures header and source files, DDStructs.h and
DDStructs.c, respectively, derive information from attributes assigned
to them during component definition.

 The DDStructs.c file is generated according to the contents of the
DDStructs.h file but information is created on the basis of unique
component names relative to this construct.

 The device driver initialization source file, DDInit.c, is generated
according to initialization routines for each component that are
designed during component definition.

Figure 119: Component Information Flow to Platform Library Files

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 157

 The system configuration C header file, system_conf.h, declares
component attributes as manifest constants according to the
component specification for the components in the platform.

DDStructs.h File
The device driver structures header (DDStructs.h) file is the main header file
for any managed C/C++ application. It is also referenced by device-driver
implementations. It defines platform-specific information, such as the CPU
clock frequency and component-specific information structures. This
information is extracted from the .msb file.

The DDStructs.h file contains the following information:

 MICO32_CPU_CLOCK_MHZ macro defines the CPU clock frequency.
This information is extracted from the .msb file.

 Component information structure declarations are specified as part of the
.xml file. MSB copies this information into the .msb file. The information is
then extracted from the .msb file by the managed build process and
translated as C structure definitions that appear in the DDStructs.h file.
Each unique component has its own unique component information
structure defined. As shown in the sample DDStructs.h file in Figure 120,
the LatticeMico timer and the LatticeMico GPIO components have their
own component information structure definition. For multiple instances of
the same component, the build ensures that there are no duplicate
structure definitions.

 Component instance declaration: Through the extern statement, the
header file declares the presence of an information structure for each
component instantiated in the platform. For example, in the DDStructs.h
file shown, the platform has a timer named “timer.” Through extern, the file
declares that a definition exists for the timer_timer instance of the
st_MicoTimerCtx_t structure. See Figure 120. The actual definition of the
instance of this structure is in the DDStructs.c file.

If a given component has multiple instances, the build process defines
and declares uniquely named instances of the same structure type. This
process relies on unique names for each instance of a given component in
a platform. This rule is enforced by MSB when creating or editing a
platform.

Note

Information about the component-specific information structure and initialization
function information originates in the <comp_name>.xml file. This information has
been copied into the .msb file when the platform was created in MSB. The
information presented is subject to change in future releases of MSB.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

158 LatticeMico32 Software Developer User Guide

Figure 120: Sample DDStructs.h File

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 159

DDStructs.c File
Figure 121 shows a sample device driver structures source (DDStructs.c) file
corresponding to the DDStructs.h file shown earlier. The DDStructs.c file
contains instance-specific component information structures. The build
process populates the structure data on the basis of how that component
instance was configured in MSB. For more details on this mechanism, see the
section “Creating Custom Components” in the LatticeMico32 Hardware
Developer User Guide..

The structure instances have the same name as those declared in
DDStructs.h and are generated by the same Perl script, which precludes
compilation issues. Since each structure has a unique name, the platform can
include multiple instances of the same component, and the build process
extracts and populates the information for these structures according to the
configuration of the platform. In the sample DDStructs.c source file in
Figure 121, you can see how this file uses the the timer instance information
that it derived from the DDStructs.h file by comparing it to the sample
DDStructs.h file shown in Figure 120.

The automatically generated DDInit.c file implements the LatticeDDInit
function, which resets the CPU. It is described in “DDInit.c File” on page 160.
If a component has an initialization function to be called at reset, it is called
from the LatticeDDInit function. This LatticeDDInit function is called by the
boot-up process as part of CPU reset. It allows the platform library to call the
component instance initialization routines as part of boot-up.

Figure 121: Sample DDStructs.c File

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

160 LatticeMico32 Software Developer User Guide

DDInit.c File
As noted in the last section, the device driver initialization source (DDInit.c)
file contains the LatticeDDInit function. The LatticeDDInit function calls the
initialization function for each component instance in the target platform.

The managed build process automatically creates an information structure for
each component instance. An initialization routine name is defined in the .msb
for each component type from the information that is specified in the
<comp_name>.xml file. The LatticeDDInit function is automatically generated
so that it calls these initialization routines for each component instance, using
the component instance's information structure defined in DDStructs.h.

During boot-up, the DDInit.c file is called by crt0 as part of CPU reset in the
DDStructs.c file, which tells the platform library to call the component instance
initialization routines. See “LatticeDDInit” on page 70 for more details on the
LatticeDDInit function.

The build process uses the .msb file to create the DDInit.c file. This routine
takes a pointer to the instance-specific component instance information
structure as its parameter, allowing the same initialization routine to be
invoked multiple times for multiple instances.

After invoking the component initialization routines, LatticeDDInit calls the int
main(void) function that you must implement. This int main(void) function is
the starting point of your code.

Figure 122: DDInit.c Source Code Sample

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 161

System_Conf.h File
The system configuration C header file, system_conf.h, contains C syntax
manifest constants for each component’s attributes as configured in MSB.
This information is extracted from the platform specification file for the
platform chosen for the C/C++ SPE project. The system_conf.h file is
overwritten during software builds, so it should not be modified.

The system_conf.h file is generated by a Perl script function in the
msb_mdk_subs.pm Perl module file located in the /micosystem/cygwin/lib/
Perl5/5.8/ folder. The Perl function extracts the following information from the
platform specification file:

 Platform attributes

 Processor attributes

 Component attributes for I/O-type components

 Component attributes for memory-type components

Platform Attributes
Figure 123 shows the platform attributes for a sample platform in the
system_conf.h header file.

Table 12 lists the platform attributes and their properties.

Figure 123: Sample Platform Attributes in system_conf.h File

Table 12: Platform Attributes

Atttribute C Type Information

FPGA_DEVICE_FAMILY String FPGA device family selection in MSB

PLATFORM_NAME String MSB platform name

USE_PLL Numeric Indicates PLL selection:

 0 means that the PLL is absent.

 1 means that the PLL is present.

CPU_FREQUENCY Numeric Indicates platform frequency, taking into
account PLL selection.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

162 LatticeMico32 Software Developer User Guide

Processor Attributes
Figure 124 shows the processor attributes in the system_conf.h header file for
a sample platform.

Table 13 lists the processor attributes and their properties. Refer to the
LatticeMico32 Processor Reference Manual for the meaning of the features
listed.

Figure 124: Sample Processor Attributes in system_conf.h File

Table 13: Processor Attributes

Atttribute C Type Information

CPU_NAME String Processor instance name

CPU_EBA Numeric Processor exception base address (reset address).

CPU_DIVIDE_ENABLED Numeric Indicates divider selection:

0 indicates the absence of a hardware divide.

1 indicates the presence of a hardware divide.

CPU_SIGN_EXTEND_ENABLED Numeric Indicates sign extend selection:

 0 indicates the absence of a sign-extend.

 1 indicates the presence of a sign-extend.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 163

CPU_MULTIPLIER_ENABLED Numeric Indicates hardware multiplier selection:

 0 indicates the absence of a hardware selection.

 1 indicates the presence of a hardware selection.

CPU_SHIFT_ENABLED Numeric Indicates hardware shift selection:

 0 indicates the absence of a hardware shift.

 1 indicates the presence of a hardware shift.

CPU_DEBUG_ENABLED Numeric Indicates selection of debug module:

 0 indicates the absence of the debug module.

 1 indicates the presence of the debug module.

CPU_HW_BREAKPOINTS_ENABLED Numeric Indicates selection of hardware breakpoints:

 0 indicates the absence of hardware breakpoints.

 1 indicates the presence of hardware breakpoints.

CPU_NUM_HW_BREAKPOINTS Numeric Indicates the number of hardware breakpoints. This
value is valid only if the hardware breakpoint feature is
enabled.

CPU_NUM_WATCHPOINTS Numeric Indicates the number of watch points. This value is valid
only if the debug module is present.

CPU_ICACHE_ENABLED Numeric Indicates the instruction cache selection:

 0 indicates the absence of the instruction cache

 1 indicates the presence of the instruction cache

CPU_ICACHE_SETS Numeric Indicates instruction cache set selection. This value is
valid only if the instruction cache is present.

CPU_ICACHE_ASSOC Numeric Indicates the instruction cache associativity selection.
This value is valid only if the instruction cache is
enabled.

CPU_ICACHE_BYTES_PER_LINE Numeric Indicates the instruction cache line length. This value is
valid only if the instruction cache is enabled.

CPU_DCACHE_ENABLED Numeric Indicates the data cache selection:

 0 indicates the absence of the data cache.

 1 indicates the presence of the data cache.

CPU_DCACHE_SETS Numeric Indicates the data cache set selection. This value is
valid only if the data cache is present.

CPU_DCACHE_ASSOC Numeric Indicates data cache associativity selection. This value
is valid only if the data cache is enabled.

CPU_DCACHE_BYTES_PER_LINE Numeric Indicates data cache line length. This value is valid only
if the data cache is enabled.

CPU_DEBA Numeric Processor debug port address. This value is valid only if
the debug module is included.

Table 13: Processor Attributes (Continued)

Atttribute C Type Information

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

164 LatticeMico32 Software Developer User Guide

Attributes for I/O-Type Components
I/O-type components have two types of attributes:

 Generic attributes, such as base address and size, exist for all I/O-type
components.

 Component-specific attributes, such as the UART baud rate selection in
MSB, are specific to a component.

CPU_CHARIO_IN Numeric Indicates the processor availability for the software file
input routines, such as fread:

 1 if the debug module is present.

 0 if the debug module is absent.

CPU_CHARIO_OUT Numeric Indicates the processor availability for the file output
routines, such as write or fprintf:

 1 if the debug module is present.

 0 if the debug module is absent.

CPU_CHARIO_TYPE String Constant value set to “JTAG UART”

Table 13: Processor Attributes (Continued)

Atttribute C Type Information

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 165

Figure 125 shows sample UART component attributes in the system_conf.h
header file.

Naming Conventions The attributes are in the following format:

#define <INSTANCE_NAME>_<ATTRIBUTE_NAME>

 <INSTANCE_NAME> is the name of the component instance, in capital
letters.

 <ATTRIBUTE_NAME> is the attribute name specified in the component
description file for the component, in capital letters.

Generic Attributes for I/O-Type Components Table 14 lists the generic
attributes for all I/O-type components.

Figure 125: Sample UART Component Attributes in system_conf.h File

Table 14: Generic Attributes for I/O-Type Components

Atttribute C Type Information

NAME String Component instance name as specified in MSB

BASE_ADDRESS Numeric Base address assigned in MSB

SIZE Numeric Address size specified in MSB, in bytes

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

166 LatticeMico32 Software Developer User Guide

Component-Specific Attributes The component-specific attributes
specified for the component in the platform specification file for the platform
are listed as encountered. The MSB Component Attributes pane lists the
user-configurable component attributes, along with the software constant
names, that will be generated in the system_conf.h header file.

Attributes for Memory-Type Components
Memory-type components have two types of attributes:

 Generic attributes, such as base address and size, exist for all memory-
type components.

 Component-specific attributes, such as data width, are specific to a
component.

IRQ Numeric IRQ assigned in MSB

This attribute is absent for components that do not have
an interrupt line connected to the processor.

For components with an interrupt line to the processor,
the value is 0 through 31.

A value of 255 indicates the absence of an interrupt line
(reserved for future interpretation of this field).

CHARIO_IN Numeric Indicates if the component’s description file has marked
this component available for character (file) input
operations.

 0 means this component is not marked as available
for character input operations.

 1 means this component is marked as available for
character input operations.

CHARIO_OUT Numeric Indicates whether the component’s description file has
marked this component available for character (file)
output operations.

 0 means this component is not marked as available
for character output operations.

 1 means this component is marked as available for
character output operations.

CHARIO_TYPE String Represents the character I/O type as specified in the
component specification (for example, JTAG UART or
RS-232 UART).

This attribute is present only if the component is
marked available for either input or output.

Table 14: Generic Attributes for I/O-Type Components (Continued)

Atttribute C Type Information

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 167

Figure 126 shows a sample of the flash component attributes in the
system_conf.h file.

Naming Conventions The attributes are in the following format:

#define <INSTANCE_NAME>_<ATTRIBUTE_NAME>

 <INSTANCE_NAME> is the name of the component instance, in capital
letters.

 <ATTRIBUTE_NAME> is the attribute name specified in the component
description file for the component, in capital letters.

Generic Attributes for Memory-Type Components Table 15 lists the
generic attributes present for all memory-type components.

Figure 126: Sample Flash Component Attributes in system_conf.h File

Table 15: Generic Attributes for Memory-Type Components

Atttribute C Type Information

NAME String Component instance name as specified in MSB

BASE_ADDRESS Numeric Base address assigned in MSB

SIZE Numeric Address size specified in MSB, in bytes

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

168 LatticeMico32 Software Developer User Guide

Component-Specific Attributes The component-specific attributes
specified for the component in the platform specification file for the platform
are listed as encountered. The MSB Component Attributes pane lists the
user-configurable component attributes, along with the software constant
names, that will be generated in the system_conf.h header file.

Component Software Elements
This section describes all of the information that a component must have to be
used in the MSB tool and by the managed make project.

As previously stated, the build process automatically generates several
C/C++ files whose content is determined by which components are defined in
the platform and how they are configured. To do this, the process uses the
.msb file that you created in MSB. However, the component-specific
information in the .msb file originates in the .xml files that exist for each type of
available component.

The following information is necessary for MSB and the managed make utility:

 <comp_name>.xml files, which exist for each element and reside in the
..\components\<comp_name> folder in your project. Each .xml file
contains reference information on component initialization routines and a
component information structure declaration that provides details about
the component’s source files, which are later picked up in the .msb file
when a platform definition is created. For more information on this
component information structure declaration, see “DDStructs.h File” on
page 157.

 Device-driver files, (.c, .h) are the source files that contain driver code that
is compiled into object files during the software build. Component-specific
APIs are contained in these component source .c and .h files. You can
also consider the .s and .S source assembly files as driver code files.

IS_READABLE Numeric Indicates whether the memory component is readable
by the processor without software support:

 0 indicates that the memory is not readable.

 1 indicates that the memory is readable.

IS_WRITABLE Numeric Indicates if the memory component is writable by the
processor without software support:

 0 indicates that the memory is not writable.

 1 indicates that the memory is writable.

Table 15: Generic Attributes for Memory-Type Components (Continued)

Atttribute C Type Information

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 169

Information Structure Specification
As mentioned previously, the managed build process extracts component
instance-specific information from the .msb file, creates specified structures,
and calls specified initialization routines that originate from the .xml file.

Figure 127 depicts a typical directory structure for a Mico System Builder
(MSB) component residing in the top-level components repository folder.

The example used for this section is the LatticeMico timer device. In
Figure 127, the timer component has two main subdirectories, drivers and
RTL. The drivers folder contains software support for LatticeMico timer
component, and the rtl folder contains RTL support.

The timer folder contains a single file, timer.xml. This .xml file is the timer
component description file that contains RTL instantiation and GUI
information for MSB, as well as component information structure information.
In the .msb file, this component instance has a Parms section. The values for
the attributes in the Parms section were defined when the platform was
created in MSB.

The build looks in the component’s Parms section of the .msb file for a
parameter with a name that matches the value of the attribute value. The
value of this parameter is used as the initial value for this element of the
structure variable. For example, for the timer instance in the .msb, there is a
parameter named “BASE_ADDRESS” in its Parms section. If this parameter
had a value of 0x80000080, this value would be the initial value for the
element “base” in the timer information structure variable in the DDStructs.c
file. Information structure element names are associated with parameter
names, so that when a parameter is set in MSB, the correct information
structure element is assigned that value.

Figure 127: LatticeMico Timer Component Folder Directory Structure

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

170 LatticeMico32 Software Developer User Guide

For more informaton on designing components for the LatticeMico32
microprocessor and structural details of the files associated with this process,
see the section “Creating Custom Components” in the LatticeMico32
Hardware Developer User Guide.

Source Code Organization
The previous section described how a component’s instance information in a
platform definition is transferred to the generated platform library DDStructs.c,
DDStructs.h, and DDInit.c source files. Typically a component that defines a
component information structure has some software support in the form of
source files and header files that provide device driver implementation, in
addition to any services.

For example, the LatticeMico timer component provides easy-to-use API
routines for manipulating the timer. The UART component provides a device-
driver implementation that uses UART-specific component instance
information for transfer of data over an RS-232 link. In addition, the UART
component also provides support for standard input/output redirection.

In a mature project, the individual component directories—for example, the
.\components\timer subfolder—appear in both the micosystem installation
folder and also in your project C folder. After the platform generation process
in MSB, the timer component subfolder and all of its contents are copied into
your platform folder’s directory structure. You will not see the timer.xml file in
the platform folder’s directory structure.

The component-specific source files must be located in the drivers directory
or in subdirectories in the drivers folder of the component folder. In addition,
the drivers folder must contain a makefile named peripheral.mk. Makefiles
with other names are not processed. Figure 128 shows a sample drivers
folder’s directory structure for LatticeMico timer component. This figure is an
extension of the LatticeMico timer component directory structure.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 171

Figure 128 shows the directory structure for LatticeMico timer component as
part of the components folder under the LatticeMico installation folder.

As part of platform generation (PlatformE in the current context), MSB
generates the directory structure by copying the relevant RTL and device-
driver directories under the components folder. In Figure 128, this example
component folder is components\timer. If you compare the directory
structures shown in Figure 128 and Figure 129, the .xml files are not copied
across directories. Instead, the component description file contents are
contained in the .msb file (PlatformE.msb).

It is this .msb file, PlatformE.msb, that the C/C++ SPE managed build
inspects to identify the relevant software components, that is, the structures
for DDStructs.c and declarations in DDStructs.h, on the basis of the
component configuration defined in the .msb file.

In addition, since the .msb file contains references to the timer component, it
inspects the timer component’s drivers folder in the directory structure created
by MSB (shown in Figure 129). It copies all the sources and header files that it
encounters in the drivers folder to the software project’s platform library folder,
as shown earlier in Figure 117.

Figure 128: LatticeMico Timer Component Software Files

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

172 LatticeMico32 Software Developer User Guide

The C/C++ SPE managed build also inspects the timer component’s drivers
folder for peripheral.mk. If it finds a peripheral.mk file, it includes this makefile
in the application build’s drivers.mk and the platform library’s drivers.mk file.
These drivers.mk makefiles identify the sources that must be built as part of
the platform library build and those that must be built as part of the application
build.

The C/C++ SPE managed build process copies the files found in the drivers
folder, other than the makefile, into the platform library folder of the project
being built.

Though peripheral.mk is a standard makefile, it must contain only that
information that is absolutely necessary. It cannot not use any other symbols
or define other rules. Figure 130 shows the LatticeMico timer’s peripheral.mk
makefile.

Figure 129: Directory Structure Created by MSB

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

LatticeMico32 Software Developer User Guide 173

Here is a comprehensive list of variables that can be used in the
peripheral.mk makefile:

 LIBRARY_C_SRCS

Use this variable to identify C sources that must be built as part of the
library build process.

 LIBRARY_ASM_SRCS

Use this variable to identify assembly source files (with an .s or .S file
extension) that must be built as part of the library build process.

 LIBRARY_CXX_SRCS

Use this variable to identify C++ sources that must be built as part of the
library build process.

 APP_ASM_SRCS

Use this variable to identify assembly source files (with an .s or .S file
extension) that must be built as part of the application build process.

 APP_CXX_SRCS

Use this variable to identify C++ sources that must be built as part of the
application build process.

 APP_C_SRCS

Use this variable to identify C sources that must be built as part of the
application build process.

Figure 130: Timer Makefile

#---
Identify source paths for this device’s driver sources,
compiled when building the library
#---
LIBRARY_C_SRCS += MicoTimer.c \

MicoTimerService.c

LIBRARY_ASM_SRCS +=

Note

Ensure that you add the “+=” symbols to your code for the keywords just shown , as
demonstrated in the LatticeMico timer makefile example in Figure 130. The C/C++
SPE build process generates only those components’ peripheral.mk files that have a
corresponding component instance information structure.

MANAGED BUILD PROCESS AND DIRECTORY STRUCTURE : Platform Library-Generated Source Files

174 LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide 175

Chapter 6

Advanced Programming Topics

This chapter introduces you to advanced programming topics, for example,
linker script customization, software deployment, conversion of application .elf
files to binary, and boot copier generation.

Linker Script and Memory Sections
The linker is responsible for combining multiple object files into a single ELF
executable. In order to create a single ELF executable, it resolves cross-
references between the different object files, groups together similar sections
into one contiguous location, arranges for these sections to be loaded at the
correct addresses in memory, and generates the necessary header
information at the start of a file that allows it to be run.

Some sections in a LatticeMico ELF executable are predefined and hold
specific program information. The most critical of these sections, at least from
a software developer’s perspective, are discussed below.

.text This section contains program instructions that will be executed by the
microprocessor. This section can be configured for one of three scenarios:

 Load and execute in volatile memory

 Load and execute in non-volatile memory

 Load in non-volatile memory and execute in volatile memory.

.rodata This section contains read-only data, which means that the data is
not modified by the executable at runtime. This section can be configured for
one of three scenarios:

 Load and execute in volatile memory

 Load and execute in non-volatile memory

ADVANCED PROGRAMMING TOPICS : Linker Script and Memory Sections

176 LatticeMico32 Software Developer User Guide

 Load in non-volatile memory and execute in volatile memory.

.bss This section contains read/write data that is initialized to zero at
runtime. This section can be configured for one of two scenarios:

 Load and execute in volatile memory

 Load in non-volatile memory and execute in volatile memory.

.data This section contains initialized (non-zero) data that is modifiable at
run time. This section can be configured for one of two scenarios:

 Load and execute in volatile memory

 Load in non-volatile memory and execute in volatile memory.

In addition, the program might contain a stack that is used to store register
values across function calls. Of all the aforementioned sections, the
LatticeMico C/C++ SPE managed build process allows a software developer
to select the memory locations for the placement of ELF sections .text,
.rodata, and .data. There are two memory addresses associated with these
three sections. The first is the virtual memory address (VMA), which is the
address the section will have when the executable is running. The second is
the load memory address (LMA), which is the address in memory where the
section will be loaded. In most cases, the two addresses will be the same. An
example of when they might be different is when a data section is loaded into
ROM and then copied in to RAM when the program starts executing. In this
case, the ROM address would be the LMA and the RAM address would be
the VMA.

You can use the lm32-elf-objdump utility to obtain information on various
sections and their placements. See “Running the Software from the
Command Line” on page 42 and Table 26 on page 294 for usage and valid
options for the lm32-elf-objdump utility.

The LatticeMico C/C++ managed build process generates a default linker
script, linker.ld, that encapsulates the user-provided placement information for
the .text, .rodata, and .data sections of the executable. The placement of the
.boot and .bss sections is still controlled by the managed build process to
ensure that a valid executable is created by the linker script.

Table 16 on page 177 shows an example that articulates the legal placement
combinations for .text, .rodata, and .data sections, the subsequent placement
of .boot and .bss sections, and the "Linker Script" GUI settings that the user
must manipulate to achieve the required placement for these sections.

ADVANCED PROGRAMMING TOPICS : Linker Script and Memory Sections

LatticeMico32 Software Developer User Guide 177

1 Make sure that you use On-chip Memory Deployment or Multi On-chip Memory
Deployment to ensure .rodata and .data are deployed in to RAM.

2 It is not advisable to use this combination, since ROM is a non-volatile memory and
a location holding .data value must be erased prior to any write.

The C/C++ SPE allows you to select a custom linker script for the software
project through the Platform tab available in the Properties dialog box when
you right-click on the software project in the Projects view. See Figure 141 on
page 191 for details. You can use the default linker script generated by
LatticeMico C/C++ SPE managed build process as a starting point for your
custom linker script.

Table 16: Example of Legal Placement Combinations

Location of Program
Sections

(under user control)

Location of Program
Sections

(NOT under user control) User Interface

.text
.rodata or

.data .boot .bss Deploy Flag

VMA LMA VMA LMA Note VMA LMA VMA LMA Program

RO or
RW
Data

Enable
Deploy-

ment Program

RO or
RW
Data

RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM N N/A N/A

RAM ROM RAM RAM 1 ROM ROM RAM RAM RAM RAM Y Y N

ROM ROM RAM RAM 1 ROM ROM RAM RAM ROM RAM Y Y Y

RAM ROM RAM ROM ROM ROM RAM RAM RAM RAM Y Y Y

ROM ROM RAM ROM ROM ROM RAM RAM ROM RAM Y Y Y

ROM ROM ROM ROM 2 ‘ROM ROM RAM RAM ROM ROM Y Y Y

Note

To make sure the microprocessor starts executing your code on power-up, be sure to
set the exception base address (EBA) to the LMA of the .text section.

Note

The software for copying the data section from ROM to RAM is located in the .boot
section (crt0ram.S). If the software developer is creating an application executable and
corresponding custom linker script that contain any sections other than the default
sections (.boot, .text, .data, .rodata, and .bss), the developer must modify crt0ram.S in
addition to providing a custom linker script.

ADVANCED PROGRAMMING TOPICS : Software Deployment

178 LatticeMico32 Software Developer User Guide

Software Deployment
Software deployment involves placing initial code in non-volatile memory so
that a LatticeMico32 microprocessor, on FPGA configuration, can access the
code and execute it without user intervention. This initial code may be a full-
blown application or a minimal amount of base code that activates another set
of code resident in a non-volatile medium.

As noted in “Boot Sequence” on page 76, in the boot-up sequence after a
reset, the LatticeMico32 microprocessor begins to fetch instructions from the
address contained in its EBA register. The EBA register holds the exception
base address where the exception handling code starts and where the
microprocessor starts to fetch instructions from the reset exception.

To achieve deployment, the following two conditions must be met when the
FPGA powers up:

 The EBA (exception base address) register must point to a valid address
location.

 The address location pointed to by the EBA must contain the instructions
that the microprocessor will execute after reset.

For deployment, you must not use a JTAG UART. If your code uses standard
C file operations, such as printf, scanf, or fopen, your deployed code will not
work if it uses a JTAG UART as a standard I/O device or for file operations.
You can use the RS-232 UART for standard I/O operations.

The LatticeMico C/C++ SPE provides sample deployment support for booting
from the CFI parallel flash device on the LatticeMico32 development board,
as well as booting from an on-chip memory component. The GNU objdump
utility customized for LatticeMico32, lm32-elf-objdump, can provide significant
insight into your code usage.

Deployment Strategies
Following are some simple deployment strategies that are used to manage
the location of the various sections of a LatticeMico executable.

 On-chip memory deployment

The LatticeMico On-chip Memory Controller is designed as a read/write
memory component. However, it is unique in the sense that it can be
initialized as part of the FPGA configuration.

