ICEcube2 User Guide

= LATTICE

= LATTICE

Copyright

Copyright © 2007-2015 Lattice Semiconductor Corporation. All rights reserved. This document

may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior

written consent from Lattice Semiconductor Corporatic

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are
trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other
trademarks are the property of their respective owners.

Disclaimers

N O WARRANTI ES: THE I NFORMATI ON PROVI DED I N THI S D
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING

WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,

NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY
DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF
OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF
LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the products
described herein, at any time without notice. Lattice makes no commitment to update this
documentation. Lattice reserves the right to discontinue any product or service without notice and
assumes no obligation to correct any errors contained herein or to advise any user of this
document of any correction if such be made. Lattice recommends its customers obtain the latest
version of the relevant information to establish that the information being relied upon is current
and before ordering any products.

Contact Information

Lattice Semiconductor Corporation
5555 N.E. Moore Court

Hillsboro, Oregon 97124-6421
United States of America

Tel: +1 503 268 8000

Fax: +1 503 268 8347
http://www.latticesemi.com.

iCEcube2 User Guide www.latticesemi.com 2

http://www.latticesemi.com/
http://www.latticesemi.com/legal
http://www.latticesemi.com./

= LATTICE

Revision History

The following table lists the revision history of this document.

Version Revision

1.0 Release iCEcube2 2010.03

11 Release iCEcube2 2010.09

1.2 Release iCEcube2 2010.12

13 Release iCEcube2 2011.06

14 Release iCEcube2 2011.09

15 Release iCEcube2 2011.12

1.6 Release iCEcube2 2012.03

1.7 Release iCEcube2 2012.06

1.8 Release iCEcube2 2012.09

1.9 Release iCEcube2 2012.09SP1

2.0 Release iCEcube2 2013.03

2.1 Release iCEcube2 2013.03 i updates
2.2 Release iCEcube2 2013.08

23 Release iCEcube2 2013.12

24 Release iCEcube2 2014.04

25 Release iCEcube2 2014.08

2.6 Release iCEcube2 2014.12

2.7 Release iCEcube2 2015.04

iCEcube2 User Guide

www.latticesemi.com

http://www.latticesemi.com/

= LATTICE

TABLE OF CONTENTS

o) = 1o P P PPP Ty 8
P oTo 10 1 IS Do Lo [41T o | RSO PRRRPRN 8
Yo 10T 2= LIV L=T 67 o o P PPPPPPPPPRt 8
Platform REQUITEMIENTS........eiiiiiiiii ittt et e e e st e e e s abb e e e e sbr e e e e sbreeeeaaes 8
Programming HArWATEoouiiiiiiiiiie ittt ettt e et e e e b e e e e abneeeeaaes 8
Programming SOMIWAIE.........cooiiiiii ittt e e e st e e s st e e e e ebneeeeaaes 9

Chapter 1 OVeIVIOW . ouu i e e et i e e seeeseeeieseieeenaass 10
ICECUDE2 TOOI SUILE.....ueeiiiiieeiiiiite ettt e e e e e s et e e e e e e s e nba e e e e e e e e sanntnbneeeaaeeean 10
DESIGN FIOW ...ttt b etk e e skt e e s bbbt e e s bbb e e nbn e e e annreee s 11

Chapter 2 Quick Start GUIde.oiveuiiieiiiei e eeeeenee 12
(O T= i o = T £ T T=T X PSR 12
SYNNESIZING the DESIGN....eiiiiiiiiiiieieiieeeeieee ettt ettt ettt eeeeeeeessaeasesseaesasssssssssssssssssesnnennnes 16
Programming the DeVICE..........ccoo i 26
Yo [0 [T To (1] 1 o Lo TP PP PPPUPPURTPNE 30

Importing Physical Constraints from iCEcube to ICECUb2...........cccooiiiiiiiiiiiiicecccccc, 30

