

iCEcube2 User Guide
v2.7 ï May 19, 2015

iCEcube2 User Guide www.latticesemi.com 2

Copyright
Copyright © 2007-2015 Lattice Semiconductor Corporation. All rights reserved. This document
may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior
written consent from Lattice Semiconductor Corporation (ñLatticeò).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are
trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other
trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS ñAS ISò
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY
DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF
OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF
LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the products
described herein, at any time without notice. Lattice makes no commitment to update this
documentation. Lattice reserves the right to discontinue any product or service without notice and
assumes no obligation to correct any errors contained herein or to advise any user of this
document of any correction if such be made. Lattice recommends its customers obtain the latest
version of the relevant information to establish that the information being relied upon is current
and before ordering any products.

Contact Information

Lattice Semiconductor Corporation

5555 N.E. Moore Court
Hillsboro, Oregon 97124-6421
United States of America
Tel: +1 503 268 8000
Fax: +1 503 268 8347
http://www.latticesemi.com.

http://www.latticesemi.com/
http://www.latticesemi.com/legal
http://www.latticesemi.com./

iCEcube2 User Guide www.latticesemi.com 3

Revision History

The following table lists the revision history of this document.

Version Revision

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Release iCEcube2 2010.03

Release iCEcube2 2010.09

Release iCEcube2 2010.12

Release iCEcube2 2011.06

Release iCEcube2 2011.09

Release iCEcube2 2011.12

Release iCEcube2 2012.03

Release iCEcube2 2012.06

Release iCEcube2 2012.09

Release iCEcube2 2012.09SP1

Release iCEcube2 2013.03

Release iCEcube2 2013.03 ï updates

Release iCEcube2 2013.08

Release iCEcube2 2013.12

Release iCEcube2 2014.04

Release iCEcube2 2014.08

Release iCEcube2 2014.12

Release iCEcube2 2015.04

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 4

TABLE OF CONTENTS

Preface ... 8
About this Document ... 8
Software Version ... 8
Platform Requirements.. 8
Programming Hardware .. 8
Programming Software.. 9

Chapter 1 Overview ... 10
iCEcube2 Tool Suite.. 10
Design Flow ... 11

Chapter 2 Quick Start Guide ... 12
Creating a Project .. 12
Synthesizing the Design .. 16
Programming the Device ... 26
Addendum: .. 30

Importing Physical Constraints from iCEcube to iCEcube2 .. 30

Chapter 3 iCEcube2 Project Setup and Navigation 35
Introduction .. 35
Project Manager GUI... 35
Adding/Deleting Design and Constraint Files ... 35
Selecting Synthesis Tool and Setting synthesis Options .. 37
Selecting the Target Device and Operating Conditions .. 40
Output Window .. 41
Simulation Wizard ... 41
PLL Module Generator .. 42
PLL Dynamic Reconfiguration ... 51
SPI/I2C Module Generator .. 53

Chapter 4 Lattice Synthesis Engine ... 61
Changing the LSE Tool Options .. 61

BRAM Utilization ... 61
Carry Chain Length ... 61
Command Line Options .. 61
Fix Gated Clocks ... 61
FSM Encoding Style ... 62
Intermediate File Dump ... 62
Max Fanout Limit .. 62
Memory Initial Value File Search Path .. 62
Number of Critical Paths ... 62
Optimization Goal ... 62
Propagate Constants .. 62
RAM Style ... 62
Remove Duplicate Registers .. 63
Resolve Mixed Drivers .. 63
Resource Sharing ... 63
ROM Style ... 63
RW Check on RAM ... 63
Target Frequency .. 64
Top-Level Unit ... 64

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 5

Use Carry Chain ... 64
Use IO Insertion .. 64
Use IO Registers ... 64

Optimizing LSE for Area and Speed ... 64
FSM Encoding Style ... 65
Max Fanout Limit .. 65
Optimization Goal ... 65
Remove Duplicate Registers .. 65
Resource Sharing ... 66
Target Frequency .. 66

LSE Options versus Synplify Pro .. 66
Coding Tips for LSE .. 67

LSE Differences with Synplify Pro .. 67
About Inferring Memory .. 68

Inferring RAM .. 69
Inferring RAM with Synchronous Read .. 70
Inferring Pseudo Dual-Port RAM .. 72
Initializing Inferred RAM ... 74
Inferring ROM ... 75

About Verilog Blocking Assignments .. 76
Inferring DSP Multipliers ... 77

Verilog Examples .. 77
VHDL Examples ... 79

Inferring I/O ... 81
Event Inside an Event ... 82

HDL Attributes and Directives ... 83
black_box_pad_pin ... 83
syn_black_box .. 84
syn_encoding .. 84
syn_hier... 85
syn_keep ... 86
syn_maxfan ... 87
syn_multstyle .. 87
syn_noprune ... 89
syn_pipeline .. 90
syn_preserve .. 91
syn_ramstyle ... 92
syn_romstyle ... 93
syn_use_carry_chain .. 94
syn_useioff .. 95
Synthesis Macro ... 96
translate_off/translate_on ... 96

Synopsys Design Constraints (SDC) .. 97
create_clock .. 97
set_false_path ... 98
set_input_delay ... 98
set_max_delay .. 99
set_multicycle_path .. 99
set_output_delay ... 100

Chapter 5 iCEcube2 Physical Implementation Tools 101
Overview ... 101
Tools for Physical Implementation .. 101

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 6

Placing and Routing the Design .. 102
Floor Planner ... 103
Package View .. 110
Pin Constraints Editor.. 112
Power Estimator .. 113
Generating a Bitmap ... 115
Programming the Device ... 117

Diamond Programmer ... 117
Memory Initializer .. 119

Memory initialization file Format (.mem) : ... 121
Simulating the Routed Design ... 122

Chapter 6 Timing Constraints and Static Timing Analysis 123
Overview ... 123
Specifying Constraints Using the Timing Constraints Editor (TCE) .. 123

SDC Constraints in TCE ... 125
Clock Constraints .. 125
Generated Clock Constraints .. 125
Source Clock Latency Constraints .. 126
Input Delay Constraints ... 126
Output Delay Constraints .. 127
Max Delay Constraints .. 127
False Path Exceptions .. 128
Multi Cycle Path Exceptions ... 129

Analyzing Reports Generated by the Static Timing Analyzer (STA) 130
Clock Summary Pane ... 130
Clock Relationship Summary .. 134
Data Sheet .. 134
Analyzing Constrained Paths .. 136

By Slack .. 136
By Paths ... 138
Point to Point .. 140

Other Features .. 141
Detailed Timing Report.. 144

Chapter 7 Physical Constraints in iCEcube2 148
Specifying Physical Constraints after Design Import and Before Placement 148

Absolute Placement .. 148
Constraining Logic or RAMs ... 148
Constraining IOs ... 149
Constraining SPI Configuration IOs .. 149

Relative Placement ... 150
Region Constraints ... 153
IO/FF Merge .. 154
Global Buffer Promotion/Demotion ... 156

Modifying the Device Floor Plan after Placement ... 158

Chapter 8 Generating/Integrating Fixed Placement IP Blocks . 161
IP Generation Flow .. 161
System Design Flow.. 165

Chapter 9 Hierarchical Project Flow .. 170
Create Top Level Project .. 170
Create Sub-Projects for IP blocks ... 173

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 7

Synthesize Top Level Project .. 175

Chapter 10 Simulating Design with ALDEC Active-HDL 178
ALDEC Active-HDL ... 178
Pre-Compiled iCE Simulation Libraries ... 178

VHDL .. 178
VERILOG .. 178

Design ... 179
Pre-Synthesis Simulation .. 181
Post Place-n-Route Functional Simulation (Verilog/VHDL) .. 187
Post Place-n-Route Timing Simulation (Verilog/VHDL) .. 190

Chapter 11 iCEcube2 Command Line Interface 196
Overview ... 196
Running LSE in batch mode ... 196
Running Synplify-pro in batch mode ... 197
Running iCEcube2 Backend tools in batch mode ... 199

Backend tool Options .. 200
Edif Parser .. 200
Placer .. 200
Router ... 200
Bitmap ... 201

Command Line Execution ... 201

Chapter 12 High Drive IO with configurable drive strengths ... 203

Chapter 13 Open Drain LED IO ... 205

Appendix A: PCF Syntax .. 206

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 8

Preface

About this Document

The iCEcube2 User Guide provides iCE FPGA designers with an overview of the software tools

and the design process using iCEcube2. This document covers the iCEcube2 tools for Project

Setup, Navigation, Synthesis and Physical Implementation on the iCE FGPA device.

For information on the Synopsys Synplify Pro software, please refer to the Synplify Pro

documentation provided in the synpbase/doc directory in the iCEcube2 software installation

(<icecube2_install_dir>/synpbase/doc), and on the Lattice website.

For information on the Aldec Active-HDL design tool, please refer to the Active-HDL

documentations available at <icecube2_install_dir>/Aldec/Active-HDL/BOOKS.

Software Version

This User Guide documents the features of iCEcube2 Software Version 2015.04

For more information about acquiring the iCEcube2 software, please visit the Lattice

Semiconductor website: http://www.latticesemi.com.

Platform Requirements

The iCEcube2 software can be installed on a platform satisfying the following minimum

requirements.

A Pentium 4 computer (500 MHz) with 256 MB of RAM, 256MB of Virtual Memory, and running

one of the following Operating Systems :

¶ Windows 7 OS, 32-bit / 64-bit

¶ Windows XP Professional

¶ Red Hat Enterprise Linux WS v4.0

Programming Hardware

Here are the following ways to program iCE FPGA devices:

¶ A third party programmer or a processor, using the programming files generated by the

iCEcube2 Physical Implementation Tools. Consult the third party programmer user

manual for instructions.

¶ The iCEblink and iCEman evaluation Board, which not only serves as a vehicle to

evaluate iCE FPGAs, but also includes an integrated device programmer. This

programmer can be used to program devices on the evaluation board, or it can be used

to program devices in a target system. Please visit Lattice Semiconductor website:

http://www.latticesemi.com for additional information on the Evaluation Boards.

¶ Digilent USB cables to program the external SPI Flash.

¶ The iCE Programming hardware: iCEcable, iCEprog (Programmer base module) and

iCEsab (socket adaptor). Refer to lattice website: http://www.latticesemi.com for more

details on programming hardware.

http://www.latticesemi.com/
http://www.latticesemi.com./
http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 9

Programming Software

Standalone Lattice Diamond Programmer software is required to program iCE40 FPGA devices

or SPI flash. Download and install the latest standalone programmer from

http://www.latticesemi.com/ispvm.

For more information about Diamond Programmer, refer ñDiamond Programmerò on page 116.

http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

iCEcube2 User Guide www.latticesemi.com 10

Chapter 1 Overview

iCEcube2 Tool Suite

The iCEcube2 Tool Suite is comprised of several integrated components, running under either

the Microsoft Windows or the Red Hat Linux environments. Please refer to Platform

Requirements for additional information on supported operating systems.

The Figure 1-1 below depicts the design flow using the iCEcube2 Tool Suite. The components in

blue signify functionality supported by Lattice Semiconductorôs proprietary Synthesis Engine

(LSE) and iCEcube2 place and route software, and the components in purple indicate the

functionality supported by Synopsysô Synplify Pro synthesis tools and the Aldec Active-HDL

simulation tool. The iCEcube2 software, Synopsys Synplify Pro and the Aldec Active-HDL

software constitutes the iCEcube2 Tool Suite.

Note: The Aldec Active-HDL tool is available only in Windows environments.

Figure 1-1: The iCEcube2 Design Flow

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 11

Design Flow

The following steps provide an overview of the design flow using the iCEcube2 Tool Suite.

1. Create a new project in the iCEcube2 Project Navigator and specify a target device and its

operating conditions. Add your HDL (Verilog or VHDL) design files and your Constraint files

to the project.

2. iCEcube2 software supports Synplify-Pro Synthesis tool and Lattice Synthesis (LSE) tool.

Synplify-pro is the default synthesis tool in iCEcube2. Synthesis your design using the

selected synthesis tool.

3. Perform Placement and Routing using the iCEcube2 place and route tools. iCEcube2 also

supports physical implementation tools such as floor planning, allowing users to manually

place logic cells and IOs.

4. Perform timing simulation of your design using the Aldec Active-HDL simulation tool or any

industry-standard HDL simulation tool. The files necessary for simulation are automatically

generated by the iCEcube2 Physical Implementation tools, after the routing phase.

5. Perform Static Timing Analysis using the iCEcube2 static timing analyzer.

6. Generate the device programming and configuration files from the iCEcube2 Physical

Implementation tools.

7. Program your device using the device programming hardware provided by Lattice.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 12

Chapter 2 Quick Start Guide

This chapter provides a brief introduction to the iCEcube2 design flow. The goal of this chapter is

to familiarize the user with the fundamental steps needed to create a design project, synthesize

and implement the design, generate the necessary device configuration files, and program the

target device.

Detailed information on tool features and usage is provided in subsequent chapters.

Creating a Project

Starting the iCEcube2 software for the first time, you will see the following interface shown in

Figure 2-1.

Figure 2-1 : Create a New Project

The first step is to create a new design project and add the appropriate design files to your

project. You can create a new project by either selecting File > New Project from the iCEcube2

menu, or by clicking the Create a New Project icon as seen in Figure 2-1. The New Project

Wizard GUI is displayed in Figure 2-2.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 13

Figure 2-2: New Project Setup Wizard for iCE40 Family

This example is targeted for iCE40 family device. Follow the following steps to setup the project

properties.

1. Project Name Field: Specify a project name (quick_start) in the Project Name field.

2. Project Directory Field: Specify any directory where you want to place the project directory

in the Project Directory field.

3. Device Family Fields: This section allows you to specify the Lattice iCE device family you

are targeting. For this example, change the Device Family to iCE40.

4. Device Fields: This section allows you to specify the Lattice device and package you are

targeting. For this example, change the Device to HX1K and change the device package to

the VQ100.

5. Operating Condition Fields: This section allows you to specify the operating conditions of

the device which will be used for timing and power analysis.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 14

6. Start From Synthesis: This option allows you to start the flow from Synthesis. For current

example, select this option.

7. Start From BackEnd: This option allows you to start from Post Synthesis flow.

After the above selections the New Project GUI Wizard has the following settings as shown in

Figure 2-3.

`

Figure 2-3: Tutorial Project Settings

8. Click Next to go to the Add Files dialog box shown in Figure 2-4. You will be prompted to

create a new project directory. Click Yes.

9. In the Add Files dialog box, navigate to: <iCEcube2 installation directory>/examples/blinky

Highlight the following files:

blinky.vhd

blinky_syn.sdc*

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 15

Select each file and click >> to add the selected file, or click >>> to add all the files in the

open directory (files can be removed using << and <<<) to your project. Click Finish to create

the project.

* The SDC file is a Synopsys constraint file, which contains timing constraint information.

Figure 2-4: Add Files Dialog Box

After successfully setting up your project, you will return to the iCEcube2 Project Navigator

screen shown in Figure 2-5.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 16

Figure 2-5: iCECube2 Project Navigator View after Completing Project Setup

Synthesizing the Design

After a successful project setup, select a synthesis tool:

1. In the iCEcube2 window, right-click Synthesis Tool and choose Select Synthesis Tools.

The Select Synthesis Tool dialog box opens.

2. Select a tool: Synplify Pro or Lattice LSE.

3. Click OK.

The Run <Tool> Synthesis command changes to show the selected tool.

For this tutorial, select Lattice LSE.

Next, set options for the synthesis tool. Select Tool > Tool Options. In the Tool Options dialog

box, click the tab of the tool. To change the value of an option, either click in its Value cell and

start typing to replace the value or double-click to edit the value or to see a menu of values. In the

Synplify Pro tab, click on the word ñhereò to open Synplify Pro. Then, in the Synplify Pro window,

click Implementation Options.

For now, do not change any option settings. Click Cancel.

Double-click Run Lattice LSE Synthesis in the project navigator window. See Figure 2-6. This

starts the Lattice Synthesis Engine running. See Figure 2-7.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 17

Figure 2-6: Launch Synthesis Tool

Once synthesis is complete, you will see a green checkmark next to the Run Lattice LSE

Synthesis command. The Output tab shows the actions taken along with any warning or error

messages. Scroll down toward the bottom to see the area, clock, and timing reports. See Figure

2-7.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 18

Figure 2-7: Synthesis Run Status

View Timing Constraints

Double Click on the blinky_syn.sdc file under the Constraint Files folder. See Figure 2-8. It will

open the timing constraints for the project shown in Figure 2-9.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 19

Figure 2-8: Open the SDC File to View Timing Constraints

Figure 2-9: View Timing Constraints

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 20

Select Implementation

Double-click on Select Implementation. See Figure 2-10. This will tell iCEcube2 which

synthesis implementation to process for place and route. If you have different synthesis

implementations, you will be able to select the synthesis implementation you wish to place and

route. Since we only have one implementation, select OK when the Select Synthesis

Implementation dialog box appears.

Figure 2-10: Select Synthesis Implementation

Importing Physical Constraints

Physical constraints such as pin assignments are stored in a .PCF file (Physical Constraint File).

Add the .PCF file to your project.

In the iCEcube2 Project Navigator, Right Click on Constraint Files. Select Add Filesé See

Figure 2-11.

Note: For information on importing physical constraints from iCEcube to iCEcube2, please refer

to the Importing Physical Constraints from iCEcube to iCEcube2 section at the end of this

quick start guide.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 21

Figure 2-11: Add Constraints Files for Place and Route

Navigate to the <iCEcube2 Installation Directory>/examples/blinky and Add blinky.pcf file. See

Figure 2-12.

Figure 2-12: Add .pcf File

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 22

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click on Import P&R Input

Files in the Project Navigator. See Figure 2-13. Once completed you will see a green check

next to Import P&R Input Files. See Figure 2-14.

Figure 2-13: Import P&R Input Files

Figure 2-14: Successful Import of P&R Input Files

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 23

Place the Design

Double-click on Run Placer.

Once placement is complete, a green check will appear and the Output window will show

information about the placement of the design. See Figure 2-15.

Figure 2-15: Placer Run Status Display

View Floor Planner

At this point, since placement has been completed, you can view the placement of the design by

opening the Floor Planner. You can open the Floor Planner by going to the menu and selecting

Tool > Floor Planner or you can also select the Floor Planner Icon. See Figure 2-16.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 24

Figure 2-16: Floorplanner View

View the Package View

You can also see how pins were placed for your design by selecting the Package View. You can

select the package viewer by going to the menu and selecting Tool > Package View or you can

also select the Package View Icon. See Figure 2-17.