The application can be built as part of a managed build to contain all its
sections within the on-chip memory (through the managed-build process)
and can be deployed by converting the application contents to binary
format that can be used for configuring the on-chip memory components
as part of FPGA configuration.

 Multiple on-chip memory deployment

Multiple on-chip memory deployment can be used for applications that
contain multiple memory instances, including inline memories. A separate

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 179

memory initialization file is generated for each memory instance used by
the software application.

 Parallel flash deployment

The parallel flash deployment outlined in this document and demonstrated
in the LatticeMico32 Tutorial adopts the strategy in which the “main”
application is built for running from volatile memory (external volatile
memory or on-chip memory) but is stored in external non-volatile memory.
This “main” application’s run-time sections are then copied at run time by
a boot loader from non-volatile memory to volatile memory. This strategy
allows the "main" application to have all types of sections enumerated in
“Types of Sections,” including a non-zero initialized read/write data
section.

 SPI flash deployment

With the inclusion of the SPI flash component in the LatticeMico MSB, the
LatticeMico32 microprocessor can boot from a SPI flash device that is
connected to a SPI flash component. From a software standpoint, this
deployment strategy is identical to the parallel flash deployment in regard
to the linker sections and the need for a boot-loader. Depending on the
FPGA and the board layout, this deployment strategy allows the FPGA
bitstream to coexist with the microprocessor application binary.

Deploying to On-Chip Memory
You can deploy your application to a LatticeMico on-chip memory controller if
your platform contains sufficient on-chip memory in this component. After the
microprocessor is configured, it can fetch instructions from the controller if its
EBA is configured to point to the controller’s address.

When deploying to on-chip memory, consider the following:

 If you intend to run your application from on-chip memory, avoid using
microprocessor caches. Microprocessor cache implementation uses EBR
memory, so it reduces the amount of EBR memory available for the
LatticeMico on-chip memory controller. Refer to the LatticeMico32
microprocessor data sheet for an estimate on microprocessor EBR usage
if you are using debug modules.

 Do not call standard C library functions that can significantly expand your
application, such as printf or malloc function calls.

 Avoid unrolling function loops and inline function calls, because these can
increase the code size.

 Make sure that you have adequate on-chip memory for your application’s
stack space needs.

ADVANCED PROGRAMMING TOPICS : Software Deployment

180 LatticeMico32 Software Developer User Guide

Figure 131 depicts the steps involved for achieving on-chip memory
deployment.

To generate a platform that can be used for software application
deployment to on-chip memory:

1. In MSB, create a platform with the minimum required connectivity and lock
down the addresses.

2. In the MSB perspective, select a microprocessor reset address.

3. In Lattice Diamond, generate an FPGA bitstream.

4. Using C/C++ SPE and the Debugger, develop your application and debug
it.

5. Using C/C++ SPE and the Debugger, generate the memory file for on-chip
memory.

6. In Diamond, initialize the memory component.

Figure 131: On-Chip Memory Deployment Flow

Create platform with
on-chip memory

Create application

Develop and debug
application using
Debugger

Generate EBR
memory initialization
files in C/C++ SPE

Load memory
component into
FPGA bitstream

Set EBA to on-chip memory
address

Set all linker sections to on-
chip memory component

Use the on-chip memory tool
in C/C++ SPE

EBRs are initialized with
generated memory
initialization files

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 181

Establishing Minimal Platform Connectivity
For a platform to support on-chip memory deployment, it must contain an on-
chip memory component that is accessible by the microprocessor’s
instruction and data ports. These port connections allow the microprocessor
to fetch instructions from the on-chip memory component and to store and
retrieve program data.

To add the on-chip memory component and connect it to your platform, see
the following sections in the LatticeMico System Hardware User Guide:
“Adding Microprocessor and Peripherals to Your Platform” and “Connecting
Master and Slave Ports.”

Figure 132 shows the minimal platform configuration required for on-chip
memory deployment in the Editor view in the MSB perspective. The on-chip
memory component is named ProgramMemory in this example. The on-chip
memory component uses EBR blocks, so the number of EBR blocks
consumed by other components must be taken into consideration when you
determine the memory size. Synthesis will fail if the total EBR usage for the
platform exceeds the available FPGA EBR blocks. The microprocessor needs
EBR blocks for implementation, and the amount that it requires depends on
the microprocessor configuration.

Figure 133 gives example on-chip memory configuration settings in the Add
On-Chip Memory dialog box. You will not enter the name of a memory file,
since you will use the ECO Editor in Diamond to initialize this on-chip memory

Figure 132: Minimal Platform for On-Chip Memory Deployment

ADVANCED PROGRAMMING TOPICS : Software Deployment

182 LatticeMico32 Software Developer User Guide

component. You can access this dialog box by double-clicking on On-Chip
Memory in the Editor view.

Figure 134 shows a microprocessor configuration that attempts to minimize
EBR usage while still using caches. Disabling caches makes additional EBR
blocks available. Refer to the LatticeMico32 microprocessor data sheet on the

Figure 133: Add On-Chip Memory Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 183

Lattice Semiconductor Web site so that you can roughly estimate the EBR
usage in your design with regard to configuration settings.

Generating the Platform and Lock Addresses
After you select the necessary components, you must assign the platform
component addresses and interrupt priorities before you generate the
platform. Once you assign these addresses, you must lock them by following
the procedure in “Locking Component Addresses” in the LatticeMico System
Hardware User Guide.

Locking the address of a component in MSB prevents that component's
address from being changed when the platform is regenerated. Selecting the
microprocessor reset address and initializing the memory component cause
the platform to be regenerated. As an example, the final code is built to
specific component addresses. Initializing the memory component is required
to put the final code into the FPGA's configuration bitstream. The
components' addresses cannot change during that process or the final code
will not match up properly with what is defined in the platform.

See the sections “Selecting the Microprocessor Reset Address” and
“Initializing the Memory Component” in the LatticeMico System Hardware
User Guide.

Figure 134: Microprocessor Configuration for Minimal EBR Usage with Caches

ADVANCED PROGRAMMING TOPICS : Software Deployment

184 LatticeMico32 Software Developer User Guide

The software application based on this platform, once written and tested, has
address references to the components that it uses. You must lock these
addresses to prevent them from being used in the software that will be
deployed in the on-chip memory.

Selecting the Microprocessor Reset Address
After the component addresses are assigned and locked down, the
microprocessor reset address must be modified so that it points to on-chip
memory. On power-up, the microprocessor starts executing instructions from
its reset address. You define the reset address during microprocessor
configuration in MSB by using the Location of the Exception Handlers option
in the Add LatticeMico32 dialog box. This address must be aligned to a 256-
byte boundary, since the hardware ignores the least-significant byte.
Unpredictable behavior occurs when the exception base address and the
exception vectors are not aligned on a 256-byte boundary. The Location of
the Exception Handlers value is also the reset address, since the first
exception handler is the reset exception. When you set this reset address to
the on-chip memory, the microprocessor starts executing instructions from the
on-chip memory.

To set the reset address:

1. In the MSB perspective’s Editor view, double-click the microprocessor
instance in the platform to open the Add LatticeMico32 dialog box.

2. In the Settings tab, change the value in the Location of Exception
Handlers text box to the address of the on-chip memory. Figure 135 on
page 185 shows a sample Add LatticeMico32 dialog box that shows this
text box in the dialog box with a sample reset address value.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 185

3. In the MSB perspective, make sure that addresses are locked, and then
choose Platform Tools > Run Generator to regenerate your platform.
Since the addresses are locked, they will not change after platform
regeneration.

Generating the FPGA Bitstream
After generating the platform, go back into Diamond to generate the FPGA
configuration bitstream. This bitstream contains the on-chip memory
component, which will be initialized with the application binary generated in
step 6 when the FPGA powers up and is configured.

As part of step 2, the microprocessor reset address was set to the location of
the on-chip memory component. When the FPGA is configured after power-
up, the LatticeMico32 microprocessor executes instructions from the on-chip
memory component, which now contains the application code. The product is
deployed in the FPGA bitstream.

Figure 135: Modifying the Reset Address Location

ADVANCED PROGRAMMING TOPICS : Software Deployment

186 LatticeMico32 Software Developer User Guide

Developing and Debugging the Application
Once the platform and the bitstream are generated, you can develop and
debug the application that will be deployed in the on-chip memory. To do this,
it is essential that the application be built for running from the on-chip memory
component.

To set up the application to run from the on-chip memory:

1. In the C/C++ perspective’s Projects view, right-click on your project icon
and choose Properties from the pop-up menu. You can also select the
Project > Properties menu command, as shown in Figure 136.

2. In the Properties dialog box, select the Platform tab, as shown in
Figure 137.

Figure 136: Project Property Menu Option

Figure 137: Platform Tab of the Properties Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 187

3. In the Linker Script field, select the ebr on-chip memory type in the three
text box dropdown menus, since this is the type of memory being used. In
Figure 137, “ProgramMemory” appears in place of “ebr,” since the on-chip
memory component was named ProgramMemory.

Selecting this linker option locates the program it generates in the
selected on-chip memory component.

4. In the Stdio Redirection field, select RS232 (UART), not JTAG UART
(LM32), if your application uses standard C file operations, such as printf,
scanf, and fopen.

5. Click Apply and OK to implement your changes.

You can now build and debug the application, using the on-chip memory
component. If the amount of memory available is less than that required for
the application, the linker will generate error messages indicating there is
insufficient memory, in addition to other error messages.

Generating the Memory Initialization File
Once the application is debugged and ready for deployment, it must be
converted into an EBR memory initialization file.

To generate the EBR memory initialization file:

1. In the C/C++ perspective, click Tools > Software Deployment.

The Software Deployment Tools dialog box appears, as shown in
Figure 138.

2. Select On Chip Memory Deployment located at left in the list box, and
click the “New launch configuration” button on the toolbar.

Figure 138: Software Deployment Tools Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

188 LatticeMico32 Software Developer User Guide

The dialog box changes to show the Main tab and a new configuration
perspective on the right side of the dialog box.

3. Enter the name of the configuration, as shown in Figure 139.

4. Select the application by clicking the Browse button.

The Browse dialog box lists all available applications that were created.
Be sure to select the appropriate application for on-chip memory
deployment.

5. Select the appropriate C/C++ application by clicking Search Project.

The pop-up dialog box shows all available executables created for the
selected project. Be sure to select the appropriate executable.

6. Enter a name for the generated memory initialization file in the “Save
Memory Initialization As” box.

The dialog box should resemble the illustration in Figure 139.

7. Click Apply and Start.

A file is now generated in the C/C++ application folder. The name of this
file is what you entered in the Mem Ini File Name option text box. You can
now use this memory file for initializing the on-chip memory platform
component.

When you run the software, the underlying programmer utility that generates
the on-chip memory initialization file executes the following two commands in
order:

lm32-elf-objcopy.exe -O binary <ApplicationElfFile>
<Temporary.bin file>

Figure 139: Completed Main Tab of the Software Deployment Tools

Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 189

bin_to_verilog --EB --width 4 <Temporary.binfile> >
<MemoryInitializationFile.mem>

For example, in the following code:

lm32-elf-objcopy.exe -O binary mytest.elf mytest.bin
bin_to_verilog --EB --width 4 mytest.bin > mytest.mem

 Mytest.elf is the generated application that must be deployed in on-chip
memory.

 Mytest.bin is a temporary binary file that is generated by lm32-elf-
objcopy.exe.

 Mytest.mem is the memory initialization file generated by bin_to_verilog.

Initializing the Memory Component
Now you load the memory initialization file into a placed and routed FPGA
bitstream.

To implement the .mem file in a Lattice Diamond design:

1. In Diamond, choose Tools > ECO Editor or click .

2. Click the Memory Initialization tab at the bottom of the ECO Editor
window. The Memory Initialization window opens.

3. Right-click on {OCM}/ram, where {OCM} is the name of the on-chip
memory component from the LatticeMico platform, and choose Update
Initial Memory from the pop-up menu. You may also choose Edit >
Update Initial Memory. The Update Initial Memory dialog box opens.

4. In the File Format drop-down menu, ensure that Memory Format is set to
Hexadecimal.

5. In the Memory File box, browse to and select the on-chip memory
initialization (.mem) file created by LatticeMico.

6. Click Update. If sucessful, an Update Memory Initialization Succeeded
dialog box appears. Click OK.

7. Choose File > Save (file_name).ncd, or click to save the .ncd file.

8. In the Process view, double-click Bitstream File.

As an alternative to this procedure, you can use Add On-Chip Memory dialog
box shown in “Establishing Minimal Platform Connectivity” on page 181 to
initialize the memory component. However, when you use that method, you
must regenerate the platform and perform all the steps again in the Diamond
flow.

ADVANCED PROGRAMMING TOPICS : Software Deployment

190 LatticeMico32 Software Developer User Guide

Deploying to Multiple On-Chip Memory
Multiple on-chip memory deployment generates a memory initialization file for
each instance of the memory controllers that use the FPGAs on-chip memory
resources. Examples include On-Chip Memory Controller, On-Chip Dual-Port
Memory Controller, Instruction Inline Memory, and Data Inline Memory..

The example platform in Figure 140 has three memory controllers: Async
SRAM, Instruction Inline Memory, and Data Inline Memory. The software
application that runs on this platform uses both Inline memories. By using
Multi On-Chip Memory Deployment, the software developer can create
initialization files for both the inline memories that contain all the relevant
sections of the software application mapped to them.

For more information about using inline memories, refer to the “Memory
Architecture” section of the LatticeMico32 Processor Reference Manual.

Figure 140: Example Platform for Multiple On-Chip Memory Deployment

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 191

Setting up the Application
After generating the platform and bitstream, you can set the properties for the
application that will be deployed to multiple on-chip memory.

To set up the application:

1. In the C/C++ perspective’s Project view, right-click the name of your
project and choose Properties from the pop-up menu.

2. In the Properties dialog box, select Platform.

3. In the Linker Script section, select the appropriate on-chip memory type
from the three drop-down menus.

The example in Figure 141 shows the settings for using the inline
memories with the auto generated linker script. Instruction_IM and
Data_IM are the default instance names that were used in the Inline
Memory tab when the LM32 processor was added to the platform.

4. Clik OK to implement your changes.

You can now build and debug the application, using on-chip memory. If the
amount of memory available is less than that required for the application, the
linker will generate error messages indicating that there is insufficient
memory.

Generating the Memory Initialization Files
Once the application is debugged and ready for deployment, the on-chip
memory initialization files can be created.

Figure 141: Platform Section with Linker Script for Inline Memory

ADVANCED PROGRAMMING TOPICS : Software Deployment

192 LatticeMico32 Software Developer User Guide

To generate the memory initialization files:

1. In the C/C++ perspective, click Tools > Software Deployment.

2. In the Software Deployment Tools dialog box, select Multi On Chip
Memory Deployment from the list on the left, and click the “New launch
configuration” button on the toolbar.

The dialog box changes to show the Main tab and a new configuration
perspective on the right, as shown in Figure 142.

3. Enter a name for the configuration.

4. Enter the project name by clicking the Browse button. Select the project
from the list in the Project Selection dialog box.

5. Click Search Project and select the appropriate executable from the list
in the Program Selection dialog box.

6. Specify a directory for saving the generated memory initialization files.

7. Specify a prefix that will identify each of the generated files.

8. Click Start to generate the memory initialization files.

A file is generated for every memory instance that is used by the software
application.

For the multiple on-chip memory example shown in Figure 142, the “init”
directory now contains separate memory files for instruction inline
memory and data inline memory. The name of each of these memory files
includes the prefix “mlt.”

Figure 142: Multi On Chip Memory Deployment Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 193

Deploying to a Flash Device
This section describes the steps required for deploying to a flash device,
followed by an introduction to the LatticeMico flash programming utility
included in LatticeMico C/C++ SPE, which automates the required steps. It is
recommended that you also refer to the LatticeMico32 Tutorial, which
provides step-by-step instructions for flash deployment.

Flash Deployment Steps
Flash memory is a non-volatile storage memory. While read accesses to a
flash device do not require any special setup from a software perspective,
erase and write operations require special software sequencing. So, for all
practical purposes in regard to microprocessor boot-up, this storage can be
treated as read-only, non-volatile memory.

For our discussion, a memory requiring special software code to perform write
operations, such as a flash memory, is called a read-only memory. A memory
component that does not require special software code to perform read/write
operations, such as an on-chip memory component or an ASRAM
component, is called a read/write memory.

Deploying the application to flash memory involves the following steps:

1. Configuring the microprocessor to boot from flash. This means configuring
the Exception Base Address (EBA) of the microprocessor to the location
in flash where the deployed application will reside.

2. Creating the “main” application binary image that will be written to flash
via software or Diamond Programmer.

3. Strapping a boot copier to the “main” application binary image. The boot
copier copies the application binary image to the target volatile memory
for execution.

Note

For flash deployment, the software developer must ensure that no file operations, such
as C/C++, printf, file open/close, etc., are done via the JTAG UART. The JTAG UART
requires a live connection to the Debugger on the PC, which is not available when an
application is deployed. All I/O operations must be redirected to the RS-232 UART
instead..

Note

The boot copier is needed only if the “main” application’s binary image from Step 2
is created with a version of LatticeMico System Builder prior to
Version 8.0. Starting with Version 8.0, the boot copier is integrated into the
applicatin’s binary image created in Step 2.

From this point forward, the boot copier of Step 2 will be referred to as “integrated”
boot copier and the boot copier of Step 3 will be referred to as “stand-alone” boot
copier.

ADVANCED PROGRAMMING TOPICS : Software Deployment

194 LatticeMico32 Software Developer User Guide

4. Programming the application image from Step 2 and optional “stand-
alone” boot copier from Step 3 to flash.

As noted at the beginning of this chapter, the program sections that are only
read at run time can reside in non-volatile memory permanently. But sections
that can be written to at run time must be moved to volatile memory before
any write operations.

The typical strategy for flash deployment involves storing the “main”
application in a non-volatile, read-only memory. The “integrated” or “stand-
alone” boot loader is also stored in the non-volatile memory. On
microprocessor reset, this boot loader is the first piece of code that the
microprocessor executes. The boot loader copies the stored “main”
application from flash memory to the appropriate read/write memory location
that is specified when the “main” application executable is generated.
Afterwards, it branches to the copied code so that the processor can start
executing the “main” application from volatile memory.

The following points in the subsequent sections explain the four-step process
demonstrated in the LatticeMico System Tutorial.

Configuring the Microprocessor to Boot from Flash
The microprocessor’s EBA must be configured to point to a valid flash
address that will contain the deployed boot copier and “main” application. The
“Location of Exception Handler” address in the MSB tab should be the same
as the “Reset Vector Address (EBA Value)” located in the C/C++ tab of the
Software Deployment Tools dialog box. This configuration ensures that the
boot copier is the first piece of code that is executed after microprocessor
reset.

Creating a “Main” Application Binary Image
The application executable that will be deployed to flash memory and
executed from volatile memory is created by setting the program’s various
sections to use volatile read/write memory for execution; and by enabling the
deployment option for the program, read-only data, and read/write data
memory sections. These settings are enabled in the Platform tab of the
Properties dialog box. See Figure 14 on page 29 for details. Once the
application executable is created, it is converted to binary format. An ELF-
format application includes sections of data that form part of the executable
image and other sections that contain information needed only by the
Debugger and not required as part of the executable image. Section data that
contributes to the executable image of the application must be extracted from
the application .elf file and put into the application binary image information.

Note

Refer to the instructions in the LatticeMico32 Tutorial for step-by-step procedures.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 195

The LatticeMico System software includes a utility, elf2data, which extracts
the necessary section data and stores it as a LatticeMico assembly language
file. This utility is located in the file path <install_dir>\micosystem\utilities. The
elf2data utility is essentially an .elf file parser that generates an assembly file.

The assembly file that elf2data generates contains the following information
as constants:

 A first 32-bit entry indicating the _reset_vector location of the application
being copied. Labeled entry_address, it is referenced by the copier code
to identify the start of the binary image of the application that is being
copied.

 A data section that contains a piece of the application binary image. The
contents of this data section go into sequential memory locations.

 Other data sections, if the application that is being copied has sections
dispersed across different memories. The contents of each data section
go into sequential memory locations.

Each data section generated by the elf2data utility has a 32-bit value
indicating the length, in bytes, of the data contained in that particular section.
This is followed by the data bytes. For multiple data sections, the sections
appear sequentially. The end of these data sections is indicated by a
terminating data section containing a length value of 0XFFFFFFFF.

To invoke elf2data, use the following syntax:

elf2data <elf_file> BinCopier.S <flash start address> <flash
end address>

Then create an ELF executable for the assembly file “Bin Copier.S”,
generated by the elf2data utility, using the following command:

lm32-elf-ld BinCopier.o --section-start .text= “.$BootAddress”
-o BinCopier.elf

where “.$BootAddress” is the location in non-volatile memory where the
application resides. This address must match the microprocessor’s EBA

ADVANCED PROGRAMMING TOPICS : Software Deployment

196 LatticeMico32 Software Developer User Guide

value, since this is the address from which the microprocessor will start
fetching instructions on power-up/reset.

This executable is then converted into raw binary format for programming to
the flash device. The command used for doing this is as follows:

lm32-elf-objcopy -O binary BinCopier.elf flashprog.bin

The output is a raw binary format file, flashprog.bin, which can now be
programmed to flash memory, using a flash programmer. This file contains the
boot copier executable (stand-alone or integrated) as well as the application’s
binary image stored as data, which can be copied by the boot copier to target
memories from the non-volatile flash memory storage.

Programming Image to Flash
Once the binary image containing the boot copier (stand-alone or integrated)
and the “main” application is ready, this binary image must be programmed to
the flash device, starting at the flash address pointed to by the
microprocessor EBA register. Once this binary image is programmed, on
reset, the LatticeMico32 microprocessor executes instructions, starting at the
address pointed to by the EBA.

Since the programmed binary image is a binary image of the boot copier
using the "main" application as its data, the LatticeMico32 microprocessor in
effect executes the boot copier that, in turn, copies the application’s binary
data to the appropriate target memory locations. Once the boot copier finishes
copying the application’s binary data, it then performs a microprocessor
branch to the starting address of the application executable. This branch
starts the execution of the "main" application.

Note

If the “main” application was compiled using a LatticeMico System Builder version prior
to 8.0, use the following sequence of commands.

elf2data <elf_file> BinData.S

The above command will create an assembly file of the “main” application’s ELF
executable, which will contain all the sections that are deployed to non-volatile
memory. This assembly file is merged with the “stand-alone” boot copier using the
following command:

lm32-elf-gcc -c BinCopier.S

Finally, an ELF executable is created that contains the merged “stand-alone” boot
copier and “main” application.

lm32-elf-ld BinCopier.o --section-start .text=”.$BootAddress”
-o BinCopier.elf

Note

The aforementioned commands are automatically generated and executed by the
GUI-based “Flash Deployment” utility. The steps were primarily shown to explain the
process of creating a flashable raw binary image of an application that needs to be
deployed to flash.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 197

The C/C++ SPE provides, as an application template, a Flash Programmer
template application.The CFI Flash Programmer template is used for
programming to parallel flash. The SPI Flash Programmer template is used
for programming to SPI flash. Like any other application, this application is
downloaded onto the platform. This template application uses the CFI flash
driver service. Since the platform used for the creation of the main deployable
application contains a flash component, this very same platform is used for
running the flash programming application. When it executes, this flash
programmer application reads the binary data contained in a file on the
computer hosting the LatticeMico C/C++ SPE and programs it to flash
memory.

LatticeMico Flash Programming Utility
LatticeMico C/C++ SPE includes a flash programming utility in the user
interface that automates the steps described in the prior section.

To use the Flash Programmer to program a flash memory:

1. In the C/C++ perspective, choose Tools > Software Deployment.

The Software Deployment dialog box now appears, with the Software
Deployment Tools screen selected.

2. Click on the Flash Deployment option in the Configurations list box at
left.

3. Click the New button.

Caution!

The SPI Flash programmer template is a software-based method for deploying an
application to SPI flash. Since this template performs erase and write operations in the
SPI flash, the following conditions must be true:

1. The SPI flash component has a version 3.0 or greater.

2. The “Control Port” of the SPI flash is enabled. See the SPI Flash User Guide for
information on how to enable the control port. Note that this port is disabled by default
when the SPI flash component is instantiated within the design.

The “SPI Flash ROM” component that is available in Lattice Mico System Builder
versions prior to 8.0 does not support erase and write operations. (This component is
deprecated starting with Version 8.0 and is replaced with a “SPI Flash” component with
a “Control Port” that allows erase and write operations to SPI Flash.) If the SPI flash
cannot be erased or written to from software, use Diamond Programmer to deploy the
application to SPI Flash instead. This is explained in the next section.

ADVANCED PROGRAMMING TOPICS : Software Deployment

198 LatticeMico32 Software Developer User Guide

The Main tab of the Software Deployment Tools dialog box now appears,
as shown in Figure 143.

The Main tab contains the following options:

 Name

Specifies the name of the current configuration.

 Project

Specifies the C/C++ SPE project application to deploy to the parallel
flash device.

 C/C++ Application

Specifies the project application (.elf file). You can click the Search
Project button to access a pop-up dialog box for selection of one of the
available applications for the specified project.

 Prepend Code Relocator (for backward compatibility only)

For projects compiled using a LatticeMico version prior to 8.0, enables
the flash programmer utility to use the provided stand-alone boot
copier and merge the application binary image with the boot copier
code. In these earlier versions, the code relocator was not built into
the application; therefore, it was necessary to prepend a separate
relocator code to the actual application.

 Platform Reset Vector Address

Specifies the target flash address to which to deploy the selected
application. The microprocessor’s exception base address (EBA)
value must correspond to this address.

Figure 143: Software Deployment Tools Flash Programmer Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 199

 Flash Programmer Application

Specifies the flash programmer application that will be used for
programming the application to flash. LatticeMico C/C++ SPE includes
a flash programmer application template as a reference design for
use.

4. Select the desired options and click Apply.

5. Click the Start button.

Deploying to SPI Flash Using
Deployment Tool
The SPI flash ROM component included in LatticeMico MSB interfaces with
an external SPI flash module. It translates WISHBONE read requests to the
appropriate SPI commands to read data from the external SPI flash module
and presents the read data to the WISHBONE data bus. This process allows
the LatticeMico32 microprocessor and other masters to treat the external SPI
flash module as a plain read-only memory.

The main advantage of SPI flash deployment is that it allows the FPGA
bitstream (or portions of it) and the microprocessor bitstream to co-exist in a
single SPI flash device. However, this is possible only if the FPGA user logic
can access the very same SPI flash device that was used for the FPGA
configuration. SPI flash deployment may impose FPGA requirements, board
layout requirements, or both, which must be considered before you design the
hardware.