Chapter 3 iCEcube2 Project Setup and Navigation 35
Ta oo []ox i o] o PR PP P PP PUPUPPPRPPTN 35
Project Manager GUIL.........coooii i 35
Adding/Deleting Design and Constraint Filesccccooiiiiiiiiiiiiiiicccscre s 35
Selecting Synthesis Tool and Setting Synthesis OPLtioNScvuvvvevieivieieeeeiieeeeeeeeeeeeeeeeeeeeeaenns 37
Selecting the Target Device and Operating CoNditiONScevvvviieeiieieieieieieeeeeieeeeeeeeeeeeeeeeeaenes 40
L 11 11010 1 Y1V T [0 PPNt 41
SIMUIALION WIZAIT ...ttt e e s e et e e e s et e e e e e e e e s nnbreeeeas 41
PLL MOGUIE GENEIALONciiieiiiiiiitie ittt ettt e e e e st e e e e e e s nbb e e et e e e e e aannrnbreeeeeeeeas 42
PLL Dynamic Reconfiguration.............ccoooo i 51
SPI/12C MOAUIE GENEIALONcciiiiiiiiiiiiie ettt e e e e e e e e s s s e e e e e e e e e e e annbreneeas 53

Chapter 4 Lattice Synthesis ENgine.........oocvuviiieviiiiiiiiiiieeeeeen, 61
Changing the LSE TOOI OPLIONS........cuiiiiiiiiiieiiiiieieieieieeeeeeeeeeeeeeeeeeeeeeseeseeeesassssssesssssssessresererennnes 61

BRAM ULITIZALION ...ttt e e sttt e e e e e s abnb e e eaaee e s 61
L0214 2 @ T= 11 1 = o o | 1 PRSPPIt 61
(07012072 T= g [o [T o =T @] o 1] o - PPNt 61
FIX GAted ClOCKS. ... et e e e et e e e e e e s b e e e ea e e e e s 61
FSM ENCOAING StYIE ... 62
INtermediate File DUMP s 62
MEAX FANOUL LIMIE ...ttt et e e e e e e et e e e e e e s e abnbneeeaae e s 62
Memory Initial Value File Search Path................ccc 62
NUumber of CritiCal PathS ... 62
L@ o] 110 T4 1o 4 I ©1 0 - | P PPPPINt 62
Propagate CONSIANTScoooiiiiiiieeeee e 62
AN Y S Y = PSSP 62
Remove DUPlCate REQISIEISeeiiiiieiite ettt e e eea e e 63
RES0IVE MIXEd DIIVEIS ... 63
RESOUICE SNATING ...ttt e et e e e e e e s e s bbb et e e e e e e s e nbnbneeeaaeaean 63
L@ 1Y S Y = PR PRR 63
RW Check 0N RAM ... 63
I (=10 = C=To (=T g (o TSP PP PPPPPPPPPPPPPPPPPPPRt 64
TOP-LEVEI UNIL....eeeeeiieee ettt ettt et e e e e e e e e e e e e e e e s bbbeeeeaaeeeeannnes 64