Figure 2-17: Package View

Route the Design

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 25

Double-click on Run Router in the project navigation window. Place and Route have been

separated into different steps as to allow you to re-route the design after making placement

modifications in the floor planner without having to re-run the placer.

Perform Static Timing Analysis

Now that you have routed the design, you can perform timing analysis to check to see if the

design meets your timing requirements. To launch the timing analyzer, go to the menu and

select Tool > Timing Analysis. You can also select the Timing Analysis Icon. See Figure 2-18.

Figure 2-18: Timing Analysis Summary

You can see from the timing analysis that our 32-kHz design is running at over 395 MHz and our

32-MHz clock is running at over 222 MHz (worst case timing). If we were not meeting timing, the

timing analyzer would allow you to see your failing paths and do a more in-depth analysis. For

this tutorial, we wonôt go into details on timing slack analysis.

Perform Power Analysis

iCEcube2 also comes with power estimator tool. To launch the power estimator, go to the menu

and select Tool > Power Estimator. You can alternatively select the power estimator icon.

There are multiple tabs in the Power Estimator tool including Summary, IO, and Clock Domain as

shown in Figure 2-19. On the Summary tab, change the Core Vdd to 1.2V and make sure all IO

voltages are at 2.5V. Then hit Calculate. The estimator will update with power information for

both static and dynamic power. For more information on using the IO and Clock Domain tabs,

please refer to the detailed section on the Power Estimator tool.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 26

Figure 2-19: Power Estimator

Programming the Device

In order to program a device, you will need to generate a programming file. In the project

navigator, double click on Generate Bitmap.

You are now ready to program an iCE40 device with the generated bitmap.

Start the stand-alone Diamond Programmer. In Windows, from the Start menu, choose Lattice

Diamond Programmer <version_number> > Diamond Programmer.

The Diamond Programmer Getting Started dialog box appears, as shown in Figure 2-20.

Figure 2-20 : Getting Started Dialog Box

Choose Create a New Project from a Scan button and click OK. The Diamond Programmer

main window appears. In the Cable Settings box in the upper right, click Detect Cable.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 27

Diamond Programmer will indicate in the bottom output tab that the Lattice HW-USBN-2A USB

programming cable was detected, as shown in

Figure

2-21.

Figure 2-21 : Diamond Programmer Main Window

In the Device Family field, click the Generic JTAG Device box and choose iCE40 from the drop-

down menu, as shown in Figure 2-22 .

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 28

Figure 2-22: Choosing iCE40 Device Family

In the Device column, choose iCE40HX1K from the drop-down menu, as shown in Figure 2-23.

 Figure 2-23 : Choosing iCE40HX1K Device

There are three basic programming flows for configuring the iCE40 device. This section explains

programming iCE40 device using an external SPI Flash device available in iCEblink40-HX1K

evaluation board.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 29

Choose Edit > Device Properties, or double-click the Operation box to display the Device

Properties dialog box, as shown in Figure 2-24.

In the Device Properties dialog box, set options as follows:

¶ Access Mode: SPI Flash Programming

¶ Operation: SPI Flash Erease,Program,Verify

In the Programming File box, browse to the .hex file you generated with iCEcube2.

In the SPI Flash Options box, choose the following options:

¶ Family : SPI Serial Flash

¶ Vendor : STMicro

¶ Device : SPI-M25P 10-A

¶ Package : 8-pin SOIC

The Device Properties dialog box should be configured as shown in Figure 2-24. In the Device

Properties dialog box, click OK.

 Figure 2-24 : Device Properties Dialog Box

In the Diamond Programmer main window, choose Design > Program, or click the Program icon

in the toolbar, as shown in Figure 2-25. Once the SPI Flash is programmed, the output tab in the

lower left portion of Diamond Programmer indicates Operation successful.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 30

Figure 2-25 : Program the device.

The external SPI Flash on the Lattice iCEblink40-HX1K evaluation board has been programmed,

and the iCE40 is configured from the SPI flash.

Addendum:

Importing Physical Constraints from iCEcube to iCEcube2

For users who have created physical constraints using iCEcube, this section describes how to

import and convert those constraints for use in iCEcube2. This section will demonstrate how to

import a .MTCL file from iCEcube and save it into .PCF format used in iCEcube2.

In the iCEcube2 project navigator, Right-click on Constraint Files and select Add Files. See

Figure 2-26.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 31

Figure 2-26: Add Constraint File

Navigate to the <iCEcube2 Installation Directory>/examples/blinky and Add blinky.mtcl file. See

Figure 2-27.

Figure 2-27: Add .mtcl File

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 32

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click on Import P&R Input

Files in the Project Navigator. See Figure 2-28. Once importing of files completed you will see a

green check next to Import P&R Input Files. See Figure 2-29.

Figure 2-28: Double-Clock on Import P&R Input Files

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 33

Figure 2-29: Successful Import of P & R Input Files

Saving Physical Constraints into .pcf Format

Open the Pin Constraints Editor by going to the menu and selecting Tool > Pin Constraints

Editor or you can also select the Pin Constraints Editor Icon. See Figure 2-30. You will see a list

of pin assignments that are locked under the locked column. Uncheck and Recheck one of the

pins under the locked column. The save icon will now become an active icon. Click on the

Save physical constraints icon. This will bring up a dialog box where you can save the PCF

file. Hit OK. See Figure 2-31. The .PCF file contains physical constraints in the design used for

place and route.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 34

Figure 2-30: Pin Constraints Editor

Figure 2-31: Save Physical Constraints File

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 35

Chapter 3 iCEcube2 Project Setup and Navigation

Introduction

This chapter describes the features of the iCEcube2 Project Manager and how to set up a design

Project. The primary functions of the Project Manager include project setup, launching the Lattice

Synthesis Engine (LSE) or Synplify pro for synthesis, placing and routing the design, launching

the Aldec Active-HDL for simulation and launching the software required to Program the target

device.

This chapter assumes that the reader is familiar with the New Project creation process as

described in Chapter 2 Quick Start.

Project Manager GUI

Figure 3-1 below displays the Project Manager GUI. A new project can be opened by clicking on

the New Project icon or the File > New Project menu item. Similarly, an existing project can be

opened or closed using the Open Project and Close Project icons.

Figure 3-1 : iCEcube2 Project Flow Manager

Adding/Deleting Design and Constraint Files

Design and Constraint files can be added or removed from the project by selecting Design Files

or Constraint Files respectively as displayed in Figure 3-2.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 36

Figure 3-2 : Adding/Removing Design Files to the design project

Deleting a specific file can be accomplished by selecting the file name and clicking the right-

button on the mouse. Figure 3-3 below displays the state of the GUI upon clicking the mouse

button.

Figure 3-3 : Removing Files from the design project

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 37

Selecting Synthesis Tool and Setting synthesis Options

The iCEcube2 software supports Synplify-pro synthesis tool and Lattice Synthesis tool (LSE) to

synthesis the design. In order to change the synthesis tool, click right-mouse button on

ñSynthesis Toolò item and select the synthesis tool as shown in Figure 3-5.

Figure 3-4 : Select Synthesis Tool

Figure 3-5 : Synthesis Tool Selection Wizard

To set the LSE synthesis tool options, click ñright- mouseò button on the ñRun LSE Synthesisò as

shown in Figure 3-6.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 38

Figure 3-6 : Open LSE Tool Options Wizard

Set the LSE tool options and click on ñOKò button to save the changes. Rerun the LSE synthesis.

Figure 3-7 : LSE tool options wizard

To set the Synplify-Pro synthesis tool options, click ñright-mouseò button on the ñRun Synplify-

Pro Synthesisò item. This will pop up the ñTool Optionsò wizard. In the ñSynplify Proò tab select

the word ñhereò to open the Synplify-Pro GUI.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 39

Figure 3-8: Invoke Synplify-Pro GUI

In the Synplify-Pro window, Select ñImplementation Optionsò, set the tool options and save. Rerun

the Synplify synthesis.

Figure 3-9: Set Implementation Options

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 40

Selecting the Target Device and Operating Conditions

The iCEcube2 software provides the ability to specify the operating conditions for the target

device. In order to change the Target Family, Device and/or the Operating Conditions, click the

right-button on the mouse, in the Device/Operating Condition window to display the Edit

action. This is shown in Figure 3-10.

Figure 3-10 : Modifying the Device Selection/Operating Conditions

Device options wizard is shown in Figure 3-11.

Figure 3-11: Device Options for iCE40 Family

In order to specify a suitable target Device, the following steps need to be performed:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 41

1. Specify a Device Family

2. Specify a Device using the drop-down menu

3. Select a suitable Device Package for the device selected in the previous step

Specifying the Operating Conditions for the target device involves the following steps:

1. Junction Temperature

a. Select an appropriate Junction Temperature Range from the options available.

Depending on the Power Grade selected for the target device, the software provides

built-in options such as Commercial and Industrial temperature ranges.

b. If the deviceôs operating conditions do not fall into either the Commercial or the

Industrial temperature ranges, the software also permits the user to specify a

customized junction temperature. This is accomplished by selecting the Custom option,

and manually specifying the Best, Typical and Worst Case junction temperatures.

2. Core Voltage: Select a Voltage Tolerance Range from the provided options.

3. IO Bank Voltage: This option is available only for iCE40 family as shown in Figure 3-11.

Select a bank voltage from the provided options for the top, bottom, left, right banks. The

specified IO Voltage values are used by Power Estimator and Static Timing Analysis tools.

In order for Static Timing Analysis to be performed at the desired Operating Conditions, the

software provides the ability to select the Best Case, Typical Case or Worst Case conditions.

Output Window

The iCEcube2 Project Flow Manager software provides an Output Window to display messages,

warnings and errors.

Simulation Wizard

The iCEcube2 windows software installs Aldec Active-HDL, a windows based simulator tool to

perform functional and timing verification of the implemented designs. The ñSimulation Wizardò in

the project navigator allows the user to create a simulation project for Aldec Active-HDL, select

the simulation netlist, simulation language and invokes the Aldec Active-HDL interface.

Select Active-HDL icon to invoke the ñSimulation Wizardò as shown in Figure 3-12. Refer to

chapter ñSimulating Design with ALDEC Active-HDLò for more details about simulation wizard and

simulation steps with Aldec Active-HDL.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 42

Figure 3-12 : Invoking Simulation Wizard.

PLL Module Generator

Certain devices of the iCE40 family include a Phase Lock Loop (PLL) function. The PLL function

requires configuration before it can be used in a design. To help configure the PLL, the iCEcube2

Project Flow Manager includes a PLL Module Generator, which can be launched from the Tool >

Configure > Configure PLL Module menu item, as displayed in Figure 3-13.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 43

Figure 3-13: Launching the PLL Module Generator

The PLL Module Generator allows the user to create a new PLL configuration, or edit an existing

one as shown in Figure 3-14.

The output of the PLL Module Generator is a PLL module file (Verilog), that instantiates a PLL, as

configured by the user. A secondary file (wrapper), that includes an instance of the PLL module,

is generated in order to help instantiate the PLL module in the userôs design. Note that the PLL

module file should be included in the list of design files.

Once a PLL module file has been generated, it can be edited, by selecting the ñModify an existing

PLL configurationò option (Figure 3-14).

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 44

Figure 3-14: Create/Modify a PLL configuration

Configuring the iCE65 PLL

In the PLL Module Generator wizard, select Device Family as iCE65 and provide the PLL

Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the

user configure the PLL as per the design requirements. This section describes the features of

iCE65 family PLL modules.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2

software supports the following PLL types. These PLL type options can be selected on the first

page of the wizard, as displayed in Figure 3-15.

1. General Purpose IO Pad or Core Logic: In this scenario, the PLL input (source clock) is

driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA

core, or it can be an external signal that was brought onto the FPGA using a General

Purpose IO pad. The PLL output (generated clock) is available on the FPGA to drive a global

clock network, as well as regular routing.

2. Clock Pad: The PLL input clock (source) is driven by a dedicated clock pad located in IO

Bank 2

a. The PLL output (generated clock) is available to drive a global clock network, as well

as regular routing. The PLL source clock is not available on the FPGA.

b. The PLL output (generated clock) is available to drive a global clock network, as well

a regular routing. The PLL source clock is also available on the FPGA, and can drive

a global clock network, as well as regular routing.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 45

Figure 3-15: Selecting the PLL Type and Operation Mode

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines

the feedback path of the PLL and enables phase alignment of the generated clock with respect to

the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1. No Compensation mode: The PLL can be used for generating the desired output frequency,

without the ability to control the phase of the generated clock.

2. Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the

feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that

permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay

adjustment can be controlled dynamically through signals connected to the PLL, or it can be

fixed i.e. once configured, the delay contributed by the delay block can only be changed upon

re-programming the FPGA with a different bit configuration.

3. Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block:

The Phase Shifter provides four outputs corresponding to a phase shift of 0

degrees, 90

degrees, 180 degrees or 270 degrees. In addition, this feedback path provides additional

delay adjustment through the FDA block.

4. Delay Compensation using a feedback path external to the PLL: The feedback path traverses

through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 46

Block. Hence, in effect, two delay controls are available ï the external path for coarse

adjustment and the FDA block for fine delay adjustment.

Figure 3-16 : PLL Module Generator ï Frequency Specification

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled

dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range

0-15 to specify the delay contributed to the feedback path. The delay for a setting ñnò is calculated

as follows

FDA delay = (n+1)*0.15 ps, where ñnò is the value specified by the user, and 0 Ò n Ò 15

Frequency Specification: The input and output frequency of the PLL should be specified in MHz

as shown in Figure 3-16. Depending on the values provided by the user, the PLL is internally

configured to generate the specified output frequency.

In case the frequency specified is not in the range permitted by the Operation Mode, the software

provides appropriate feedback, as displayed in Figure 3-17.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 47

Figure 3-17: Frequency Validation by PLL Configurator

Other options:

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.

Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it

such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode

through the iCEGate feature. The iCEGate feature latches the PLL Output signal, and prevents

unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required

to initialize the PLL functionality.

Configuring the iCE40 PLL

Most devices in the iCE40 family provide two PLL functions, each of which can be configured

independently.

In the PLL Module Generator wizard, select Device Family as iCE40 and provide the PLL

Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the

user configure the PLL as per the design requirements.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2

software supports the following PLL types. These PLL type options can be selected on the first

page of the wizard, as displayed in Figure 3-18.

1. Select the number of global networks to be driven by the PLL output. Setting the value to ñ1ò

generates a PLL which drives a single global clock network, as well as regular routing.

Setting the value to ñ2ò generates a PLL which drives two global clock networks as well as

two regular routing resources.

2. Specify the input to the PLL:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 48

General Purpose IO Pad or Core Logic: In this scenario, the PLL input (source clock) is

driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA

core, or it can be an external signal that was brought onto the FPGA using a General

Purpose IO pad.

Dedicated Clock Pad (Single Ended): The PLL input clock (source) is driven by a dedicated

single ended clock pad located in IO Bank 2 (Bottom bank) or IO Bank 0 (Top bank). (In case

two global networks were selected in the previous step, the input signal can be used as-is on

the logic fabric, i.e. it can bypass the PLL. In the rare situation that this is required, select the

check-box, ñThe PLL source clock will be used on chip without frequency/phase/delay

adjustmentsò.)

Figure 3-18: iCE40 PLL - Selecting PLL Type and Operation Modes

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines

the feedback path of the PLL, and enables phase alignment of the generated clock with respect

to the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1. No Compensation mode: The PLL can be used for generating the desired output frequency,

without the ability to control the phase of the generated clock.

2. Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the

feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that

permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay

adjustment can be controlled dynamically through signals connected to the PLL, or it can be

fixed i.e. once configured, the delay contributed by the delay block can only be changed upon

re-programming the FPGA with a different bit configuration.

3. Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block.

For single port PLL types the Phase Shifter provides two outputs corresponding to a phase

shift of 0

degrees and 90 degrees. For two port PLL types, the Phase Shifter has two modes:

Divide-by-4 mode and Divide-by-7. In Divide-by-4 mode, the output of B port can be shifted

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 49

either 0 degrees or 90 degrees w.r.t to A port outputs. In Divide-by-7 mode, the B port output

frequency can be set to have a frequency ratio of 3.5:1 or 7:1 w.r.t the port A output

frequency. In addition to the delay compensation provided by the phase shifter, this feedback

path provides additional delay adjustment through the FDA block.

4. Delay Compensation using a feedback path external to the PLL: The feedback path traverses

through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)

Block. Hence, in effect, two delay controls are available ï the external path for coarse

adjustment and the FDA block for fine delay adjustment.

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled

dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range

0-15 to specify the delay contributed to the feedback path. The delay for a setting ñnò is calculated

as follows

FDA delay = (n+1)*0.15 ps, where ľnĿ is the value specified by the user, and 0 Ů n Ů 15.

Additional Delay Adjustment: In addition to Fine Delay Adjustment in the feedback path, the user

can specify additional delay on the PLL output ports as shown in Figure 3-19. The delay

contributed by the delay block can be Fixed or controlled dynamically during FPGA operation. If

Fixed, it is necessary to provide a number (n) in the range 0-15 to specify the delay contributed to

the feedback path. The delay for a setting ñnò is calculated as follows

FDA delay = (n+1)*0.15 ps, where ľnĿ is the value specified by the user, and 0 Ů n Ů 15.

This additional delay is applied on the output of single port PLL and port A of two port PLL types.

Phase Shift Specification: Phase Shift specification allows the user to specify 0 degrees or 90

degrees phase shift.

Figure 3-19: iCE40 PLL - Additional Delay and Phase Shift Options

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 50

Frequency Specification: The input and output frequency of the PLL should be specified in MHz

as shown in Figure 3-20. Depending on the values provided by the user, the PLL is internally

configured to generate the specified output frequency.

Frequency Specification window also checks for the input and output frequencies given by the

user. If the specified frequencies are at a range that cannot be generated by the PLL, then a

popup dialog box is displayed as shown in Figure 3-17 asking the user to enter the frequencies in

valid range.

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.

Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it

such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode

through the iCEGate feature. The iCEGate feature latches the PLL Output signal, and prevents

unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required

to initialize the PLL functionality.