This section uses the LatticeMico32 LatticeECP development board as
reference hardware since its user logic can also access the configuration SPI
flash in addition to the configuration logic. Although this section uses an
example in which the entire FPGA bitstream is contained in a single SPI flash,
the concepts and steps presented remain valid for other FPGA bitstream
deployment scenarios, such as a dual boot. The amount of available space
depends on the total SPI flash capacity and the FPGA bitstream size. The
term “LatticeMico application” refers to the initial code executed by the
LatticeMico32 microprocessor on removal of the reset signal.

Once you have a platform that includes a LatticeMico SPI flash ROM, follow
these steps to deploy the SPI flash:

1. Select the appropriate LatticeMico32 microprocessor EBA value (Reset
Exception Vector Address).

2. Generate a bootable LatticeMico application binary.

Note

For SPI flash deployment, you must not use a JTAG UART. If your code uses standard
C file operations, such as printf, scanf, or fopen, your deployed code will not work if it
uses a JTAG UART as a standard I/O device or for file operations. You can use the
RS-232 UART for standard I/O operations.

ADVANCED PROGRAMMING TOPICS : Software Deployment

200 LatticeMico32 Software Developer User Guide

3. Merge the FPGA bitstream with the LatticeMico bootable application
binary into a single SPI flash image.

4. Program the SPI flash with the SPI flash image. Make sure that your
preference file has the correct SPI pin connections to the board.

The subsequent sections highlight these steps.

Selecting the Appropriate LatticeMico EBA Value
Figure 144 shows a sample layout in the SPI flash memory.

In Figure 144, the first data portion is the FPGA bitstream that is used for
configuring the FPGA. The second data portion is the LatticeMico application
that is accessed by the LatticeMico32 microprocessor (part of the user logic)
on removal of reset, once the FPGA is configured.

Reset Vector Address (EBA Value) To avoid repeatedly generating the
FPGA bitstream each time that the EBA is modified, you must know the Reset
Vector Address (EBA value) at the beginning of the process as part of
configuring the microprocessor in the MSB. This value is the address from
where the microprocessor starts fetching instructions on removal of reset. It is
the sum of the LatticeMico SPI flash ROM base address assigned in the MSB
perspective and the offset in the SPI flash where the LatticeMico boot
application will reside. The offset depends on the FPGA bitstream size.

Offset Alignment in the SPI Flash The offset in the SPI flash must be
aligned on a word boundary. It should be a multiple of 4 so that the lower two
bits of the resulting EBA value are zero. The LatticeMico SPI flash and the
LatticeMico32 microprocessor do not support aligned accesses, and all
LatticeMico instructions are 32 bits, or 4 bytes.

Figure 144: Sample Layout in SPI Flash Memory

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 201

Generating LatticeMico Bootable Application
Binary
Once the LatticeMico application is ready to be deployed, you must add a
loader that can copy the application data to the appropriate target memories.
The application data must be converted into binary format that can then be
merged with the FPGA bitstream to form a SPI flash image. The LatticeMico
C/C++ SPE perspective provides a graphical user interface for this purpose.

To generate a bootable application binary:

1. From the C/C++ SPE perspective, choose Tools > Software
Deployment to activate the Software Deployment Tools dialog box,
shown in Figure 145.

2. Select Flash Deployment from the list of configurations, and click New.

Figure 145: Software Deployment Tools Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

202 LatticeMico32 Software Developer User Guide

The main tab of the Software Deployment Tools Dialog now appears, as
shown in Figure 146.

The main tab consists of the following fields:

 Name – Specifies name of the current configuration.

 Project – Specifies the C/C++ SPE project to use for selecting an
application to deploy. Click the Browse button for a list of available
selections.

 C/C++ Application – Specifies the application (.elf file) to be deployed
in the selected project. Click the Browse button for a list of available
applications in the selected project, or click the Search Project button
to select an application (.elf file).

 Reset Vector Address (EBA Value) – Contains the EBA value chosen
for the LatticeMico32 microprocessor, as described in “Reset Vector
Address (EBA Value)” on page 200.

 Use Diamond Deployment Tool to deploy Application

 Prepend Code Relocator (for backward compatibility only) – For
projects compiled using a LatticeMico version prior to 8.0, enables the
flash programmer utility to use the provided boot copier and merge the
application binary image with the boot copier code. In these earlier
versions, the code relocator was not built into the application;

Figure 146: Main Tab of the Software Deployment Tools Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 203

therefore, it was necessary to prepend a separate relocator code to
the actual application.

 Save Binary Output File As – Selects the output file that will be
generated by this tool. The output file must have a .bit extension.
Click the Browse button to select the directory in which to generate
the output file.

3. Apply the appropriate settings and click the Start button to generate the
.bit file.

Merging the Bitstream and the Application Binary
Now you will merge the FPGA bitstream and the LatticeMico bootable
application binary into a single SPI flash image.

Once the .bit file containing the bootable application binary is ready, you must
program it into the SPI flash. If this application binary must co-exist with the
FPGA bitstream (or a portion of it), it must be merged with the FPGA
bitstream binary.

Deployment Tool is a convenient interface for performing this task. For
detailed information on this tool, refer to Deployment Tool online Help.

The following steps use a sample FPGA bitstream, fpga.bit, generated by
Lattice Diamond and a sample bootable application binary, mico32_sw.bit, to
illustrate the procedure for merging these two FPGA bitstreams.

To merge the bitstream and the bootable application binary:

1. Launch Deployment Tool as follows:

 In Windows choose Programs > Lattice Diamond <version
number> > Accessories > Deployment Tool.

 In Linux, enter the following on a command line:

<Programmer install path>/bin/lin/./deployment

ADVANCED PROGRAMMING TOPICS : Software Deployment

204 LatticeMico32 Software Developer User Guide

The Deployment Tool Getting Started dialog box appears, as shown in
Figure 147.

2. In the Function Type dropdown menu, choose External Memory.

3. In the Ouput File Type dropdown menu, choose Advanced SPI Flash.

4. Click OK to display the Step 1 of 4: Select Input File(s) dialog box, as
shown in Figure 148.

Figure 147: Deployment Tool Getting Started Dialog Box

Figure 148: Step 1 of 4: Select Input File(s) Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 205

5. Double-click the File Name box and browse to the FPGA bitstream named
“fpga.bit” which targets a LatticeECP33E device.

6. Click Next to display the Step 2 of 4: Advanced SPI Flash Options dialog
box, as shown in Figure 149.

7. In Output Format dropdown menu, select Intel Hex.

8. In the SPI Flash Size (Mb) dropdown menu, choose 8.

9. In the Number of User Data Files, dropdown menu, ensure that the
number is 1.

10. In the User Data File 1 box, click to browse to the application binary
(.bit) file named mico32_sw.bit.

11. In the Starting Address dropdown menu, choose the starting address
0x0F0000.

Figure 149: Step 2 of 4: Advanced SPI Flash Options Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

206 LatticeMico32 Software Developer User Guide

12. Click Next to display the Step 3 of 4: Select Output File(s) dialog box, as
shown in Figure 150.

13. In the Output File 1 box, click to display the Select Output File dialog
box. Name the output file data.mcs, and click Save.

14. Click Next to display display the Step 4 of 4: Advanced SPI Flash Options
dialog box, and Click Generate.

This generated file contains the merged FPGA bitstream and the
LatticeMico bootable software application in a single SPI flash image file
that Diamond Programmer can now use for programming the SPI flash.

Programming the SPI Flash with the SPI Flash
Image
Diamond Programmer can use the merged SPI flash image file generated in
the previous step for programming the SPI flash.

The following procedure uses the LatticeMico32 LatticeECP development
board as an example and outlines the basic steps in programming the SPI
flash.

Refer to the Diamond Programmer online Help for information on
programming the SPI flash devices and additional details.

1. Launch Programmer as follows:

Figure 150: Step 3 of 4: Select Output File(s) Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 207

 In Windows choose Programs > Lattice Diamond <version
number> > Accessories > Programmer.

 In Linux, enter the following on a command line:

<Programmer install path>/bin/lin/./programmer

The Diamond Programmer Getting Started dialog box appears, as
shown in Figure 151.

2. In the Getting Started dialog box, choose Create a new Blank Project.
and click OK. Leave the Import File to Current Implementation box
checked. Programmer scans the device database, and then the
Programmer view displays, as shown in Figure 152.

Figure 152: Diamond Programmer

3. Double-click the Operation column to display the Device Properties dialog
boxas shown in Figure 153.

Figure 151: Diamond Programmer Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

208 LatticeMico32 Software Developer User Guide

Figure 153: Device Properties Dialog Box

4. In the Access Mode dialog box, choose SPI Flash Programming.

5. In the Operation Box, choose SPI Flash Erase, Program, Verify.

6. In the Programming Options box, in the Programming File box, click to
browse to the data.mcs file.

7. In the SPI Flash Options box, select the following options to specify the
SPI flash device on your board:

 Family

 Vendor

 Device

 Package

8. Click Load Size.

9. Click OK.

10. Click the Program button on the Programmer toolbar to initiate the
download.

Once Diamond Programmer successfully programs the SPI flash, the SPI
flash contains the FPGA bitstream, as well as the LatticeMico bootable
application, completing deployment to the SPI flash.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 209

Summary
The actual deployment scenario depends on the hardware setup, as well as
the application requirements. The steps outlined in this section are guidelines
that can be adapted to almost all SPI flash deployment scenarios, provided
that the hardware, FPGA layout, or both allow the MSB SPI flash ROM device
to read from the appropriate SPI flash.

Remember that:

 The LatticeMico EBA value—that is, the reset vector—must be set to the
sum of the SPI flash ROM base address and the offset in the SPI flash
device that contains the first instruction of the bootable LatticeMico
application.

 The LatticeMico application must be programmed with the SPI flash
device so that each instruction is aligned on a word boundary, because
LatticeMico performs word fetches for instructions.

ADVANCED PROGRAMMING TOPICS : Software Deployment

210 LatticeMico32 Software Developer User Guide

Debugging Tips
The diagnostic flow charts shown in Figure 154 and Figure 155 provide tips
on what to look for when a SPI flash deployment fails.

Figure 154: SPI Flash Deployment Diagnostics Flow

Is the processor
configured for
debug support?

Start application based
on platform used for
generating bitstream.

Press Program/
Reset button.

No

Yes

Does the
debugger
connect?

Using Memory View,
inspect the SPI flash
memory region to ensure
that the expected data is
programmed correctly.

Is data
correct?

Use Reveal tools
to debug boot
application.

Bitstream is bad or
the SPI flash is not
programmed.

Bad programming

No

Yes

No

Yes

Go back into
platform and enable
debugging.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 211

“Bad programming” can result from two sources:

 An error in generating the merged binary data in Deployment Tool

 A Diamond Programmer programming error

Deploying Applications Across
Different Memory Components
LatticeMico MSB provides packaged tools for deployment through the
C/C++Software Project Environment (SPE), such as the flash deployment
tool, the on-chip memory deployment tool, and the SPI flash deployment tool.

Figure 155: SPI Flash Deployment Diagnostics Flow, cont’d

Start Diamond
Programmer and
configure FPGA over
JTAG port.

Start an application
based on the platform
used for generating
bitstream.

Does the
debugger
connect?

Bad bitstream

SPI flash not
programmed
correctly

No

Yes

Note

The current LatticeMico32 LatticeECP board requires you to press the Reset button
after you press the Program button or after a power cycle.

ADVANCED PROGRAMMING TOPICS : Software Deployment

212 LatticeMico32 Software Developer User Guide

These tools assume that you are deploying the entire application to a single
memory component, such as a flash, on-chip memory, or SPI, as the majority
of deployment scenarios do. They do not yet support deployment of an
application across different memory components.

This section introduces you to the tools that you must use to deploy your
application to several different memory components. It includes usage
examples. It assumes that you are attempting to deploy the raw binary
contents of a LatticeMico stand-alone executable rather than an ELF
(executable and linking format) loader that can interpret an .elf format file and
load the contents to the destination memories itself.

Steps for Deploying an Application Across
Different Memories
If you deploy an application across different memories, you will need to use
the tools listed in “Useful Tools for Deployment” on page 212 to extract the
appropriate information from the program executable, generate binary files or
a memory initialization file from a binary format, and program the binary
content for a flash memory or load a memory initialization file for an on-chip
memory.

The steps are as follows:

1. Identify sections that need deployment by running objdump on the
LatticeMico executable.

2. Use objcopy to extract the appropriate sections.

3. Optionally run bin_to_verilog to convert the binary output from objcopy
into a hexadecimal memory initialization file for on-chip memories.

The next section discusses these tools in detail.

Useful Tools for Deployment
The tools used for deploying an application across multiple memory
components are command-line tools, which are also used by the SPE
deployment tools through Perl scripts.

lm32-elf-objdump This tool is provided as part of the LatticeMico GNU
GCC/binutils port. It is located in the <micosystem_install_dir>/gtools/bin
directory.

Objdump displays information for object files. Running this tool with the
--help option displays the available options.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 213

The --section-headers option is useful for deployment purposes. Figure 156
shows the output of running objdump on a LatticeMico executable .elf format
file.

The output lists the various sections in the executable file. Those sections
with the ALLOC and LOAD tags are relevant for deployment. Sections with
the ALLOC tags occupy memory during program execution, and sections with
the LOAD tags contain data that memories must have for program execution.
The sections with the ALLOC and LOAD tags must be deployed to non-
volatile memories for power-up execution.

The SIZE column title indicates the size, in bytes, of the section contents. The
LMA (Load Memory Address) column displays the address where the code is
to be loaded, and the VMA (Virtual Memory Address) column displays for
LatticeMico the address of the contents used when the code is compiled. For
deployment purposes, the LMA is the destination address where the section
contents must be copied. Refer to Technical Note 1173, “Deploying
LatticeMico Software to Non-Volatile Memory,” for an example in which the
VMA and LMA are different for some sections.

lm32-elf-objcopy This tool is provided as part of the LatticeMico GCC/
binutils port and is located in the (MICOSYSTEM_INSTALL_DIR)/gtools/bin
directory.

Objcopy enables you to copy contents, either whole or selectively, to other
formats. It is an essential tool for extracting sections or converting the entire
program executable into binary format, which is a prerequisite for any

Figure 156: Objdump Example

ADVANCED PROGRAMMING TOPICS : Software Deployment

214 LatticeMico32 Software Developer User Guide

deployment scenario, unless LatticeMico System has an ELF loader. The
SPE deployment tools use objcopy for format conversion.

The “--help" option lists the available options for this tool. The “--only-section”
and “-O binary” options shown in Figure 157 are relevant for deployment.

In Figure 157, the --only-section .boot option tells objcopy to copy only the
.boot section, and the “--O binary” option tells objcopy to create the output
target in binary format. The input file is the LatticeMico executable .elf format
file, led_test_small.elf, and the output file is boot-section.bin.

Using objcopy and the example shown in Figure 157, you can selectively
extract the section contents as binary values for programming into destination
memories. If you have more than two sections in a memory and would like to
extract it to a single binary file, you can provide multiple --only-section
options, such as --only-section .boot --only-section .text.

bin_to_verilog This Lattice-provided utility resides in the
(MICOSYSTEM_INSTALL_DIR)/gtools/bin directory.

This utility is useful for converting binary files into a text format file suitable for
initializing on-chip memories.

Running this tool with the --help option lists the available options, which are
summarized in Table 17.

Figure 157: Objcopy Example

Table 17: bin_to_verilog Options

Option Meaning

--b/--h --h generates output words in hexadecimal notation, and --b
generates words in binary representation. The default is --h.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 215

Figure 158 shows how the bin_to_verilog tool converts a binary file generated
by the objcopy utility into a memory initialization file for on-chip memory
deployment. The on-chip memory provided as part of LatticeMico System has
a word width of 4 bytes per word because LatticeMico System is a 32-bit
system.

The SPE on-chip memory deployment tool uses bin_to_verilog to generate
the memory initialization file.

lm32-elf-readelf This tool is provided as part of the LatticeMico GNU GCC/
binutils port and is located in the (MICOSYSTEM_INSTALL_DIR)/gtools/bin
directory.

The GCC tool chain generates LatticeMico executables in ELF format. The
lm32_elf_readelf tool enables you to inspect the .elf file and program
information and content.

Running this tool with the --help option displays the available options.

--EB/--EL --EB generates output words suitable for big-endian interpretation,
and --EL generates output words suitable for little-endian
interpretation The default is --EL.

--width <n> <n> denotes bytes per word (one word per line). The default value
is 2.

infile Input binary file

outfile Output text file

Table 17: bin_to_verilog Options (Continued)

Figure 158: Using the bin_to_verilog Tool

ADVANCED PROGRAMMING TOPICS : Software Deployment

216 LatticeMico32 Software Developer User Guide

To determine the sections included in an .elf file, run the tool with the
--sections option, as shown in Figure 159.

In Figure 159, the sections with the “A” attribute set for the flags are those of
interest for deployment (the Flg column in the figure). This flag denotes
sections that occupy memory during process execution. For deployment,
those sections that contain this attribute and have a size that is non-zero (Size
column in the figure) must be deployed to the target memories whose
addresses are shown in the Addr column.

You can explore other features of the lm32-elf-readelf tool by looking them up
on the Internet and using the keywords “readelf” and “binutils.”

The objdump utility can also provide information on section headers, as
shown in “lm32-elf-objdump” on page 212, so you can use either the lm32-elf-
readelf tool or the objdump tool to inspect the available sections.

Additional Information
Refer to Technical Note 1173, “Deploying LatticeMic32 Software to Non-
Volatile Memory,” as well as to the sections in “Software Deployment” on
page 178 for additional information.

Example 1
The example in this section illustrates the usage of the tools described earlier.
The goal of the example is to deploy the instruction sections of an application
built as part of the managed build process to an on-chip memory component

Figure 159: Using the lm32-elf-readelf Tool

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 217

and the initialized data sections to a separate memory component. The tools
and procedures used in this example are generic, so you can use them in
different deployment scenarios.

Example Platform Platform E is used for this example, although it has been
modified to include an additional on-chip memory component, as shown in
Figure 160.

This platform contains four memory components:

 An on-chip memory component named ebr

 An on-chip memory component named ebr_data

 An external SRAM memory controller named sram

 An external flash memory controller named flash

The size of both on-chip memory components is set to 8192 bytes. The
LatticeMico32 microprocessor has been modified to make this platform fit on
a LatticeECP2-50E device residing on a LatticeMico32 LatticeECP2
development board. Because the deployment objective is for the on-chip
memory component and not for the external flash, the address in the Location
of Exception Handlers box in the Modify LatticeMico32 dialog box has been
changed to the address of the ebr on-chip memory component, as shown in
Figure 161.

Figure 160: Modified Platform E

ADVANCED PROGRAMMING TOPICS : Software Deployment

218 LatticeMico32 Software Developer User Guide

Example Software Project The software application is based on LEDTest.
The source in LEDTest.c has been modified, as shown in Figure 162.

Figure 161: Modified Processor Configuration

Note

For this example, it is essential that the address in the Location of Exception Handlers
box (also known as EBA) be set to the base address of the ebr on-chip memory
component, as shown in Figure 161.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 219

Figure 162: LEDTest.c File

/**
 * This example exercises LEDs on LatticeMico32 development *
 * board. *
 * *
 --
 * PREREQUISITES: *
 * *
 * - GPIO with 8-bit output named LED connected to the *
 * board's LED pins. *
 **/
#include "system_conf.h"

/* PLATFORM DECOUPLING CONSTANTS/MACROS */
#define LED_OUTPUT(value) \
 *((volatile unsigned int *)(LED_BASE_ADDRESS)) = (value)

#define NUM_PATTERNS (16)

/*
 * The following array will go in .rodata section
 * i.e. read-only data section as it is initialized
 * to non-zero but is not modifiable.
 */
const unsigned int PatternData[NUM_PATTERNS]={
 0x01, 0xf0, 0x02, 0xf0, 0x04, 0xf0, 0x08, 0xf0,
 0x10, 0x0f, 0x20, 0x0f, 0x40, 0x0f, 0x80, 0xff,
};

/*
 * This "initValue" will be put in .data linker section
 * as it is initialized to non-zero AND is modifiable.
 */
volatile int initValue = 0xaa;

int main(void)
{
 int i;

 /*
 * copy data into read/write memory. malloc will
 * allocate memory from .bss section
 */
 unsigned int *idata = malloc(NUM_PATTERNS*sizeof(unsigned int));
 for(i = 0; i < NUM_PATTERNS; i++){
 idata[i] = PatternData[i];
 }

 LED_OUTPUT(initValue);
 MicoSleepMilliSecs(10000);

ADVANCED PROGRAMMING TOPICS : Software Deployment

220 LatticeMico32 Software Developer User Guide

The value in initValue is set to 0xaa. At start up, it is output to the LEDs on the
LatticeMico32 development board. This value causes alternate LEDs to light
up. This pattern is held for approximately 10 seconds before the LEDs cycle
through the predefined pattern. If you successfully perform the deployment
procedure outlined in this example, initValue, which is a non-zero initial value
that can be modified at run time, should be located by the linker in the .data
section.

Figure 163 shows the project outline created in C/C++ SPE.

 /* scroll the LEDs, every 1second forever */
 while(1){
 for(i = 0; i < NUM_PATTERNS; i++){
 initValue = ~idata[i];
 LED_OUTPUT(initValue);
 MicoSleepMilliSecs(1000);
 }
 }

 /* all done */
 return(0);
}

/*
 * override default LatticeDDInit to reduce
 * code-size (when using LEDs!)
 */
void LatticeDDInit(void)
{
 main();
}

Figure 162: LEDTest.c File (Continued)

Figure 163: Project Outline in C/C++ SPE

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 221

Figure 164 shows the platform settings (based on Platform E) for this software
application.

Deployment Objectives The deployment objectives for this software
application are:

 Locate instructions (.text and .boot linker sections) in the ebr on-chip
memory

 Locate read-only data in the ebr_data on-chip memory.

 Locate uninitialized memory in sram.

The platform settings have been changed to reflect the following:

 Program memory – ebr

 Read-only data memory – ebr_data

 Read/write data memory – sram

 Stdio Redirection: RS-232 (uart) – This change is not related to the
deployment objectives. However, if the deployed application uses
standard input and output, the standard I/O must not use the processor’s
JTAG UART.

Figure 164 shows the platform settings required to achieve these goals. As
part of the managed build process, the following linker sections are
generated:

 .boot – Contains instructions executed as part of the boot code
(crt0ram.S).

Figure 164: Platform Settings

ADVANCED PROGRAMMING TOPICS : Software Deployment

222 LatticeMico32 Software Developer User Guide

 .text – Contains executable instructions.

 .rodata – Contains read-only initialized data that is initialized to a non-zero
value and cannot be modified at run time.

 .data – Contains initialized data that is not initialized to zero but can be
modified at run time, for example, the initValue variable in the source code
in the LEDTest.c file.

 .bss – Contains uninitialized data and any initialized data that is initialized
to a value of zero. The boot code is responsible for zeroing the memory
region containing the .bss section.

As part of the managed build process, the Properties for LEDTest dialog box
(Figure 164) generates a default linker script, as described in “Managed Build
Process and Directory Structure” on page 145. This default linker script
automatically assigns the .data linker section to the memory component
selected to hold read and write data memory. Although this assignment works
well for debugging an application, it does not work when you deploy the
application if the read and write data memory is a volatile memory, such as an
external SRAM, because the .data linker section contains non-zero initialized
values that can be modified at run time. If the deployment involved a loader
that copied the application executable sections to appropriate target memory,
this issue would not arise. The parallel flash deployment strategy outlined in
“Deploying to a Flash Device” on page 193 provides a default boot copier that
copies the various sections from the parallel flash to the target memories.

Modifying the Linker Script The first step in achieving the deployment
objectives is to modify the linker script.

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 223

To modify the linker script:

1. Copy the default linker script, located in the build configuration directory of
the platform library folder (created by the managed build when you first
built the application) to the application folder, as shown in Figure 165.

Copying the linker script to the application folder ensures that the changes
made to the file will not be erased when you rebuild the project.

Since the linker script was generated with the modified platform settings,
the .text and .boot sections are already targeted for the ebr on-chip
memory. The .bss section is correctly targeted to the sram external
memory. The .rodata section is also correctly targeted to the ebr_data on-
chip memory. The only change required is to modify the linker script so
that the .data section points to ebr_data instead of sram.

2. To make this change, identify the .data section specification in the copied
linker.ld file, and change sram to ebr_data, as shown in Figure 166.

Figure 165: Copying Linker.ld Default Linker Script

Figure 166: Modifying the .data Section

/* read/write data */
.data :
{

. = ALIGN (4);
_fdata = .;
(.data .data. .gnu.linkonce.d.*)
*(.data1)
SORT(CONSTRUCTORS)
_gp = ALIGN(16) + 0x7ff0;
(.sdata .sdata. .gnu.linkonce.s.*)
_edata = .;

} > ebr_data

ADVANCED PROGRAMMING TOPICS : Software Deployment

224 LatticeMico32 Software Developer User Guide

The complete modified linker script is shown in Figure 167.

Figure 167: Modified Linker Script Code

OUTPUT_FORMAT("elf32-lm32")
ENTRY(_start)
INPUT(crti.o crtbegin.o crtend.o crtn.o)
/*
 * This section defines memory attributes (name, origin, length) for the platform
 */
MEMORY
{
 ebr : ORIGIN = 0x00100000, LENGTH = 8192
 sram : ORIGIN = 0x00200000, LENGTH = 1048576
 flash : ORIGIN = 0x00300000, LENGTH = 1048576
 ebr_data : ORIGIN = 0x00400000, LENGTH = 8192
}

SECTIONS
{

 /* code */
 .boot : { *(.boot) } > ebr
 .text :
 {
 . = ALIGN(4);
 _ftext = .;
 (.text .stub .text. .gnu.linkonce.t.*)
 *(.gnu.warning)
 KEEP (*(.init))
 KEEP (*(.fini))

 /* Exception handlers */

*(.eh_frame_hdr)
 KEEP (*(.eh_frame))
 *(.gcc_except_table)

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 225

 /* Constructors and destructors */
 KEEP (*crtbegin*.o(.ctors))
 KEEP (*(EXCLUDE_FILE (*crtend*.o) .ctors))
 KEEP (*(SORT(.ctors.*)))
 KEEP (*(.ctors))
 KEEP (*crtbegin*.o(.dtors))
 KEEP (*(EXCLUDE_FILE (*crtend*.o) .dtors))
 KEEP (*(SORT(.dtors.*)))
 KEEP (*(.dtors))
 KEEP (*(.jcr))
 _etext = .;
 } > ebr =0

 /* read-only data */
 .rodata :
 {
 . = ALIGN(4);
 _frodata = .;
 _frodata_rom = LOADADDR(.rodata);
 (.rodata .rodata. .gnu.linkonce.r.*)
 *(.rodata1)
 _erodata = .;
 } > ebr_data

 /* read/write data */
 .data :
 {
 . = ALIGN(4);
 _fdata = .;
 (.data .data. .gnu.linkonce.d.*)
 *(.data1)
 SORT(CONSTRUCTORS)
 _gp = ALIGN(16) + 0x7ff0;
 (.sdata .sdata. .gnu.linkonce.s.*)
 _edata = .;
 } > ebr_data

* bss */
 .bss :
 {
 . = ALIGN(4);
 _fbss = .;
 *(.dynsbss)
 (.sbss .sbss. .gnu.linkonce.sb.*)
 *(.scommon)
 *(.dynbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 . = ALIGN(4);
 _ebss = .;
 _end = .;
 PROVIDE (end = .);
 } > sram

Figure 167: Modified Linker Script Code (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

226 LatticeMico32 Software Developer User Guide

3. Now you must build the project using this linker script instead of the
default linker script. To make this change, select Use Custom Linker
Script from the Platform Properties tab of the Properties for LEDTest
dialog box, and select the copied linker script modified in an earlier step.