iCEcube2 User Guide www.latticesemi.com 4

http://www.latticesemi.com/

= LATTICE

USE CAITY CRAIN ...t e e e e et e et e e e e e s aa b et e e e e e e e e e nbabeeeaaaaaan 64
U o (@ I [1=l o o] o P PP PP PPP PP PRP P 64
USE 1O REGISIEIS ...ttt ettt e et e e et e e e e it e e e e s be e e e e anbe e e e enrnas 64
Optimizing LSE for Area and SPEEQcocuuiiiiiiiiiie ettt 64
FSM ENCOUING STYIE ..ttt e s 65
MEX FANOUL LIMIT ..ttt e s e e e e e e 65
OPLMIZALION GO ...ttt ettt e et e e e e st e e e st e e e e sabn e e e e abneeeeanes 65
Remove DUPLICAte REGISTETSccciiiiiieiiiiie ettt 65
RESOUICE SNANNG ...ttt e et e e bt e e et e e e anbe e e e neeas 66
TargEt FIEOUENCYciiiiiiiiiitie ettt ettt e e st e e e e e s e e et e e e s e eeraeesesannens 66
LSE Options VErsus SYNPLIfY Prooioiiiiiiiiiiie et 66
COING TIPS TOF LSE ...ttt ettt e et e s e bt e e e st e e e e nreas 67
LSE Differences with SYNpPlify Pro ... 67
ADOUL INFEITING MEIMOTYeiiiiiie ittt e e s e e e e 68
INTEITING RAMttt et e e e st e e e sbr e e e e sbreeeeanes 69
Inferring RAM with Synchronous Readcc.cooiiiiiiiiiiiii e 70
Inferring Pseudo DUal-POrt RAMcooiiiiiii ettt 72
Initializing INfErred RAMcooi ettt e e sbn e e e e anes 74
INFEITING ROM ...ttt e et e e e st e e e sbb e e e e sbneeeeanes 75
About Verilog BIOCKING ASSIGNIMENTSuuiiiiiiiiie ittt 76
INFErriNg DSP MUILIPHEISoiiieiiiieie et 77
VErIOg EXAMPIES ..ottt e e et e b e e 77
VHDL EXGMPIESeeiiieiiiiiee ettt e ettt e et e e e it et e e e sab e e e e nnbe e e e e nneas 79
INTEITING 1O .ttt e ettt e s ettt e e e ab e e e e e nbe e e e enbeas 81
EVENE INSIE AN EVENT ...ttt e e 82
HDL ALtribULES 8Nd DIFECHIVESceiiiiiiiiiiiii ittt e e s naneee s 83
BlaCK _BOX_PAA_PIN ..o 83
SYN_BIACK _DOX ittt 84

L3 T =T (oo o [T Vo P TP PPU PRSPPI 84

LS T 111 S PO PPSPPP 85
ST = o TS PP PPPPP 86
SYN_IMAXFAN ...t e e n 87
SYN_IMUIESTYIE L.ttt e et e e s bbbt e e s bb e e e s annreae s 87
SYN_NMOPIUINE ... oeeeeeeeteeeteeeeeeeeeee e ee e e e ee e e eesesseeeesesesssessssssseseensnsssseeseessnsnnnnnnnnnnnnnnnnnnnnnnnnne 89
SYN_PIPEIINE et e e n 90
SYN_PIESEIVE ...eeeeeeieeeieteeeeeeeeeeeeeee e eeeee e eeeeeeeeseeeseseeesesessseesessnsneneenneennnnnennnennnnnnnnnnnnnnnnnne 91
SYN_TAMSEYIE ..ottt ettt e e bbbt e e bbbt e e s bbbt e e ab e e e nnnreae s 92
SYN_TOMSEYIE ..ottt et e e s bbbt e sttt e e s bbbt e e s nbr e e e s nbeeae s 93
SYN_USE_CAITY_CRAIN ... e 94
YN USEIO et e e s 95
SYNINESIS MACTO ...ttt ettt e e e st e e e sabb e e e anbaeeeeaaes 96
translate_off/tranSIate_ONcooiiiiii e 96
Synopsys Design CONSIFAINIS (SDC)eiiiiuriiiiiiiiiee ittt e e 97
CIEALE_CIOCK ...ttt ettt e e et e e e st e e e sabae e e e anbaeeeeaaes 97
Set_fAlSE PALN ... e 98
S INPUE_EIAYottt e ettt a e e e nnneeae s 98
SO MAX _AEIAY ..ttt e s a b e e e abr e e nareae s 99
Set_MUILICYCIE_PALH ... 99