Figure 3-20: iCE40 PLL - Frequency Specification

PLL Summary: The PLL Configuration summary is shown in Figure 3-21. Click on ñSaveò to

save the PLL configuration file.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 51

Figure 3-21 : PLL Summary

PLL Dynamic Reconfiguration

iCE5LP devices supports dynamic reconfiguration of PLL to change the output frequency, phase

shift and clock delays at runtime. Reconfiguration of PLL directly accesses the configuration bits

and changes the configuration on the fly while the design is running. This allows the user to run

the design at different frequencies.

To enable dynamic PLL reconfiguration, user needs to set the TEST_MODE parameter of the

PLL instance. Reconfiguration of PLL is done using the serial data input pin SDI. The

configuration bits are latched in a 27 bit shift register (PLLCFGREG) in the PLL block by

configuration clock SCLK.

The user can reconfigure the PLL either by using a build in configuration load module or by using

external control signals connected to the device.

PLL Reconfiguration Process

1. Assert the PLL RESET (Active low) signal.

2. Load the serial configuration bits via SDI pin. The data should be available at positive

edge of SCLK and the data is latched at negative edge of SCLK. The shift out bit is

available in SDO pin.

3. After 27 clock cycles stop the configuration clock signal. The recommended configuration

clock frequency range is 2 MHz to 12 MHz.

4. At the end of 27 clock cycles, the PLLCFGREG is loaded with 27 bit configuration bit.

The first data shifted in is available at PLLCFGREG [26].

5. De-assert the RESET signal after 10ns.

6. Wait for the PLL to lock.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 52

Dynamic configuration PLL instance model is given below. If the TEST_MODE is set, the PLL

output frequency is based on the PLLCFGREG settings.

Verilog:

SB_PLL40_PAD instSBPLL (
 .PACKAGEPIN (REFCLK),
 .EXTFEEDBACK (),
 .DYNAMICDELAY (),
 .BYPASS (BYPASS),
 .RESETB (RESETB),
 .LATCHINPUTVALUE (LATCHINPUTVALUE),
 .LOCK (LOCK),
 .SDI(SDI), // serial data in
 .SDO(SDO), // serial data out
 .SCLK(SCLK), // Configuration clock
 .PLLOUTCORE (PLLOUTCORE_net),
 .PLLOUTGLOBAL (PLLOUTGLOBAL_net)
);
// INPUT Fin=20MHz, Fout=200MHz
defparam instSBPLL.DIVR = 4'b0001;
defparam instSBPLL.DIVF = 7'b1001111;
defparam instSBPLL.DI VQ = 3'b010;
defparam instSBPLL.FILTER_RANGE = 3'b001;
defparam instSBPLL.FEEDBACK_PATH = "SIMPLE";
defparam instSBPLL.DELAY_ADJUSTMENT_MODE_FEEDBACK= "FIXED";
defparam instSBPLL.FDA_RELATIVE = 4'b0000;
defparam instSBPLL.PLLOUT_SELECT = "GENCLK";
defparam instSBPLL .SHIFTREG_DIV_MODE = 2'b00 ;
defparam instSBPLL.ENABLE_ICEGATE = 1;
// Enable Dynamic PLL configuration
defparam instSBPLL.TEST_MODE = 1;

PLL Configuration Register Mapping

The following table maps the PLL configuration register bits to PLL parameter settings.

Configuration

Register

PLL Parameter Map Range/Values Description

PLLCFGREG[3:0] DIVR 0,1,2,é15
REFERENCECLK
divider value

PLLCFGREG[10:4] DIVF
0,1,..,63

Feedback divider value

PLLCFGREG[13:11] DIVQ
1,2,é,6

VCO Divider

PLLCFGREG[16:14] FILTER_RANGE
0,1,é,7

PLL Filter Range

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 53

PLLCFGREG[25,18,17] FEEDBACK_PATH 1xx SIMPLE Feedback

(Internal)

000 DELAY

010/001 PHASE_AND_DELAY

011 EXTERNAL

PLLCFGREG[26,21] SHIFTREG_DIV_MODE 00 Divide by 4

01 Divide by 7

10 Invalid setting

11 Divide by 5

PLLCFGREG[20:19],

PLLCFGREG[24:23]

PLLOUT_SELECT_PORTB,

PLLOUT_SELECT_PORTA

00 GENCLK

01 GENCLK_HALF

10 SHIFTREG_90deg

11 SHIFTREG_0deg

PLLCFGREG[22] Set PLL Primitive type. 0 CORE PLL

1 PAD PLL

The sample configuration register setting for a PAD PLL with 20 MHz reference clock and 200

MHz output frequency is

PLLCFGREG [26:0] =27'b0_1_00_00_00_00_001_010_1001111_0001;

SPI/I2C Module Generator

iCE40LM, iCE5LP (iCE40 Ultra) device families contains hardened I2C and SPI IP blocks. These

devices do not pre-load the hard IP registers during configuration. A soft IP is required to

configure the I2C/SPI hard IP blocks in the design.

The iCEcube2 Project Flow Manager includes an I2C/SPI Module Generator to generate soft IP

modules. Launch the module generator from Tool > Configure > Configure SPI/I2C Module

menu item, as shown in Figure 3-22.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 54

Figure 3-22 : Launch I2C/SPI Module Generator.

The I2C/SPI Module Generator allows the user to create a new configuration, or edit an existing

one as shown in Figure 3-23.

Figure 3-23: Create New I2C/SPI Module

The output of the Module Generator is a module file (Verilog), that instantiates a SPI/I2C, as

configured by the user. Note that the I2C/SPI module file should be included in the list of design

files.

Once an I2C/SPI module file has been generated, it can be edited, by selecting the ñModify an

existing PLL configurationò option (Figure 3-24).

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 55

Figure 3-24: Modify Existing I2C/SPI configuration

Configuring I2C/SPI Hard IP

 iCE40LM, iCE5LP (iCE40 Ultra) device contains two I2C and SPI hard IP blocks, each of which

can be configured independently.

In the I2C/SPI Module Generator wizard, select ñCreate a new I2C/SPI configurationò and provide

the module Name. Click on the OK button. The Module generator launches a wizard to help the

user configure the I2C/SPI as per the design requirements. This section explains the options in

the wizard to enable and configure the I2C/SPI soft IP wrappers.

Enable Hard IP

The óHard IP Enablesô tab allows the user to enable the required left/right I2C, left/right SPI

instances in the wrapper and specify the system bus clock frequency. Selecting the hard IP type

enables the I2C and SPI Tabs in the wizard as shown in Figure 3-25.

Figure 3-25 : Enable Hard IP

Enable hard user I2C left: This option allows the user to enable left I2C on the I2C Tab.

Enable hard user I2C Right: This option allows the user to enable right I2C on the I2C Tab.

Enable hard user SPI Left: This option allows the user to enable left SPI on the SPI Tab.

Enable hard user SPI Right: This option allows the user to enable right SPI on the SPI Tab.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 56

System Clock: Specify the system clock frequency in Mhz. This value is used to derive the

divider settings of the I2C and SPI hard IP master clocks. ñGenerateò button is enabled once the

value is set in this field.

Configure I2C

I2C Tab allows the user to configure the left and right I2C blocks independently as shown in

Figure 3-26. I2C Tab is enabled only when I2C hard IP is selected in the Hard IP Enables Tab.

Figure 3-26: Configure Left/Right I2C hard IP.

I2C Controller General Options:

General Call Enable: This setting enables the I2C General Call response (addresses all devices

on the bus using the I2C address 0) in Slave mode. This setting can be modified dynamically by

enabling the GCEN bit in the I2C Control Register I2CCR1.

Wakeup Enable: Turns on the I2C wakeup on address match. The WKUPEN bit in the I2CCR1

can be modified dynamically allowing the Wake Up function to be enabled or disabled.

Include IO Buffers: Include buffers to the I2C_SCL, I2C_SDA pins.

Master Clock (Desired): Specify the desired I2C master clock frequency. A calculation is then

made to determine a divider value to generate a clock close to this value from the input clock.

The frequency of the input System Bus clock is specified on the main/general tab. The divider

value is rounded to the nearest integer after dividing the input System Bus clock by the value

entered in this field.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 57

 Master Clock (Actual): Since it is not always possible to divide the input System Bus clock to

the exact value requested by the user, the actual value will be returned in this read-only field.

I2C Addressing: This option allows the user to set 7-bit or 10-bit addressing and define the Hard

I2C address.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 58

I2C Controller Interrupts:

Arbitration Lost Interrupts: An interrupt which indicates I2C lost arbitration. This interrupt is bit

IRQARBL of the register I2CIRQ. When enabled, it indicates that ARBL is asserted. Writing a ó1ô

to this bit clears the interrupt. This option can be changed dynamically by modifying the bit

IRQARBLEN in the register I2CIRQEN.

TX/RX Ready: An interrupt which indicates that the I2C transmit data register (I2CTXDR) is

empty or that the receive data register (I2CRXDR) is full. The interrupt bit is IRQTRRDY of the

register I2CIRQ. When enabled, it indicates that TRRDY is asserted. Writing a ó1ô to this bit clears

the interrupt. This option can be changed dynamically by modifying the bit IRQTRRDYEN in the

register I2CIRQEN.

Overrun or NACK: An interrupt which indicates that the I2CRXDR received new data before the

previous data. The interrupt is bit IRQROE of the register I2CIRQ. When enabled, it indicates that

ROE is asserted. Writing a ó1ô to this bit clears the interrupt. This option can be changed

dynamically by modifying the bit IRQROEEN in the register I2CIRQEN.

General Call Interrupts: An interrupt which indicates that a general call has occurred. The

interrupt is bit IRQHGC of the register I2CIRQ. When enabled, it indicates that ROE is asserted.

Writing a ó1ô to this bit clears the interrupt. This option can be changed dynamically by modifying

the bit IRQHGCEN in the register I2CIRQEN.

I2C SDA delays

This option is available only for iCE5LP (iCE40 Ultra) devices. Using these options, the user can

add 50ns delay to the SDA input, output signals.

SDA input: By default 50ns is added to the SDA input. Turn off this option if delay is not required.

SDA output: Turn on this setting to add 50ns delay to the SDA output.

Configure SPI

SPI Tab allows the user to configure the left and right SPI blocks independently as shown in

Figure 3-27. SPI Tab is enabled only when SPI hard IP is selected in the Hard IP Enables Tab.

Figure 3-27: Configure Left/Right SPI hard IP.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 59

Enable Slave Interface: This option allows the user to enable Slave Mode interface for the initial

state of the SPI block. By default, Slave Mode interface is enabled.

Enable Master Interface: This option allows the user to enable Master Mode interface for the

initial state of the SPI block. This option can be updated dynamically by modifying the MSTR bit

of the register SPICR2.

Master Clock Rate (Desired): Specify the desired SPI master clock frequency. A calculation is

then made to determine a divider value to generate a clock close to this value from the input

System Bus clock frequency. The divider value is rounded to the nearest integer after dividing the

input System Bus clock by the value entered in this field.

Master Clock Rate (Actual): Since it is not always possible to divide the input System Bus clock

exactly to that requested by the user, the actual value will be returned in this read-only field.

When both the desired SPI clock and System Bus clock fields have valid data and either is

updated, this field returns the value (System Bus Frequency / SPI_CLK_DIVIDER), rounded to

two decimal places.

Master Chip Selects: The core has the ability to provide up to 4 individual chip select outputs for

master operation. This field allows the user to prevent extra chip selects from being brought out of

the core. This option can be updated dynamically by modifying the register SPICSR.

SPI Controller Interrupts

TX Ready: An interrupt which indicates the SPI transmit data register (SPITXDR) is empty. The

interrupt bit is IRQTRDY of the register SPIIRQ. When enabled, indicates TRDY was asserted.

Write ñ1ò to this bit to clear the interrupt. This option can be change dynamically by modifying the

bit IRQTRDYEN in the register SPIIRQEN.

TX Overrun: An interrupt which indicates the Slave SPI chip select (SPI_SCSN) was driven low

while a SPI Master. The interrupt is bit IRQMDF of the register SPIIRQ. When enabled, indicates

MDF (Mode Fault) was asserted. Write ñ1ò to this bit to clear the interrupt. This option can be

change dynamically by modifying the bit IRQMDFEN in the register SPIIRQEN.

RX Ready: An interrupt which indicates the receive data register (SPIRXDR) contains valid

receive data. The interrupt is bit IRQRRDY of the register SPIIRQ. When enabled, indicates

RRDY was asserted. Write ñ1ò to this bit to clear the interrupt. This option can be change

dynamically by modifying the bit IRQRRDYEN in the register SPICSR.

RX Overrun: An interrupt which indicates SPIRXDR received new data before the previous data.

The interrupt is bit IRQROE of the register SPIIRQ. When enabled, indicates ROE was asserted.

Write a ñ1ò to this bit to clear the interrupt. This option can be change dynamically by modifying

the bit IRQROEEN in the register SPIIRQEN.

SPI Controller General Options:

Wakeup Enable: The core can optionally provide a wakeup signal to the device to resume from

low power mode. This option can be updated dynamically by modifying the bit WKUPEN_USER

in the register SPICR1.

LSB First: This setting specifies the order of the serial shift of a byte of data. The data order

(MSB or LSB first) is programmable within the SPI core. This option can be updated dynamically

by modifying the LSBF bit in the register SPICR2.

Inverted Clock: Select this option to invert the clock polarity used to sample input and output

data. When selected the edge changes from the rising to the falling clock edge. This option can

be updated dynamically by accessing the CPOL bit of register SPICR2.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 60

Phase Adjust: An alternate clock-data relationship is available for SPI devices with particular

requirements. This option allows the user to specify a phase change to match the application.

This option can be updated dynamically by accessing the CPHA bit in the register SPICR2.

Slave Handshake Mode: Enables Lattice proprietary extension to the SPI protocol. For use

when the internal sup-port circuit (e.g. WISHBONE host) cannot respond with initial data within

the time required, and to make the Slave read out data predictably available at high SPI clock

rates. This option can be updated dynamically by accessing the SDBRE bit in the register

SPICR2.

Include IO Buffers: Include buffers to the SPI_MISO, SPI_MOSI, SPI_SCK, SPI_MCSNO [0]

pins.

Generate Module

Once the settings are done generate the soft IP module by selecting ñGenerateò button. The

wizard displays the status and the generated file details in the ñGenerate Logò tab as shown in

Figure 3-28.

Figure 3-28: I2C/SPI soft IP module generation.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 61

Chapter 4 Lattice Synthesis Engine

Lattice Synthesis Engine (LSE) is the integrated synthesis tool that comes with iCEcube2.

This chapter describes:

¶ LSE tool options

¶ HDL coding tips

¶ Attributes and directives supported by LSE

¶ Synopsys design constraints (SDC) supported by LSE

LSE is a synthesis tool custom-built for Lattice products and fully integrated with iCEcube2.

Depending on the design, LSE may lead to a more compact or faster placement of the design

than another synthesis tool would do.

Also, LSE offers the following advantages:

¶ More granular control through the tool options

¶ Enhanced RAM and ROM inference and mapping, including:

o Dual-port RAM in write-through, normal, and read-before-write modes mapped to

BRAM

o Clock enable and read enable packing

o Mapping for the minimal number of BRAM blocks

o BRAM mapping for minimal timing

¶ Post-synthesis Verilog netlist suitable for simulation

Changing the LSE Tool Options

The LSE options can be changed by selecting Tool > Tool Options > LSE. This section lists all

the tool options associated with LSE. The following sections describe how to set the options to

optimize synthesis for either area or speed and some of the differences between LSE and

Synplify Pro options.

BRAM Utilization

Specifies BRAM utilization target setting in percent of total vacant sites. LSE will honor the setting

and do the resource computation accordingly. Default is 100 (in percentage).

Carry Chain Length

Specifies the maximum number of output bits that get mapped to a single carry chain. Default is

0, which is interpreted as infinite length.

Command Line Options

Enables additional command line options for the LSE synthesis process. Type in the option and

its value (if any) in the Value column.

Fix Gated Clocks

Turns on (True) or off (False) converting all gated clocks to data enables for best performance.

Turn off to save power. Default is True.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 62

FSM Encoding Style

Specifies the encoding style to use for finite state machines: Binary, Gray, or One-Hot. Default is

Auto, meaning that LSE chooses a style for each finite state machine.

Intermediate File Dump

If you set this to True, LSE will dump about 20 intermediate encrypted Verilog files. If you supply

Lattice with these files, they can be decrypted and analyzed for problems. This option is good for

analyzing simulation issues.

Max Fanout Limit

Specifies the maximum fanout setting. LSE will make sure that any net in the design does not

exceed this limit. Default is 10000 fanouts.

Memory Initial Value File Search Path

Allows you to specify a path to locate memory initialization files (.mem) used in the design. The

software will add the specified paths to the list of directories to search when resolving file

references.

To specify a search path, double-click the Value box, and directly enter the path.

Number of Critical Paths

Specifies the number of critical timing paths to be reported in the timing report.

Optimization Goal

Enables LSE to optimize the design for area, speed, or both. Valid options are:

¶ Area (default) ï Optimizes the design for area by reducing the total amount of logic used

for design implementation.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and

uses 1 MHz instead.

¶ Timing ï Optimizes the design for speed by reducing the levels of logic.

When Optimization Goal is set to Timing and a create_clock constraint is available in an

.ldc file, LSE ignores the Target Frequency setting and uses the value from the

create_clock constraint instead.

¶ Balanced ï Optimizes the design for both area and timing.

Propagate Constants

When set to True (default), enables constant propagation to reduce area, where possible. LSE

will then eliminate the logic used when constant inputs to logic cause their outputs to be constant.

You can turn off the operation by setting this option to False.

RAM Style

Sets the type of random access memory globally to BRAM or registers.

The default is Auto which attempts to determine the best implementation. That is, LSE will map to

RAM resources based on the resource availability.

This option will apply a syn_ramstyle attribute globally in the source to a module or to a RAM

instance. To turn off RAM inference, set its value to Registers.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 63

Other options are:

¶ Registers ï Causes an inferred RAM to be mapped to registers (flip-flops and logic)

rather than the technology-specific RAM resources.

¶ BRAM ï Causes the RAM to be implemented using the dedicated RAM resources. If your

RAM resources are limited, for whatever reason, you can map additional RAMs to

registers instead of the dedicated BRAM resources using this attribute.

Remove Duplicate Registers

Specifies the removal of duplicate registers. When set to True (default), LSE removes a register if

it is identical to another register. If two registers generate the same logic, the second one will be

deleted and the first one will be made to fan out to the second one's destinations. LSE will not

remove duplicate registers if this option is set to False.