 /* first location in stack is highest address in ram */
 PROVIDE(_fstack = ORIGIN(sram) + LENGTH(sram) - 4);

 /* stabs debugging sections. */
 .stab 0 : { *(.stab) }
 .stabstr 0 : { *(.stabstr) }
 .stab.excl 0 : { *(.stab.excl) }
 .stab.exclstr 0 : { *(.stab.exclstr) }
 .stab.index 0 : { *(.stab.index) }
 .stab.indexstr 0 : { *(.stab.indexstr) }
 .comment 0 : { *(.comment) }

 /* DWARF debug sections.
 Symbols in the DWARF debugging sections are relative to the beginning
 of the section so we begin them at 0. */
 /* DWARF 1 */
 .debug 0 : { *(.debug) }
 .line 0 : { *(.line) }
 /* GNU DWARF 1 extensions */
 .debug_srcinfo 0 : { *(.debug_srcinfo) }
 .debug_sfnames 0 : { *(.debug_sfnames) }
 /* DWARF 1.1 and DWARF 2 */
 .debug_aranges 0 : { *(.debug_aranges) }
 .debug_pubnames 0 : { *(.debug_pubnames) }
 /* DWARF 2 */
 .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
 .debug_abbrev 0 : { *(.debug_abbrev) }
 .debug_line 0 : { *(.debug_line) }
 .debug_frame 0 : { *(.debug_frame) }
 .debug_str 0 : { *(.debug_str) }
 .debug_loc 0 : { *(.debug_loc) }
 .debug_macinfo 0 : { *(.debug_macinfo) }
 /* SGI/MIPS DWARF 2 extensions */
 .debug_weaknames 0 : { *(.debug_weaknames) }
 .debug_funcnames 0 : { *(.debug_funcnames) }
 .debug_typenames 0 : { *(.debug_typenames) }
 .debug_varnames 0 : { *(.debug_varnames) }
}

Figure 167: Modified Linker Script Code (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 227

Click the OK button. Figure 168 shows the modified Platform Properties
tab of the dialog box.

4. Rebuild the project with all optimizations turned off.

These steps do not depend on the build configuration (that is, on a release
or debug), but for verifying the steps outlined here, it is essential that you
turn off all optimization.

Figure 168: Modified Properties in LEDTest Dialog Box

ADVANCED PROGRAMMING TOPICS : Software Deployment

228 LatticeMico32 Software Developer User Guide

Verifying the Linker Script Change The build process generates the
application executable (LEDTest.elf for this example) in the build configuration
folder located in the project folder, as shown in Figure 169.

To verify the linker script change:

1. Start the LatticeMico SDK shell console window by selecting Start >
Programs > Lattice Semiconductor > Accessories > LatticeMico
System SDK Shell.

The LatticeMico System Cygwin shell opens, as shown in Figure 170.

2. Change to the directory containing the application executable.

For example, if the application executable is located in the following
directory:

c:\ispTOOLS7_1\micosystem\examples\PlatformE\LEDTest\Debug

Figure 169: Application Executable Location

Figure 170: LatticeMico System Cygwin Shell

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 229

you would type the following command at the prompt in the LatticeMico
System Cygwin shell, as shown in Figure 171, and press the Enter key on
the keyboard:

cd /cygdrive/c/ispTOOLS7_1/micosystem/examples/PlatformE/
LEDTest/Debug/

3. Type the following command at the prompt and press the Enter key:

lm32-elf-objdump LEDTest.elf –h

This command instructs the “objdump” utility to dump information on the
section headers contained in the executable, as shown in Figure 172. The
lm32-elf-objdump utility is the GNU objdump utility built for LatticeMico
System. “Software Development Utilities” on page 281 contains a list of
the included GNU GCC tool-chain utilities.

Figure 171: Moving to the Application Executable Directory

ADVANCED PROGRAMMING TOPICS : Software Deployment

230 LatticeMico32 Software Developer User Guide

As shown in Figure 172, the .boot and .text sections are targeted to the
ebr on-chip memory, the .data and .rodata sections are targeted to the
ebr_data on-chip memory, and the .bss section is targeted to the SRAM
external memory.

The output in Figure 172 verifies that the build picked up the modified
linker script instead of using the default linker script. It also verifies that the
linker-script changes were appropriate.

Extracting Binary Data from the Appropriate Sections The .text and
.boot binary contents must be extracted as a single binary file because they
will reside in the same memory region.

To extract the binary data from the appropriate sections:

1. At the command prompt in the LatticeMico System Cygwin shell, enter the
following command, as shown in Figure 173, and press the Enter key:

Figure 172: lm32-elf-objdump Output

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 231

lm32-elf-objcopy --only-section .boot --only-section .text -
O binary LEDTest.elf instructions.bin

This command generates a file, instructions.bin, that contain the binary
contents of the .boot and .text sections.

The .rodata and .data sections must be extracted as a single binary file,
because they, too, reside in the same memory region, though in a different
region than .text and .boot sections.

2. At the command prompt in the LatticeMico System Cygwin shell, enter the
following command, and press the Enter key:

lm32-elf-objcopy --only-section .rodata --only-section .data
-O binary LEDTest.elf data.bin

This command generates a file, data.bin, that contains the binary contents
of the .data and .rodata sections.

The .bss section does not contain any pre-initialized data. The memory
contents for this section are set to zero at run time by the boot code.

Converting Binary Data to On-Chip Memory Initialization Files Now you
will convert the binary contents extracted from the sections into on-chip
memory initialization files.

To convert the binary contents to on-chip memory initialization files:

 Enter the following two commands at the command prompt, as shown in
Figure 174:

bin_to_verilog --EB --width 4 instructions.bin >
instructions.mem
bin_to_verilog -–EB --width 4 data.bin > data.mem

Figure 173: Extracting Binary Data

ADVANCED PROGRAMMING TOPICS : Software Deployment

232 LatticeMico32 Software Developer User Guide

The outputs of these commands are two files, instructions.mem and
data.mem. They are text files that can be used to initialize the ebr and the
ebr_data on-chip memory components.

Verifying Deployment Now you will verify that you deployed the instruction
(.boot and .text) sections of the application to the ebr on-chip memory
component and the initialized data (.data and .rodata) sections to the
ebr_data on-chip memory component.

 Regenerate the bitstream with the ebr component’s initialization file set to
instructions.mem and the ebr_data component’s initialization file set to
data.mem.

When you download the bitstream, the LEDs should display an alternate
lighting pattern (0xaa) for approximately 10 seconds before cycling through
the predefined pattern noted in “Example Software Project” on page 218.

Example 2
While the earlier example illustrated a generic procedure for deploying the
default instruction (.boot and .text) and data (.rodata, .data, and .bss) sections
of an application into multiple memory components, the goal of this next
example is to demonstrate a generic methodology to (a) locate portions of the
application’s instruction and data in to new user-defined sections, and (b)
deploy these newly created user-defined sections into different memory
components using a combination of C/C++ syntax and custom linker scripts.

Figure 174: Generating Memory Initialization Files

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 233

Recommended C/C++ Coding Style to partition source code in to User-
Defined Sections
Any given piece of code within the program source code can be mapped to a
new user-defined memory section through the following sequence of steps.

Step 1 Reorganize the source code into new C/C++ functions. Any piece of
source code that will be mapped to a new user-defined section must first be
reorganized in to a new C/C++ function. This new function can be mapped in
to a memory component that is located at an address far from the code that
calls this function. In order to allow the GNU toolchain to automatically
compile and link the caller and callee code, it is advisable to use function
pointers. The use of function pointers is mandatory when the function being
called is +/- 225 (i.e. 32MB) bytes distant from the current program counter
location. Consider the code snippet shown in Figure 175.

Figure 175: Code with Function Pointers

int main(void)
{

unsigned int iValue = 0x1;
…
…

/* if we're not to blink, return immediately */
 if(uiBlink == 0)
 return(0);

 /* scroll the LEDs, every 100 msecs forever */
while(1){

*((volatile unsigned int *)(leds->base)) = ~iValue;
MicoSleepMilliSecs(100);
if(iShiftLeft == 1){ // code to be mapped to new section .INLINE_I

iValue = iValue << 1;
if(iValue == 0x100){

iValue = 0x40;
iShiftLeft = 0;

}
}else{

iValue = iValue >> 1;
if(iValue == 0){

iValue = 0x02;
iShiftLeft = 1;

}
}

}

 /* all done */
return(0);

}

ADVANCED PROGRAMMING TOPICS : Software Deployment

234 LatticeMico32 Software Developer User Guide

In order to map the “if-else” code (highlighted in red) to a new section, the
code must be rewritten as shown in Figure 176. A new function shift is created
and the “while loop” calls this function.

Figure 176: Code with New Function

/* Function that contains the “if-else” code */
unsigned int shift (unsigned int iValue, unsigned int *iShiftLeft)
{

if (*iShiftLeft == 1){
iValue = iValue << 1;
if (iValue == 0x100){

iValue = 0x40;
*iShiftLeft = 0;

}
}else{

iValue = iValue >> 1;
if(iValue == 0){

iValue = 0x02;
*iShiftLeft = 1;

}
}
return iValue;

}

int main(void)
{

unsigned int (*shift_ptr) (unsigned int, unsigned int *) = shift; // function
pointer

unsigned int iValue = 0x1;
…
…

 /* if we're not to blink, return immediately */
 if(uiBlink == 0)
 return(0);

 /* Function the scroll the LEDs, every 100msecs, forever */

while(1){
*((volatile unsigned int *)(leds->base)) = ~iValue;
MicoSleepMilliSecs(100);
iValue = (*shift_ptr) (iValue, &iShiftLeft); // new indirect-function call
// iValue = shift_ptr (iValue, &iShiftLeft); // valid alternate syntax for a call

}

 /* all done */

return(0);
}

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 235

Step 2 Use the C/C++ section attribute to specify a user-defined memory
section for a given piece of code. This attribute can only be placed on a
function prototype. In the example of Figure 176, the function shift can be
placed in a user-defined section “.INLINE_I” by adding the following
declaration:

unsigned int shift (unsigned int, unsigned int *) __attribute__
((section (".INLINE_I")));

Recommended C/C++ Coding Style to Partition Data into User-Defined
Sections
Use the C/C++ section attribute to specify a user-defined memory section for
data (read-only or read/write). For example, the iShiftLeft variable in the code
in Figure 175 can be placed in a user-defined section “.INLINE_D” by
declaring it as follows:

unsigned int iShiftLeft __attribute__ ((section
(".INLINE_D")));

Notice that the “section” attribute can only be used with GLOBAL or STATIC
variables. The compiler toolchain will ignore the “section” attribute on any
other variable.

ADVANCED PROGRAMMING TOPICS : Software Deployment

236 LatticeMico32 Software Developer User Guide

Example Platform and Software Project
The remainder of this section describes an example of how an application
was modified in order to split pieces of instruction and data across multiple
memory sections. Platform J is used for this example. As shown in
Figure 177, this platform contains three memory components:

The software application is LED7SegsTest. The application code was
modified for the following deployment objectives on Platform J:

 Part of source code to display characters on 7-Segement Display are split
in to a new section “.INLINE_I” that is mapped to Instruction Inline
Memory “Instruction_IM”. The remaining instructions default to the .boot
and .text sections and are mapped to “sram”.

 Part of read/write data is split in to a new section “.INLINE_D” that is
mapped to Data Inline Memory “Data_IM”. The remaining data defaults to
the .rodata, .data, and .bss sections and are mapped to “sram”.

 Inspecting the memory map above it can be seen that the Instruction_IM
memory block is >> 32MB distant from the sram memory block. Function
calls between the two memory spaces must be done using function
pointers.

The source in LED7SegsTest.c has been modified as shown in Figure 2.
Function “TimerISR()” is mapped in to the new .INLINE_I instruction memory
section. Data “iCount” is mapped to the new .INLINE_D data memory section.
The source in 7Segs.h and 7Segs.c has been modified as shown in Figures 3
and 4 respectively. Functions “UpdateDisplay()” and “UpdateChar()” are also
mapped in to the new .INLINE_I instruction memory section. The
“UpdateDisplay()” function calls the “GetCode()” function, which is still
mapped to the default .text section. The UpdateDisplay() fuction calls
GetCode() through an indirect call (i.e., function pointer), as explained in “Step
1” on page 233.

Figure 177: PlatformJ

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 237

Figure 178: LED7SegsTest.c file

/**
 * This example exercies LEDs and the 7 Segment displays on *
 * the LatticeMico32 Development board. *
 * *
 * *
 --
 * PREREQUISITES: *
 * *
 * - GPIO with 10-bit output named gpio_LED connected to the *
 * board's LED pins. *
 * - GPIO with 10-bit output named gpio_7Segs connected to *
 * the board's 7-Segment Displays' pins. *
 **/
#include "DDStructs.h"
#include "MicoMacros.h"
#include "7Segs.h"
#include "LookupServices.h"
#include "MicoTimer.h"
#include "MicoUtils.h"

const char *SYSTEM_TIMER = "timer";
const char *LED_GPIO_INSTANCE = "LED";
const char *SEGMENT_LED_INSTANCE = "gpio_7Segs";

typedef struct st_TimerISRCtx_t{
int iSelection;/* segment 0 or segment 1*/
char c[2];/* characters for the two segments*/
SegmentDisp_t *display;/* display information*/

}TimerISRCtx_t;

/* Declarations for contents of .INLINE_D section */
static int iCount __attribute__ ((section (".INLINE_D"))) = 0;

/* Declarations for contents of .INLINE_I section */
static void TimerISR(void *data) __attribute__ ((section (".INLINE_I")));

/* Timer ISR */
static void TimerISR(void *data)
{

TimerISRCtx_t *ctx = (TimerISRCtx_t *)data;
SegmentDisp_t *display = ctx->display;
/* refresh display */
(*DisplayChar) (display,

 ctx->iSelection,
 ctx->c[ctx->iSelection]);

if(ctx->iSelection == 0)
ctx->iSelection = 1;

else
ctx->iSelection = 0;

ADVANCED PROGRAMMING TOPICS : Software Deployment

238 LatticeMico32 Software Developer User Guide

/* every ~ 1 second, change data */
if(iCount >= 99){

iCount = 0;
if(ctx->c[0] >= '9'){

ctx->c[0] = '0';
if(ctx->c[1] >= '9')

ctx->c[1] = '0';
else

ctx->c[1]++;
}else{

ctx->c[0]++;
}

}else{
iCount++;

}
return;

}

int main(void)
{
unsigned int iValue = 0x1;

unsigned int iShiftLeft = 1;
static TimerISRCtx_t TimerCtx;
static SegmentDisp_t display;
char c;

/* Fetch timer instance named "timer" */
MicoTimerCtx_t *timer = (MicoTimerCtx_t *)MicoGetDevice(SYSTEM_TIMER);

 /* Fetch GPIO instance named "LED" */
MicoGPIOCtx_t *leds = (MicoGPIOCtx_t *)MicoGetDevice(LED_GPIO_INSTANCE);
/* Fetch 7segs GPIO Instance */
MicoGPIOCtx_t *segs = (MicoGPIOCtx_t *)MicoGetDevice(SEGMENT_LED_INSTANCE);

/* see if we found LED */
 if(leds == 0){
 printf("failed to find GPIO instance named %s\n",LED_GPIO_INSTANCE);
 return(-1);
 }
 printf("found GPIO instance named %s\n",LED_GPIO_INSTANCE);
/* see if we found 7-segment LED GPIO */

if(segs == 0){
printf("failed to find GPIO instance named %s\n", SEGMENT_LED_INSTANCE);
return(-1);

}
printf("found GPIO instance named %s\n", SEGMENT_LED_INSTANCE);

Figure 178: LED7SegsTest.c file (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 239

/* see if we found our timer */
if(timer == 0){

printf("failed to find timer instance named %s\n", SYSTEM_TIMER);
return(-1);

}
/*

 * Before we start blinking the LEDs, setup the timer to generate
 * 1-second periodic interrupts
 */
display.gpio = segs;

TimerCtx.c[0] = '0';
TimerCtx.c[1] = '0';
TimerCtx.display = &display;
TimerCtx.iSelection = 0;

MicoTimerStart(timer,/* timer instance*/
TimerISR,/* isr routine */
(void *)&TimerCtx,/* data for isr*/
MILLISECONDS_TO_TICKS(10),/* timer-period*/
1); /* periodic mode*/

 /* scroll the LEDs, every 100 msecs forever */
while(1){

*((volatile unsigned int *)(leds->base)) = ~iValue;
MicoSleepMilliSecs(100);
if(iShiftLeft == 1){

iValue = iValue << 1;
if(iValue == 0x100){

iValue = 0x40;
iShiftLeft = 0;

}
}else{

iValue = iValue >> 1;
if(iValue == 0){

iValue = 0x02;
iShiftLeft = 1;

}
}

}

 /* all done */
return(0);

}
printf("found timer instance %s\n", SYSTEM_TIMER);

Figure 178: LED7SegsTest.c file (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

240 LatticeMico32 Software Developer User Guide

Figure 179: 7Segs.h

#ifndef _7SEGMENTS_H_
#define _7SEGMENTS_H_

#include "MicoGPIO.h"

/* context structure */
typedef struct st_SegmentDisp_t {

MicoGPIOCtx_t *gpio;/*
 * gpio that connects to 7-segment display
 */

int iSelectedSegment;/*
 * Identifies which segment is currently selected
 * for display
 */

char c;/*
 * code (0 - 9 and . ' ') that's being displayed
 */

}SegmentDisp_t;

/* should be called from a timer ISR */
void UpdateDisplay (SegmentDisp_t *display) __attribute__ ((section (".INLINE_I")));

/* displays a character on a segment */
void DisplayChar (SegmentDisp_t *display, int iSegment, char c) __attribute__
((section (".INLINE_I")));

/* converts a character 0-9, a-f and . to a valid code */
unsigned int GetCode (char c);

#endif /*7SEGMENTS_H_*/

Figure 180: 7Segs.c file

#include "7Segs.h"
#include "MicoGPIO.h"

#define SEG_A(0x01)
#define SEG_B(0x02)
#define SEG_C(0x04)
#define SEG_D(0x08)
#define SEG_E(0x10)
#define SEG_F(0x20)
#define SEG_G(0x40)
#define SEG_DOT(0x80)

#define SEGMENT_A(0x100)
#define SEGMENT_B(0x200)

/* converts a character 0-9, a-f and . to a valid code */
unsigned int GetCode (char c)

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 241

{
/*return(SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G); */
switch(c){

case '.':
return(SEG_DOT);

case '0':
return(SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F);

case '1':
return(SEG_B | SEG_C);

case '2':
return(SEG_A | SEG_B | SEG_D | SEG_E | SEG_G);

case '3':
return(SEG_A | SEG_B | SEG_C | SEG_D | SEG_G);

case '4':
return(SEG_B | SEG_C | SEG_F | SEG_G);

case '5':
return(SEG_A | SEG_C | SEG_D | SEG_F | SEG_G);

case '6':
return(SEG_A | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G);

case '7':
return(SEG_A | SEG_B | SEG_C);

case '8':
return(SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G);

case '9':
return(SEG_A | SEG_B | SEG_C | SEG_D | SEG_F | SEG_G);

default:
return(0);

}
}
/* updates display */
void UpdateDisplay (SegmentDisp_t *display)
{

/* The caller and callee functions are located in different sections.
 * Since these sections can be located beyond the range of a direct
 * call (i.e., calli), we need to use function pointers to instruct
 * gcc to generate indirect calls (i.e., register-based call) */
unsigned int (*GetCode_ptr) (char) = GetCode;
int code;

/* select the 7-seg module */
code = display->iSelectedSegment;

/* fetch display code */
code |= (*GetCode_ptr) (display->c);

/* complement the bits of the segments are active-low */
code = ~code;

/* output the code on the gpio */
*((volatile int *)(display->gpio->base)) = code;
}

Figure 180: 7Segs.c file (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

242 LatticeMico32 Software Developer User Guide

Using the LED7SegsTest Project
The aforementioned modifications are available in the example
LED7SegsTest Project through Lattice MicoSystem Builder. Perform the
following steps while compiling the application:

1. Set the __PLATFORMJ__ preprocessor option:

 Right-click the LED7SegsTest project and choose Properties.

 In the Properties dialog box, shown in Figure 181, select the C/C++
Build option.

 To set the __PLATFORMJ__ preprocessor flag, select Preprocessor
Options under "LatticeMico C/C++ Compiler."

 Click the add button next to "LatticeMico32 Preprocessor Defines"

and enter __PLATFORMJ__ in the textbox that opens.

2. Use the platformj_linker.ld custom linker script that is made available in
the application folder, as shown in Figure 182.

Refer to the previous example for more information on how to use a
custom linker script to compile an application.

/* displays a number (0 - 9) on a segment */
void DisplayChar (SegmentDisp_t *display, int iSegment, char c)
{

/* store the character being displayed */
display->c = c;

/* select segment */
if(iSegment == 0){

display->iSelectedSegment = SEGMENT_A;
} else {

display->iSelectedSegment = SEGMENT_B;
}
/* refresh display */
UpdateDisplay(display);
/* all done */
return;

}

Figure 180: 7Segs.c file (Continued)

ADVANCED PROGRAMMING TOPICS : Software Deployment

LatticeMico32 Software Developer User Guide 243

Figure 181: Setting the __PLATFORMJ__ Preprocessor Option

Figure 182: Location of platformj_linker.ld

ADVANCED PROGRAMMING TOPICS : Device Drivers and Multitasking

244 LatticeMico32 Software Developer User Guide

Conclusion With the tools included in LatticeMico C/C++ SPE, you can
selectively extract linker sections from the built executable. Although these
examples use the managed build process as its basis, you can employ the
tools used to extract the sections and generate memory files for a custom
build that may involve user-defined sections and custom-deployment
scenarios.

Device Drivers and Multitasking
The drivers provided as part of LatticeMico C/C++ SPE do not provide any
inherent thread-protection mechanism to prevent multiple threads from
simultaneously accessing the same component instance. However, the
provided device drivers are fully re-entrant and can operate on different
instances of a component simultaneously from different threads. Therefore, if
different tasks do not share component instances, the provided drivers can be
safely used in an application. However, if the tasks intend to share a
component instance, such as a single UART, you must provide explicit
protection from simultaneous access of a component instance across tasks.

Standard-Make Projects
Unlike a managed-build project that automatically generates makefiles and
linker scripts, a standard-make project requires you to provide the necessary
makefile to build your software application. Since you are required to provide
the makefile for building the application, you are responsible for identifying the
build rules, as well as selecting source files, file paths, and any other
information required for building your application. Standard-make projects
allow you flexibility in providing your own make structure, as well as in
controlling the build process.

Once you create a standard-make project, the debugger and the deployment
tools work the same on the application output as they do with the output of
any managed-build project.

To make the transition to a standard-build project, LatticeMico C/C++ SPE
provides a LatticeMico library project, which is a managed project. Its sole
purpose is to generate platform-dependent source files, makefiles, linker
script, and platform library archive. Other than its ability to generate an
executable and to provide custom source files for the build, it is identical to the
LatticeMico managed-build project.

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 245

Table 18 highlights some of the differences between the managed-build,
standard-make, and library projects.

Creating a LatticeMico Library Project
Any software project, whether a standard-make project or a managed-build
project, depends on the microprocessor platform for basic information, such
as the base addresses of the components or the desired standard output
device or the linker script parameters like memory sizes and their base
addresses. The managed-build process automatically extracts this
information in the platform library folder, as described in “Managed Build
Process and Directory Structure” on page 145.

LatticeMico provides another type of project called the LatticeMico library
project. It is also a managed project. The sole purpose of this project is to
create the platform library folder and its contents. These contents, which are
described in “Managed Build Process and Directory Structure” on page 145,
include platform-dependent C/C++ source and header files, as well as the
platform-dependent linker script and the microprocessor-dependent compiler
settings makefile. “Creating a LatticeMico Standard-Make Project” on
page 250 describes the commonly required platform-dependent outputs.
Once you create and build the LatticeMico library project, its output can be
referenced by a standard-make project.

The platform settings used as input for the sample steps in creating a library
project are the following:

 Platform name: basic_platform

 Platform location: c:\ispTOOLS\micosystem\examples\basic_platform

Table 18: Differences Between Managed-Build Projects, Standard-Make Projects, and Library
Projects

Feature Managed-Build Project Library Project Standard-Build Project

Managed Yes Yes No

Custom makefiles No No Yes

Command-line build Yes Yes Yes

Produce executable Yes No Yes - it is up to you

Produce platform library Yes No Yes - it is up to you

Reference external platform library No No Yes

GUI debugging Yes Not applicable Yes

Deployment tools support Yes Not applicable Yes

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

246 LatticeMico32 Software Developer User Guide

Figure 183 shows the platform components and their connectivity. This
platform uses a LatticeMico32 microprocessor, on-chip memory named EBR,
an 8-bit output GPIO named leds, and a UART named uart.

To create a LatticeMico library project:

1. Select File > New > Project to open the New Project dialog box, shown
in Figure 184.

Figure 183: Basic Platform

Figure 184: New Project Dialog Box

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 247

2. Expand the Mico C/C++ Application tree, and select Mico Library
Project, as shown in Figure 185.

3. Click Next.

4. In the New Project dialog box, shown in Figure 186, enter the following
information:

 Library Name: basic_platform_lib

 Library Contents Location: c:\standard_make\basic_platform_lib.