L1 A 01011 01U o (== | TP OTPPP 100
Chapter 5 iCEcube2 Physical Implementation Tools 101
OVEIVIBW ..ottt ettt ettt e e ekt e e oo e bt e e e ek bt e e ek ket e e e eabe e e e e aabe e e e e st e e e e e anbeeeeeanbeeeeanneeas 101
Tools for Physical IMplementation ..o 101

iCEcube2 User Guide www.latticesemi.com 5

http://www.latticesemi.com/

= LATTICE

Placing and ROULING the DESIGNcciiiiiiiiiiiiiiie et e e e babee e e e e e as 102
[(ool gl F= 1o] =T PP P TP PPPPPPP 103
PACKAGE VIBW......eeiiiieiie ettt s bt e e ekt e e e b bt e e e b e e e e e nbe e e e e neeas 110
PiN CONSEIAINTS EGITON. ... eeeiiiiiiiie ettt s e e e e e e e e e s 112
POWET ESTIMALONuttiieiitieee ettt e st e skt e s et e e et b e e e e bbe e e e enbe e e e eneeas 113
GEeNEratiNg 8 BItIMADcooiiiiieiiiiiie ettt ettt e et e e e anb e e e e e e 115
Programming the DEVICEcouuiiiaiiiiii ettt e st e e e e e e e 117
[D]F: 1o gle]aTo l ad (oo] £= o 1] 10 L=] SO PO U PP PUPPPPPPTPPPN 117
MEMOIY INILIBIIZET ...t e et e e e 119
Memory initialization file FOrmat (.Mem) ©......oiiiii e 121
Simulating the ROULEA DESIGN........ccoiiiiiieiiiiie ettt e e 122
Chapter 6 Timing Constraints and Static Timing Analysis 123
OVEIVIBW ...ttt ettt ettt a bt e oo a et e oo ek bt e e ek b et e e e ek b et e e e am b e e e e e abe e e e e anbe e e e e anbeeeeennnas 123
Specifying Constraints Using the Timing Constraints Editor (TCE)ccccevriiieeiniieeennne. 123
SDC CONSLrAINTS IN TCEtiiiiiiiiiie ettt st e e nbe e e e s nnneee s 125

101 [0]od (@ 0] 11511 7= 11 0| £ T PP PP OPP PP 125
Generated ClOCK CONSIIAINTSiiiiiiiiie it 125
Source Clock LatenCy CONSIIAINTS........ueiiiiiriieiiiiee ettt ettt eeneee s 126
INPUL DEIAY CONSIIAINTS.....eiiiiiiiiee ittt ettt e b e e e snens 126
OutpUt Delay CONSIIAINTSceiiiiiiieeiiiiie ettt e s e e s b e e e snnreee s 127
MaX Delay CONSIIAINTSeiiiiiiiie ittt et e e et e e e sbb e e e sbbeeeesbneeeeanes 127
False Path EXCEPLIONSeeiiiiiiiie ittt e st e e e sbn e e e e sbneeeeane 128
Multi Cycle Path EXCEPLIONSeeiiiiiiiiiiiiiee ettt et e e et e e e e sbneeeeanes 129
Analyzing Reports Generated by the Static Timing Analyzer (STA).....cccooceiiiieieiiiiee e 130
ClOCK SUMMANY PANEcooiiiiiiiiiiiiie ettt e e e e enanee s 130
Clock RelationShip SUMIMAIYooiiiiiiiiiiiie e 134
(D=1 = RS 41T PP PUPPPPPPPPPPTNt 134
Analyzing ConstraiNe@d PathS............oooiiiiiiiiii s 136
BY SIACK ... ettt 136