Resolve Mixed Drivers

If a net is driven by a VCC or GND and active drivers, setting this option to True connects the net

to the VCC or GND driver.

Resource Sharing

When this is set to True (default), the synthesis tool uses resource sharing techniques to optimize

for area. With resource sharing, synthesis uses the same arithmetic operators for mutually

exclusive statements; for example, with the branches of a case statement. Conversely, you can

improve timing by disabling resource sharing, but at the expense of increased area.

ROM Style

Allows you to globally implement ROM architectures using dedicated, distributed ROM, or a

combination of the two (Auto).

This applies the syn_romstyle attribute globally to the design by adding the attribute to the

module or entity. You can also specify this attribute on a single module or ROM instance.

This option specifies a syn_romstyle attribute globally or on a module or ROM instance with a

value of:

¶ Auto (default) ï Allows the synthesis tool to choose the best implementation to meet the

design requirements for speed, size, and so on.

¶ BRAM ï Causes the ROM to be mapped to dedicated BRAM resources. ROM address or

data should be registered to map it to an BRAM block. If your ROM resources are limited,

for whatever reason, you can map additional ROM to registers instead of the dedicated or

distributed RAM resources using this attribute.

¶ Logic ï Causes the ROM to be implemented using the normal logic.

Infer ROM architectures using a CASE statement in your code. For the synthesis tool to

implement a ROM, at least half of the available addresses in the CASE statement must be

assigned a value. For example, consider a ROM with six address bits (64 unique addresses). The

CASE statement for this ROM must specify values for at least 32 of the available addresses.

RW Check on RAM

Adds (True) or does not add (False) the glue logic to resolve read/write conflicts wherever

needed. Default is False.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 64

Target Frequency

Specifies the target frequency setting. This frequency applies to all the clocks in the design. If

there are some clocks defined in an .sdc file, the remaining clocks will get this frequency setting.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and uses

1 MHz instead.

When Optimization Goal is set to Timing and a create_clock constraint is available in an .sdc file,

LSE ignores the Target Frequency setting and uses the value from the create_clock constraint

instead.

Top-Level Unit

It is a good practice to specify the top-level unit (or module) of the design. If you donôt, LSE will try

to determine the top-level unit. While usually accurate, there is no guarantee that LSE will get the

correct unit.

You may also want to change the top-level unit when experimenting with different designs or

switching between simulation and synthesis.

If the design is mix of EDIF and Verilog or VHDL, you cannot set an EDIF module as the top-level

unit.

Use Carry Chain

Turns on (True) or off (False) carry chain implementation for adders. Default is True. This option

is equivalent to the ñ-use_carry_chainò command in LSE.

Use IO Insertion

Turns on (True) or off (False) the use of I/O insertion. Default is True.

Use IO Registers

Enables (True) or disables (False) register packing. True forces the synthesis tool to pack all

input, output, and I/O registers into I/O pad cells based on timing requirements. Default is Auto,

which selects True or False based on how Optimization Goal is set.

You can place the syn_useioff attribute on an individual register or port. When applied to a

register, the synthesis tool packs the register into the pad cell, and when applied to a port, packs

all registers attached to the port into the pad cell. The syn_useioff attribute can be set on a:

¶ Top-level port

¶ Register driving the top-level port

¶ Lower-level port if the register is specified as part of the port declaration

Optimizing LSE for Area and Speed

The following strategy settings for LSE can help reduce the amount of FPGA resources that your

design requires or increase the speed with which it runs. (For other synthesis tools, see those

toolsô documentation.) Use these methods along with other, generic coding methods to optimize

your design.

Minimizing area often produces larger delays, making it more difficult to meet timing

requirements. Maximizing frequency often produces larger designs, making it more difficult to

meet area requirements. Either goal, pushed to an extreme, may cause the place and route

process to run longer or not complete routing.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 65

To control the global performance of LSE, modify the tool options. Choose Tool > Tool Options.

In the Tool Options dialog box, set the following options, which are found in the LSE tab. See the

following text for explanations and more details.

LSE Tool Options for Area and Speed

Option Area Speed

FSM Encoding Style Binary or Gray One-Hot

Max Fanout Limit <maximum> <minimum>

Optimization Goal Area Timing

Remove Duplicate Registers True False

Resource Sharing True False

Target Frequency <minimum>

FSM Encoding Style

If your design includes large finite state machines, the Binary or Gray style may use fewer

resources than One-Hot. Which one is best depends on the design. One-Hot is usually the fastest

style. However, if the finite state machine is followed by a large output decoder, the Gray style

may be faster.

Max Fanout Limit

A larger fanout limit means less duplicated logic and fewer buffers. A lower fanout limit may

reduce delays. The default is 10000, which is essentially unlimited fanout. To minimize area, donôt

lower this value any more than needed to meet other requirements. To maximize speed, try much

lower values, such as 50.

You can change the fanout limit for portions of the design by using the syn_maxfan attribute. See

ñsyn_maxfanò on page 87. Set Max Fanout Limit to meet your most demanding requirement.

Then add syn_maxfan to help other requirements.

Optimization Goal

If set to Area, LSE will choose smaller design forms over faster whenever possible. LSE will also

ignore the Target Frequency option, using a low 1 MHz target instead. If set to Timing, LSE will

choose faster design forms over smaller whenever possible. LSE will also use the timing

constraints in the designôs .sdc file to guide the optimization. If you are having trouble meeting

one requirement (area or speed) while optimizing for the other, try setting this option to

Balanced.

Remove Duplicate Registers

Removing duplicate registers reduces area, but keeping duplicate registers may reduce delays.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 66

Resource Sharing

If set to True, LSE will share arithmetic components such as adders, multipliers, and counters

whenever possible.

If the critical path includes such resources, turning this option off may reduce delays. However, it

may also increase delays elsewhere, possibly reducing the overall frequency.

Target Frequency

A lower frequency target means LSE can focus more on area. A higher frequency target may

force LSE to increase area. Try setting this value to about 10% higher than your minimum

requirement. However, if Optimization Goal is set to Area, LSE will ignore the Target Frequency

value, using a low 1 MHz target instead. If Optimization Goal is set to Timing and a create_clock

constraint is available in an .sdc file, LSE will use the value from the create_clock constraint

instead.

LSE Options versus Synplify Pro

If you are moving from using Synplify Pro to LSE, there are many differences in the options to

consider. Many of the Synplify Pro options have similar LSE options. But many also do not. See

the following table. And there are many LSE options that have no Synplify Pro equivalents. See

the lists following the table. For more information about the options, see ñChanging the LSE Tool

Optionsò on page 61.

Synplify Pro Tool Options and LSE Equivalents

Synplify Pro Option LSE Equivalent Synplify Pro

Default

LSE

Default

Allow Duplicate Modules None False

Area Optimization Goal False Balanced

Arrange VHDL Files None True

Clock Conversion None True

Command Line Options Command Line Options

Default Enum Encoding FSM Encoding Style Default Auto

Disable IO Insertion Use IO Insertion False True

Export Diamond Settings to Synplify Pro GUI None No

Fanout Guide Max Fanout Limit 10000 1000

Force GSR None False

Frequency Target Frequency 200

FSM Encoding None True

Number of Critical Paths Number of Critical Paths 3

Number of Start/End Points None

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 67

Output Netlist Format None None

Output Preference File None True

Pipelining and Retiming None Pipelining Only

Push Tristates None True

Resolved Mixed Drivers Resolve Mixed Drivers False False

Resource Sharing Resource Sharing True True

Update Compile Point Timing Data None False

Use Clock Period for Unconstrained I/O None False

Verilog Input None Verilog 2001

VHDL 2008 None False

LSE has additional options that provide more granular control than Synplify Pro. These options

include:

¶ Carry Chain Length

¶ BRAM Utilization

¶ RAM Style

¶ ROM Style

Other LSE options without Synplify Pro equivalents:

¶ Intermediate File Dump

¶ Memory Initial Value Search Path

¶ Use Carry Chain

¶ Use IO Registers

¶ Propagate Constants

¶ Remove Duplicate Registers

Coding Tips for LSE

If you are going to use LSE to synthesize the design, the following coding tips may help. Mostly

the tips are about writing code so that blocks of memory are ñinferredò: that is, automatically

implemented using logic cells or block RAM (BRAM) instead of registers. There are also tips

about inferring types of I/O ports and about style differences with Synplify Pro.

LSE Differences with Synplify Pro

LSE tends to apply the Verilog and VHDL specifications strictly, sometimes more strictly than

other synthesis tools including Synplify Pro. Following are some coding practices that can cause

problems with LSE:

¶ Semicolons (;) to separate ports in a Verilog module statement. For example:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 68

module COUNTER (
input CLK ,
input RESET ; // LSE error on semicolon.
output TIMEOUT
);

¶ Spaces in the location path.

¶ Duplicate instantiation names (due to names in generate statements).

¶ Module instances without instance names.

¶ Multiple files with the same module names. Synplify Pro will error out but LSE will not.

This could cause designs in LSE to use the incorrect module.

¶ Global VHDL signals.

¶ Modules that have a port mismatch between instance and definition.

¶ Both ieee.std_logic_signed and unsigned packages in VHDL. When preparing VHDL

code for LSE, you can include either:

USE ieee.std_logic_signed.ALL;

or:

USE ieee.std_logic_unsigned.ALL;

Code with both signed and unsigned packages could fail to synthesize because

operators would have multiple definitions.

¶ Mismatched variable types in VHDL. A std_logic_vector signal cannot be assigned to a

std_logic signal and an unsigned type cannot be assigned to a std_logic_vector signal.

For example:

din : in unsigned (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
...
dout <= din; // Illegal, mismatched assignment.

Such mismatched assignments generate errors that stop synthesis.

About Inferring Memory

Inferring memory means that LSE, based on aspects of the code, implements a block of memory

using logic cells or block RAM (BRAM)ðlogic cells for small memories, BRAM for largeðinstead

of registers. LSE can infer synchronous RAM that is:

¶ single-port or pseudo dual-port

¶ with or without asynchronous reset of the output

¶ with or without write enables

¶ with or without clock enables

LSE can also infer synchronous ROM.

In some old VHDL coding styles, one-dimensional memories and CASE statements were used to

create two-dimensional memories. This coding style does not translate to memories properly in

LSE.

The following sections describe how to write code to infer different kinds of memory with LSE.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 69

Inferring RAM

The basic inferred RAM is synchronous. It can have synchronous or asynchronous reads and can

be either single- or dual-port. You can also set initial values. Other features, such as resets and

clock enables, can be added as desired. The following text lists the rules for coding inferred RAM.

Following that, Figure 4-1 (Verilog) and Figure 4-2 (VHDL) show the code for a simple, single-port

RAM with asynchronous read.

To code RAM to be inferred, do the following:

¶ Define the RAM as an indexed array of registers.

¶ To control how the RAM is implemented (with block RAM), consider adding the

syn_ramstyle attribute. See ñsyn_ramstyleò on page 87.

¶ Control the RAM with a clock edge and a write enable signal.

¶ For synchronous reads, see ñInferring RAM with Synchronous Readò on page 70.

¶ For single-port RAM, use the same address bus for reading and writing.

¶ For pseudo dual-port RAM, see ñInferring Pseudo Dual-Port RAM on page 72.

¶ If desired, assign initial values to the RAM as described in ñInitializing Inferred RAMò on

page 74.

module ram (din, addr, write_en, clk, dout);
 parameter addr_width = 8;
 parameter data_width = 8;
 input [addr_width - 1:0] addr;
 input [data_width - 1:0] din;
 input write_en, clk;
 reg [data_width - 1:0] mem [(1<<addr_width) - 1:0];
 // Define RAM as an indexed memory array.

 always @(posedge clk) // Control with a clock edge.
 begin
 if (write_en) // And control with a write enable.
 mem[(addr)] <= din;
 end
 assign dout = mem[addr];
endmodule

Figure 4-1: Simple, Single-Port RAM in Verilog

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
 addr_width : natural := 8;
 data_width : natural := 8);
port (
 addr : in std_logic_vector (addr_width - 1 downto 0);

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 70

 write_en : in std_logic;
 clk : in std_logic;
 din : in std_logic_vector (data_width - 1 downto 0);
 dout : ou t std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
 type mem_type is array ((2** addr_width) - 1 downto 0) of
 std_logic_vector(data_width - 1 downto 0);
 signal mem : mem_type;
 -- Define RAM as an indexed memory array.
begin
 process (clk)
 begin
 if (clk'event and clk = '1') then -- Control with clock
edge
 if (write_en = '1') then -- Control with a write
enable.
 mem(conv_integer(addr)) <= din;
 end if;
 end if;
 end process;
 dout <= mem(conv_integer(addr));
end rtl;

Figure 4-2: Simple, Single-Port RAM in VHDL

Inferring RAM with Synchronous Read

For synchronous reads, add a register for the read address or for the data output. Load the

register inside the procedure or process that is controlled by the clock. See the following

examples. They show the simple RAM of ñInferring RAMò on page 69 modified for synchronous

reads. Changes are in bold text.

Verilog Examples

module ram (din, addr, write_en, clk, dout);
 parameter addr_width = 8;
 parameter data_width = 8;
 input [addr_width - 1:0] addr;
 input [data_width - 1:0] din;
 input write_en, clk;
 output [data_width - 1:0] dout;
 reg [data_width - 1:0] dout; // Register for output.
 reg [data_width - 1:0] mem [(1<<addr_width) - 1:0];

 always @(posedge clk)
 begin
 if (write_en)
 mem[(addr)] <= din;
 dout = mem[addr]; // Output register controlled by
clock.
 end
endmodule

Figure 4-3: RAM with Registered Output in Verilog

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 71

module ram (din, addr, write_en, clk, dout);
 parameter ad dr_width = 8;
 parameter data_width = 8;
 input [addr_width - 1:0] addr;
 input [data_width - 1:0] din;
 input write_en, clk;
 output [data_width - 1:0] dout;
 reg [data_width - 1:0] raddr; // Register for read address.
 reg [data_width - 1:0] mem [(1<<addr_w idth) - 1:0];

 always @(posedge clk)
 begin
 if (write_en)
 begin
 mem[(addr)] <= din;
 end
 raddr <= addr; // Read addr. register controlled by
clock.
 end
 assign dout = mem[raddr];
endmodule

Figure 4-4: RAM with Registered Read Address in Verilog

VHDL Examples

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
 addr_width : natural := 8;
 data_width : natural := 8);
port (
 addr : in std_logic_vector (addr_width - 1 downto 0);
 write_en : in std_logic;
 clk : in std_logic;
 din : in std_logic_vector (data_width - 1 downto 0);
 dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
 type mem_type is array ((2** addr_width) - 1 downto 0) of
 std_logic_vector(data_width - 1 downto 0);
 signal mem : mem_type;
begin
 process (clk)
 begin
 if (clk'event and clk = '1') then
 if (write_en = '1') then
 mem(conv_integer(addr)) <= din;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 72

 end if;
 end if;
 dout <= mem(conv_integer(addr));
 -- Output register controlled by clock.

Figure 4-5: RAM with Registered Output in VHDL

 library IEEE;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
 addr_width : natural := 8;
 data_width : natural := 8);
port (
 addr : in std_logic_vector (addr_width - 1 downto 0);
 write_en : in std_logic;
 clk : in std_logic;
 din : in std_logi c_vector (data_width - 1 downto 0);
 dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
 type mem_type is array ((2** addr_width) - 1 downto 0) of
 std_logic_vector(data_width - 1 downto 0);
 signal mem : me m_type;
begin
 process (clk)
 begin
 if (clk'event and clk = '1') then
 if (write_en = '1') then
 mem(conv_integer(addr)) <= din;
 end if;
 raddr <= addr;
 -- Read address register controlled by clock.
 end if;
 end pr ocess;
 dout <= mem(conv_integer(raddr));
end rtl;

Figure 4-6: RAM with Registered Read Address in VHDL

Inferring Pseudo Dual-Port RAM

For pseudo dual-port RAM:

¶ Use two address buses.

¶ If the design does not simultaneously read and write the same address, add the

syn_ramstyle attribute with the no_rw_check value to minimize overhead logic.

¶ If writing in Verilog, use non-blocking assignments as described in ñAbout Verilog

Blocking Assignmentsò on page 76.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 73

The following examples are based on the simple RAM of ñInferring RAMò on page 69.

Verilog Examples

module ram (din, write_en, waddr, wclk, raddr, rclk, dout);
 parameter addr_width = 8;
 parameter data_width = 8;
 input [a ddr_width - 1:0] waddr, raddr;
 input [data_width - 1:0] din;
 input write_en , wclk, rclk ;
 reg [data_width - 1:0] dout;
 reg [data_width - 1:0] mem [(1<<addr_width) - 1:0]
 /* synthesis syn_ramstyle = "no_rw_check" */ ;

 always @(posedge wclk) // Write mem ory .
 begin
 if (write_en)
 mem[waddr] <= din; // Using write address bus.
 end
 always @(posedge rclk) // Read memory.
 begin
 dout <= mem[raddr]; // Using read address bus.
 end
endmodule

Figure 4-7: Pseudo Dual-Port RAM in Verilog

VHDL Examples

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
 addr_width : natural := 8;
 data_width : natural := 8);
port (
 write_en : in std_logic;
 waddr : in std_logic_vector (addr_width - 1 downto 0);
 wclk : in std_logic;
 raddr : in std_logic_vector (addr_width - 1 downto 0);
 rclk : in std_logic;
 din : in std_logic_vector (data_width - 1 downto 0);
 dout : out std_logic_vector (data_wid th - 1 downto 0));
end ram;

architecture rtl of ram is
 type mem_type is array ((2** addr_width) - 1 downto 0) of
 std_logic_vector(data_width - 1 downto 0);
 signal mem : mem_type;
 attribute syn_ramstyle: string;
 attribute syn_ramstyle of mem: signal is "no_rw_check";
begin
 process (wclk) -- Write memory.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 74

 begin
 if (wclk 'event and wclk = '1') then
 if (write_en = '1') then
 mem(conv_integer(waddr)) <= din;
 -- Using write address bus.
 end if;
 end if;
 end p rocess;
 process (rclk) -- Read memory.
 begin
 if (rclk'event and rclk = '1') then
 dout <= mem(conv_integer(raddr));
 -- Using read address bus.
 end if;
 end process;
end rtl;

Figure 4-8: Pseudo Dual-Port RAM in VHDL

Initializing Inferred RAM

Create initial values for inferred RAM in the usual ways for initializing memory.

Verilog

In Verilog, initialize RAM with the standard $readmemb or $readmemh tasks in an initial block.