Figure 185: Selecting a LatticeMico Library Project

Figure 186: Library Name and Location

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

248 LatticeMico32 Software Developer User Guide

This step creates the standard_make directory, if it does not already exist.
It then creates the basic_platform_lib directory, if it does not exist. The
files for this project will be located in this basic_platform_lib directory.

5. Use the Browse button to select the appropriate platform in the MSB
System box.

For this example, the platform is basic_platform.msb and is located in
c:\ispTOOLS\micosystem\examples\basic_platform\soc\ directory.

6. Click Finish after entering the information just given.

Figure 187 shows the C/C++ Projects view in the C/C++ perspective after
you successfully complete step 4.

7. Select the basic_platform_lib project and build it by selecting Project >
Build Project.

The contents of the platform library project are identical to those of a
managed-build project. Refer to “Managed Build Process and Directory
Structure” on page 145 for information on the contents of a managed-build
project. The managed-build project generates the platform library archive file,
compiles the user-provided source files, and generates an .elf file.

The LatticeMico library project generates only the platform library archive file.
It does not compile the user-provided source files, nor does it generate an

Figure 187: C/C++ Projects View After Creation of Platform Library

Project

Note

The LatticeMico Library Project properties, accessible by selecting Project >
Properties, have property tabs similar to those of a managed build project. You
can change platform properties by selecting the Platform tab in the Properties
dialog box.

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 249

executable. This archive file and platform-dependent generated source and
makefiles can then be referenced by a standard-make project, allowing the
standard-make application flexibility in being platform-independent to a great
extent. They also give several standard-make applications the ability to
reference a single platform library archive file.

Figure 188 displays the contents of the application output folder.

Figure 189 shows the contents of the platform library folder. It does not show
a complete list of C source files.

As shown in Figure 189, the contents of this platform library folder are
identical to those of the managed-build project’s platform library folder. As the
next step demonstrates, these contents can be referenced from a standard-
build project.

Figure 188: Contents of the Platform Library Application Output Folder

Figure 189: Contents of the Platform Library Folder

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

250 LatticeMico32 Software Developer User Guide

As shown in Figure 190, the platform library archive file is located in the
application output folder’s build-configuration directory. Its contents are also
identical to those of the managed-build project’s output folder.

You have now successfully built a platform library project and have all the
platform-dependent outputs, including makefiles, linker scripts, source files,
and microprocessor-specific compiler settings file, that are used in a
managed-build project. This project’s output is linked to the platform, so
whenever a change is made to the platform in the LatticeMico MSB, the
project build will reflect changes made to the platform. The platform library
project is therefore dependent on the microprocessor platform.

Creating a LatticeMico Standard-Make
Project
In the previous section, you created a platform library project. In this section,
you will create a standard-make project for the basic_platform platform. A
standard make does not provide any facility to extract platform-dependent
information, unless you provide the necessary scripts and information as part
of the makefiles, which you must also provide. However, it is possible to

Figure 190: Platform Library Archive File

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 251

reference other projects from a standard-make project. This section describes
the steps required for creating such a project and for referencing the
generated LatticeMico library project for platform-dependent information.

To create a standard-make project:

1. Select File > New > Project in the C/C++ SPE perspective to display the
New Projects dialog box, shown in Figure 191.

2. Select Mico Standard Make Project and click Next.

3. Deselect Use Default and enter the following information, as shown in
Figure 192:

 Project Name: std_make

Note

A standard-make project is an Eclipse CDT project type. This project type has
comprehensive configuration and customization options through various project-
property settings. For the simple goal of creating a LatticeMico project that has a user-
provided makefile, you do not need to set the various project-property options.

Avoid setting properties from within the GUI. Instead, place them in the custom
makefile so that you can build this project from a LatticeMico SDK shell (that is, as
command-line build). Follow the steps listed in this chapter to create a standard-make
project that avoids these project-property settings.

Figure 191: New Projects Dialog Box

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

252 LatticeMico32 Software Developer User Guide

 Directory: c:\standard_make\std_make

The LatticeMico library project was created in the
c:\standard_make\basic_platform_lib directory, so creating this project in
the c:\standard_make\std_make directory makes it convenient to
reference the library project contents from this directory.

4. Click Finish.

Figure 193 shows the C/C++ Projects View after you click the Finish
button.

Figure 192: Standard Make Creation Settings

Note

Refer to the Eclipse/CDT documentation if you choose to explore other selections
by clicking the Next button.

Figure 193: C/C++ Projects View

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 253

Creating an Application Source File
At this stage, your project is empty. There are no source files and no make
file. You must provide all this information for your application.

Start by creating a simple application source file.

To create an application source file:

1. Click on std_make in the C/C++ Projects View.

2. Right-click and select New > Source File, as shown in Figure 194.

3. In the Source File box of the New Source File dialog box, enter
hello_world.c, as shown in Figure 195, and click Finish.

Note

You can copy the code shown in this section from the sample makefiles in the
<install_path>/micosystem/utilities/templates/std_mk_makefile_sample/ directory.

Figure 194: Adding a New Source File

Figure 195: Entering hello_world.c in New Source File Dialog Box

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

254 LatticeMico32 Software Developer User Guide

Figure 196 shows the C/C++ Projects View with the new source file.

At this stage, your source file is an empty source file.

4. Enter the code shown in Figure 197 in the hello_world.c source file.

Figure 196: C/C++ Projects View

Figure 197: Code in hello_world.c Source File

#include "system_conf.h"

int main(void)
{

volatile unsigned char *LEDS;
volatile unsigned char iValue = 0x01;
unsigned char iShiftLeft = 1;

LEDS = (volatile unsigned char *)LED_BASE_ADDRESS;

while(1){
printf("hello world\n");
*LEDS = ~iValue;
if(iShiftLeft == 1){

iValue = iValue << 1;
if(iValue == 0x80){

iValue = 0x40;
iShiftLeft = 0;

}
}else{

iValue = iValue >> 1;
if(iValue == 0){

iValue = 0x02;
iShiftLeft = 1;

}
}
MicoSleepMilliSecs(1000);

}
return(0);

}

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 255

You now have a source file. The included file, system_conf.h, provides the
base address value LEDS_BASE_ADDRESS.

Creating a Source-Identification Makefile
You still cannot build this application, because you do not have a makefile that
tells Eclipse/CDT the rules to build this application. To keep the build process
clean, you will add several makefiles. First, you will add a makefile that
identifies the sources required to build your application.

To create a source-identification makefile:

1. Select the std_make project in the C/C++ view.

2. Right-click and select New > File from the pop-up menu, as shown in
Figure 198.

Note

You can copy the code shown in this section from the sample makefiles in the
<install_path>/micosystem/utilities/templates/std_mk_makefile_sample/ directory.

Figure 198: Adding a Makefile

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

256 LatticeMico32 Software Developer User Guide

3. In the New File dialog box, enter the file name, sources.mk, as shown in
Figure 199, and click Finish.

This step creates an empty file named sources.mk in the C/C++ Projects
View for the std_make project.

You will now add information to this sources.mk file to identify the sources
needed to build this simple application.

The following description explains the contents in the sources.mk file. The
contents of this sources.mk file are provided at the end of this description.
One C source file, hello_world.c, forms the bulk of the application.
Additionally, the application requires the boot code that will invoke the
application’s “main” function. This boot code is contained in the crt0ram.S
file in the LatticeMico library project.

Figure 199: Naming the sources.mk Makefile

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 257

4. Add the lines shown in Figure 200 to the sources.mk file.

Next, you must help the build process identify where it can find the
crt0ram.S source file. This file is located in the platform library project’s
platform library folder in the
c:\standard_make\basic_platform_lib\basic_platform directory.

5. Add the line shown in Figure 201 to modify the VPATH variable. VPATH is
a make variable that specifies a list of directories that should be searched
for finding sources. Refer to the GNU make documentation for information
on VPATH and other application variables.

You have not yet defined the PLATFORM_LIB_PATH and
PLATFORM_NAME variables, but you will use them to indicate the
following:

 PLATFORM_LIB_PATH – Root directory of the LatticeMico library
project (in this case, c:\standard_make\basic_platform_lib)

 PLATFORM_NAME – Name of the platform (in this case,
basic_platform)

You will define these two variables in the next step in a separate makefile.

The system_conf.h header file is included in the hello_world.c source file.
You must indicate where the related header files are located.

Figure 200: Identifying the Sources

#--
#- The source files that you want to compile
#- - main.c
#- - crt0ram.S (boot code) provided by platform library
#- CXX_SRCS are the .cpp source files (C++)
#- C_SRCS are the .c source files (C)
#- .S and .s are assembly source files for LatticeMico32
#--
#- C++ sources (.cpp)
CXX_SRCS=

#- C sources (.c)
C_SRCS=main.c

#- Assembly source files (.s and .S)
ASM_SRCS=crt0ram.S

Figure 201: Modifying the VPATH Variable

#--
Specify where this project can find platform-
specific source files that are required for your build (in
this case, the only such file is crt0ram.S.)
#--
VPATH+=$(PLATFORM_LIB_PATH)/$(PLATFORM_NAME)/

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

258 LatticeMico32 Software Developer User Guide

6. Add the lines shown in Figure 202 to the sources.mk file.

The sources.mk file is now complete. It provides information on the
sources required to build the application and identifies where the external
sources (crt0ram.S) and the included files (system_conf.h) can be found.

Figure 203 lists the complete contents of sources.mk file.

Figure 202: Specifing Location of Header Files

#--
In case the source files include header files provided by
the platform library project, specify where these can be
found.
#--
INCLUDE_PATH+=$(PLATFORM_LIB_PATH)/$(PLATFORM_NAME)/

Figure 203: Contents of the sources.mk File

#--
#- The source files that you want to compile:
#- - main.c
#- - crt0ram.S (boot code) provided by platform library
#- CXX_SRCS are the .cpp source files (C++)
#- C_SRCS are the .c source files (C)
#- .S and .s are assembly source files for LatticeMico32
#--
#- C++ sources (.cpp)
CXX_SRCS=

#- C sources (.c)
C_SRCS=hello_world.c

#- Assembly source files (.s and .S)
ASM_SRCS=crt0ram.S

#--
Specify where this project can find platform-
specific source files that are required for your build (in
this case, the only such file is crt0ram.S.)
#--
VPATH+=$(PLATFORM_LIB_PATH)/$(PLATFORM_NAME)/

#--
In case your source files include header files provided by
the platform library project, specify where these can be
found.
#--
INCLUDE_PATH+=$(PLATFORM_LIB_PATH)/$(PLATFORM_NAME)/

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 259

Creating the Platform-Settings Makefile
In the sources.mk makefile, you identified some sources and header files that
are platform-dependent and are generated by the LatticeMico library project.
These, however, are not the only file types that you need. You also need the
following information, which is contained in the LatticeMico library project:

 CPU configuration-dependent compiler settings, which are contained in
the platform_rules.mk file of the LatticeMico library project. It is defined by
the CPU_CONFIG variable.

 Linker file – At this stage, you will reference the automatically generated
linker script contained in the LatticeMico library project.

Also, since you are using the default boot code contained in the automatically
generated crt0ram.S file, you must include the platform library archive file for
routines that it may need to invoke.

To add a makefile containing the configuration-dependent compiler
settings:

1. Create a new file, platform.mk, in the std_make project.

2. In this platform.mk file, enter the information shown in Figure 204. The
following description explains the contents in the platform.mk file. The
contents of this platform.mk file are provided at the end of this description.

The lines shown in Figure 204 identify the platform name, the directory
containing the LatticeMico library project, and the build configuration of
the LatticeMico library project that you want to reference. You can retarget
your application to a different library by modifying this basic information.

Note

You can copy the code shown in this section from the sample makefiles in the
<install_path>/micosystem/utilities/templates/std_mk_makefile_sample/ directory.

Figure 204: Defining Platform-Specific Settings

#
#Define platform-specific settings that can be quickly changed.
#
PLATFORM_NAME=basic_platform
PLATFORM_LIB_PATH=../basic_platform_lib
PLATFORM_BLD_CFG=debug

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

260 LatticeMico32 Software Developer User Guide

3. Next, you must identify the items from the LatticeMico library project that
you want to reference, so enter the information shown in Figure 205 in this
file.

Figure 205: Identifying Items from the LatticeMico Library Project

#
Derive other information from the basic platform
information as required by main makefile.
#

1. Specify where these platform-dependent makefiles are
located.
PLATFORM_MAKEFILES_DIR = $(addprefix $(PLATFORM_LIB_PATH),\

$(addprefix /$(PLATFORM_NAME), /$(PLATFORM_BLD_CFG)))

2. Platform library (relative path and name)
required by main makefile.
PLATFORM_LIBRARY=$(addprefix $(PLATFORM_LIB_PATH)/,\

$(addprefix $(PLATFORM_BLD_CFG)/,\
$(addprefix $(PLATFORM_BLD_CFG)/, lib$(PLATFORM_NAME).a)))

3. Linker file required by main makefile
LD_FILE=$(PLATFORM_MAKEFILES_DIR)/linker.ld

4. $(CPU_CONFIG) defines CPU-specific configuration.
CPU-specific configuration is platform-dependent, so you
put it in this file.
Platform_rules.mk contains CPU configuration.
include $(PLATFORM_MAKEFILES_DIR)/platform_rules.mk

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 261

You have now specified the platform-dependent information for your
application. Figure 206 lists the complete contents of the platform.mk
makefile.

Creating C Compiler and Linker Settings Makefile
You must now provide information for the compiler tool chain. You will create a
separate file, settings.mk, which contain this information instead of putting it in
the main makefile, which is yet to be created. This way, you can change your
build settings without having to search the main makefile.

Figure 206: Contents of platform.mk File

#
Define platform-specific settings that can be
quickly changed.

#
PLATFORM_NAME=basic_platform
PLATFORM_LIB_PATH=../basic_platform_lib
PLATFORM_BLD_CFG=debug

#
Derive other information from the basic platform
information as required by main makefile
#

1. Specify where these platform-dependent makefiles are
located.
PLATFORM_MAKEFILES_DIR = $(addprefix $(PLATFORM_LIB_PATH),\

$(addprefix /$(PLATFORM_NAME), /$(PLATFORM_BLD_CFG)))

2. Platform library (relative path and name),
required by main makefile.
PLATFORM_LIBRARY=$(addprefix $(PLATFORM_LIB_PATH)/,\

$(addprefix $(PLATFORM_BLD_CFG)/,\
$(addprefix $(PLATFORM_BLD_CFG)/, lib$(PLATFORM_NAME).a)))

3. Linker file required by main makefile
LD_FILE=$(PLATFORM_MAKEFILES_DIR)/linker.ld

4. $(CPU_CONFIG) defines CPU-specific configuration.
CPU-specific configuration is platform-dependent, so you
put it in this file.
Platform_rules.mk contains CPU configuration.
include $(PLATFORM_MAKEFILES_DIR)/platform_rules.mk

Note

You can copy the code shown in this section from the sample makefiles in the
<install_path>/micosystem/utilities/templates/std_mk_makefile_sample/ directory.

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

262 LatticeMico32 Software Developer User Guide

To create a makefile that defines the settings for the C compiler and the
linker:

1. Create a new file named settings.mk.

You will first identify your application.

The following description explains the contents in the settings.mk file. The
contents of this settings.mk file are provided at the end of this description.

2. Enter the lines shown in Figure 207 in this new settings.mk file. Your
application will be called hello_world.elf.

3. To ensure that the build process places its output and intermediate
outputs in a separate temporary directory so that it does not clutter your
main project directory, enter the lines shown in Figure 208 in the
settings.mk file.

Now you define the compiler and linker flags that you want to pass to the
compiler and linker when building your application. The LatticeMico library
project compiler settings are located in the inherited_settings.mk makefile
in the LatticeMico library project. You will not reference these settings, so
the compilation rules for the application will be separated from the library.
If you wanted to use the same settings as the library, you could include the

Figure 207: Identifying Your Application

#---
#
Name your output executable here:
APP_OUTPUT_ELF will be used by the main makefile,
so it should not be renamed to something else.
#
#---
APP_OUTPUT_ELF=hello_world.elf

Figure 208: Specifying an Output Directory

#---
You do not want the intermediate and final outputs
that will deleted by a clean to clutter
this project folder, so you specify an output
directory.
#---
OUTPUT_DIR=./output

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 263

inherited_settings.mk makefile, just as you included platform library
outputs in the platform.mk file.

4. Specify the C library that you plan to use by adding the self-explanatory
lines shown in Figure 210 to this file.

Figure 209: Setting Compiler, Assembler, and Linker Flags

#---
Provide compiler, assembler, and linker flags that will
be used when building the application.
Note: These flags do not affect the platform
library if this project references the
platform library.
#---
CFLAGS affect C compiler: (standard gcc flags)
1. You want functions to be in their own sections for
size reduction (-ffunction-sections)
2. You want no optimization (-O0)
3. You want debug symbols (-g2)
4. You want warnings (-w)
5. You want to use the standalone printf
6. You want to define __lm32__ preprocessor definition
CFLAGS= -ffunction-sections -O0 -g2 -w
#Add preprocessor definitions to CFLAGS to include
standalone printf implementation (-D_USE_LSCC_PRINTF_)
CFLAGS+=-D_USE_LSCC_PRINTF_ -D__lm32__

LDFLAGS affect linker:
Since you are using lm32-elf-gcc (and not lm32-elf-ld),
you must specify -Wl before the linker flag.
(refer to GCC documentation)
Delete sections that are not used
(thereby making your executable more compact).
LDFLAGS +=-Wl,--gc-sections

Figure 210: Specifying the C Library to Use

Define which C library you want to use.
You have two choices according to what Lattice provides:
1. -lsmallc (small Newlib C library)
2. -lc (complete C library)
C_LIB=-lsmallc

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

264 LatticeMico32 Software Developer User Guide

You now have completed the settings file that defines the settings for the
C compiler and linker. Figure 211 lists the complete contents of this file.

Figure 211: Contents of the settings.mk File

#---
#
Name your output executable here:
APP_OUTPUT_ELF will be used by the main makefile,
so it should not be renamed to something else.
#
#---
APP_OUTPUT_ELF=hello_world.elf

#---
You do not want the intermediate and final outputs
that will be deleted by a clean to clutter
this project folder, so you specify your output
directory.
#---
OUTPUT_DIR=./output

#---
Provide compiler, assembler, and linker flags that will
be used when building the application.
Note: These flags do not affect the platform
library if this project references the
platform library.
#---
CFLAGS affect C compiler: (standard gcc flags)
1. You want functions to be in their own sections for
size reduction (-ffunction-sections)
2. You want no optimization (-O0)
3. You want debug symbols (-g2)
4. You want warnings (-w)
5. You want to use the standalone printf
6. You want to define __lm32__ preprocessor definition
CFLAGS= -ffunction-sections -O0 -g2 -w
#Add preprocessor defines to CFLAGS
standalone printf implementation (-D_USE_LSCC_PRINTF_)
CFLAGS+=-D_USE_LSCC_PRINTF_ -D__lm32__

LDFLAGS affect linker:
Since you are using lm32-elf-gcc (and not lm32-elf-ld),
you must specify -Wl, before the linker flag
(refer to gcc documentation)
Delete sections that are not used
(thereby making your executable more compact)
LDFLAGS +=-Wl,--gc-sections

Define which C library you want to use.
You have two choices according to what Lattice provides:
1. -lsmallc (small Newlib C library)
2. -lc (complete C library)
C_LIB=-lsmallc

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 265

Creating the Main Makefile
At this point, you have most of the necessary pieces to build your application.
The last step is defining the rules for building your application. For this, you
will create the main makefile, which is named “makefile.” Figure 212 shows
the contents of the project folder with all these makefiles.

In this makefile, you will define the rules for building your application. First,
you will include the other makefiles that you have defined so far.

To create the main makefile:

1. Enter the lines shown in Figure 213.

Figure 212: Project Folder Containing Makefiles Created

Note

You can copy the code shown in this section from the sample makefiles in the
<install_path>/micosystem/utilities/templates/std_mk_makefile_sample/ directory.

Figure 213: Including Other Makefiles

#
Include settings.mk that contain settings
required by this makefile.
#
include settings.mk
include platform.mk

#
Include makefile that contains the sources
information, that is, sources to build and the
locations where these sources can be found.
#
include sources.mk

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

266 LatticeMico32 Software Developer User Guide

2. You must prefix –I to the include paths defined in the sources.mk file, as
required by the compiler. Add the lines of code shown in Figure 214 to the
“makefile” makefile.

You defined your C/C++ and assembly source inputs in sources.mk.

3. Enter the lines of code shown in Figure 215 to identify the required objects
by replacing the file extensions with .o extensions.

Now that you have identified the .o object files, you must decide where
these files will be created and found. They must be created in the output
directory that you defined in the settings.mk file.

4. Place the lines shown in Figure 216 in the “makefile” file to indicate the
location of the .o object files.

5. Add the lines shown in Figure 217 to define where the application
executable (.elf) will be created.

Figure 214: Prefixing Include Paths

#
You must prefix -I to each of the include paths,
then make this available to the compiler.
Modify CFLAGS to contain the include path.
#
CFLAGS += $(foreach inc_path, $(INCLUDE_PATH), -I$(inc_path))

Figure 215: Identifying .o Object Files

#--
Now that you have defined your .c, .s, .S and .cpp sources,
extract the .o files that are needed for a successful build.
#--
OBJS=$(sort $(C_SRCS:.c=.o)\

$(patsubst %.cxx, %.o, \
$(patsubst %.cc, %.o, $(patsubst %.cpp, %.o, \
$(patsubst %.C, %.o,$(CXX_SRCS)))))\
$(patsubst %.S, %.o, $(patsubst %.s, %.o, $(ASM_SRCS))))

Figure 216: Specifying the Location of the .o Object Files

#--
Prefix the output directory to the .o files,
because that is where you want these .o files to be created
and where the build process can find these created objects
for the .elf build.
#--
APP_OBJS=$(addprefix $(OUTPUT_DIR)/, $(OBJS))

Figure 217: Specifying the Location of the .elf Executable

we also modify where we want our .elf to be created
APP_ELF=$(addprefix $(OUTPUT_DIR)/, $(APP_OUTPUT_ELF))

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 267

Now you will define the build rules. The build process invokes make with
“clean” when performing a clean and “all” when performing a build. When
performing a rebuild, the build process invokes make with “clean” followed
by “all.”

6. Enter the following lines to define your rule for “clean.”

During a “clean,” you want all files removed from the output directory, then
you delete the output directory.

You have not yet defined the “all” and “dummy” rules, but you will define
them next. Refer to GNU make documentation for the .PHONY keyword.

Be very careful to insert tabs for each line instead of white spaces for the
lines given in Figure 218. Refer to the GNU make documentation for an
explanation of the interpretation of white spaces (tabs versus spaces).

Now you will define your rule for building your application. You must first
create an output directory, if one does not exist, then invoke the compiler
on each object file. First you will create the output directory, then compile.
Enter the lines shown in Figure 219 to define this first step of creating the
temporary directory. These lines comprise the “dummy” rule.

7. Enter the lines shown in Figure 220 to define the “all” rule.

Figure 218: Specifying Cleaning Rule

.PHONY: all dummy clean
#--
#
Rule to clean this project.
You just want to delete items that you created when building,
including the output directory.
#
#--
clean:

@echo cleaning...
rm -r -f $(OUTPUT_DIR)

Figure 219: Specifying the Rule for Building the Output Directory

Dummy rule prepares for a build, such as creating the output
directory.
dummy:

@mkdir -p $(OUTPUT_DIR)
@echo $(APP_OBJS)
@echo $(VPATH)

Figure 220: Specifying the “all” Rule

#
“All” rule defines how to build the output desired.
#
all: dummy $(APP_ELF)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

268 LatticeMico32 Software Developer User Guide

The statement in Figure 220 says that “all” depends on “dummy” and on
APP_ELF. “Dummy” is the rule for creating the output directory. You will
now define the APP_ELF rule that actually builds the application.

8. Enter the lines shown in Figure 221 for the APP_ELF rule.

The call to build_app is the command that builds the executable. This
command expects all the .o files to be present. Declaring the APP_ELF
rule dependent on the application object (.o) files generates the .o files.
Additionally, making this APP_ELF rule dependent on the platform rules
makefile, the linker script, and the platform library archive file ensures that
this application is built each time that any of these three files changes.

The APP_ELF rule causes the objects to be generated the first time that
this application is built (or each time it is rebuilt). You do not want to apply
a default rule for building these objects, so add the following lines to build
the .o files, using the following explicit rules.

Figure 221: Specifying the Rule that Builds the Application

Define a function to build the application.
documented source
define build_app

lm32-elf-gcc\
$(CPU_CONFIG)\
-T $(LD_FILE)\
-o$1 \
$(APP_OBJS)\
$(PLATFORM_LIBRARY)\
-lm \
$(C_LIB)\
-lgcc \
$(PLATFORM_LIBRARY)\
-lnosys \
$(LDFLAGS)

endef

#
Define how to build an .elf file.
This depends on the objects required, as well as
the CPU configuration makefile.
That is, if any change is detected, rebuild the
elf file.
#
$(APP_ELF): $(APP_OBJS) $(PLATFORM_RULES_MAKEFILE) $(LD_FILE)\
$(PLATFORM_LIBRARY)

@echo
@echo
@echo building $(APP_ELF)
$(call build_app,$@)
lm32-elf-size $(APP_ELF)
lm32-elf-objdump -d $(APP_ELF) > $(OUTPUT_DIR)/dump.txt

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 269

You now have defined your main makefile. Figure 223 shows the entire
makefile source.