BY PALNS ... e 138
POINETO POINE ...t e et e e et e e e e e ebe e e e e nneas 140
OLNEE FRAIUMESeiii ettt ekt e bbbt e e st e e e e s bbbt e e s bbb e e e snneeae s 141
Detailed TIMING REPOI.eiiiiiiiii ettt e et e e s e et e e e s nbe e e e e nnenas 144
Chapter 7 Physical Constraints in iCEcube?c.....e........ 148
Specifying Physical Constraints after Design Import and Before Placement 148
ADSOIULE PIACEMENT ...ttt ettt e e e snees 148
Constraining LOGIC OF RAMScouuiiiiiiiiie ettt 148
CONSLFAINING TOSeiieiiieie ettt e bt e e et e e e e e snbe e e e e ebeas 149
Constraining SP1 Configuration 1OS..........coiuiiiiiiiiie e 149
REIAIVE PIACEIMENTcoiiiiiiii ittt e et e e e bbeeeeaaes 150
REGION CONSIIAINTSeiiiiiiiiie ittt ettt e e st e e e st e e e e e sbb e e e sbbeeeesbbeeeeane 153
[OTFF MBI ...ttt e et e e e a bt e e e eab et e e e st e e e e anbe e e e e nneas 154
Global Buffer Promotion/DemMOtIONcoouueiiiiiiiiieiiiiiee ittt 156
Modifying the Device Floor Plan after Placementcccoeiiiiieiiiiie e 158
Chapter 8 Generating/Integrating Fixed Placement IP Blocks. 161
[P GENEIALION FIOW....ciiiiiiiiiiiiiiiie ettt sttt e sttt e e s bt e e e s nbe e e e s nnaneae s 161
SYSEEM DESIGN FIOW....eeiiiiiiiieiie ettt e et e e st e e e enaeas 165
Chapter 9 Hierarchical Project FIOW ...ooevvuiiiiiiiieiiiiieee 170
Create TOP LEVEI PrOJECTciii ittt et e e e e e eee s 170
Create SUD-Projects for IP DIOCKScouiiiiiiiieei e 173

iCEcube2 User Guide www.latticesemi.com 6

http://www.latticesemi.com/

= LATTICE

SYNtheSize TOP LEVEI PrOJECL......o. et 175
Chapter 10 Simulating Design with ALDEC Active-HDL 178
ALDEC ACHVE-HDL ...ttt ettt sttt et e bt smb et e sbe e e sabe e s be e e snbeesnees 178
Pre-Compiled iCE Simulation LIDrarieScoouiiioiiiiiciie et 178
VHDL ettt ek et h e b e e e bt e e eabe e e Rt e e enbe e e abee e snbeeenaneea 178
VERILOG ...ttt ittt ettt ettt ekt ekt e e h bt e et e e ek b e e s abe e e sabe e smbeeebbeesnbeeennneeas 178
(D=2 [o] o IR PP O TP PPPPPP 179
Pre-Synthesis SIMUIALIONuiiiiiiii e e 181
Post Place-n-Route Functional Simulation (Verilog/VHDL)oooviiiieiniiieiiieee e 187
Post Place-n-Route Timing Simulation (Verilog/VHDL)occcoiiiiiiieiiiieee e 190
Chapter 11 iCEcube2 Command Line Interface........................ 196
L@ YT YT PP PRSP 196
RUNNing LSE iN DAtCh MOAEoooiiiiiiii e 196
Running Synplify-pro in DAtCh MOGEeiiiiiii s 197
Running iCEcube2 Backend tools in batch mode.............ccccoiiiiiin e, 199
BaCKENd tOO] OPLIONScitiiieiiiiie ettt et e e st e e e sbb e e e sbeeeeesnbbeeeeanes 200

o) = == PSPPI 200

[oo PSPPI 200
ROULET ...ttt e e e e e et ettt s e e et e e e en e e e e e e e eenbnn e eeeaees 200
BItMaD ..o 201

(070] 1004 F= T To T 1= ot (=T o U 11 o] o SRR SRS 201
Chapter 12 High Drive 10 with configurable drive strengths ... 203
Chapter 13 Open Drain LED IO....uuvuiiiiieiiiiieeiiiieeeiieeeeeiiee 205
Appendix A: PCF SYNtaX .oiiieeeiiiiiiee e 206

iCEcube2 User Guide www.latticesemi.com 7

http://www.latticesemi.com/

= LATTICE

Preface

About this Document

The iCEcube2 User Guide provides iCE FPGA designers with an overview of the software tools
and the design process using iCEcube2. This document covers the iCEcube2 tools for Project
Setup, Navigation, Synthesis and Physical Implementation on the iCE FGPA device.