Create a separate file with the initial values in either binary or hexadecimal form. For example, to

initialize a RAM block named ñramò:

reg [7:0] ram [0:255];
initial
begin
 $readmemh ("ram.ini", ram);
end

The data file has one word of data on each line. The data needs to be in the same order in which

the array was defined. That is, for ñram [0:255]ò the data starts with address 0; for ñram [255:0]ò

the data starts with address 255. The ram.ini file might start like this:

0A /* Address 0 */
23
5C
...

VHDL

In VHDL, initialize RAM with either signal declarations or variable declarations. Define an entity

with the same ports and architecture as the memory. Use this entity in either a signal or variable

statement with the initial values as shown below.

For example, to initialize a RAM block named ñram,ò define an entity such as:

entity ram_init is
port (
 clk : in std_logic;
 addr : in std_logic_vector(7 downto 0);

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 75

 din : in std_logic_vector(7 downto 0);
 we : in std_logic;
 dout : out std_logic_vector(7 downto 0));
end;
architecture arch of ram_init is
 type ram_init_arch is array(0 to 255)
 of std_logic_vector (7 downto 0);

Then use the entity in a signal statement:

signal ram : ram_init_arch := (
"00001010",
"00100011",
"01011100",
...
others => (others => '0'));

Or use the entity in a variable statement:

variable ram : ram_init_arch := (
1 => "00001010",
...
others => (1=>' 1', others => '0'));

Inferring ROM

To code ROM to be inferred, do the following:

¶ Define the ROM with a case statement or equivalent if statements.

¶ Assign constant values, all of the same width.

¶ Assign values for at least 16 addresses or half of the address space, whichever is

greater. For example, if the address has 6 bits, the address space is 64 words, and at

least 32 of them must be assigned values.

¶ To control how the ROM is implemented (with distributed or block ROM), consider adding

the syn_romstyle attribute. See ñsyn_romstyleò on page 93.

module rom(data, addr);
 output [3:0] data;
 input [4:0] addr;
 always @(addr) begin
 case (addr)
 0 : data = 'h4;
 1 : data = 'h9;
 2 : data = 'h1;
 ...
 15 : data = 'h8;
 16 : data = 'h1;
 17 : data = 'h0;
 default : data = 'h0;
 endcase
 end
endmodule

Figure 4-9: ROM Inferred with Case Statement in Verilog

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 76

entity rom is
port (addr : in std_logic_vector(4 downto 0);
 data : out std_logic_vector(3 downto 0));
end rom;

architecture behave of rom is
begin
 process(addr)
 begin
 if addr = 0 then data <= "0100";
 elsif addr = 1 then data <= "1001";
 elsif addr = 2 then data <= "0001";
 ...
 elsif addr = 15 then data <= "1000";
 elsif addr = 16 then data <= "0001";
 elsif addr = 17 then data <= "0000";
 else data <= "0000";
 end if;
 end process;
end behave;

Figure 4-10: ROM Inferred with If Statement in VHDL

About Verilog Blocking Assignments

LSE support for Verilog blocking assignments to inferred RAM and ROM, such as

ñram[(addr)] = data;,ò is limited to a single such assignment. Multiple blocking assignments, such

as you might use for dual-port RAM (see Figure 4-11), or a mix of blocking and non-blocking

assignments are not supported. Instead, use non-blocking assignments (<=). See Figure 4-12.

always @(posedge clka)
begin
 i f (write_ena)
 ram[addra] = dina; // Blocking assignment A
 douta = ram[addra];
end
always @(posedge clkb)
begin
 if (write_enb)
 ram[addrb] = dinb; // Blocking assignment B
 doutb = ram[addrb];
end

Figure 4-11: Example of RAM with Multiple Blocking Assignments (Wrong)

 always @(posedge clka)
begin
 if (write_ena)
 ram[addra] <= dina;
 douta <= ram[addra];
end

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 77

always @(posedge clkb)
begin
 if (write_enb)
 ram[addrb] <= dinb;
 doutb <= r am[addrb];
end

Figure 4-12: Example Rewritten with Non-blocking Assignments (Right)

Inferring DSP Multipliers

LSE can infer the following types of multipliers and map them to MAC16+ blocks:

¶ Multiplier

¶ Multiply/Add (multiplier followed by an addition)

¶ Multiply/Sub (multiplier followed by a subtraction)

¶ Multiply/Accumulate (multiplier followed by an accumulator)

Inferring works with multipliers with 3 to 16-bit inputs.

All multiplier types can have any combination of input, output, and pipeline registers.

Control signals (clock, enable, and reset) for any registers in a multiplier must be shared by all the

registers. That is, there can only be one clock, one enable, and one reset signal in a given

multiplier.

To control how the multiplier is implemented (with logic or DSP), consider adding the

syn_multstyle attribute. See syn_multstyle on page 87.

The following sections show code written to infer different kinds of DSP multipliers with LSE.

Verilog Examples

module mult_unsign_7_6(a,b,c);
 parameter A_WIDTH = 7;
 parameter B_WIDTH = 6;
 input unsigned [(A_WIDTH - 1):0] a;
 input unsigned [(B_WIDTH - 1):0] b;
 output unsigned [(A_WIDTH + B_WIDTH - 1):0] c ;

 assign c = a * b;
endmodule

Figure 4-13 : Basic Multiplier without Registers

module multaddsub_add_unsign_7_6(a,b,c,din);
 parameter A_WIDTH = 7;
 parameter B_WIDTH = 6;
 input unsigned [(A_WIDTH - 1):0] a;
 input unsigned [(B_WIDTH - 1):0] b;
 input unsigned [(A_WIDTH + B_WIDTH - 1):0] din;
 output unsigned [(A_WIDTH + B_WIDTH - 1):0] c;

 assign c = a * b + din;
endmodule

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 78

Figure 4-14: Multiply/Add without Registers

module multaddsub_sub_sign_ir_7_6(clk,a,b,din,c,rst,set);
 parameter A_WIDTH = 7;
 parameter B_WIDTH = 6;
 input rst;
 input set;
 input clk;
 input signed [(A_WIDTH - 1):0] a;
 input signed [(B_WIDTH - 1):0] b;
 input signe d [(A_WIDTH + B_WIDTH - 1):0] din;
 output signed [(A_WIDTH + B_WIDTH - 1):0] c;

 reg signed [(A_WIDTH - 1):0] reg_a;
 reg signed [(B_WIDTH - 1):0] reg_b;
 reg signed [(A_WIDTH + B_WIDTH - 1):0] reg_din;

 assign c = reg_a * reg_b - reg_din;

 alway s @(posedge clk)
 begin
 if(rst)
 begin
 reg_a <= 0;
 reg_b <= 0;
 reg_din <= 0;
 end
 else if(set)
 begin
 reg_a <= - 1;
 reg_b <= - 1;
 reg_din <= - 1;
 end
 else
 begin
 reg_a <= a;
 reg_b <= b;
 reg_din <= din;
 end
 end
endmodule

Figure 4-15: Multiplier/Sub with Input Registers

module multacc_unsign_7_6(clk,a,b,c,se t);
 parameter A_WIDTH = 7;
 parameter B_WIDTH = 6;
 input set;
 input clk;
 input unsigned [(A_WIDTH - 1):0] a;
 input unsigned [(B_WIDTH - 1):0] b;
 output unsigned [(A_WIDTH + B_WIDTH - 1):0] c;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 79

 reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;

 assign c = reg_tmp_c;

 always @(posedge clk)
 begin
 if(set)
 begin
 reg_tmp_c <= 0;
 end
 else
 begin
 reg_tmp_c <= a * b + c;
 end
 end
endmodule

Figure 4-16 : Multiplier/Accumulator without Registers

VHDL Examples

entity m_07x06 is
generic (widtha : natural := 7;
 widthb : natural := 6);
port (
 ina : in std_logic_vector (0 to widtha - 1);
 inb : in std_logic_vector (0 to widt hb - 1);
 mout : out std_logic_vector (0 to widtha+widthb - 1));
end m_07x06;

architecture rtl of m_07x06 is
begin
 mout <= ina * inb ;
end rtl;

Figure 4-17 : Basic Multiplier without Registers

entity mu lt_add_07x06 is
generic (widtha : natural := 7;
 widthb : natural := 6);
port (
 ina : in std_logic_vector (widtha - 1 downto 0);
 inb : in std_logic_vector (widthb - 1 downto 0);
 mout : out std_logic_vector (widtha+widthb - 1 downto 0);
 inc : in std_logic_vector (widtha+widthb - 1 downto 0)
);
end mult_add_07x06;

architecture rtl of mult_add_07x06 is
begin
 mout <= ina * inb + inc ;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 80

end rtl;

Figure 4-18 : Multiply/Add without Registers

entity mult_sub_07x06_ir_r is
generic (widtha : natural := 7;
 widthb : natural := 6);
port (
 ina : in std_logic_vector (widtha - 1 downto 0);
 inb : in std_logic_vector (widthb - 1 downto 0);
 clk : in std_logic;
 reset: in std_logi c;
 mout : out std_logic_vector (widtha+widthb - 1 downto 0);
 inc : in std_logic_vector (widtha+widthb - 1 downto 0)
);
end mult_sub_07x06_ir_r;

architecture rtl of mult_sub_07x06_ir_r is
signal reg1_ina : std_logic_vector(widtha - 1 downto 0);
sig nal reg1_inb : std_logic_vector(widthb - 1 downto 0);

begin
 mout <= reg1_ina * reg1_inb - inc;

 process (clk,reset) begin
 if(reset ='1') then
 reg1_ina <= (others => '0');
 reg1_inb <= (others => '0');
 elsif rising_edge (clk) then
 reg1_ina <= ina;
 reg1_inb <= inb;
 end if;
 end process;
end rtl;

Figure 4-19 : Multiplier/Sub with Input Registers

entity multacc_07x06_up is
generic (widtha : natural := 7;
 widthb : na tural := 6);
port (
 ina : in std_logic_vector (widtha - 1 downto 0);
 inb : in std_logic_vector (widthb - 1 downto 0);
 clk : in std_logic;
 reset : in std_logic;
 mout : out std_logic_vector (widtha+widthb - 1 downto 0)
);
end multacc_0 7x06_up;

architecture rtl of multacc_07x06_up is
signal reg_mout:std_logic_vector(widtha+widthb - 1 downto 0);
signal mout_s :std_logic_vector(widtha+widthb - 1 downto 0);

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 81

begin
 mout <= mout_s ;
 mout_s <= reg_mout;

 process (clk,reset) begin
 if(r eset ='1') then
 reg_mout <= (others => '0');
 elsif rising_edge (clk) then
 reg_mout <= ina * inb + mout_s ;
 end if;
 end process;
end rtl;

Figure 4-20: Multiplier/Accumulator without Registers

Inferring I/O

To specify types of I/O ports, follow these models.

Verilog

Open Drain:

output < port >;
wire < output_enable >;
assign < port > = < output_enable > ? 1'b0 : 1'bz;

Bidirectional:

inout < port >;
wire < output_enable >;
wire < output_driver >;
wire < in put_signal >;
assign < port > = < output_enable > ? < output_driver > : 1'bz;
assign < input_signal > = < port >;

VHDL

Tristate:

library ieee;

use ieee.std_logic_1164.all;

entity <tbuf> is

port (

 <enable> : std_logic;

 <input_sig> : in std_logic_vector (1 downto 0);

 <output_sig> : out std_logic_vector (1 downto 0));

end tbuf2;

architecture <port> of <tbuf> is

begin

 <output_sig> <= <input_sig> when <enable> = '1' else "ZZ";

end;

Open Drain:

library ieee;
use ieee.std_logic_1164.all;
entity < od> is

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 82

port (
 <enable > : std_logic;
 <output_sig > : out std_logic_vector (1 downto 0));
end od2;
architecture < port > of < od> is
begin
 <output_sig > <= "00" wh en < enable > = '1' else "ZZ";
end;

Bidirectional:

library ieee;
use ieee.std_logic_1164.all;
entity < bidir > is
port (
 <direction > : std_logic;
 <input_sig > : in std_logic_vector (1 down to 0);
 <output_sig > : out std_logic_vector (1 downto 0);
 <bidir_sig > : inout std_logic_vector (1 downto 0));
end bidir2;
architecture < port > of < bidir > is
begin
 <bidir_sig > <= < input_sig > when < direction > = '0' else
"ZZ";
 <output_sig > <= < bidir_sig >;
end;

Event Inside an Event

Do not code an event within another event such as shown below:

always begin :main
 guess = 0;
 @(posedge clk or posedge rst);
 if (rst) disable main;
 while(1) begin
 while(!result) begin
 guess = 0;
 while(! result) begin
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 while(result) begin
 guess = 1;
 while(result) begin
 @(posedge cl k or posedge rst);
 if (rst) disable main;
 end
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 end

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 83

end

Figure 4-21: Event within an Event (Wrong)

HDL Attributes and Directives

This section describes the Synplify Lattice attributes and directives that are supported by LSE.

These attributes and directives are directly interpreted by the engine and influence the

optimization or structure of the output netlist. Traditional HDL attributes, such as UGROUP, are

also compatible with LSE and are passed into the netlist to direct place and route.

black_box_pad_pin

Directive. Specifies pins on a user-defined black-box component as I/O pads that are visible to

the environment outside of the black box. If there is more than one port that is an I/O pad, list the

ports inside double-quotes ("), separated by commas (,), and without enclosed spaces.

Verilog Syntaxobject /* synthesis syn_black_box black_box_pad_pin = "portList" */ ;

where portList is a spaceless, comma-separated list of the names of the ports on black boxes that

are I/O pads.

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q"
*/;

Figure 4-22: Verilog Example

VHDL Syntax

attribute black_box_pad_pin of object : objectType is "portList" ;

where object is an architecture or component declaration of a black box. Data type is string;

portList is a spaceless, comma-separated list of the black-box port names that are I/O pads.

library ieee;
use ieee.std_logic_1164.all;
package my_components is
component BBDLHS
 port (D: in std_logic;
 E: in std_logic;
 GIN : in std_logic_vector(2 downto 0);
 Q : out std_logic);
end component;

attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of BBDLHS : component is
"GIN(2:0),Q";
end package my_components;

Figure 4-23: VHDL Example

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 84

syn_black_box

Directive. Specifies that a module or component is a black box with only its interface defined for

synthesis. The contents of a black box cannot be optimized during synthesis. A module can be a

black box whether it is empty or not. This directive has an implicit Boolean value of 1 or true.

Verilog Syntax

object /* synthesis syn_black_box */ ;

where object is a module declaration.

module bl_box(out,data,clk) /* synthesis syn_black_box */;

Figure 4-24: Verilog Example

VHDL Syntax

attribute syn_black_box of object : objectType is true ;

where object is a component declaration, label of an instantiated component to define as a black

box, architecture, or component. Data type is Boolean.

architecture top of top - entity is
component ram4
 port (myclk : in bit;
 opcode : in bit_vector(2 downto 0);
 a, b : in bit_ vector(7 downto 0);
 rambus : out bit_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of ram4: component is true;

Figure 4-25: VHDL Example

syn_encoding

Directive for VHDL designs. Defines how enumerated data types are implemented. The type of

implementation affects the performance and device utilization.

VHDL Syntax

attribute syn_encoding of object : objectType is "value" ;

Where object is an enumerated type and value is one of the following: default, sequential, onehot,

or gray.

package testpkg is
type mytype is (red, yellow, blue, green, white,
 violet, indigo, orange);
attribute syn_encoding : string;
attribute syn_encoding of mytype : type is "sequential";
end package testpkg;
library IEEE;
use IEEE.std_logic_1164.all;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 85

use work.testpkg.all;
entity decoder is
 port (sel : in std_logic_vector(2 downto 0);
 color : out mytype);
end decoder;
architecture rtl of decoder is
begin
 process(se l)
 begin
 case sel is
 when "000" => color <= red;
 when "001" => color <= yellow;
 when "010" => color <= blue;
 when "011" => color <= green;
 when "100" => color <= white;
 when "101" => color <= v iolet;
 when "110" => color <= indigo;
 when others => color <= orange;
 end case;
 end process;
end rtl;

Figure 4-26: VHDL Example

syn_hier

Attribute. Allows you to control the amount of hierarchical transformation that occurs across

boundaries on module or component instances during optimization.

syn_hier Values

The following value can be used for syn_hier:

hard ï Preserves the interface of the design unit with no exceptions. This attribute affects only the

specified design units.

object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values described in

syn_hier Values. Check the attribute values to determine where to attach the attribute.

module top1 (Q, CLK, RST, LD, CE, D)
 /* synthesis syn_hier = "hard" */;

Figure 4-27: Verilog Example

VHDL Syntax

attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values described in syn_hier

Values. Check the attribute values to determine the level at which to attach the attribute.

architecture struct of cpu is

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 86

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

Figure 4-28: VHDL Example

syn_keep

Directive. Keeps the specified net intact during optimization and synthesis.

Verilog Syntax

object /* synthesis syn_keep = 1 */ ;

where object is a wire or reg declaration. Make sure that there is a space between the object

name and the beginning of the comment slash (/).

module example2(out1, out2, clk, in1, in2);
output out1, out2;
input cl k;
input in1, in2;
wire and_out;
wire keep1 /* synthesis syn_keep=1 */;
wire keep2 /* synthesis syn_keep=1 */;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;
always @(posedge clk)begin;
 out1<=keep1;
 out2<=keep2;
end
endmodule

Figure 4-29: Verilog Example

VHDL Syntax

attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal.

entity example2 is
 port (in1, in2 : in bit;
 clk : in bit;
 out1, out2 : out bit);
end example2;
architecture rt1 of example2 is
attribute syn_keep : boolean;
signal and_out, keep1, keep2: bit;
attribute syn_keep of keep1, keep2 : signal is true;
begin
and_out <= in1 and in2;
keep 1 <= and_out;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 87

keep2 <= and_out;
 process(clk)
 begin
 if (clk'event and clk = '1') then
 out1 <= keep1;
 out2 <= keep2;
 end if;
 end process;
end rt1;

Figure 4-30: VHDL Example

syn_maxfan

Attribute. Overrides the default (global) fan-out guide for an individual input port, net, or register

output.