Figure 222: Specifying the Rule for Building the .o Object Files

#--
Create a generic rule to build .o files from .c files.
#--
$(OUTPUT_DIR)/%.o : %.c

@echo
@echo compiling $< to $@
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o$@

#--
Create a generic rule to build .o files from .S files.
#--
$(OUTPUT_DIR)/%.o : %.S

@echo
@echo compiling $< to $@
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o$@

Figure 223: Contents of the Main Makefile

#
Include settings.mk that contain settings
required by this makefile.
#
include settings.mk
include platform.mk

#
Include makefile that contains the sources
information, that is, sources to build and the
locations where these sources can be found.
#
include sources.mk

#
Prefix -I to each of the include paths,
then make this available
to the compiler. Modify CFLAGS to
also contain the include path.
#
CFLAGS += $(foreach inc_path, $(INCLUDE_PATH), -I$(inc_path))

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

270 LatticeMico32 Software Developer User Guide

#--
Now that you have defined your .c, .s, .S and .cpp sources,
extract the .o files that are needed for a successful build.
#--
OBJS=$(sort $(C_SRCS:.c=.o)\

$(patsubst %.cxx, %.o, \
$(patsubst %.cc, %.o, $(patsubst %.cpp, %.o, \
$(patsubst %.C, %.o,$(CXX_SRCS)))))\
$(patsubst %.S, %.o, $(patsubst %.s, %.o, $(ASM_SRCS))))

#--
Prefix the output directory to the .o files
because that is where you want these .o files to be created
and where the build process can find these
created objects for the .elf build.
#--
APP_OBJS=$(addprefix $(OUTPUT_DIR)/, $(OBJS))

Modify where you want the .elf to be created.
APP_ELF=$(addprefix $(OUTPUT_DIR)/, $(APP_OUTPUT_ELF))

.PHONY: all dummy clean
#--
#
Rule to clean this project.
You want to delete items created when building,
including the output directory.
#
#--
clean:

@echo cleaning...
rm -r -f $(OUTPUT_DIR)

Figure 223: Contents of the Main Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 271

Dummy rule prepares for a build such as creating the output
directory.
dummy:

@mkdir -p $(OUTPUT_DIR)
@echo $(APP_OBJS)
@echo $(VPATH)

#
“All” rule defines how to build the output desired.
#
all: dummy $(APP_ELF)

Define a function to build application.
define build_app

lm32-elf-gcc\
$(CPU_CONFIG)\
-T $(LD_FILE)\
-o$1 \
$(APP_OBJS)\
$(PLATFORM_LIBRARY)\
-lm \
$(C_LIB)\
-lgcc \
$(PLATFORM_LIBRARY)\
-lnosys \
$(LDFLAGS)

endef

#
Define how to build the .elf file.
This depends on the objects required, as well as
the CPU configuration makefile.
That is, if any change is detected, rebuild the
elf file.
#
$(APP_ELF): $(APP_OBJS) $(PLATFORM_RULES_MAKEFILE) $(LD_FILE)\
$(PLATFORM_LIBRARY)

@echo
@echo
@echo building $(APP_ELF)
$(call build_app,$@)
lm32-elf-size $(APP_ELF)
lm32-elf-objdump -d $(APP_ELF) > $(OUTPUT_DIR)/dump.txt

#--
Create a generic rule to build .o files from .c files.
#--
$(OUTPUT_DIR)/%.o : %.c
@echo
@echo compiling $< to $@
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o $@

Figure 223: Contents of the Main Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

272 LatticeMico32 Software Developer User Guide

Building the Project
Now that you have provided a makefile, the application is all ready to be built,
rebuilt, or cleaned.

To build the project:

 Select Project > Build Project to build the project.

The preceding sections introduced the standard-make project. They
referenced a LatticeMico library project to help you get started in creating a
standard make. However, you are not required to reference a LatticeMico
library project if you choose to create a completely stand-alone standard-
make project. In this case, you must supply all the necessary pieces of
information, such as the linker file, the boot code, and any other information
your application may require.

Linking the LatticeMico Library Project as a
Dependency on the Standard-Make Project
To conclude the example, this section reviews the steps required to make the
standard-make project dependent on the library project. Performing a clean
on the standard make project also cleans up the library project.

Making the LatticeMico library project a dependency on the standard-make
project has the following advantages:

 If any of the files that the LatticeMico library project depends on is
changed, building the standard-make project causes the LatticeMico
library project to be built, followed by updating the standard-make project.

 Rebuilding the standard-make project causes the LatticeMico library
project to be rebuilt, followed by rebuilding the standard-make project.

To establish the LatticeMico library project as a dependency on the
standard-make project:

1. Click on the std-make project in the C/C++ SPE view.

#--
Create a generic rule to build .o files from .S files.
#--
$(OUTPUT_DIR)/%.o : %.S
@echo
@echo compiling $< to $@
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o $@

Figure 223: Contents of the Main Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 273

2. Right-click and select Properties, as shown in Figure 224.

Figure 224: Selecting the Properties Command

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

274 LatticeMico32 Software Developer User Guide

3. In the Properties for Std_make dialog box, select the Project References
tab, as shown in Figure 225.

The pane to the right lists all available projects in the C/C++ SPE projects
view for the given workspace.

Figure 225: Selecting the Project References Tab

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 275

4. Select the platform library that this standard make project references, and
select the option next to the project list, as shown in Figure 226.

You have now linked the LatticeMico library project to the standard-make
project. Each time that a build is performed on the standard-make project, the
build system first builds the project library, if there are any changes specified
in the project library makefiles, before building the standard-make project.

The example makefile is written so that any manual change to the crt0ram.S
file contained in the LatticeMico library project causes the standard-make
project to rebuild itself to account for the change. However, it does not detect
a manual change to the system_conf.h header file. If you want a manual
change to this header file to be detected, you must modify the standard-make
project’s makefile to generate dependency information and perform a build
accordingly. The modified makefile shown in Figure 227 accomplishes this.
The method used in it is from Robert Mecklenburg’s book, Managing Projects

Figure 226: Selecting the Platform Library

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

276 LatticeMico32 Software Developer User Guide

with GNU Make (Sebastopol, CA: O’Reilly Media, Inc., 2004) and is a very
good introduction, as well as reference, to GNU make.

Figure 227: Modified Makefile

#
Include settings.mk that contain settings
required by this makefile.
#
include settings.mk
include platform.mk

#
Include makefile that contains the sources
information, that is, sources to build and the
locations where these sources can be found.
#
include sources.mk

#
Prefix -I to each of the include paths,
then make this available
to the compiler. Modify CFLAGS to
also contain the include path.
#
CFLAGS += $(foreach inc_path, $(INCLUDE_PATH), -I$(inc_path))

#--
Now that you have defined your .c, .s, .S and .cpp sources,
extract the .o files that are needed for a successful build.
#--
OBJS=$(sort $(C_SRCS:.c=.o)\

$(patsubst %.cxx, %.o, \
$(patsubst %.cc, %.o, $(patsubst %.cpp, %.o, \
$(patsubst %.C, %.o,$(CXX_SRCS)))))\
$(patsubst %.S, %.o, $(patsubst %.s, %.o, $(ASM_SRCS))))

#--
Prefix the output directory to the .o files to indicate
where to create the .o files
and where the build process can find these
created objects for the .elf build.
#--
APP_OBJS=$(addprefix $(OUTPUT_DIR)/, $(OBJS))

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 277

Modify where you want the .elf to be created.
APP_ELF=$(addprefix $(OUTPUT_DIR)/, $(APP_OUTPUT_ELF))

#
Dependency generation (From
"Managing Projects with GNU Make" by
Robert Mecklenburg, published by
O'Reilly
#
dependencies=$(subst .o,.d,$(APP_OBJS))
ifneq "$(MAKECMDGOALS)" "clean"

-include $(dependencies)
endif

define make-depend
lm32-elf-gcc-MM\

-MF$3\
-MP \
-MT $2\
$(CPU_CONFIG)\
$(CFLAGS)\
$(CPPFLAGS)\
$1

endef

.PHONY: all dummy clean
#--
#
Rule to clean this project.
You want to delete items that you created when building,
including the output directory.
#
#--
clean:

@echo cleaning...
rm -r -f $(OUTPUT_DIR)

Dummy rule prepares for a build such as creating the output
directory.
dummy:

@mkdir -p $(OUTPUT_DIR)
@echo $(APP_OBJS)
@echo $(VPATH)

Figure 227: Modified Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

278 LatticeMico32 Software Developer User Guide

#
“All” rule defines how to build the output desired.
#
all: dummy $(APP_ELF)

Define a function to build application.
define build_app

lm32-elf-gcc\
$(CPU_CONFIG)\
-T $(LD_FILE)\
-o$1 \
$(APP_OBJS)\
$(PLATFORM_LIBRARY)\
-lm \
$(C_LIB)\
-lgcc \
$(PLATFORM_LIBRARY)\
-lnosys \
$(LDFLAGS)

endef

#
Define how to build the .elf file.
This depends on the objects required, as well as
the CPU configuration makefile.
That is, if any change is detected, rebuild the
elf file.
#
$(APP_ELF): $(APP_OBJS) $(PLATFORM_RULES_MAKEFILE) $(LD_FILE)\
$(PLATFORM_LIBRARY)

@echo
@echo
@echo building $(APP_ELF)
$(call build_app,$@)
lm32-elf-size $(APP_ELF)
lm32-elf-objdump -d $(APP_ELF) > $(OUTPUT_DIR)/dump.txt

Figure 227: Modified Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

LatticeMico32 Software Developer User Guide 279

#--
Create a generic rule to build .o files from .c files.
#--
$(OUTPUT_DIR)/%.o : %.c
@echo
@echo compiling $< to $@
@echo
$(call make-depend,$<,$@,$(subst .o,.d,$@))
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o $@

#--
Create a generic rule to build .o files from .S files.
#--
$(OUTPUT_DIR)/%.o : %.S
@echo
@echo compiling $< to $@
@echo
lm32-elf-gcc -c $(CPU_CONFIG) $(CFLAGS) $(CPPFLAGS) $< -o $@

Figure 227: Modified Makefile (Continued)

ADVANCED PROGRAMMING TOPICS : Standard-Make Projects

280 LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide 281

Chapter 7

Software Development Utilities

This chapter describes the software development utilities in the LatticeMico
GNU C/C++ tool chain that are used to accomplish tasks, even though they
are not visible in the graphical user interface. This tool chain includes general-
purpose software development utilities, such as a command-line interface,
that incorporate UNIX shell capabilities on a PC platform. In addition, the tool
chain consists of LatticeMico System-specific utilities for generating and
debugging software code.

Build Tools
This section explains the GCC tools used for building software programs for
LatticeMico and the build flow in the C/C++ Software Project Environment
(SPE). This section also includes commonly used parameters for the tools,
along with LM32-specific build options. References to the Newlib and the
GNU tool chain Web site are provided here to supplement your information on
this open-source development tool.

If there are any issues or problems with any of these tools, report them at the
http://www.sourceware.org/bugzilla/ Web site.

lm32-elf-ar
The lm32-elf-ar utility generates an archive from the given input object files.

Refer to the GCC and GNU Binary Utilities documentation for more
information.

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

282 LatticeMico32 Software Developer User Guide

Usage
lm32-elf-ar [emulation_options] [-]{options}[modifiers]
[member_name] [count] archive_file_name file_name ...

lm32-elf-ar -M [<mri_script]
Options can be any of the options listed in Table 19.

Modifiers can be any of the command-specific or generic modifiers listed in
Table 20 or Table 21.

Table 19: lm32-elf-ar Options

Options Description

d Deletes files from the archive.

m[ab] Moves files in the archive.

p Prints files found in the archive.

q[f] Appends files to the archive.

r[ab][f][u] Replaces existing files or inserts new files
into the archive.

t Displays contents of the archive.

x[o] Extracts files from the archive.

Table 20: lm32-elf-ar Command-Specific Modifiers

Options Description

[a] Puts files after [member_name].

[b] Puts files before [member_name] (same as
[i]).

[N] Uses instance [count] of name.

[f] Truncates inserted file names.

[P] Uses full path names when matching.

[o] Preserves original dates.

[u] Only replaces files that are newer than
current archive contents.

Table 21: lm32-elf-ar Generic Modifiers

Options Description

[c] Does not warn if the library had to be
created.

[s] Creates an archive index (cf. ranlib)

[S] Does not build a symbol table.

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 283

The lm32-elf-ar utility has no emulation-specific options.

The lm32-elf-ar utility supports the following targets: elf32-lm32, elf32-little,
elf32-big, srec, symbolsrec, tekhex, binary ihex.

lm32-elf-as
The lm32-elf-as utility is the assembler utility. It takes as input an assembler
source (.s) file and generates a relocatable object (.o) file.

Usage
lm32-elf-as [options] [asmfile...]

where options can be one or more of the options shown in Table 22.

[v] Is verbose.

[V] Displays the version number.

Table 22: lm32-elf-as Options

Options Description

-a[sub-option...] Turns on listings.

Sub-options [default hls]:

 c Omits false conditionals.

d Omits debugging directives.

 h Includes high-level source.

 l Includes assembly.

 m Includes macro expansions.

 n Omits forms processing.

 s Includes symbols.

 =FILE Lists to FILE (must be last sub-option).

 --alternate Initially turns on alternate macro syntax.

 -D Produces assembler debugging messages.

 --defsym SYM=VAL Defines symbol SYM to given value.

 --execstack Requires executable stack for this object.

 --noexecstack Does not require executable stack for this
object.

Table 21: lm32-elf-ar Generic Modifiers

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

284 LatticeMico32 Software Developer User Guide

 -f Skips white space and comment
preprocessing.

 -g --gen-debug Generates debugging information.

 --gstabs Generates STABS debugging information.

 --gstabs+ Generates STABS debug info with GNU
extensions.

 --gdwarf-2 Generates DWARF2 debugging information.

 --help Shows these option descriptions and exits.

 --target-help Shows target-specific options.

 -I DIR Adds DIR to search list for .include
directives.

 -J Does not warn about signed overflow.

 -K Warns when differences altered for long
displacements.

 -L,--keep-locals Keeps local symbols (for example, starting
with “L”).

 -M,--mri Assembles in MRI compatibility mode.

 --MD FILE Writes dependency information in FILE
(default is none).

 -nocpp ignored.

 -o OBJFILE Names the object-file output OBJFILE
(default a.out).

 -R Folds data section into text section.

 --statistics Prints various measured statistics from
execution.

 --strip-local-absolute Strips local absolute symbols.

 --traditional-format Uses same format as native assembler when
possible.

 --version Prints assembler version number and exit.

 -W --no-warn Suppresses warnings.

 --warn Does not suppress warnings.

 --fatal-warnings Treats warnings as errors.

 --itbl INSTTBL Extends instruction set to include instructions
matching the specifications defined in file
INSTTBL.

 -w Ignored.

 -X Ignored.

 -Z Generates object file even after errors.

Table 22: lm32-elf-as Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 285

lm32-elf-gcc
The lm32-elf-gcc utility is the compiler utility. It compiles a C code (.c) file into
a relocatable object (.o) file. It can call the linker as well, depending on the file
extension.

Usage
lm32-elf-gcc [options] file...

where options can be one or more of the options shown in Table 23.

 --listing-lhs-width Sets the width in words of the output data
column of the listing.

 --listing-lhs-width2 Sets the width in words of the continuation
lines of the output data column; ignored if
smaller than the width of the first line.

 --listing-rhs-width Sets the maximum width in characters of the
lines from the source file.

 --listing-cont-lines Sets the maximum number of continuation
lines used for the output data column of the
listing.

LM32-specific Options Description

 -mmultiply-enabled Enables multiply instructions.

 -mdivide-enabled Enables divide and modulus instructions.

 -mbarrel-shift-enabled Enables multi-bit shift instructions.

 -msign-extend-enabled Enables sign-extension instructions.

 -muser-enabled Enables user-defined instructions.

 -micache-enabled Enables instruction cache instructions.

 -mdcache-enabled Enables data cache instructions.

 -mbreak-enabled Enables the break instruction.

 -mall-enabled Enables all optional instructions.

Table 23: lm32-elf-gcc Options

Option Description

 -pass-exit-codes Exits with highest error code from a
phase.

 --help Displays these option descriptions.

 --target-help Displays target-specific command-line
options.

Table 22: lm32-elf-as Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

286 LatticeMico32 Software Developer User Guide

 '-v --help' Displays command-line options of sub-
processes.

 -dumpspecs Displays all of the built-in specification
strings.

 -dumpversion Displays the version of the compiler.

 -dumpmachine Displays the compiler's target
microprocessor.

 -print-search-dirs Displays the directories in the compiler's
search path.

 -print-libgcc-file-name Displays the name of the compiler's
companion library.

 -print-file-name=<lib> Displays the full path to the <lib> library.

 -print-prog-name=<prog> Displays the full path to the <prog>
compiler component .

 -print-multi-directory Displays the root directory for versions of
libgcc.

 -print-multi-lib Displays the mapping between
command-line options and multiple library
search directories.

 -print-multi-os-directory Displays the relative path to OS libraries.

 -Wa,<options> Passes comma-separated <options> to
the assembler.

 -Wp,<options> Passes comma-separated <options> to
the preprocessor.

 -Wl,<options> Passes comma-separated <options> to
the linker.

 -Xassembler <arg> Passes <arg> to the assembler.

 -Xpreprocessor <arg> Passes <arg> to the preprocessor.

 -Xlinker <arg> Passes <arg> to the linker.

 -save-temps Does not delete intermediate files.

 -pipe Uses pipes rather than intermediate files.

 -time Times the execution of each sub-process.

 -specs=<file> Overrides built-in specifications with the
contents of <file>.

 -std=<standard> Assumes that the input sources are for
<standard>.

 -B <directory> Adds <directory> to the compiler's search
paths.

Table 23: lm32-elf-gcc Options (Continued)

Option Description

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 287

Options starting with -g, -f, -m, -O, -W, or --param are automatically passed on
to the various subprocesses invoked by lm32-elf-gcc. In order to pass other
options on to these processes, the -W<letter> options must be used. Report
bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

lm32-elf-ld
The lm32-elf-ld utility is the link-editor utility. It takes a single or multiple object
(.o) files as input, as well as library archives (.a), and produces the final
executable (.elf) file.

Usage
lm32-elf-ld [options] file...

where options can be one or more of the options shown in Table 24.

 -b <machine> Runs GCC for target <machine>, if
installed.

 -V <version> Runs GCC version number <version>, if
installed.

 -v Displays the programs invoked by the
compiler.

 -### Like -v but options quoted and
commands not executed.

 -E Preprocesses only; does not compile,
assemble, or link.

 -S Compiles only; does not assemble or link.

-c Compiles and assembles but does not
link.

 -o <file> Places the output into <file>.

 -x <language> Specifies the language of the following
input files. Permissible languages
includec c++ assembler or none. “None”
means reverting to the default behavior of
guessing the language based on the file's
extension.

Table 24: lm32-elf-ld Options

Options Description

a KEYWORD Shares library control for HP/UX
compatibility.

Table 23: lm32-elf-gcc Options (Continued)

Option Description

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

288 LatticeMico32 Software Developer User Guide

 -A ARCH, --architecture ARCH Sets architecture.

 -b TARGET, --format TARGET Specifies target for following input files.

 -c FILE, --mri-script FILE Reads MRI format linker script.

 -d, -dc, -dp Forces common symbols to be defined.

 -e ADDRESS, --entry ADDRESS Sets start address.

 -E, --export-dynamic Exports all dynamic symbols.

 -EB Links big-endian objects.

 -EL Links little-endian objects.

 -f SHLIB, --auxiliary SHLIB Specifies an auxiliary filter for shared object
symbol table.

 -F SHLIB, --filter SHLIB Specifies filter for shared object symbol
table.

 -g Ignored.

 -G SIZE, --gpsize SIZE Specifies small data size (if no size, same as
--shared).

 -h FILENAME, -soname FILENAME Sets internal name of shared library.

 -I PROGRAM, --dynamic-linker
PROGRAM

Sets PROGRAM as the dynamic linker to
use.

 -l LIBNAME, --library LIBNAME Searches for LIBNAME library.

 -L DIRECTORY, --library-path
DIRECTORY

Adds DIRECTORY to library search path.

 --sysroot=<DIRECTORY> Overrides the default sysroot location.

 -m EMULATION Sets emulation.

 -M, --print-map Prints map file on standard output.

 -n, --nmagic Does not page-align data.

 -N, --omagic Does not page-align data and does not make
text read only.

 --no-omagic Page-aligns data and makes text read only.

 -o FILE, --output FILE Sets output file name.

 -O Optimizes output file.

 -Qy Ignored for SVR4 compatibility.

 -q, --emit-relocs Generates relocations in final output.

 -r, -i, --relocatable Generates relocatable output.

 -R FILE, --just-symbols FILE Just links symbols (if directory, same as --
rpath).

 -s, --strip-all Strips all symbols.

Table 24: lm32-elf-ld Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 289

 -S, --strip-debug Strips debugging symbols.

 --strip-discarded Strips symbols in discarded sections.

 --no-strip-discarded Does not strip symbols in discarded
sections.

 -t, --trace Traces file opens.

 -T FILE, --script FILE Reads linker script.

 -u SYMBOL, --undefined SYMBOL Starts with undefined reference to SYMBOL.

 -unique [=SECTION] Does not merge input [SECTION | orphan]
sections.

 -Ur Builds global constructor/destructor tables.

 -v, --version Prints version information.

 -V Prints version and emulation information.

 -x, --discard-all Discards all local symbols.

 -X, --discard-locals Discards temporary local symbols (default).

 --discard-none Does not discard any local symbols.

 -y SYMBOL, --trace-symbol SYMBOL Traces mentions of SYMBOL.

 -Y PATH Sets default search path for Solaris
compatibility.

 -(, --start-group Starts a group.

 -), --end-group Ends a group.

 --accept-unknown-input-arch Accepts input files whose architecture
cannot be determined.

 --no-accept-unknown-input-arch Rejects input files whose architecture is
unknown following dynamic libraries.

 -add-needed Sets DT_NEEDED tags for DT_NEEDED
entries in following dynamic libraries.

 --no-add-needed Does not set DT_NEEDED tags for
DT_NEEDED entries in following dynamic
libraries.

 --as-needed Only sets DT_NEEDED for following
dynamic libraries, if used.

 --no-as-needed Always sets DT_NEEDED for following
dynamic libraries.

 -assert KEYWORD Ignored for SunOS compatibility.

 -Bdynamic, -dy, -call_shared Links against shared libraries.

 -Bstatic, -dn, -non_shared, -static Does not link against shared libraries.

 -Bsymbolic Binds global references locally.

Table 24: lm32-elf-ld Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

290 LatticeMico32 Software Developer User Guide

 --check-sections Checks section addresses for overlaps
(default).

 --no-check-sections Does not check section addresses for
overlaps.

 --cref Outputs cross reference table.

 --defsym SYMBOL=EXPRESSION Defines a symbol.

 --demangle [=STYLE] Demangles symbol names [using STYLE].

 --embedded-relocs Generates embedded relocations.

 --fatal-warnings Treats warnings as errors.

 -fini SYMBOL Calls SYMBOL at unload time.

 --force-exe-suffix Forces generation of file with .exe suffix.

 --gc-sections Removes unused sections (on some
targets).

 --no-gc-sections Does not remove unused sections (default).

 --hash-size=<NUMBER> Sets default hash table size close to
<NUMBER>.

 --help Prints option help.

 -init SYMBOL Calls SYMBOL at load time.

 -Map FILE Writes a map file.

 --no-define-common Does not define common storage.

 --no-demangle Does not demangle symbol names.

 --no-keep-memory Uses less memory and more disk I/O.

 --no-undefined Does not allow unresolved references in
object files.

 --allow-shlib-undefined Allows unresolved references in shared
libaries.

 --no-allow-shlib-undefined Does not allow unresolved references in
shared libraries.

 --allow-multiple-definition Allows multiple definitions.

 --no-undefined-version Does not allow undefined version.

 --default-symver Creates default symbol version.

 --default-imported-symver Creates default symbol version for imported
symbols.

 --no-warn-mismatch Does not warn about mismatched input files.

 --no-whole-archive Turns off --whole-archive.

 --noinhibit-exec Creates an output file even if errors occur.

Table 24: lm32-elf-ld Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 291

 -nostdlib Only uses library directories specified on the
command line.

 --oformat TARGET Specifies target of output file.

 -qmagic Ignored for Linux compatibility.

 --reduce-memory-overheads Reduces memory overheads, possibly taking
much longer.

 --relax Relaxes branches on certain targets.

 --retain-symbols-file FILE Keeps only symbols listed in FILE.

 -rpath PATH Sets run-time shared library search path.

 -rpath-link PATH Sets link-time shared library search path.

 -shared, -Bshareable Creates a shared library.

 -pie, --pic-executable Creates a position-independent executable.

 --sort-common Sorts common symbols by size.

 --sort-section name|alignment Sorts sections by name or maximum
alignment.

 --spare-dynamic-tags COUNT Specifies how many tags to reserve in
.dynamic section.

 --split-by-file [=SIZE] Splits output sections every SIZE octets.

 --split-by-reloc [=COUNT] Splits output sections every COUNT
relocations.

 --stats Prints memory usage statistics.

 --target-help Displays target specific options.

 --task-link SYMBOL Does task-level linking.

 --traditional-format Uses same format as native linker.

 --section-start SECTION=ADDRESS Sets address of named section.

 -Tbss ADDRESS Sets address of .bss section.

 -Tdata ADDRESS Sets address of .data section.

 -Ttext ADDRESS Sets address of .text section.

 --unresolved-symbols=<method> Specifies how to handle unresolved symbols.
<method> can be ignore-all, report-all,
ignore-in-object-files, ignore-in-shared-libs.

 --verbose Outputs lots of information during link.

 --version-script FILE Reads version information script.

 --version-exports-section SYMBOL Takes export symbols list from .exports,
using SYMBOL as the version.

 --warn-common Warns about duplicate common symbols.

Table 24: lm32-elf-ld Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

292 LatticeMico32 Software Developer User Guide

Report bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

lm32-elf-nm
The lm32-elf-nm utility lists symbols in [files] (a.out by default).

Usage
lm32-elf-nm [options] [files]

where options can be one or more of the options shown in Table 25.

 --warn-constructors Warns if global constructors and destructors
are seen.

 --warn-multiple-gp Warns if the multiple GP values are used.

 --warn-once Warns only once per undefined symbol.

 --warn-section-align Warns if start of section changes because of
alignment.

 --warn-shared-textrel Warns if shared object has DT_TEXTREL.

 --warn-unresolved-symbols Reports unresolved symbols as warnings.

 --error-unresolved-symbols Reports unresolved symbols as errors.

 --whole-archive Includes all objects from following archives.

 --wrap SYMBOL Uses wrapper functions for SYMBOL.

lm32-elf-ld: supported targets: elf32-lm32, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex.

lm32-elf-ld: supported emulations: elf32lm32

lm32-elf-ld: emulation specific options: No emulation-specific options.

Table 25: lm32-elf-nm Options

Options Description

 -a, --debug-syms Displays debugger-only symbols.

 -A, --print-file-name Prints name of the input file before every
symbol.

 -B Performs same function as --format=bsd.

 -C, --demangle[=STYLE] Decodes low-level symbol names into user-
level names. The STYLE, if specified, can be
`auto' (the default), `gnu,' `lucid,' `arm,' `hp,'
`edg,' `gnu-v3,' `java,' or `gnat.'

 --no-demangle Does not demangle low-level symbol names.

Table 24: lm32-elf-ld Options (Continued)

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 293

Report bugs to the http://www.sourceware.org/bugzilla/ Web site.

lm32-elf-objcopy
The lm32-elf-objcopy utility copies a binary file, possibly transforming it in the process.

 -D, --dynamic Displays dynamic symbols instead of normal
symbols.

 --defined-only Displays only defined symbols.

 -e Ignored.