For information on the Synopsys Synplify Pro software, please refer to the Synplify Pro
documentation provided in the synpbase/doc directory in the iCEcube2 software installation
(<icecube?2_install_dir>/synpbase/doc), and on the Lattice website.

For information on the Aldec Active-HDL design tool, please refer to the Active-HDL
documentations available at <icecube?2_install_dir>/Aldec/Active-HDL/BOOKS.

Software Version
This User Guide documents the features of iCEcube2 Software Version 2015.04

For more information about acquiring the iICEcube2 software, please visit the Lattice
Semiconductor website: http://www.latticesemi.com.

Platform Requirements

The iCEcube2 software can be installed on a platform satisfying the following minimum
requirements.

A Pentium 4 computer (500 MHz) with 256 MB of RAM, 256MB of Virtual Memory, and running
one of the following Operating Systems :

1 Windows 7 OS, 32-bit / 64-bit
1 Windows XP Professional

1 Red Hat Enterprise Linux WS v4.0

Programming Hardware
Here are the following ways to program iCE FPGA devices:

1 A third party programmer or a processor, using the programming files generated by the
iCEcube2 Physical Implementation Tools. Consult the third party programmer user
manual for instructions.

1 The iCEblink and iCEman evaluation Board, which not only serves as a vehicle to
evaluate iCE FPGAs, but also includes an integrated device programmer. This
programmer can be used to program devices on the evaluation board, or it can be used
to program devices in a target system. Please visit Lattice Semiconductor website:
http://www.latticesemi.com for additional information on the Evaluation Boards.

Digilent USB cables to program the external SPI Flash.

1 The iCE Programming hardware: iCEcable, iCEprog (Programmer base module) and
iCEsab (socket adaptor). Refer to lattice website: http://www.latticesemi.com for more
details on programming hardware.

iCEcube2 User Guide www.latticesemi.com 8

http://www.latticesemi.com/
http://www.latticesemi.com./
http://www.latticesemi.com/

= LATTICE

Programming Software

Standalone Lattice Diamond Programmer software is required to program iCE40 FPGA devices
or SPlI flash. Download and install the Ilatest standalone programmer from
http://www.latticesemi.com/ispvm.

For more information about Diamond Programmer, refer

iCEcube2 User Guide www.latticesemi.com 9

http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

= LATTICE

Chapter 1 Overview

iCEcube?2 Tool Suite

The iCEcube2 Tool Suite is comprised of several integrated components, running under either
the Microsoft Windows or the Red Hat Linux environments. Please refer to Platform
Requirements for additional information on supported operating systems.

The Figure 1-1 below depicts the design flow using the iCEcube2 Tool Suite. The components in
blue signify functionality supported by Lat t i c e S e miproprietadyuSynthesis6Engine
(LSE) and iCEcube2 place and route software, and the components in purple indicate the
functionality supported by Sy n apdsthesAldec SestivegHDLl
simulation tool. The iCEcube2 software, Synopsys Synplify Pro and the Aldec Active-HDL
software constitutes the iCEcube2 Tool Suite.

Note: The Aldec Active-HDL tool is available only in Windows environments.

Verilog, VHOL
Design Files

Synplify Pro
Synthesis

Timing Constraints " Timing Constraints

Post Synthesized
VHDL or Verilog

EDIF Nethst

RS- Timing Constraints
Placement - cml
Routing
A A
Post PAR
Static
orilog of Bitmap Generation
V»YDLIN:vn.-J Timing Analysis '
SOF
\ 4
Device
Aldec Active-HDL Programming
/3¢ Party
Simulation Tools

Figure 1-1: The iCEcube2 Design Flow

iCEcube2 User Guide www.latticesemi.com 10

http://www.latticesemi.com/

= LATTICE

Design Flow

The following steps provide an overview of the design flow using the iCEcube2 Tool Suite.

1.

Create a new project in the iCEcube2 Project Navigator and specify a target device and its
operating conditions. Add your HDL (Verilog or VHDL) design files and your Constraint files
to the project.

iCEcube2 software supports Synplify-Pro Synthesis tool and Lattice Synthesis (LSE) tool.
Synplify-pro is the default synthesis tool in iCEcube2. Synthesis your design using the
selected synthesis tool.