Verilog Syntax

object /* synthesis syn_maxfan = "value" */ ;

module test (registered_data_out, cloc k, data_in);
output [31:0] registered_data_out;
input clock;
input [31:0] data_in /* synthesis syn_maxfan=1000 */;
reg [31:0] registered_data_out /* synthesis syn_maxfan=1000
*/;

Figure 4-31: Verilog Example

VHDL Syntax

attribute syn_maxfan of object : objectType is "value" ;

entity test is
 port (clock : in bit;
 data_in : in bit_vector(31 downto 0);
 registered_data_out: out bit_vector(31 downto 0)
);
attribute syn_maxfan : integer;
attri bute syn_maxfan of data_in : signal is 1000;

Figure 4-32: VHDL Example

syn_multstyle

Attribute. Specifies whether to use logic or DSP blocks. Multiply, multiply/add, and

multiply/accumulate blocks are automatically implemented as MAC16+ blocks when available

unless the syn_multstyle attribute is used.

The following values can be specified globally or on a module:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 88

¶ Logic ï Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped

to logic.

¶ DSP ï Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped

to DSP blocks.

Verilog Syntax

object /* synthesis syn_multstyle = "string" */ ;

Where object is a multiply, multiply/add, and multiply/accumulate definition. The data type is

string.

module mult(a,b,c,r,en);
input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp: c;

endmodule

Figure 4-33: Verilog Example

VHDL Syntax

attribute syn_multstyle of object : objectType is "string" ;

Where object is a signal that defines a multiply, multiply/add, and multiply/accumulate block. The

data type is string.

library ieee ;
use ieee.std_logic_116 4.all ;
USE ieee.numeric_std.all;

entity mult is
port (clk : in std_logic ;
 a : in std_logic_vector(7 downto 0) ;
 b : in std_logic_vector(7 downto 0) ;
 c : out std_logic_vector(15 downto 0))
end mult ;
architecture rtl of mult is
signal mul t_i : std_logic_vector(15 downto 0) ;
attribute syn_multstyle : string ;
attribute syn_multstyle of mult_i : signal is "logic" ;
begin
mult_i <= std_logic_vector(unsigned(a)*unsigned(b)) ;
process(clk)
begin
 if (clk'event and clk = '1') then
 c <= mult_i ;
end if ;
end process

Figure 4-34 : VHDL Example

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 89

syn_noprune

Directive. Prevents instance optimization for black-box modules (including technology-specific

primitives) with unused output ports.

Verilog Syntax

object /* synthesis syn_noprune = 1 */ ;

where object is a module declaration or an instance. The data type is Boolean.

module top(a1,b1,c1,d1,y1,clk);
output y1;
input a1,b1,c1,d1;
input clk;
wire x2,y2;
reg y1;
syn_noprune u1(a1,b1,c1,d1,x2,y2) /* synthesis
syn_noprune=1 */;

always @(posedge clk)
 y1<= a1;

endmodule

Figure 4-35: Verilog Example

VHDL Syntax

attribute syn_noprune of object : objectType is true ;

where the data type is boolean, and object is an architecture, a component, or a label of an

instantiated component.

library ieee;
use ieee.std_logic_1164.all;
entity top is
 port (a1, b1 : in std_logic;
 c1,d1,clk : in std_logic;
 y1 :out std_logic);
end ;
architecture behave of top is
component noprune
port (a, b, c, d : in std_logic;
 x,y : out std_logic);
end component;
signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is t rue;
begin
 u1: noprune port map(a1, b1, c1, d1, x2, y2);
 process begin
 wait until (clk = '1') and clk'event;
 y1 <= a1;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 90

 end process;
end;

Figure 4-36: VHDL Example

syn_pipeline

This attribute permits registers to be moved to improve timing. Depending on the criticality of the

path, the tool move the suitable output registers to the input side to improve timing. If there is no

candidate register identified for pipelining, this attribute will not be honored.

syn_pipeline attribute is applicable only for Timing and Balance mode optimization. The tool

ignores the attribute in Area mode optimization.

Verilog Syntax

object /* synthesis syn_pipeline = {1|0} */ ;

where object is a register declaration.

module pipeline (a, b, clk,r);
input [3:0] a,b;
input clk;
output [7:0] r;
reg [3:0] a_reg,b_reg;
reg [7:0] temp2/* synthesis syn_pipeline = 1 */;
reg [7:0] temp3;
wire [7:0] temp1;
assign temp1 = a_reg * b_reg;
always @(posedge clk)
begi n
a_reg <= a;
b_reg <= b;
temp2 <= temp1;
temp3 <= temp2;
end
assign r = temp3;
endmodule

Figure 4-37 : Verilog Example

VHDL Syntax

attribute syn_pipeline of object : objectType is {true|false} ;

librar y ieee ;
use ieee.std_logic_1164.all ;
USE ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity pipeline is
port (clk : in std_logic ;
 a : in std_logic_vector(3 downto 0) ;
 b : in std_logic_vector(3 downto 0) ;
 r : out std_logic_vector(7 downto 0));

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 91

end pipeline ;
architecture rtl of pipeline is
signal a_reg : std_logic_vector(3 downto 0) ;
signal b_reg : std_logic_vector(3 downto 0) ;
signal temp1 : std_logic_vector(7 downto 0) ;
signal temp2 : std_logic_vector(7 downto 0) ;
signa l temp3 : std_logic_vector(7 downto 0) ;
attribute syn_pipeline : string ;
attribute syn_pipeline of temp2 : signal is "true" ;
begin
 process(clk)
 begin
 if (clk'event and clk = '1') then
 temp1 <= a_reg * b_reg;
 a_reg <= a;
 b_reg <= b;
 temp2 <= temp1;
 temp3 <= temp2;
 r <= temp3;
 end if ;
 end process ;
end rtl ;

Figure 4-38 : VHDL Example

syn_preserve

Directive. Prevents sequential optimization such as constant propagation, inverter push-through,

and FSM extraction.

Verilog Syntax

object /* synthesis syn_preserve = 1 */ ;

where object is a register definition signal or a module.

module syn_preserve (out1,out2,clk,in1,in2)/* synthesis
syn_pr eserve=1 */;
output out1, out2;
input clk;
input in1, in2;
reg out1;
reg out2;
reg reg1;
reg reg2;
always@ (posedge clk)begin
reg1 <= in1 &in2;
reg2 <= in1&in2;
out1 <= !reg1;
out2 <= !reg1 & reg2;
end
endmodule

Figure 4-39: Verilog Example

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 92

VHDL Syntax

attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a state register or

architecture.

library ieee;
use ieee.std_logic_1164.al l;
entity simpledff is
 port (q : out std_logic_vector(7 downto 0);
 d : in std_logic_vector(7 downto 0);
 clk : in std_logic);

-- Turn on flip - flop preservation for the q output
attribute syn_preserve : boolean;
attribute syn_preserv e of q : signal is true;
end simpledff;
architecture behavior of simpledff is
begin
 process(clk)
 begin
 if rising_edge(clk) then
 -- Notice the continual assignment of "11111111" to q.
 q <= (others => '1');
 end if;
 end proce ss;
end behavior;

Figure 4-40: VHDL Example

syn_ramstyle

Attribute. The syn_ramstyle attribute specifies the implementation to use for an inferred RAM.

You apply syn_ramstyle globally to a module or to a RAM instance. To turn off RAM inference,

set its value to registers.

The following values can be specified globally or on a module or RAM instance:

¶ registers ï Causes an inferred RAM to be mapped to registers (flip-flops and logic) rather

than the technology-specific RAM resources.

¶ block_ram ï Causes the RAM to be implemented using the dedicated RAM resources. If

your RAM resources are limited, you can use this attribute to map additional RAMs to

registers instead of the dedicated or distributed RAM resources.

¶ no_rw_check (some modes, but all technologies). ï You cannot specify this value alone.

Without no_rw_check, the synthesis tool inserts bypass logic around the RAM to prevent

the mismatch. If you know your design does not read and write to the same address

simultaneously, use no_rw_check to eliminate bypass logic. Use this value only when

you cannot simultaneously read and write to the same RAM location and you want to

minimize overhead logic.

Verilog Syntax

object /* synthesis syn_ramstyle = "string" */ ;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 93

where object is a register definition (reg) signal. The data type is string.

module ram4 (datain,dataout,clk);
output [31:0] dataout;
input clk;
input [31:0] datain;
reg [7:0] dataout[31:0] /* synthesis
syn_ramstyle=" block_ram" */;

Figure 4-41: Verilog Example

VHDL Syntax

attribute syn_ramstyle of object : objectType is "string" ;

where object is a signal that defines a RAM or a label of a component instance. Data type is

string.

library ieee;
use ieee.std_logic_1164.all;
entity ram4 is
 port (d : in std_logic_vector(7 downto 0);
 addr : in std_logic_vector(2 downto 0);
 we : in std_logic;
 clk : in std_logic;
 ram_out : out std_logic _vector(7 downto 0));
end ram4;
library synplify;
architecture rtl of ram4 is
type mem_type is array (127 downto 0) of std_logic_vector
(7 downto 0);
signal mem : mem_type; -- mem is the signal that defines
the RAM
attribute syn_ramstyle : string;
attri bute syn_ramstyle of mem : signal is "block_ram";

Figure 4-42: VHDL Example

syn_romstyle

Attribute. Allows you to implement ROM architectures using dedicated or distributed ROM. Infer

ROM architectures using a CASE statement in your code.

For the synthesis tool to implement a ROM, at least half of the available addresses in the CASE

statement must be assigned a value. For example, consider a ROM with six address bits (64

unique addresses). The case statement for this ROM must specify values for at least 32 of the

available addresses. You can apply the syn_romstyle attribute globally to the design by adding

the attribute to the module or entity.

The following values can be specified globally on a module or ROM instance:

¶ auto ï (default) Allows the synthesis tool to chose the best implementation to meet the

design requirements for speed, size, and so on.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 94

¶ logic ï Causes the ROM to be implemented using logic cells.

¶ BRAM ï Causes the ROM to be implemented using the dedicated ROM resources. If

your ROM resources are limited, you can use this attribute to map additional ROM to

registers instead of the dedicated or distributed RAM resources.

Verilog Syntax

object /* syn_romstyle = "auto | logic | BRAM" */ ;

reg [8:0] z /* synthesis syn_romstyle = "BRAM" */;

Figure 4-43: Verilog Example

VHDL Syntax

attribute syn_romstyle of object : object_type is "block_rom | logic" ;

signal z : std_log ic_vector(8 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "logic";

Figure 4-44: VHDL Example

syn_use_carry_chain

Attribute. Used to turn on or off the carry chain implementation for adders.

Verilog Syntax

object synthesis syn_use_carry_chain = {1 | 0} */ ;

Verilog Example

To use this attribute globally, apply it to the module.

module test (a, b, clk, rst, d) /* synthesis
syn_use_ca rry_chain = 1 */;

VHDL Syntax

attribute syn_use_carry_chain of object : objectType is true | false ;

architecture archtest of test is
signal temp : std_logic;
signal temp1 : std_logic;
signal temp2 : std_logic;
signal temp3 : std_logic;
attribute sy n_use_carry_chain : boolean;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 95

attribute syn_use_carry_chain of archtest : architecture is
true;

Figure 4-45: VHDL Example

syn_useioff

Attribute. Overrides the default behavior to pack registers into I/O pad cells based on timing

requirements for the target Lattice families. Attribute syn_useioff is Boolean-valued: 1 enables

(default) and 0 disables register packing. You can place this attribute on an individual register or

port or apply it globally. When applied globally, the synthesis tool packs all input, output, and I/O

registers into I/O pad cells. When applied to a register, the synthesis tool packs the register into

the pad cell; and when applied to a port, it packs all registers attached to the port into the pad

cell.

The syn_useioff attribute can be set on the following ports:

¶ top-level port

¶ register driving the top-level port

¶ lower-level port, if the register is specified as part of the port declaration

Verilog Syntax

object synthesis syn_useioff = {1 | 0} */ ;

Verilog Example

To use this attribute globally, apply it to the module. To use this attribute on individual ports, apply

it to individual port declarations.

module test (a, b, clk, rst, d) /* synthesis syn_useiof f =
1 */;

Figure 4-46: Verilog Example Applied Globally

module test (a, b, clk, rst, d);
input a;
input b /* synthesis syn_useioff = 1 */;

Figure 4-47: Verilog Example Applied to a Port

VHDL Syntax

attribute syn_useioff of object : objectType is true | false ;

architecture archtest of test is
signal temp : std_logic;
signal temp1 : std_logic;
signal temp2 : std_logic;
signal temp3 : std_logic;
attribute sy n_useioff : boolean;
attribute syn_useioff of archtest : architecture is true;

Figure 4-48: VHDL Example

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 96

Synthesis Macro

Use this text macro along with the Verilog `ifdef compiler directive to conditionally exclude part of

your Verilog code from being synthesized. The most common use of the synthesis macro is to

avoid synthesizing stimulus that only has meaning for logic simulation. The synthesis macro is

defined so that the statement `ifdef synthesis is true. The statements in the `ifdef branch are

compiled; the stimulus statements in the `else branch are ignored. Because Verilog simulators do

not recognize a synthesis macro, the compiler for your simulator will use the stimulus in the `else

branch.

module top (a,b,c);
 input a,b;
 output c;
`ifdef synthesis
 assign c = a & b;
`else
 assign c = a | b;
`endif
Endmodule

Figure 4-49: Verilog Example

translate_off/translate_on

Directive. Allows you to synthesize designs originally written for use with other synthesis tools

without needing to modify source code. All source code that is between these two directives is

ignored during synthesis.

Verilog Syntax

/* pragma translate_off */

/* pragma translate_on */

module real_time (ina, inb, out);
input ina, inb;
output out;
/* pragma translate_off */
realtime cur_time;
/* pragma translate_on */
assign out = ina & inb;
endmodule

Figure 4-50: Verilog Example

VHDL Syntax

pragma translate_off

pragma translate_on

library ieee;

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 97

use ieee.std_logic_1164.all;
entity adder is
 port (a, b, cin:in std_logic;
 sum, cout:out std_logic);
end adder;
ar chitecture behave of adder is
signal a1:std_logic;
-- pragma translate_off
constant a1:std_logic:='0';
-- pragma translate_on
begin
 sum <= (a xor b xor cin);
 cout <= (a and b) or (a and cin) or (b and cin); end
behave;

Figure 4-51: VHDL Example

Synopsys Design Constraints (SDC)

This section describes the Synopsys Design Constraint (SDC) language elements for timing-

driven synthesis that are supported by the Lattice Synthesis Engine (LSE). The SDC constraints

will drive optimization of the design if LSEôs Optimization Goal is set for either timing or Balanced

in the active strategy file. Furthermore, in Timing or Balanced Optimization Goal, the SDC

constraints are forward annotated to post P&Rôs Static Timing Analysis (STA) software, thus

saving the need for users to create another set of timing constraints.

In the case of LSEôs optimization Goal is set to Area, SDC constraints will be ignored and not

forward annotated to STA. To enter timing constraints for STA, refer to ñTiming Constraints and

Static Timing Analysisò.

To add SDC constraints to LSE, create the .sdc file using a text editor and add the file to

Synthesis Tool > Synthesis Input Files > Constraint Files. Do not use Timing Constraints Editor

as it used to enter timing constraints for STA for use with backend processes.

The current LSE timing does not take the PLL/DLL frequency or phase shift properties into

account. It also does not model the different IO_TYPE in the PIO. Therefore, it is necessary to

adjust the timing constraint. For example, you can explicitly include a timing constraint on the PLL

outputs with the phase-shift property.

create_clock

Creates a clock and defines its characteristics.

Note

In LSE timing, interclock domain paths are always blocked for create_clock. However, the interclock domain

path is still valid for constraints such as set_false_path and set_multicycle_path.

Syntax

create_clock -name name -period period_value source

Arguments

-name name

Specifies the name of the clock constraint, which can be referenced by other constraints.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 98

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which

the clock waveform repeats. The period_value must be greater than zero.

source

Specifies the source of the clock constraint. The source can be ports or nets (signals) in the

design. If you specify a clock constraint on a port or net that already has a clock, the new clock

will replace the existing one. Only one source is accepted. Wildcards are accepted as long as the

resolution shows one port or net.

Example

The following example creates two clocks on ports CK1 and CK2 with a period of 6:

create_clock - name my_user_clock - period 6 [get_ports CK1
]
create_clock - name my_other_user_clock ðperiod 6 [get_nets
CK2]

set_false_path

Identifies paths that are considered false and excluded from timing analysis.

Syntax

set_false_path [-from port or cell] [-to port or cell]

or

set_false_path [-through through_net]

Arguments

-from port or cell

Specifies the timing path start point. A valid timing starting point is a clock, a primary input, a

combinational logic cell, or a sequential cell (clock-pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational

logic cell, or a sequential cell (data-pin).

-through through_net

Specifies a net through which the paths should be blocked.

Examples

The following example specifies all paths from clock pins of the registers in clock domain clk1 to

data pins of a specific register in clock domain clk2 as false paths:

set_false_path ðfrom [get_ports clk1] ðto [get _cells reg_2]

The following example specifies all paths through the net UO/sigA as false:

set_false_path ðthrough [get_nets UO/sigA]

set_input_delay

Defines the arrival time of an input relative to a clock.

Syntax

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 99

set_input_delay delay_value -clock clock_ref input_port

Arguments

delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal

is available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory

argument.

input_port

Provides one or more input ports in the current design to which delay_value is assigned. You can

also use the keyword ñall_inputsò to include all input ports.

Example

The following example sets an input delay of 1.2 ns for port data1 relative to the rising edge of

CLK1:

set_input_delay 1.2 - clock [get_clocks CLK1] [get_ports
data1]

set_max_delay

Specifies the maximum delay for the timing paths.

Syntax

set_max_delay delay_value [-from port or cell] [-to port or cell]

Arguments

delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay

value for specified paths.

If the path ending point is on a sequential device, the tool includes library setup time in the

computed delay.

-from port or cell

Specifies the timing path start point. A valid timing start point is a clock, a primary input, a

combinational logic cell, or a sequential cell (clock pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational

logic cell, or a sequential cell (data pin).

Examples

The following example sets a maximum delay by constraining all paths from ff1a:CLK to ff2e:D

with a delay less than 5 ns:

set_max_delay 5 - from [get_cells ff1a] - to [get_cells ff2e]

set_multicycle_path

Defines a path that takes multiple clock cycles.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 100

Syntax

set_multicycle_path ncycles [-from net or cell] [-to net or cell]

Arguments

ncycles

Specifies a value that represents the number of cycles the data path must have for setup check.

The value is relative to the ending point clock and is defined as the delay required for arrival at

the ending point.