 -f, --format=FORMAT Uses the output format FORMAT. FORMAT
can be `bsd,' `sysv,' or `posix.' The default is
`bsd'.

 -g, --extern-only Displays only external symbols.

 -l, --line-numbers Uses debugging information to find a file
name and line number for each symbol.

 -n, --numeric-sort Sorts symbols numerically by address.

 -o Performs same function as -A.

 -p, --no-sort Does not sort the symbols.

 -P, --portability Same as --format=posix.

 -r, --reverse-sort Reverse the sense of the sort.

 -S, --print-size Prints size of defined symbols.

 -s, --print-armap Includes index for symbols from archive
members.

 --size-sort Sorts symbols by size.

 --special-syms Includes special symbols in the output.

 --synthetic Displays synthetic symbols as well.

 -t, --radix=RADIX Uses RADIX for printing symbol values.

 --target=BFDNAME Specifies the target object format as
BFDNAME.

 -u, --undefined-only Displays only undefined symbols.

 -X 32_64 Ignored.

 -h, --help Displays this information.

 -V, --version Displays this program's version number.

lm32-elf-nm: supported targets: elf32-lm32 elf32-little elf32-big srec
symbolsrec tekhex binary ihex.

Table 25: lm32-elf-nm Options (Continued)

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

294 LatticeMico32 Software Developer User Guide

Usage
lm32-elf-objcopy [options] in_file [out_file]

where options can be one or more of the options shown in Table 26.

Table 26: lm32-elf-objcopy Options

Options Description

 -I --input-target <bfdname> Assumes input file is in format <bfd_name>.

 -O --output-target <bfdname> Creates an output file in format <bfd_name>.

 -B --binary-architecture <arch> Set sarch of output file, when input is binary.

 -F --target <bfdname> Sets both input and output format to
<bfd_name>.

 --debugging Converts debugging information, if possible.

 -p --preserve-dates Copies modified/access timestamps into the
output.

 -j --only-section <name> Only copies section <name> into the output.

 --add-gnu-debuglink=<file> Adds .gnu_debuglink section linking to
<file>.

 -R --remove-section <name> Removes the <name> section from the
output.

 -S --strip-all Removes all symbol and relocation
information.

 -g --strip-debug Removes all debugging symbols and
sections.

 --strip-unneeded Removes all symbols not needed by
relocations.

 -N --strip-symbol <name> Does not copy the <name> symbol.

 --strip-unneeded-symbol <name> Does not copy the <name> symbol unless
needed by relocations.

 --only-keep-debug Strips everything but the debug information.

 -K --keep-symbol <name> Only copies the <name> symbol.

 -L --localize-symbol <name> Forces the <name> symbol to be marked as
a local.

 -G --keep-global-symbol <name> Localizes all symbols except <name>.

 -W --weaken-symbol <name> Forces the <name> symbol to be marked as
a weak.

 --weaken Forces all global symbols to be marked as
weak.

 -w --wildcard Permits wildcard in symbol comparison.

 -x --discard-all Removes all non-global symbols.

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 295

 -X --discard-locals Removes any compiler-generated symbols.

 -i --interleave <number> Only copies one out of every <number>
bytes.

 -b --byte <num> Selects byte <num> in every interleaved
block.

 --gap-fill <val> Fills gaps between sections with <val>.

 --pad-to <addr> Pads the last section up to address <addr>.

 --set-start <addr> Sets the start address to <addr>.

 {--change-start|--adjust-start} <incr> Adds <incr> to the start address.

 {--change-addresses|--adjust-vma}
<incr>

Adds <incr> to LMA, VMA and start
addresses.

 {--change-section-address|--adjust-
section-vma} <name>{=|+|-}<val>me>

Changes LMA and VMA of the <name>
section by <val>.

 --change-section-lma <name>{=|+|-
}<val>

Changes the LMA of the <name> section by
<val>.

 --change-section-vma <name>{=|+|-
}<val>

Changes the VMA of the <name> section by
<val>.

 {--[no-]change-warnings|--[no-]adjust-
warnings}

Warns if a named section does not exist.

 --set-section-flags <name>=<flags> Sets the <name> section's properties to
<flags>.

 --add-section <name>=<file> Adds the <name> section found in the <file>
to output.

 --rename-section
<old>=<new>[,<flags>]

Renames the <old> section to <new>.

 --change-leading-char Forces output format's leading character
style.

 --remove-leading-char Removes leading character from global
symbols.

 --redefine-sym <old>=<new> Redefines the <old> symbol name to <new>.

 --redefine-syms <file> Redefines the symbol name for all symbol
pairs listed in the <file>.

 --srec-len <number> Restricts the length of generated Srecords.

 --srec-forceS3 Restricts the type of generated Srecords to
S3.

 --strip-symbols <file> -N for all symbols listed in <file>.

 --strip-unneeded-symbols <file> Strips unneeded symbols for all symbols
listed in <file>.

 --keep-symbols <file> -K for all symbols listed in <file>.

Table 26: lm32-elf-objcopy Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

296 LatticeMico32 Software Developer User Guide

Report bugs to the http://www.sourceware.org/bugzilla/ Web site.

lm32-elf-objdump
The lm32-elf-objdump (lm32-elf-objcopy) utility displays information from object (.o)
files.

Usage
lm32-elf-objdump <options> <files>

where options can be one or more of the options shown in Table 27. At least
one of the options must be given.

 --localize-symbols <file> -L for all symbols listed in <file>.

 --keep-global-symbols <file> -G for all symbols listed in <file>.

 --weaken-symbols <file> -W for all symbols listed in <file>.

 --alt-machine-code <index> Uses alternate machine code for output.

 --writable-text Marks the output text as writable.

 --readonly-text Makes the output text write protected.

 --pure Marks the output file as demand paged.

 --impure Marks the output file as impure.

 --prefix-symbols <prefix> Adds <prefix> to start of every symbol name.

 --prefix-sections <prefix> Adds <prefix> to start of every section name.

 --prefix-alloc-sections <prefix> Adds <prefix> to start of every allocatable
section name.

 -v --verbose Lists all modified object files.

 -V --version Displays this program's version number.

 -h --help Displays this output.

 --info Lists object formats & architectures
supported.

lm32-elf-objcopy: supported targets: elf32-lm32, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex.

Table 27: lm32-elf-objdump Options

 Option Description

 -a, --archive-headers Displays archive header information.

Table 26: lm32-elf-objcopy Options (Continued)

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

LatticeMico32 Software Developer User Guide 297

 -f, --file-headers Displays the contents of the overall file
header.

 -p, --private-headers Displays the contents of the object format-
specific file header.

 -h, --[section-]headers Displays the contents of the section headers.

 -x, --all-headers Displays the contents of all headers.

 -d, --disassemble Displays the assembler contents of
executable sections.

 -D, --disassemble-all Displays the assembler contents of all
sections.

 -S, --source Intermixes source code with disassembly.

 -s, --full-contents Displays the full contents of all sections
requested.

 -g, --debugging Displays debug information in object file.

 -e, --debugging-tags Displays debug information using ctags
style.

 -G, --stabs Displays (in raw form) any STABS info in the
file.

 -t, --syms Displays the contents of the symbol tables.

 -T, --dynamic-syms Displays the contents of the dynamic symbol
table.

 -r, --reloc Displays the relocation entries in the file.

 -R, --dynamic-reloc Displays the dynamic relocation entries in
the file.

 -v, --version Displays this program's version number.

 -i, --info Lists object formats and architectures
supported.

 -H, --help Displays these option descriptions.

 The following switches are optional:

 -b, --target=BFDNAME Specifies the target object format as
BFDNAME.

 -m, --architecture=MACHINE Specifies the target architecture as
MACHINE.

 -j, --section=NAME Only displays information for section NAME.

 -M, --disassembler-options=OPT Passes text OPT on to the disassembler.

Table 27: lm32-elf-objdump Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Build Tools

298 LatticeMico32 Software Developer User Guide

lm32-elf-size
The lm32-elf-size program displays the sizes of sections inside binary files. If no input
files are specified, a.out is assumed.

Usage
lm32-elf-size [options] [files]

 -EB --endian=big Assumes big endian format when
disassembling.

 -EL --endian=little Assumes little endian format when
disassembling.

 --file-start-context Includes context from start of file (with -S).

 -I, --include=DIR Adds DIR to search list for source files.

 -l, --line-numbers Includes line numbers and filenames in
output.

 -C, --demangle[=STYLE] Decodes mangled and processed symbol
names. STYLE, if specified, can be auto,
gnu, lucid, arm, hp, edg, gnu-v3, java, or
gnat.

 -w, --wide Formats output for more than 80 columns.

 -z, --disassemble-zeroes Does not skip blocks of zeroes when
disassembling.

 --start-address=ADDR Only processes data whose address is >=
ADDR.

 --stop-address=ADDR Only processes data whose address is <=
ADDR.

 --prefix-addresses Prints complete address alongside
disassembly.

 --[no-]show-raw-insn Displays hexadecimal alongside symbolic
disassembly.

 --adjust-vma=OFFSET Adds OFFSET to all displayed section
addresses.

 --special-syms Includes special symbols in symbol dumps.

lm32-elf-objdump: supported targets: elf32-lm32, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex

lm32-elf-objdump: supported
architectures:

lm32

Table 27: lm32-elf-objdump Options (Continued)

SOFTWARE DEVELOPMENT UTILITIES : Debug Tools

LatticeMico32 Software Developer User Guide 299

where options can be one or more of the options shown in Table 28.

Report bugs for this tool to the http://www.sourceware.org/bugzilla/ Web site.

Debug Tools
This section provides information on the GDB target stub as it pertains to its
incorporation in an application and its activation from the host. This section
does not cover all the details of GDB usage for debugging applications with
the C/C++ Software Programming Environment (SPE) tools.

lm32-elf-gdb
The lm32-elf-gdb utility is the GNU GDB debugger.

Usage
lm32-elf-gdb [options] [executable_file [core_file or
process_id]] gdb [options] --args executable_file
[inferior_arguments ...]

where options can be one or more of the options shown in Table 29.

Table 28: lm32-elf-size Options

Option Description

 -A|-B --format={sysv|berkeley} Selects output style (default is Berkeley).

 -o|-d|-x --radix={8|10|16} Displays numbers in octal, decimal, or
hexadecimal.

 -t --totals Displays the total sizes (Berkeley only).

 --target=<bfdname> Sets the binary file format.

 -h --help Displays this information.

 -v --version Displays the program's version.

lm32-elf-size: supported targets: elf32-lm32, elf32-little, elf32-big, srec,
symbolsrec, tekhex, binary, ihex

Table 29: lm32-elf-gdb Options

Options Description

 --args Arguments after executable file are passed
to inferior.

 --[no]async Enables (disable) asynchronous version of
CLI.

http://www.sourceware.org/bugzilla

SOFTWARE DEVELOPMENT UTILITIES : Debug Tools

300 LatticeMico32 Software Developer User Guide

For more information, type help from within GDB, or consult the GDB manual
available as online information or as a printed manual. Report bugs by email
to bug-gdb@gnu.org.

 -b BAUDRATE Sets serial port baud rate used for remote
debugging.

 --batch Exits after processing options.

 --cd=DIR Changes current directory to DIR.

 --command=FILE Executes GDB commands from FILE.

 --core=COREFILE Analyzes the core dump COREFILE.

 --pid=PID Attaches to running process PID.

 --dbx DBX compatibility mode.

 --directory=DIR Searches for source files in DIR.

 --epoch Outputs information used by epoch emacs-
GDB interface.

 --exec=EXECFILE Uses EXECFILE as the executable.

 --fullname Outputs information used by emacs-GDB
interface.

 --help Prints this message.

 --interpreter=INTERP Selects a specific interpreter and user
interface.

 --mapped Uses mapped symbol files if supported on
this system.

 --nw Does not use a window interface.

 --nx Does not read .gdbinit file.

 --quiet Does not print version number on startup.

 --readnow Fully reads symbol files on first access.

 --se=FILE Uses FILE as symbol file and executable file.

 --symbols=SYMFILE Reads symbols from SYMFILE.

 --tty=TTY Uses TTY for input/output by the program
being debugged.

 --tui Uses a terminal user interface.

 --version Prints version information and then exit.

 -w Uses a window interface.

 --write Sets writing into executable and core files.

 --xdb XDB compatibility mode.

Table 29: lm32-elf-gdb Options (Continued)

LatticeMico32 Software Developer User Guide 301

Glossary

Following are the terms and concepts that you should understand to use this
guide effectively.

application build An application build is the files that the managed build
process outputs and places in the application build output folder, for example,
the application executable, application build makefiles, application object files,
and necessary platform library files.

application build makefiles Application build makefiles enable the building
of the application.

application executable The application executable is a result of linking the
application and the platform library object file. The file is an executable in ELF
format that can be downloaded or executed using the GNU GDB debugger.

application object files Application object files are user source object files
that have been compiled and assembled from their source C files.

breakpoints Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE C/C++SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The C/
C++ SPE uses the bundled GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) customized for the
LatticeMico process. It uses the same graphical user interface as MSB.

component information structure declaration A component information
structure declaration is specified as part of the .xml file and is copied into .msb
file by MSB. Each component in the platform is represented in the .msb file.

GLOSSARY

302 LatticeMico32 Software Developer User Guide

The component’s information in the .msb file includes the details about the
component’s source files that will need to be included in the build process.
The information is then extracted from the .msb file by the build process and
put into the DDStructs.h file. Each unique component must have its own
unique component information structure defined within its component
description file.

component instance declaration For those component instances that
have a corresponding information structure, this header file declares
presence of an instantiated structure. Originates in the Component
Description (.xml) file.

components Components are parts of the microprocessor system
architecture, for example, a CPU and peripherals are referred to generically
as components. Also see platform.

CSR CSR is an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

CDT CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

default linker script The default linker script, named linker.ld, is the default
linker script for the particular platform/project combination and can be used as
a starting point for creating a custom linker script file.

device driver files Device driver files are the source .c and .h C/C++ files
that contain driver code that will be compiled into object files during software
build.

debugging Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse Eclipse is an open-source community whose projects are focused
on providing an extensible development platform and application frameworks
for building software. The LatticeMico System interface is based on the
Eclipse environment.

.elf file An .elf file is a file in executable linked format that contains the
software application code written in C/C++SPE.

GLOSSARY

LatticeMico32 Software Developer User Guide 303

GDB GDB is an abbreviation for GNU GDB debugger, which is a source-
level debugger based on the GNU compiler. It is part of the C/C++SPE
debugger.

GNU Compiler Collection (GCC) The GNU Compiler Collection (GCC) is a
set of programming language compilers produced by the GNU Project. It is
free software distributed by the Free Software Foundation (FSF).

HAL HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module The hardware debugger module is a
component of C/C++SPE that is used to find problems in the software
application. Most times it is simply referred to as the debugger module.

hardware platform See “platform.”

IRQ IRQ is an abbreviation for interrupt request, which is the means by
which a hardware component requests computing time from the CPU. There
are 16 IRQ assignments (0-15), each representing a different physical (or
virtual) piece of hardware. For example, IRQ0 is reserved for the system
timer, while IRQ1 is reserved for the keyboard. The lower the number, the
more critical the function.

JTAG ports JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

makefiles Makefiles contain scripts that define what files the make utility
must use to compile and link during the build process. There are many
makefiles employed in the LatticeMico System build process. The makefile
file is the application build makefile, calling all of the other makefiles that allow
the generation and build of the platform library and for eventually generating
the final executable image.

MSB MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing peripherals, such as
a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the processor and the chosen
peripherals. It uses the same graphical user interface as C/C++SPE.

.msb file The .msb file is the output XML file output by the MSB tool when
working in the MSB perspective. This .msb file is generated or updated when
you save your changes in the MSB perspective. This file defines your
platform, that is, the CPU and the peripherals in your design and also their
interconnectivity.

perspective A perspectivre is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enable you to perform a set of particular, predefined tasks. The LatticeMico
System contains three default perspectives: the MSB perspective, the C/C++
perspective, and the Debug perspective.

GLOSSARY

304 LatticeMico32 Software Developer User Guide

platform A platform (also called a hardware platform) is the embedded
microprocessor in an SoC (system on a chip) design. A platform comprises
the CPU and peripheral components and the interconnectivity that allows
these components to work together to successfully execute processor
instructions.

platform library The platform library is a set of files that contain subroutine
code that references the application files that are necessary for linking during
the build process.

platform library build The platform library build is an integral part of the
managed build process. Another is the application build. The platform library
files contain code that is necessary to the linking during the build process. The
platform library build also outputs a platform library archive (<platform>.a) file
that is referenced by the application build. It allows you to override any default
software implementation.

platform library archive (.a) file The platform library archive (<platform>.a)
file is automatically generated during a platform library build. It is used when
linking the application executable to resolve platform functions used by the
application and is derived from the platform library object files.

platform library object (.o) file The platform library object (.o) file is a
compiled output of the library source files and is input for creating platform
library archive files.

platform settings file The platform settings file is the user.pref file that is
generated during the build process contains platform information for the
platform used by the current project.

project A project is the software application code written in C++ SPE.
Projects are contained within your workspace.

project workspace See “workspace.”

resources or resource files Resources are the projects, folders, and files
that exist in the Workbench. The navigation views provide a hierarchical view
of resources and allows you to open them for editing. Other tools may display
and handle these resources differently.

running Running is the process of executing a software progam.

software application The software application is the code that runs on the
32-bit Mico processor to control the peripherals, the bus, and the memories.
The application is written in a high-level language such as C++.

source files In this document, source files generically refer to source .c and
header .h files written in C/C++ programming language.

source folders Source folders are the folders you may have on your
system or in the project folder that contain input for a project. Input might
include source files and resource files to help enhance or to initially establish
a LatticeMico project.

GLOSSARY

LatticeMico32 Software Developer User Guide 305

UART UART is an acronym for universal asynchronous receiver/transmitter,
which is a computer component that handles asynchronous serial
communication. Every computer contains a UART to manage the serial ports,
and some internal modems have their own UART.

watchpoint A watchpoint is a special breakpoint that stops the execution of
an application whenever the value of a given expression changes, without
specifying where this may happen. A watchpoint halts program execution,
even if the new value being written is the same as the old value of the field.

workspace A workspace contains all of your LatticeMico System projects,
files, and folders and stores everything in a “workspace” folder. Basically a
workspace represents everything you do in the LatticeMico System software,
what is available, how you view it, and what options are available to you
through the different perspectives based on your settings. This is a basic
Eclipse-based software feature.

XML XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

.xml file (1) The .xml file contains information about the parent project and
its settings, as well as information on the platform referenced by the parent
project. (2) The <comp_name>.xml files contain code declarations referred to
as component instance definitions that define the structure of each
component, Thes files reside in the <install_dir>/components folder. On build
generation, this information is copied into the .msb file by MSB.

GLOSSARY

306 LatticeMico32 Software Developer User Guide

LatticeMico32 Software Developer User Guide 307

Index

A
.a files (platform library archive) 148
abort function 48
Active Configuration parameter 28
active perspective 11
Add LatticeMico32 dialog box 77, 184
adding existing files or folders to software

projects 21
adding new source files to C/C++ SPE project 20
AMD command set 105, 106, 113, 116, 125
AmdSCS_2_16_16.c file 116, 127
AmdSCS_2_16_16.h file 116, 127
ANSI C standard I/O function 61
ANSI standard C function 46
APP_ASM_SRCS variable 173
APP_C_SRCS variable 173
APP_CXX_SRCS variable 173
APP_ELF rule 268
application binary 201, 203
application build 301
application build makefiles see makefiles
application executable 150, 301
application object files 151, 301
application output folder 149
application source file 253
archive utility 281
Archives folder 148
asiprintf function 52
asprintf function 52
assembler utility 283
asynchronous SRAM controller see LatticeMico

asynchronous SRAM controller

B
BASE I/O-type attribute 167
big-endian byte order 80, 119

bin_to_verilog utility 212, 214
Binaries folder 148
binary file-copying utility 293
binary section size-display utility 298
bitstream

downloading to FPGA 15
generating 180, 185
merging with LatticeMico application

binary 203
BoardInfo parameter 114, 118, 127, 129
boot copier 196, 198, 202
boot loader 194
.boot section 221
boot sequence 64, 76, 79, 123
bootable application binary 201, 203
booting from flash device 7
booting from multi on-chip memory 7
booting from on-chip memory component 7
breakpoints

definition 301
displayed in Breakpoints view 33
exception offset 77
exceptions 78
inserting 41
placement of initial 38
placing in source file before debugging 39
terminating execution during debugging 35
values on registers displayed 34
watchpoints 305

Breakpoints view 33
.bss 222
build configuration folder 152
build configurations 24
build directory structure 148
build tools 281
build utilities 45

INDEX

308 LatticeMico32 Software Developer User Guide

building software projects 24
boot sequence 64
building application 62
creating blank project 58
incrementally 30
on command line 44
steps in 25

byte order 80

C
C/C++ Application option 198, 202
C/C++ build tab 28
C/C++ perspective 11, 15, 16

see also C/C++ SPE
C/C++ Software Project Environment see C/C++

SPE
C/C++ SPE

adding existing files or folders to projects 21
adding new sources files to software

projects 20
building application 62
building software projects 24, 25
building software projects incrementally 30
Console view 16, 26
copying software projects 23
creating new software project 18
creating software applicaton code 17
debugging software application code 34, 35,

41
definition of 301
deleting software items from project 21
deleting software projects 22
Editor view 16
error icon 26
GCC tools used in 281
Make Targets view 17
Navigator view 16
Outline view 16
place in design flow 4
Problems view 16, 26, 47
Projects view

after application build 62
deleting contents in 21
newly created project in 59
project folder in 148
projects available in 37
purpose 16
renaming projects in 21
source file in 60

Properties view 16
purpose 2, 9
rebuilding software projects 30
renaming software project contents 21
running software application code 35
Search view 17
setting project properties 26
starting 15
target configurations 35

Tasks view 17
warning icon 26

C/C++ SPE Project Properties dialog box 136
C/C++ SPE stand-alone 31
cache management functions 54
callback prototype 82
callee-saved registers 73
caller-saved registers 73
CDT 302
.cdtbuild file 154
.cdtproject file 154
cfgFnTbl parameter 118, 129
cfgFnTbl pointer 128
CFI flash device service

algorithms used 105
application template 113
CFI flash device context structure 117
CFI flash reader 106
CFI flash service 106
configuration-specific flash drive 106
configuration-specific functions 115
enabling application to use 125
enhancing CFI flash configuration

algorithm 113
enhancing for custom configuration 113
erasing flash component 109
erasing sectors with offsets 109
flash memory configurations 119
flow diagram 125
functions in 55, 114
obtaining sector information 112
purpose 105
reading from device offsets 106
registering configuration function table 117
registering configuration-specific functions 117
resetting flash component 112
structure 106
writing block of data to flash component 110
writing data in sizes to flash component 109
writing data to flash component 108, 110

CFI flash reader 106
CFI flash service see CFI flash device service
CFICfgIdentifier.c file 113, 114, 126
CFIFlashConfigurations.c file 117, 130
CFIFlashDevCtx_t device 128
CFIFlashDevCtx_t structure 128
CFIFlashDevice device type 94
CFIFlashPrgrmr.c file 94
CFIIdentifyConfiguration function 113, 126
CFIInfo element 128
CFIInfo_t CFIInfo element 117
CFIInfo_t.h header file 128
CFIRoutines.h header file 117, 129
changing default perspectives 13
char data type 80
cleaning command-line projects 43
ClearBSS section 69
clock function 48
close function 46, 143

INDEX

LatticeMico32 Software Developer User Guide 309

_close system call 132
closing views in perspectives 14
command line 42
command-line managed project builds 43
common flash interface (CFI) see CFI flash device

service
compilation utilities 45
compiler and linker settings makefile 261
compiler flags 151
compiler utility 285
compiler warnings 47, 48
compile-time warning functions 48
component data sheets 7
component information structure declaration 70,

301
component instance declaration 302
component-specific attributes 166, 168
Configuration Settings parameter 28
configuration-specific flash driver 106
configuration-specific programming routines 127
Confirm Perspective Switch box 33, 40
Confirm Project Delete dialog box 22
Console view 16, 26, 34
const char *deviceType parameter 131
const char *name parameter 131
constructors 69
context restore code 76
context save code 75
context save/restore calls 73
control register access 90
converting time units to microprocessor ticks 90
copying software projects 23
CPU ticks 55, 96
CPU_CHARIO_IN processor attribute 164
CPU_CHARIO_OUT processor attribute 164
CPU_CHARIO_TYPE processor attribute 164
CPU_CONFIG variable 259
CPU_DCACHE_ASSOC processor attribute 163
CPU_DCACHE_BYTES_PER_LINE processor

attribute 163
CPU_DCACHE_ENABLED processor

attribute 163
CPU_DCACHE_SETS processor attribute 163
CPU_DEBA processor attribute 163
CPU_DEBUG_ENABLED processor attribute 163
CPU_DIVIDE_ENABLED processor attribute 162
CPU_FREQUENCY platform attribute 161
CPU_HW_BREAKPOINTS_ENABLED processor

attribute 163
CPU_ICACHE_ASSOC processor attribute 163
CPU_ICACHE_BYTES_PER_LINE processor

attribute 163
CPU_ICACHE_ENABLED processor attribute 163
CPU_ICACHE_SETS processor attribute 163
CPU_MULTIPLIER_ENABLED processor

attribute 163
CPU_NAME processor attribute 162
CPU_NUM_HW_BREAKPOINTS processor

attribute 163

CPU_NUM_WATCHPOINTS processor
attribute 163

CPU_SHIFT_ENABLED processor attribute 163
CPU_SIGN_EXTEND_ENABLED processor

attribute 162
creating custom perspectives 13
creating managed build applications 145
creating software application code 17
creating software projects

adding source code to source file 61
adding source file to project 59

crt0 function 67, 68, 80, 160
crt0ram.S file

boot code contained in 256, 259
boot-up sequence in 64
context save/restore calls 73
crt0 function in 68
exception vector table 66, 79
identifying in source-identification

makefile 256
part of application build process 124
reset exception vector 66

CSR 302
Customize Perspective dialog box 13
customizing default perspectives 12

D
data bus error exception offset 77
data bus error exceptions 68, 78
data cache 88
.data section 222
data sheets 7
data types 80
DDInit.c file

.msb file used in creation of 160
automatic generation of 153, 155, 156
called by crt0 80, 160
description of 160
generated by DDStructs.c file 146
LatticeDDInit function in 70, 159, 160
overriding default LatticeDDInit function 123