-from net or cell

Specifies the timing path start point. A valid timing start point is a sequential cell (clock pin) or a

clock net (signal). You can also use the keyword ñall_registersò to include all registersô clock

inputs.

-to net or cell

Specifies the timing path end point. A valid timing end point is a sequential cell (data-pin) or a

clock-net (signal). You can also use the keyword ñall_registersò to include all registersô data

inputs.

Example

The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold

check is measured at the previous edge of the clock at reg2.

set_multicycle_path 3 ðfrom [get_cells reg1] ðto [get_cells
reg2]

set_output_delay

Defines the output delay of an output relative to a clock.

Syntax

set_output_delay delay_value -clock clock_ref output_port

Arguments

delay_value

Specifies the amount of time from a ñclock_refò to a primary ñoutput_port.ò

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory

argument.

output_port

Provides one or more (by wildcard) output ports in the current design to which delay_value is

assigned. You can also use the keyword ñall_outputsò to include all output ports.

Example

The following example sets an output delay of 1.2 ns for all outputs relative to clki_c:

set_output_delay 1.2 - clock [get_clocks CLK1] [get_ports
OUT1]
set_output_delay 1.2 - clock [get_clocks CLK1] [all_outputs]

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 101

Chapter 5 iCEcube2 Physical Implementation Tools

Overview

The iCEcube2 Physical Implementation software constitutes the second half of the iCE design

flow, and is used to implement the design on the iCE FPGA devices. The inputs to Physical

Implementation Tools are an EDIF netlist and SDC constraint files.

In addition, the software supports additional Timing Constraints in SDC format, as well as

Physical Constraints in PCF format, that can be passed directly to the Physical Implementation

tools.

The outputs are the device configuration files used to program the device, and Verilog/VHDL and

SDF files for timing simulation in an industry standard simulator.

In addition, the software also provides several powerful and useful back-end tools such as a

Timing Constraints Editor (SDC), a Floor Planner, a Pin Constraints Editor, a device Package

Viewer, a Power Estimator, and a Static Timing Analyzer.

Tools for Physical Implementation

In addition to the Placer and the Router, iCEcube2 provides the following tools to appropriately

constrain, analyze/verify the design and program the target device.

1. Timing Constraint Editor (TCE): This tool allows the user to specify timing constraints in the

SDC format, which can be used to constrain the Placer and Router. Additional details on

using TCE are provided in a subsequent chapter.

2. Timing Analysis: The Static Timing Analysis tool provides design performance analysis, to

help identify critical paths in the design. The usage of this tool is explained in subsequent

chapters.

3. Physical Constraints Editor / Floor Plan Viewer: This tool has a dual function: It allows the

user to create physical constraints after importing the design, which are honored by the

Placer. After the Placer has run, this tool allows the user to view the logic and pin placement

before final bitmap generation. At this stage of the design flow, it allows the user to modify the

placement of logic cells, IO cells and RAM cells, before final routing.

4. Package View: This utility allows the user to view the pin assignments before final bitmap

generation. It also allows the user to modify the pin placement.

5. Pin Attributes Editor: This tool allows the user to view and configure pin properties, such as

pin location, the IO standard and the optional pin Pull Up resistor.

6. Power Estimator: This utility assists users in estimating device power for a given design via

a spreadsheet listing the various utilized resources of the device, the estimated maximum

operating frequency, the core voltage etc.

7. Bitmap Generator: To support device programming, the iCEcube2 Physical Implementation

Tools include a utility for generating device configuration data, referred to as a bitmap.

8. Device Programmer: The iCEcube2 Physical Implementation Tools also include a utility for

programming the iCE FPGA device

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 102

Placing and Routing the Design

Once the synthesized design is loaded into the iCEcube2 Physical Implementation software, the

next step is to place and route the design. The placement and routing process is started by

clicking on the Run Placer and Run Router icons respectively. Note that if the placer/router is yet

to be run, there is a green arrow next to the appropriate icon. Upon successful completion of the

operation, the green arrow changes into a green check mark.

Changing the Placer Options

The placer options can be changed by selecting Tool > Tool Options > Placer. The options are

shown in Figure 5-1.

1. Effort Level: Placer supports three effort levels for placement Optimization. Standard,

Medium and high.

2. Auto Lut Cascade: This option is ñONò by default and the placer cascades four input LUTs

via dedicated LUT output routing to implement larger logic functions in iCE40 Devices.

3. Auto Ram Cascade: This option is ñONò by default and the placer cascades the 4K RAM

Blocks to implement larger Block RAM in iCE40 Devices.

4. Power Driven: Enable this option to run the placer in power driven optimization mode.

Figure 5-1: Placer Tool Options

Changing the Router Options

The router options can be changed by selecting Tool > Tool Options > Router. Note that all

changes to the options as shown in Figure 5-2 require the router to be rerun. The options are as

follows:

1. Timing Driven: The router algorithms try to honor the timing constraints specified by the

user.

2. Pin Permutation: This option is ON by default, and aids the router in making intelligent

decisions when routing signals to the inputs of the Look-Up table Logic cell.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 103

Figure 5-2 : Router Options

Floor Planner

The device Floor Plan (Figure 5-3) can be viewed by selecting Tool > Floor Planner from the

Tool menu, by or clicking the Floor Planner icon in the Tools tree in the Project Name pane.

The subsequent details in this section pertain to the viewing capabilities of the Floor Planner.

The Floor Planner also allows the user to manually modify the placement of logic (Logic Cells and

RAM blocks) as well as IO pins. Additional details on the creation/application of Physical

Constraints are provided in 0

Physical Constraints in iCEcube2.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 104

Figure 5-3 : The Floor Planner

Viewing the Device Floor Plan

The Floor Planner displays the placement of the netlist on the selected device, as shown in

Figure 5-4 with utilized resources depicted in green.

The IO Tiles are depicted in grey, and are located along the periphery of the chip. Each IO Tile

has two or three IO Pin locations. Non-bonded IOs i.e. an IO cell that does not bond out to a pin

on the device package is unusable. Such non-bonded IOs are depicted in a dark shade of grey.

The RAM block locations are depicted by the two brown columns, running vertically through the

Floor Plan. Utilized RAM blocks are depicted in green, and the corresponding RAM Tile in a dark

brown.

The Logic Tiles are depicted by the blue tiles, and contain eight rectangular blocks, each

signifying a Logic Cell (4-input LUT, a flip-flop, and Carry logic), and a small square in the bottom-

left corner of each tile, signifying the Carry-In from the Logic Tile directly below it.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 105

The layout of the cells follows an (X, Y, Z) co-ordinate numbering scheme, with the origin at the

bottom-left corner of the device. Mousing over the logic and IO tiles displays the location co-

ordinates of the tile as a two dimensional (X, Y) co-ordinate location. Since each IO and Logic tile

has multiple IO and logic cells respectively, the IO and Logic cells within a tile are identified by the

Z co-ordinate, resulting in a (X, Y, Z) triplet that uniquely identifies each cell.

As mentioned above, the Logic Cell has multiple resources (LUT, flip-flop, Carry logic). It is

possible to view the utilized portions by performing a right-mouse-click > Show Content on a

selected Logic Cell, as displayed in Figure 5-4. This brings up a window that shows the portions

that have logic placed within. An example of a Logic Cell which contains a used LUT and flip-flop

but an unused Carry-In is displayed in Figure 5-5 below.

Figure 5-4: Viewing the utilized portions of a Logic Cell

Figure 5-5: Example of the utilized portions of a Logic Cell

The View > Zoom In and View > Zoom Out menu items zoom in and out of the Floor Plan

respectively. Mousing over a cell or net also displays instance information for that cell or net.

A World View pane provides a view of the entire Floor Plan, and can be used to navigate the

floor plan when the Zoom In factor is high.

The placed Logic tiles in the Floor Planner have the following Color conventions. White color

represents an empty cell; Green color represents a placed cell. When you select a particular cell

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 106

it would be highlighted in Yellow. A cell which was locked at a location would be highlighted in

green color with red checks. Also, a Lock symbol would be shown on the cell.

Navigating the Design Placement

Through the Floor Plan View, the user can trace the connectivity of an implemented design. This

can be achieved via a combination of the Logic/IO/RAM/Net pane and the Fan-in/Fan-out

functionality available for each used resource.

The Logic/IO/RAM/Net pane displays the used resources on the device. Selection of a node

within this pane highlights the corresponding cell/net in the Floor Plan view.

The right-button of the mouse brings up a context sensitive menu specific to the particular type of

resource selected. This menu allows the user to Search for specific nodes, or to Sort the listed

nodes. As an example, the menu for Logic Cells is displayed in Figure 5-6.

Figure 5-6: Invoking the Sort and Search functionality in the Logic/IO/RAM/Net pane

Selecting the Sort by Name option sorts the Logic instances based on instance names as shown

below

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 107

Figure 5-7: Sort by Name Option

Selecting Sort by Cell option sorts the panel display based on logic cell grouping as shown in

Figure 5-8.

Figure 5-8: Sort by Cell Option

Select Lock option to fix the instance location in the floor planner view.

Selecting the Search menu item brings up the user interface displayed in Figure 5-9. Note that

the same dialog box can also be invoked from the Edit > Search menu item.

The type of design node (Logic, Net, IO, RAM, Port) should be specified, in order to filter the

search process. In addition, a search pattern with wildcards (*,?) to match the required node

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 108

names, can be specified. Clicking on the Search Button identifies and lists the nodes whose

names match the search pattern, for the specified node type.

When a node from the Search Results window is selected, it is highlighted in the corresponding

tab of the Logic/IO/RAM/Net pane, as well as in the Floor Plan view.

Figure 5-9: Search Functionality in the Floor Planner

A Right-Mouse-Click on the selected node in the Floor Plan View invokes a menu that allows

the user to display the nets connected to the node. This menu can be invoked for Logic Cells,

Block RAM and IO Cells. The resulting menu for a Block RAM cell is displayed in Figure 5-10.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 109

Figure 5-10: Invoking the Move and Net Tracing Capability in the Floor Planner

The user now has the option to selectively display the nets connected to a cell. For example,

selecting the Display fan-in nets menu item displays only the nets that drive the node, i.e. the

fan-in nets. Similarly, if the user wishes to display only the nets that are driven by the selected

node, the Display fan-out nets menu item should be selected. Both, fan-in and fan-out nets, can

be displayed simultaneously, by selecting the Display fan-in & fan-out nets menu item.

As an example, both fan-in and fan-out nets of a Block RAM cell are shown in Figure 5-11. It

should be noted that the fan-in nets connect to the left side of the driven cell, and are depicted in

light yellow. Fan-out nets connect to the right side of the driver cell, and are depicted in dark pink.

Using fan-in and fan-out nets, the user can traverse the design from cell to cell, and make

appropriate decisions about modifying the placement manually.

Figure 5-11: Fan-in and Fan-out Nets displayed in Floor Plan

Note that by default, the fan-in and fan-out nets are displayed whenever a cell is selected. This

setting can be changed by disabling it in the Tool > Tool Options > Floor Planner tab, as

displayed in Figure 5-12 below.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 110

Figure 5-12: Floor Planner Options

Package View

The Package View tool (Figure 5-13) displays a pin map of the implemented design in the

targeted package, and allows the user to change Pin properties such as Location and IO

Standard. Note that these properties can also be modified from the Floor Planner and the Pin

Constraints Editor.

A Port pane is available and it permits the user to select a design pin, and highlight it in the

package view.

A World View pane provides a view of the entire package, and can be used to navigate the

package view when the Zoom In factor is high.

Mousing over a pin in the package view provides information on its usage, whether the pin is

available, the pin number and the pin name.

The package pins assigned to the userôs design ports are depicted in green, and in general can

be re-assigned to different locations.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 111

Figure 5-13 : Package View

The Package Pin Legend (Figure 5-14) shows the color coding of the various pins available on

the selected package, identifying the functions of the pins. For example: power (VCC, VCCIO,

GND, VPP/VDDP, VREF), user IO, and other special purpose pins which provide access to the

low-skew global network (GBIN).

Figure 5-14: Package Pin Legend

Editing Pin Properties

Modifying a pinôs placement is accomplished either by clicking the pin and dragging it to a desired

empty location, or by invoking the Pin Constraints dialog box (Figure 5-15) using the Right-

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 112

Mouse-Click>Edit Pin Constraint. In addition to its location, the pinôs IO standard and Pull Up

resistor can also be configured from this dialog.

Figure 5-15: The Pin Constraints dialog box invoked from the Package View

Undesired pin location changes can be reverted back to their initial state using the Edit > Undo

menu.

Once all changes are complete, the new pinout can be saved by clicking File > Save Package

View from the main menu.

Note: Any changes to the package pin assignment will require the router to be rerun.

Pin Constraints Editor

The Pin Constraints Editor (Figure 5-16) provides a table of all the pins in the design and their

attributes. The Editor allows the user to modify the location of the pin, assign an IO Standard,

specify Load Capacitance on output pads, and set a Pull Up resistor.

In order to modify a cell value, click on the cell and select a value from the drop down box. The

drop-down selection for each cell presents only the relevant pin properties i.e. only those

destination pins that match the properties of the selected pin. Similarly, in the IO Standards

column, only the IO standards that are valid for the pin are available for selection. The same is

true for the Pull Up resistor column.

Once all changes are complete, the new pin-out can be saved by clicking File > Save Pin

Constraints Editor from the main menu.

Load Capacitance Entry: Pin Constraints Editor also allows specifying the output load

capacitance for output pads. The default value for load capacitance is 10pf (not displayed

explicitly in the cells) and the new desired value can be entered in the corresponding cells. The

capacitance values are used by Power Estimator and Static Timing Analysis tool to calculate

the power consumptions and paths delays based on output loads.

Once the router is run, a report file for the IO pins is generated. This file is named

<project>_pin_table.CSV (Comma delimited text file), is located in the

<project_directory>/<project>_Impl/sbt/outputs/packer directory.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 113

Figure 5-16: Pin Constraints Editor

Power Estimator

The iCEcube2 Tool Suite includes a utility for estimating device power consumption for a given

design. The Power Estimator (Figure 5-17) can be invoked by selecting Tools > Power Estimator

from the main menu.

The utility includes a listing of utilized device resources and power dissipated at the estimated

maximum operating frequency. The user can modify several design parameters to analyze their

impact on power consumption. These parameters can be modified on the various tabs of the

Power Estimator GUI.

The Summary tab displayed in Figure 5-17 below allows the specification of the following

operational parameters for the purpose of power calculation only. Note that the operating

conditions specified earlier for Timing Analysis are not impacted by changes to the Power

Estimation parameters.

¶ Core Vdd: The voltage at which the core of the chip operates, in Volts.

¶ IO Voltage: The voltage at which the IO cells operate, in Volts. This can be specified

individually per bank.

¶ Process: The process corner selection for power calculations.

¶ Temperature: The temperature at which the chip operates, in degree Celsius. The

operating temperature can vary from -40°C to 100°C.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 114

Clicking on Calculate computes the estimated power dissipation and displays the results under

Dynamic Power Breakdown and Power Consumption.

Clicking Reset resets the values to the initial power estimates, and also resets all the changes

back to their default values.

Figure 5-17 : Power Estimator - Summary Tab

The IO tab displayed in Figure 5-18 permits the user to specify the toggle rate for the designôs

input and output ports, as well as loading capacitance for output pins.

Figure 5-18: Power Estimator ï IO Tab

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 115

Figure 5-19: Power Estimator ï Clock Domain Frequency Specification

The Clock Domain tab allows the user to specify the clock frequency in MHz as shown in Figure

5-19. Note that changing this frequency adjusts the operating frequency of the individual logic

resources like the IO Cells, LUTs, Flip-Flops and Block RAMs (BRAM), as per the built-in toggle

rate estimates. In addition, the switching frequencies of the Sequential Logic Cells (Logic cell in

which the flip-flop is utilized), as well as the Combinational Logic Cells (Logic cell in which only

the LUT is utilized), can be specified, on a per domain basis.

The user can save the current sessionôs input data while closing the Power Estimator. Next time

when the Power Estimator is open, the previous sessionôs input data are populated automatically.

Generating a Bitmap

After routing is complete, the last step in the flow is to generate the configuration files (bitmap) for

programming the target device. Clicking the Bitmap icon in the Flow tab generates the bitmap.

Changing the Bitmap Options

The user can change the Bitmap options by selecting Tool > Tool Options > Bitmap. See Figure

5-20.

1. SPI Flash Mode Options: Checking the option will place the PROM in low power mode after

configuration. (Note: This option is applicable only when the iCE FPGA is used as SPI

master mode for configuration)

2. RAM4K Initialization Option: The device configuration files will not include RAM4K

initialization pattern when this option is unchecked.

3. Internal Oscillator Frequency Range: Depending on the speed of the external PROM, this

option adjusts the frequency of the internal oscillator used by the iCE FPGA during

configuration (Note: This is only applicable when the iCE FPGA is used in SPI master mode

for configuration)

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 116

4. Other

a. Enable Warm Boot: This option enables the Warm Boot functionality, provided

the design contains an instance of the SB_WARMBOOT primitive, and the

Multiple Image Files are specified as explained in the section Programming the

Device.

b. Set security: Selecting this option ensures that the contents of the Non Volatile

Configuration Memory (NVCM) are secure and the configuration data cannot be

read out of the device.

c. Set all unused IO no pullup: Selecting this option removes the pullup on the

unused IOs (except Bank 3 IOs which do not have pullup)

Figure 5-20 : Bitmap Options

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 117

Programming the Device

Standalone Lattice Diamond programmer is the device programmer required to program iCE

devices.

Diamond Programmer

Diamond programmer is fully integrated into Lattice Diamond software and also available as a

standalone application. When Diamond programmer is run within the Diamond GUI, it can be only

used to program devices supported by Diamond Software. When Diamond Programmer is run

standalone it can be used to program iCE devices.

Download and install the latest standalone programmer from http://www.latticesemi.com/ispvm.

Launch the standalone programmer to program iCE devices. The following options are available

in the getting started Dialog box as shown in Figure 5-21.

Figure 5-21: Diamond Programmer ï Getting started Window.

¶ Create a new project from a scan: Use this option to create a project based on

scanning of the attached programming cable. Select the cable type, port and click on

detect cable button to create a new configuration project.

¶ Create a new blank project: Create a new blank project.

¶ Open an existing programmer project: Open an existing configuration project (.xcf)

file.

The following figure shows the programmer main windows. Main window shows the cable

settings, selected device and the programming mode options.

http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

iCEcube2 User Guide www.latticesemi.com 118

Figure 5-22 : Programmer Main Window

Click on Device Family tab and select the device family. Similarly select the target device.

There are three programming modes available to configure iCE40 devices. Click on Operation tab

in the main window or select Edit -> Device Properties to select the configuration mode.

Figure 5-23 : Device Programming Modes

Access Mode:

CRAM Programming: Configuration Random Access Memory (CRAM) configuration is

accomplished by directly loading the iCE40 CRAM over the SPI bus. This flow use the iCEcube2

generated .hex, .bin files for programming the device.

NVCM Programming Mode: NCVM programming involves transmitting programming data over

the SPI bus to the NVCM array internal to the iCE40 device. The NVCM is one-time

programmable (OTP). This flow uses the .nvcm file.

SPI Flash Programming: iCE40 device is configured using an external SPI Flash device. In this

flow, the iCE40 device acts as the SPI bus master and will therefore control the data flow from the

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 119

configuration device. This flow use the iCEcube2 generated .hex, .bin files for programming the

device.

Operation:

Each programming mode has various operation modes to erase, program and verify. Refer Help

-> Programming the FPGA -> Programmer Options -> Device Properties Dialog Box for the

supported operation modes.

Click on the program icon or select Design->Program to start program the device. The output

window displays the status of programming.

Figure 5-24 : Program the device.

For more information on iCE40 Programming, refer Standalone Diamond programmer Help ->

Programming the FPGA > Programming and Configuring iCE40 Devices with Programmer.

Memory Initializer

iCEcube2 provides a command line utility to initialize the block memory primitives (BRAM) in the

design after placement and routing. The memory initialize utility directly updates the memory

contents in the post route OA database. This feature allows the user to initialize a single or

multiple memory contents without re-implementing the design. The post route simulation netlist

can be regenerated through Tools ->Generate Simulation Netlist menu item for functional

verifications.

Dos Command

<<icecube2_install_dir >>\ sbt_backend \ bin \ win32 \ opt \ mem
initializer.exe -- des - lib <design_OA_database> -- mem-
list - file <mem- list - file - name>

http://www.latticesemi.com/
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/programmer_options.htm%231367177
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm

iCEcube2 User Guide www.latticesemi.com 120

Bash Command

export LD_LIBRARY_PATH =
<<icecube2_install_dir >>/sbt_backend/lib/linux/opt/ :
$LD_LIBRARY_PATH
<<icecube2_install_dir >>/sbt_backend/bin/l inux /opt/mem
initializer -- des - lib <design_OA_database> -- mem- list -
file <mem- list - file - name>

Options:

--des-lib <design_OA_database> : Specify the design OA database (oadb-XXXX).

--mem-list-file <mem-list-file-name> : File specifying the post-synthesis logical BRAM name or

the post-routed physical BRAM instance name and the

associated memory initialization file.

Memory list file Format: Memory list file is a text file which specifies the post-synthesis logical

BRAM instance name or the post-routed physical BRAM instance name as in the post route

simulation netlist and the associated memory initialization file. The format of the file is shown

below

Format: < BRAM logical/physical Instance name> <mem init file>

Example: sample_mem.list

 memory0 ram1.mem

 memory1 ram2.mem

 memory2_physical ram3.mem

The floor planner view shows the post synthesis BRAM logical instance names.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 121

Figure 5-25 : Floorplanner view ï BRAM logical instances

Memory initialization file Format (.mem) :

A memory initialization file (.mem) is an ASCII text file that contains memory initialization data in

hex format.

Data

The address and data must be in Hex (hexadecimal) Format. Each line consists of an address

followed by a colon and then any number of data words, separated by spaces. If the specified

address contains multiple data words, the data initialization starts at specified <address> and the

initialization continue for the next immediate sequential addresses till the last data word. If the

data has fewer bits than the expected data width then the most significant bits are filled with 0.

Any address not specified in the .mem file will be filled with 0. Use pound sign (#) in the .mem file

to add comments or block an address for memory initialization.

Format : <address> :< data> <data> <data>...

Example: memory256x16.mem

 A0:0003 00F3 003E 004F

 B2:3B 9F

 #Set address B3 to ñ0ò.

 #B3:FF

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 122

This initialize the address A0 with 0003, A1 with 00F3, A2 with 003E, A3 with 004F, B2 with

003B, and B3 with 009F. Address B3 is not parsed and initialized to 0. The other addresses not

specified in the .mem file are initialized to 0.

Simulating the Routed Design

Once the design is routed successfully, the iCEcube2 Physical Implementation Software

generates Post route Verilog and VHDL models and SDF files in the

<project_dir>/<project_name>_Impl/sbt/outputs/simulation_netlist directory.

Verilog Simulation

The post-route files used for Verilog timing simulation are as follows:

Post-Route Verilog netlist : <top_level_design_name>_sbt.v

Verilog SDF Timing file : <top_level_design_name>_sbt.sdf

The iCEcube2 software provides Verilog simulation libraries at the following location:

<iCEcube2_installation_directory>/Verilog

Using the above files, the design can be simulated in Aldec Active-HDL simulator or simulated in

an industry standard Verilog simulator, and verified for functionality and timing.

VHDL Simulation

The post-route files used for VHDL timing simulation are as follows:

Post-Route VHDL netlist: <top_level_design_name>_sbt.vhd

VHDL SDF Timing file : <top_level_design_name>_sbt_vital.sdf

The iCEcube2 software provides VHDL simulation libraries at the following location:

<iCEcube2_installation_directory>/VHDL

Using the above files, the design can be simulated in Aldec Active-HDL simulator or simulated in

an industry standard VHDL simulator, and verified for functionality and timing. The details of

simulating a design with Aldec Active-HDL are described in Simulating Design with ALDEC

Active-HDLChapter 10.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 123

Chapter 6 Timing Constraints and Static Timing Analysis

Overview

The iCEcube2 Static Timing Analysis (STA) software is useful for analyzing, verifying and

debugging the timing performances of your design. Static Timing analysis along with functional

verification allows you to verify the overall design operation.

The STA tool accepts timing constraints in Synopsys Design Constraints (SDC) format. The SDC

constraints can be forward annotated by Synplify Pro or LSE. In LSE, SDC constraints are

forward annotated in all Optimization Goal settings except for ñAreaò. SDC constraints can also

be specified separately by the user through the Timing Constraints Editor (TCE).

This chapter focuses on the following aspects:

¶ Specifying Timing Constraints using the Timing Constraints Editor (TCE)

¶ Analyzing Reports generated by STA

Specifying Constraints Using the Timing Constraints Editor (TCE)

The Timing Constraints Editor can be invoked by clicking Tool > Timing Constraints Editor.

This launches a spread sheet type editor for specifying timing constraints in the SDC format.

Figure 6-1: Timing Constraints Editor

The user can select the type of constraint in Constraint Selector tab as displayed in Figure 6-1.

When invalid constraints are specified, the TCE editor displays them in RED color and does not

forward annotate the constraints to the Placer/Router/STA tools.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 124

Searching for Pins/Ports in the design

The Timing Constraints Editor provides the ability to specify the design object patterns using

wildcards or to search for design objects to which constraints are be applied.

Right-click on the appropriate field in TCE displays the option to óSearch Designô, as displayed in

Figure 6-2

Figure 6-2: Searching for objects in the design

Selecting this option opens a new window where the user can search pin/clock/cell pin names as

shown in Figure 6-3. The user can also use the ñ*ò and ñ?ò wildcards in the search pattern fields to

search for a specific pin/clock/cell pins.

Figure 6-3: Searching for object names to constrain

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 125

SDC Constraints in TCE

Clock Constraints

To enter clock constraints, select the Clock tab in the Timing Constraints Editor GUI. The

following fields are displayed under the Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Enter the pin name or the port name for the clock in the Source field. The port or pin

name can be selected from the drop-down box. Alternately, the user can search for

ports/cell pins by using the search option. Right clicking in source field gives the option of

searching ports/cell pins, as shown in Figure 6-2.

Name: Enter the name for the clock in the Name field. This is an optional field.

Period: Enter the period in ns, for the clock in Period field.

Waveform: Duty cycle for the clock can be specified in the Waveform field, with rising and falling

time edges of the clock.

For example, when a clock is specified as displayed in Figure 6-4, the following SDC command is

generated:

Figure 6-4: Specifying a Clock Constraint

create_clock ïname my_clk ïperiod 10.00 ïwaveform {0 3} [get_ports {clock}]

Generated Clock Constraints

To enter generated clock constraints, select the Generated Clock tab in the Timing Constraints

Editor GUI. The following fields are displayed under the Generated Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Specify the port or pin name from which the clock is derived

Ref Clock Pin: Specify the generated clock pin name

Name: Enter the name of the generated clock in Name tab which is optional.

Select the option Divide by or multiply by or invert options and duty cycle according to constraint.

For example, when a generated clock is specified as displayed in Figure 6-5, the following SDC

command is generated:

create_generated_clock [get_pins {divby2clk_inst.SB_DFFSR_inst/Q}] ïname divbyclk ïsource [get_ports

{clk_i}] -divide_by 2

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 126

Figure 6-5: Generated Clock Constraint

Source Clock Latency Constraints

To create source clock latency constraints, select the Source Clock latency tab of the TCE GUI.

The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Latency: Enter the source clock latency value.

Objects: Specify the clock source or the clock name.

For example, when source clock latency is specified as displayed Figure 6-6, the following SDC

command is generated:

Figure 6-6: Clock Latency Constraints

set_clock_latency -source 2.00 [get_clocks {CLK_A}].

Input Delay Constraints

To enter Input Delay constraints, select the Input Delay tab in the Timing Constraints Editor GUI.

The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Input List: Enter the Input pin name in the Input List.

Clock: This is the reference clock w.r.t to which the input signal is delayed.

Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the input is delayed w.r.t. the negative edge of the reference

clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an input delay is specified as displayed in Figure 6-7, the following SDC

command is generated:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 127

Figure 6-7: Input Delay Constraint

set_input_delay -clock [get_clocks {myclk}] 1.00 [get_ports {dins_i}]

Output Delay Constraints

To create output delay constraints, select the output delay tab of the TCE GUI. The following

fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Output List: Enter the Output pin name.

Clock: Specify the Reference clock edge with respect to which the output delay is specified.

Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the output delay is specified w.r.t. the negative edge of the

reference clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an output delay is specified as displayed in Figure 6-8, the following SDC

command is generated:

Figure 6-8: Output Delay Constraints

set_output_delay -clock [get_clocks {myclk}] -add_delay 2.00 [get_ports {channel1A_o}]

Max Delay Constraints

To create Max Delay constraints, select the Max Delay tab. The following fields are displayed:

Enabled: Use the Enabled field to enable or disable the constraint.

Delay Value: Enter the delay value (non-negative number) in the Delay value field.

From: Enter the source pin or port of the constrained path. The constraint is applied for the data

paths launched on both rising and falling transitions.

Rise From: Enter the source pin or port of the constrained path. The constraint is applied only for

the paths launched on rising transitions.

Fall From: Enter the source pin or port of the constrained path. The constraint is applied only for

the paths launched on falling transitions.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 128

 To: Enter destination pin or port, up to which the path is defined. The constraint is applied for the

paths captured on both rising and falling transitions.

Rise To: Enter destination pin or port, up to which the path is defined. The constraint is applied

only for the paths captured on rising transitions.

Fall To: Enter destination pin or port, up to which the path is defined. The constraint is applied

only for the paths captured on falling transitions. Through: Specify a pin to ensure that the

constrained path passes through this pin. This field is optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise

To, Fall To are mutually exclusive.

For example, when a Max Delay constraint is specified as displayed in Figure 6-9, the following

SDC command is generated:

set_max_delay -from [get_pins {pipe10/Q}] -to [get_pins {pipe11/D}] 3.00

Figure 6-9: Max Delay Constraints

False Path Exceptions

To create False Path exceptions, select the False Path tab. The following fields are displayed:

Enabled: Use the Enable field to enable or disable the constraint.

From: Enter the port or pin from which the false path is defined. The exception is applied for the

data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the false path is defined. The exception is applied

only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the false path is defined. The exception is applied

only for the paths launched on falling transitions.

To: Enter the Port or pin up to which the false path is defined. The exception is applied for the

data paths captured on both rising and falling transitions.

Rise To: Enter the Port or pin up to which the false path is defined. The exception is applied only

for the paths captured on rising transitions.

Fall To: Enter the Port or pin up to which the false path is defined. The exception is applied only

for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is

optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise

To, Fall To are mutually exclusive.

For example, when a False Path exception is specified as displayed in Figure 6-10, the following

SDC command is generated:

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 129

set_false_path -rise_from [get_clocks {CLK_A}] -to [get_clocks {CLK_B}]

Figure 6-10: False Path Exceptions

Multi Cycle Path Exceptions

To create Multi Cycle path exceptions, select the Multi-Cycle tab. The following fields are

displayed:

Enabled: Use the Enable field to enable or disable the exception.

Ncycles: Enter the number of clock cycles (non negative number) of the capture clock.

From: Enter the port or pin from which the exception is defined. The exception is applied for the

data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the exception is defined. The const exception rained

is applied only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the exception is defined. The exception is applied

only for the paths launched on falling transitions.

To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is applied

for the data paths captured on both rising and falling transitions.

Rise To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is

applied only for the paths captured on rising transitions.

Fall To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is

applied only for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is

optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise

To, Fall To are mutually exclusive.

For example, when a Multi Cycle exception is specified as displayed in Figure 6-11, the following

SDC command is generated:

set_multicycle_path -from [get_pins {pipe10/Q}] -to [get_pins {pipe11/D}] 2

Figure 6-11: Multi Cycle Path Exception

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 130

Analyzing Reports Generated by the Static Timing Analyzer (STA)

The output of STA is a path report giving the details of each path in the design along with delays

along the paths. This section explains the timing reports generated by STA in the Timing Analyzer

window for a design targeted for iCE40 family and also provides directions on performing queries

on specific paths of interest.

The Timing Analyzer window can be opened by selecting the Timing Analysis tab on the top left

corner or through the Tools > Timing Analysis menu item.

The Timing Analyzer window provides the following features, each of which is explained below:

¶ Clock Summary

¶ Clock Relationship Summary

¶ Data Sheet

¶ Analyze Paths

Clock Summary Pane

The first window shown after opening the Timing Analyzer is the Clock Summary pane, as shown

in Figure 6-12. This section gives the details of computed frequency summaries and the

frequency defining paths for all clocks in the design. When a particular clock is selected, the

paths corresponding to that clock, and the path used for frequency computation, are displayed in

the path summary pane.

Figure 6-12: Clock Summary Report

For every frequency defining path (one per clock), the following fields are displayed in the Critical

Path Summary section:

Start Point: This indicates the pin at which the data path initiates. It can be a top-level design

port (input package pin), the output of a flip-flop or the RDATA output of a RAM block.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 131

End Point: This indicates the pin at which the data path ends. It can be a top-level design port

(output package pin), the input of a flip-flop or an input of a RAM block.

Launch Clock: The clock and its polarity at which the data is launched.

Capture Clock: The clock and its polarity at which the data is captured.

Slack: The slack value computed for the path. The critical path has the lowest slack.

Delay: The delay of the path as computed by the sum of the logic and routing elements between

the Start and End Points. This includes the Clock-to-Out delay of the starting FF or RAM block.

Skew: The clock skew between the edges of the launch clock and the latch clock.

Save Summary and Save Detail sections are useful in saving the reported path details in a text

format. Save Summary option writes out the simple delay computation details used in computing

the path delay. Save Detail option writes out detailed path delay computation details.

Sort Option in the clock summary section helps the user to sort the generated path results.

By clicking on the sort option, a window would popup asking for the feature to be used for sorting.

User can sort the results hierarchically based on every filed displayed in the summary section.

So, the sort option in critical path report section would sort according to Start Point, End Point,

Slack, Delay, Skew, Start Edge and End Edge. Using the óAdd Levelô feature user can add these

fields in priority basis and select their order in which the results need to be sorted.

Figure 6-13 Sorting Reported Paths

For example, in Figure 6-13 ñSlackò was added first in ascending order. Then ñStart Edgeò was

added next in ascending order. So, the results are displayed with ascending order of slack first

and then, the results with same slack are sorted in ascending order of Start Edge.

It should be noted that:

1. Frequency computations are performed only on paths starting from input pads and flip-

flop/RAM outputs, and ending at output pads and flip-flop/RAM inputs.

2. If the paths triggered by a clock are not constrained (timing start point and timing end points),

then the columns Worst Slack, FMAX and Failing Paths are shown as ñN/Aò. Appropriate

constraints are required in order for clock frequencies to be reported.

3. In the clock summary pane, only the most critical path for each constrained clock is displayed

irrespective of constraints met or not.

4. If the constraints are not met, the ñFailing Path #ò column shows the no of paths failed

including the most critical path displayed in the summary pane. All the other failing paths can

be viewed through query path options as described in Analyzing Constrained Paths.

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 132

5. Frequency calculations do not include paths involving IOôs unless the IOôs are constrained

with Input and Output Delays.

6. Cross-clock domain paths are not reported in this pane.

Detailed Path Report

When a path in the Critical Path pane is selected, detailed path section for the path is displayed.

The detailed path report provides the following details as shown in Figure 6-14.

Path Detail: Gives the Timing Start Point, Timing End Point, reference clock used for slack

computation and the slack value. If the Timing Start Point or End Point is a register within an IO

pad, the summary panel displays either the default IO register name or the name of the user FF

that was originally in the logic fabric, but was merged into the IO pad as shown in Figure 6-15 .

Data Required Time: Detailed path report for computing the data required time, at the capture

clock edge.

Data Arrival Time: Detailed path report for computing the data arrival time, starting from the

launch clock edge.

Figure 6-14: Example of Detailed Path Summary for Frequency Computation

http://www.latticesemi.com/

iCEcube2 User Guide www.latticesemi.com 133

Figure 6-15 : Path Summary Displaying user DFF merged with IO

Detailed Path Report Pane gives the routing delays and delay of each cell involved in the path

and the slack values. For detailed analysis of Timing Path Reports, refer to ñDetailed Timing

Pathò section.

The detailed timing path report can be saved in text format by using ñSave Detailò Option.

Figure 6-16: Customize Report Options

Customize Columns option enables the user to choose the parameters that need to be used while

displaying the timing report. A sample customization option menu is shown in Figure 6-16. It also

enables the user to adjust the width of each column. By using ñMove Upò and ñMove Downò, the

user can sort out the Columns.

http://www.latticesemi.com/