DDStructs.c file
automatic generation of 155, 156
contents of 168
CPU reset in 80
description of 159
generation of .msb file information 146
generation of DDInit.c file 146
pointer to component information structure

defined in 70
DDStructs.h header file

automatic generation of 155, 156
C structure definitions in 157
component information structure

declaration 70
contents of 168
creation of 146
description of 157

INDEX

310 LatticeMico32 Software Developer User Guide

DEBA see debug exception base address
debug build configurations 25
Debug dialog box

activating 33
Debugger tab 38
Hardware Connection tab 37
Main tab 37
Perspectives tab 35
Source tab 39

debug exception base address 66, 78
debug exception table 78
debug exceptions 78
Debug perspective 11, 32, 33

see also Debugger
Debug view 33
Debugger

Breakpoints view 33
common debugging tasks 41
configuring debug session 35
Console view 34
Debug dialog box see Debug dialog box
Debug view 33
debugging software application code 34
Disassembly view 34, 41
downloading application code to memory 66
exceptions in 68
Expressions view 34
GNU GDB debugger see GNU GDB debugger
Memory view 34
Modules view 34
Outline view 33
place in design flow 4, 180
placing breakpoints 38, 39
purpose 2, 10
Registers view 34
running 32
Signals view 34
Source view 33, 41
specifying source files 39
Tasks view 34
Variables view 33

Debugger tab of Debug dialog box 38
debugging software application code

common tasks 41
configuring debug session 35
requirements 34

default build configurations 25
#define variable 119
deleting custom perspectives 13
deleting items from software project 21
deleting software projects 22
deploying application across different memory

components 211
deploying application to on-chip memory 179
deploying application to parallel flash 179, 193
deploying application to SPI flash 179, 199
deploying to on-chip memory 178
Deployment Tool 203
DevFindCtx_t structure type 94

device driver files 302
device drivers

components included 56
developing 137
facilities in 121
functions available in 53
overriding default driver implementation 124
overriding default initialization sequence 123
purpose 52
reliance on device lookup service 91

device lookup service
finding device by name 92
functions in 54
iterating through list of devices 92
purpose 91

device name length 103
device types

CFIFlashDevice 94
DMADevice 95
GPIODevice 95
SPIDevice 95
TimerDevice 95
UARTDevice 95

device-driver initialization source file see DDInit.c
file

device-driver structures header file see
DDStructs.h file

device-driver structures source file see
DDStructs.c file

DeviceReg_t structure 130
devices suppported 3
Diamond Installation Notice document 8
disabling all interrupts 83
disabling specific interrupt 83
Disassembly view 34, 41
divide-by-zero exceptions 68, 77, 78
DMA controller see LatticeMico DMA controller
DMADevice device type 95
drivers.mk file 150, 153, 172
dummy functions 47

E
EBA see exception base address
EBR blocks 181
EBR memory 179
EBR memory initialization file 187
EBR memory usage in processor 179
EBR see LatticeMico on-chip memory controller
Eclipse 302
Eclipse C/C++ Development Toolkit User Guide

document 7
Eclipse workbench 10, 11
Eclipse/CDT project information files 154
Editor view 16
.elf file

specifying location in main makefile 266
choosing in Debug dialog box 37
data extracted and placed in binary image 194

INDEX

LatticeMico32 Software Developer User Guide 311

definition of 302
downloading to FPGA 40
examining with lm32_elf_readelf 215
loading contents by ELF loader 212
specifying in Flash Programmer dialog

box 198
ELF loader 212
elf2data utility 195
enabling all interrupts 84
enabling specific interrupt 82
environ function 46
erase operation function 56
EraseChip function 116
EraseSector function 116
error icon 26
estimating EBR memory usage in processor 179
exception address registers 73
exception base address

configuring 66
purpose 77, 78
specifying address location 77, 178, 194, 198

Exception handlers 68
exception vector table 79
execve function 46
_exit system call 132
_exit function 46, 70
Expressions view 34
extern statement 157

F
fclose function call 143
fflush 50
fgets 98
file descriptors 136
file device 132
file device function handlers 142
file name length 103
file operation functions 137, 138, 142
file operations 98
file operations support 133
file service 98
flags parameter 141
flash memory configurations 119
Flash Programmer Application option 199
Flash Programmer template 197
Flash Programmer utility 197
flash query function 56
flash reset function 56
FlashBoardCfgInfo_t structure 113, 114, 118, 127
FlashCfgFnTbl_t structure 117, 118, 129
FlashConfiguration_st structure 118, 129
FlashInit function 116
flashprog.bin file 196
FlashReset function 116
fopen 98, 101, 141
fork function 46
FPGA bitstream see bitstream
FPGA_DEVICE_FAMILY platform attribute 161

fprintf function 51, 98, 101
fread 98
fscanf function 51
_fstack location 69
fstat function 46
_fstat system call 132
function loops 179
fwrite 98

G
g++ utility 45
–g2 compiler option 34
–g3 compiler option 34
GCC see GNU GCC compiler
gcc utility 45
GDB see GNU GDB debugger
generic attributes 165, 167
GetCFICfgAddressMultiplier function 114, 126, 127
getpid function 46, 48
GNU Compiler Collection see GNU GCC compiler
GNU GCC compiler

basis of C/C++ SPE 45
build tools 281
declaring functions as constructors 69
definition 303
executable utilities 45
generating exectuables in ELF format 215

GNU GDB debugger
connecting to communication executable 39,

41, 98
definition 303
included in C/C++ SPE 34
lm32_elf_gdb utility 299

GNU tool chain 281
GPIO see LatticeMico GPIO
GPIODevice device type 95

H
HAL 303
Hardware Connection tab of Debug dialog box 37
HPE_MINI.lpf file 119

I
I/O-type component attributes 164
Import dialog box 23, 24
inherited_settings.mk file 153
initialization sequence 123
InitializeCFIConfigurations function 117, 129
initializing memory components 189
inline function calls 179
inserting breakpoints debug task 41
instruction bus error exception offset 77
instruction bus error exceptions 78
instruction bus exceptions 68
instruction cache 88, 89
instruction stepping debug task 41
int data type 80
int main(void) function 61, 73, 160

INDEX

312 LatticeMico32 Software Developer User Guide

Intel basic command set 105
interrupt exception offset 77
interrupt exceptions 67, 73, 78
interrupt handlers 81

disabling all interrupts 83
disabling specific interrupt 83
enabling all interrupts 84
enabling specific interrupt 82
registering 82

interrupt management functions 53
Interrupt Pending register 68
interrupt request priorities

definition 303
interrupt service routine 96
IS_READABLE I/O-type attribute 168
IS_WRITABLE I/O-type attribute 168
isatty function 46, 144
_isatty system call 132
ISR see interrupt service routine

J
JTAG daisy chain 38
JTAG UART see LatticeMico UART

K
kill function 46

L
LatticeDDInit function

called by crt0 function 68, 69
code example 71
description of 70
held in LatticeDDInit.c file 160
implemented by DDInit.c file 159
invoked by boot-up sequence 123
invoking int main(void) function 73, 123
invoking microprocessor initialization

routine 71
LatticeECP/EC Family Data Sheet document 8
LatticeECP/EC FPGA Family Handbook

document 8
LatticeMico asynchronous SRAM controller 7, 57
LatticeMico Asynchronous SRAM Controller

document 7
LatticeMico data sheets 7
LatticeMico DMA controller 7, 56, 95, 123
LatticeMico DMA Controller document 7
LatticeMico GPIO 7, 56, 95, 123
LatticeMico GPIO document 7
LatticeMico Master Passthrough document 7
LatticeMico on-chip memory controller

deploying software application code 7, 178,
179

documentation 7
executing software application code 185
volatility 178
see also on-chip memory deployment

LatticeMico On-Chip Memory Controller
document 7

LatticeMico parallel flash controller
deploying software application code 179, 193
device driver 94
documentation 7
volatility 179
see also parallel flash device deployment

LatticeMico Parallel Flash Controller document 7
LatticeMico Processor Reference Manual

document 7
LatticeMico SDR SDRAM Controller document 8
LatticeMico Slave Passthrough document 7
LatticeMico SPI 8, 56, 95, 123
LatticeMico SPI document 8
LatticeMico SPI Flash document 8
LatticeMico SPI flash controller

deploying software application code 179, 199
function of 199
see also SPI flash deployment

LatticeMico System
accessing online Help 7
application debugging 6
applications in 1, 9
design flow 1, 4
devices supported 3
perspectives 10
project/build management 6
projects in 6
running on Windows 10
run-time environment 45

LatticeMico timer
API routines 170
device driver 56, 95
directory structure 169, 171
documentation 8
in HelloWorld example 57
initialization routine called by LatticeDDInit 70
registering instances 72
system timer services 55
used as standard I/O devices 122

LatticeMico Timer document 8
LatticeMico UART

definition 305
device driver 95, 170
disabling 101
documentation 8
file operations 100, 142
implemented by MicoUartService.c and lookup

service 137
in HelloWorld example 57
initialization routine called by LatticeDDInit 70,

71, 72
JTAG 53, 71, 72, 98, 99, 100, 101, 102, 122, 137
used as standard I/O device 61, 122

LatticeMico UART document 8
LatticeMico32 microprocessor 57, 70, 90
LatticeMico32 Processor Reference Manual

document 66, 77, 80, 88

INDEX

LatticeMico32 Software Developer User Guide 313

LatticeMico32 Tutorial document 179, 193
LatticeMico32.c source file 71
LatticeMico32.h header file 54
LatticeMico32/DSP Development Board User’s

Guide document 7
LatticeMico32CFI.h header file 116
LatticeMico32CFIFlashEraseBlock function 109
LatticeMico32CFIFlashEraseDevice function 109
LatticeMico32CFIFlashProgramData function 108,

110
LatticeMico32CFIFlashReset function 112
LatticeMico32CFIFlashSectorInfo function 112
LatticeMico32CFIFlashWrite function 110
LatticeMico32CFIFlashWrite16 function 109
LatticeMico32CFIFlashWrite32 function 109
LatticeMico32CFIFlashWrite8 function 109
LatticeMico32RegisterFlashCfg function 117, 118,

129
LatticeMico32Uart.c file 137
ld utility 45
LEDTest.c file 154
LEDTest.txt file 154
libc.a archive file 46, 51
libm.a archive file 46
libnosys.a archive file 47
library projects

contents 245, 248, 249
dependency on microprocessor platform 250
difference from managed-build projects 244
purpose 245
steps in creating 246

LIBRARY_ASM_SRCS variable 173
LIBRARY_C_SRCS variable 173
LIBRARY_CXX_SRCS variable 173
libsmallc.a file 45, 51
link function 46
_link system call 132
link-editor utility 287
linker script

.boot section 221

.bss section 222

.data section 222

.rodata section 222

.text section 222
created by platform build 4
custom 29, 153, 175
default

application makefile 43
building project process 44
defining _fstack location 69
definition 302
generated according to platform 29
generated by C/C++ SPE 30
in managed build environment 146
location in platform library folder 154
selecting Platform tab 66
using as basis for custom linker script 153

identifying script to use 153
in platform library folder 151, 154

memory information used to create 145
modifying 222
specifying memory for application code 66

Linker Script parameter 29, 187
linker settings 25
linker_settings.mk file 153
linker.ld file 153, 302
little-endian byte order 81, 119
lm32_elf_objcopy utility 213
lm32_elf_objdump utility 212
lm32_elf_readelf utility 215
lm32-elf-ar utility 281
lm32-elf-as utility 283
lm32-elf-gcc utility 45, 46, 285
lm32-elf-gdb utility 299
lm32-elf-ld utility 287
lm32-elf-nm utility 292
lm32-elf-objcopy utility 293, 296
lm32-elf-objdump utility 45, 178, 296
lm32-elf-size utility 298
Location of Exception Handlers option 77, 184
lseek function 46, 144
_lseek system call 132

M
machine-status registers 73
macros functions 54
main function 73
main makefile 265
Main tab of Debug dialog box 37
Main tab of Software Deployment Tools dialog

box 202
Main tab of the Flash Programmer dialog box 198
Make Targets view 17
makefile file 150, 153
makefiles

created by LatticeMico System 6
created for platform library 25, 145, 151, 153
created for software application code 25, 145,

150, 151, 153
definition 303
drivers.mk 150, 153, 172
inherited_settings.mk file 153
involved in build process 25, 43
linker_settings.mk file 153
makefile 150, 153
peripheral.mk 170, 172, 173
Perl scripts invoked from 154
platform_rules.mk file 153
subdirs.mk 150

managed build process 145, 147, 222
directory structure 148
functions performed by 145
purpose 145
steps in 146

manifest constants 161
memory components 211
Memory view 34

INDEX

314 LatticeMico32 Software Developer User Guide

memory-type component attributes 166
Mico System Builder see MSB
MICO_FILE_DEVICES_MAX_DESCRIPTORS

macro 136
MICO32_CPU_CLOCK_MHZ macro 91, 157
MICO32_FULL_CONTEXT_SAVE_RESTORE

preprocessor definition 74
MicoDisableInterrupts function 84
MicoEnableInterrupts function 83
MicoExit.S file 132
MicoFileClose.c files 132
MicoFileDesc_t parameter 135
MicoFileDevice_t structure 134
MicoFileDevices.c file 132, 136
MicoFileDevices.h file 136
MicoFileFnTable_t structure 134, 135
MicoFileIsAtty.c file 132
MicoFileOpen.c file 132
MicoFileRead.c file 132
MicoFileSeek.c file 132
MicoFileStat.c file 132
MicoFileWrite.c file 132
MicoGetDevice function 92, 131
MicoGetFirstDev function 93, 131
MicoGetNextDev function 131
MicoInterrupts.c file 67
MicoInterrupts.h header file 53
MicoISRHandler function 67, 79
MicoMacros.h header file 90
MicoRegisterDevice function 130
MicoRegisterFileDevice function 139, 140
MicoRegisterISR function 68
MicoSbrk.c file 132
MicoSleepMicroSecs function 89
MicoSleepMilliSecs function 89
MicoStdStreams.c file 72
micosystem installation folder 170
_MICOUART_FILESUPPORT_DISABLED_

macro 101
MicoUartService.c file 137
MicoUtils.h header file 54, 61
microprocessor caches 179
microprocessor initialization routine 71
microprocessor-related functions 53
mkstemp function 48
mktemp function 48
mode parameter 141
Modules view 34
MSB

definition 303
device drivers 56
place in design flow 4
purpose 2, 9

.msb file
components used by C/C++ SPE 171
creating DDInit.c file 160
definition of 303
information in 6, 145, 147, 155, 156, 157

information originating in .xml file 155, 168,
169

Parms section 169
selecting in C/C++ SPE 19

MSB perspective 11
see also MSB

msb_mdk_subs.pm Perl module file 161

N
NAME I/O-type attribute 167
Name option in Flash Programmer dialog box 198
Navigator view 16
New Project dialog box 18, 58
New Source File dialog box 20
Newlib C library

_open function 135
archive file 46
file operation function calls 131
function calls 46, 47, 73, 135
mapping between integer file identification and

file descriptor parameter 136
Small Newlib C library see Small Newlib C

library 45
standard C file operations supported 53, 98,

101
stat structure parameter 144
supported by LatticeMico software

framework 123
system calls made 132
used by managed build process 46

Newlib math library 46, 53, 73
non-debug exceptions 78
non-volatile memory 178, 179, 193, 194

O
.o object files 266, 268
objcopy utility 212, 213
objdump utility 45, 178, 212
on-chip memory controller see LatticeMico on-chip

memory controller
on-chip memory deployment

debugging software application 186
description 178
generating FPGA bitstream 185
generating memory initialization file 187
generating platform 183
guidelines 179
initializing the memory component 189
locking addresses 183
minimal platform connectivity 181
modifying microprocessor reset address 184
steps involved in 180

open function 46, 142
_open system call 132, 135
opening views in perspectives 14
Outline view 16, 33
overriding default driver implementation 124
overriding default initialization sequence 123

INDEX

LatticeMico32 Software Developer User Guide 315

P
parallel flash controller see LatticeMico parallel

flash controller
parallel flash device deployment

configuring microprocessor to boot from
flash 194

creating application binary image 194
description 179
programming image to flash device 196

Parms section 169
Pause debug task 41
pData parameter 142
pDevice parameter 142
peripheral.mk file 170, 172, 173
Perl scripts 43, 154, 159, 161
perspectives

active 11
C/C++ 11, 15, 16
changing default 13
closing views in 14
creating custom 13
customizing default 12
Debug 11, 33
definition of 303
deleting custom 13
description of 11
MSB 11
opening and closing views in 14
reopening views 14
resetting default 14
switching to new 11

Perspectives tab of Debug dialog box 35
pFileOpsTable parameter 142
.PHONY keyword 267
platform

attributes 161
definition 304
example structure 57
library-generated source files 155

platform clock speed macro function 54
platform library 63, 304
platform library archive (.a) file 148, 151, 153, 304
platform library build 304
platform library folder 151, 152, 154, 249
platform library object files 151, 304
Platform Reset Vector Address option 198
platform settings file 304
Platform Settings tab 194
Platform tab

options in 29
selecting boot code through 66
selecting standard I/O device in 57, 104
storing information in user.pref file 154

PLATFORM_LIB_PATH variable 257
PLATFORM_NAME platform attribute 161
PLATFORM_NAME variable 257
platform_rules.mk file 153
platform-settings makefile 259

Prepend Code Relocator option 198, 202
printf function 51, 52, 61, 98
priv parameter 142
Problems view 16, 26, 47
processor attributes 162
Processor Configuration dialog box 66, 67
Program Memory parameter 29
ProgramData function 115
ProgramMemory component 181
Programmer 15
project 304
project C folder 170
.project file 154
project folder 148
Project option in Flash Programmer dialog

box 198
project workspace see workspace
project/build management 6
Projects view

after application build 62
deleting contents in 21
newly created project in 59
project folder in 148
projects available in 37
purpose 16
renaming projects in 21
source file in 60

PROM configurations 119
Properties dialog box 26, 27, 186, 222

see also Platform tab
Properties view 16

R
raise function 48
read function 47, 143
Read Only Memory parameter 30
_read system call 132
Read/Write Data Memory parameter 30
read/write memory 193
read/write operation function 56
readelf utility 215
read-only memory 193
rebuilding software projects 30
registers 73
Registers view 34
release build configurations 25
Remote Target option 39
remove function 48
rename function 48
renaming contents of software project contents 21
reopening views in perspectives 14
reset address 184
reset exception handling 66
reset exception offset 77
reset exceptions 78
Reset Perspective pop-up dialog box 14
Reset Vector Address 200, 202, 209
resetting default perspectives 14

INDEX

316 LatticeMico32 Software Developer User Guide

resource files 304
resources 304
Resume debug task 41
return address registers 73
.rodata section 222
RS-232 UART 53, 56
running LatticeMico System

from command line 42
from GUI 10

running software application code 35
run-time libraries 45

S
Save Binary Output File As option 203
Save Perspective As dialog box 13
sbrk function 47
_sbrk system call 132
scan chain configuration (.xcf) file 37
scanf 98
scanf function 51
SDK shell 42, 45
Search Project button 198
Search view 17
section settings 25
sector information 112
SectorInfo function 115
serial peripheral interface see LatticeMico SPI

flash controller
setting project properties 26
short int data type 80
_SHRINK_LSCC_PRINTF_SPACE_FMTS_

preprocessor definition 50
signal function 48
signal.h header file 48
Signals view 34
SIZE I/O-type attribute 167
sleep (busy) functions 54, 89
Small Newlib C library 45, 50
software application code

building project 25
creating 15
creating project 17
see also C/C++ SPE

software deployment
across different memory components 211
conditions for 178
LatticeMico on-chip memory controller 7, 178,

179
LatticeMico parallel flash controller 179, 193
LatticeMico SPI flash controller 179, 199
through C/C++ perspective 15

Software Deployment dialog box 197
Software Deployment Tools dialog box 201

Main tab 188, 198, 202
Perspectives tab 187

Software Deployment Tools screen of the Flash
Programmer dialog box 197

software development utilities 281

source files 304
source folders 304
Source tab of Debug dialog box 39
Source view 33, 41
source-identification makefile 255
special parameter 141
SPI flash deployment

advantage of 199
description 179
generating bootable application binary 201
merging bitstream and application binary 203
offset alignment in SPI flash 200
procedure 199
programming SPI flash with SPI flash image

file 206
Reset Vector Address 200
selecting EBA value 200

SPI flash image file 206
SPI flash see LatticeMico SPI flash controller
SPI see LatticeMico SPI
SPIDevice device type 95
sscanf function 52
st_FlashCfgFnTbl structure 116
st_MicoFileDesc_t structure 135, 136
stack pointer 69
stack space 179
stand-alone

hardware developer 31
software developer 32

stand-alone printf function 48, 51
stand-alone tool 31
standard-build projectssee standard-make projects
standard-make projects

building project 272
creating 250
creating application source file 253
creating compiler and linker settings

makefile 261
creating main makefile 265
creating platform-settings makefile 259
creating source-identification makefile 255
difference from managed-build projects 244
making library project dependent on 272
referencing output of library projects 245, 252

Start menu 10
stat function 47, 144
status register access 90
Stdio Redirection parameter 30
stdio.h header file 48, 50, 61, 144
stdlib.h header file 48
step in debug task 41
step out debug task 41
step over debug task 41
subdirs.mk file 150
symbol-listing utility 292
system call exception offset 77
system call exceptions 68, 78
system call functions 131, 132
system library settings 25

INDEX

LatticeMico32 Software Developer User Guide 317

system timer callback registration function 55
system timer registration function 55
system timer services

functions in 55
registering for callback 96
registering timer 95
retrieving CPU ticks 96
using 96

system_conf.h file
automatic generation of 155
declaring attributes as constants 157
description of 161
generation of 161
I/O-type component attributes 164
included in source-identification makefile 257
memory-type component attributes 166
platform attributes 161
processor attributes 162

T
Target Hardware Platform parameter 29
Tasks view 17, 34
template description file 154
template source file 154
tempnam function 48
terminate debug task 41
.text section 222
time.h header file 48
timer initialization routine 72
timer see LatticeMico timer
TimerDevice device type 95
times function 47
tmpfile function 48
tmpnam function 48

U
UART see LatticeMico UART
UARTDevice device type 95
ungetc function 51, 52
universal asynchronous receiver-transmitter see

LatticeMico UART
unlink function 47
_unlink system call 132
unsigned char data type 80
unsigned int data type 80
unsigned long long int data type 80
unsigned short int data type 80
Use Custom Linker Script button 29
Use Small-C option 51
USE_PLL platform attribute 161
user.pref file 60, 153, 154

V
ValidateCFIBoardCfg function 114, 126, 127
Variables view 33
VendorCSId parameter 118, 129
views

in C/C++ perspective 16

in Debug perspective 33
void *cfgFnTbl element 117
void *pData parameter 136
void *priv parameter 131, 136
void LatticeDDInit(void) function 123
volatile memory 179
VPATH variable 257

W
wait function 47
warning icon 26
watchpoint exception offset 77
watchpoint exceptions 78
watchpoints 305
workspace

definition 305
write function 47, 144
_write system call 132
WriteData function 115
WriteData16 function 115
WriteData32 function 115
WriteData8 function 115

X
.xcf file 37
XML 305
.xml file

associated with each component 91
contents in .msb file 155, 157, 169, 171
definition 305
description of 169
initialization function called in 70
microprocessor initialization routine 71
used by managed build process to generate

LatticeDDInit function 70

	LatticeMico System Overview
	LatticeMico System Design Flow
	Device Support
	Design Flow Steps

	About LatticeMico System Software Projects
	Project/Build Management
	Application Debugging
	Software Deployment

	Related Documentation

	Using the LatticeMico System Software
	LatticeMico System Software Overview
	About the LatticeMico System Tools
	LatticeMico System Requirements
	Running LatticeMico System
	LatticeMico System Perspectives

	Using C/C++ SPE to Develop Your Software
	Starting C/C++ SPE
	Creating Software Projects
	Basic Project Operations
	Understanding the Build Process
	Building Your Software Project
	Setting Project Properties
	Rebuilding Your Software Project
	Performing Builds Automatically

	Using LatticeMico System as a Stand-Alone Tool
	Running the Debugger on Your Code
	Debugging and Executing Your Code
	Common Debugging Tasks

	Running the Software from the Command Line
	Opening the SDK Shell
	Command-Line Managed Project Builds
	Command-Line Unmanaged Project Builds

	LatticeMico Run-Time Environment
	Build/Compilation Utilities
	Run-Time Libraries
	Newlib C and Math Libraries

	Device Drivers and Services
	Services Available at Run Time
	Device Driver APIs

	Basic Program Structure
	Creating a Blank Project
	Adding a Source File to the Project
	Adding Source to the Source file
	Building the Application
	Boot Sequence and crt0ram.S
	The int main(void) Function
	Context Save/Restore in Interrupt Exception

	Boot Sequence
	EBA and DEBA
	Boot Code Sequence Flow

	LatticeMico32 Microprocessor Usage
	Data Types
	Byte Order
	Interrupt Management
	Cache Management
	Sleep (Busy) Functions
	Microprocessor Control Register Access
	Macros

	Run-Time Services
	Device Lookup Service
	LatticeMico System Timer Services
	LatticeMico File Service
	CFI Flash Device Service

	Device Driver Framework
	Overview
	Supported Components
	Modifying Existing Device Drivers
	Overriding Default Driver Initialization Sequence
	Overriding Default Driver Implementation
	Enhancing CFI Flash Service
	Making Devices Available to Lookup Service

	File Operations
	File Operations Functions
	File Device and LatticeMico File Service
	Maximum File Descriptors

	Developing File Device Drivers
	Implementing the Operation Functions
	Registering the Driver as a File Device
	File Device Function Handlers

	Managed Build Process and Directory Structure
	Creating Managed Build Applications
	LatticeMico C/C++ Project Build Flow
	The Build Process
	Build Directory Structure

	Platform Library-Generated Source Files
	DDStructs.h File
	DDStructs.c File
	DDInit.c File
	System_Conf.h File
	Component Software Elements

	Advanced Programming Topics
	Linker Script and Memory Sections
	Software Deployment
	Deployment Strategies
	Deploying to On-Chip Memory
	Deploying to Multiple On-Chip Memory
	Deploying to a Flash Device
	Deploying to SPI Flash Using Deployment Tool
	Deploying Applications Across Different Memory Components

	Device Drivers and Multitasking
	Standard-Make Projects
	Creating a LatticeMico Library Project
	Creating a LatticeMico Standard-Make Project

	Software Development Utilities
	Build Tools
	lm32-elf-ar
	lm32-elf-as
	lm32-elf-gcc
	lm32-elf-ld
	lm32-elf-nm
	lm32-elf-objcopy
	lm32-elf-objdump
	lm32-elf-size

	Debug Tools
	lm32-elf-gdb

	Glossary
	Index