Perform Placement and Routing using the iCEcube2 place and route tools. iCEcube2 also
supports physical implementation tools such as floor planning, allowing users to manually
place logic cells and 10s.

Perform timing simulation of your design using the Aldec Active-HDL simulation tool or any
industry-standard HDL simulation tool. The files necessary for simulation are automatically
generated by the iCEcube2 Physical Implementation tools, after the routing phase.

Perform Static Timing Analysis using the iCEcube2 static timing analyzer.

Generate the device programming and configuration files from the iCEcube2 Physical
Implementation tools.

Program your device using the device programming hardware provided by Lattice.

iCEcube2 User Guide www.latticesemi.com 11

http://www.latticesemi.com/

- LATTICE

NEN sEMICONDUCTOR

Chapter 2 Quick Start Guide

This chapter provides a brief introduction to the iCEcube2 design flow. The goal of this chapter is
to familiarize the user with the fundamental steps needed to create a design project, synthesize
and implement the design, generate the necessary device configuration files, and program the
target device.

Detailed information on tool features and usage is provided in subsequent chapters.

Creating a Project

Starting the iCEcube2 software for the first time, you will see the following interface shown in
Figure 2-1.

W Latthoe KEoubed [= |

Filh Yww ool Window Hap

Uy B
L RS
o Preject e
rawirees Create a
Cpeen Project
€lose Projict
Syntheus Tl
* add Synthisis Flis
Dlewgn Filey
Consiraim Fles
b Fun LSE Synthesy
Fapors
BEH Flow
P sedet Implememabon
b addd BRA Fe
Fun P&A
B et PAR ingut fies
e Fun Placer
B mun mouter
b Generate Brimap
I Exporter
Caipuk Files
Faparti
Bimag
Smulation Peeisl
Dpace/Operaing Condbon
Qe Infe

DesaceFamily
Deicw
Dieice Package
Bosir Orace

Cperating Condiion
e YoRages
Tempersture|C]

Figure 2-1: Create a New Project

The first step is to create a new design project and add the appropriate design files to your
project. You can create a new project by either selecting File > New Project from the iCEcube2
menu, or by clicking the Create a New Project icon as seen in Figure 2-1. The New Project
Wizard GUI is displayed in Figure 2-2.

iCEcube2 User Guide www.latticesemi.com 12

http://www.latticesemi.com/

= LATTICE

[W New Project |M1

Project

Project Mame: |

Project Directory: C:\SbiTools\examples\blnky []
Device

Device Family: [iCE40 ']
Device: |LPIK v)
Device Package: [CM121 -
Operating Condition

Ambient Temperature (in degrees Celsius)

Range: Best: Typical: Worst:
Commeraal - | 7

Core Voltage(V)

Voltage Tolerance Range: Best: Typical: Worst:

| #/-5%{datasheet defau = | 1.26 1.2 = 1.1
10Bank Voltage(V)

topBank [2.5 - bottomBank 2.5 -

lefiBank 2.5 ¥| rightBank (25 -

Perform timing analysis based on
Best Typical @/Worst

@ Start From Synthesis
Start From BackEnd
IF Generation

MNext Cancel

Figure 2-2: New Project Setup Wizard for iCE40 Family

This example is targeted for iICE40 family device. Follow the following steps to setup the project
properties.

1. Project Name Field: Specify a project name (quick_start) in the Project Name field.

2. Project Directory Field: Specify any directory where you want to place the project directory
in the Project Directory field.

3. Device Family Fields: This section allows you to specify the Lattice iCE device family you
are targeting. For this example, change the Device Family to iCE40.

4. Device Fields: This section allows you to specify the Lattice device and package you are
targeting. For this example, change the Device to HX1K and change the device package to
the VQ100.

5. Operating Condition Fields: This section allows you to specify the operating conditions of
the device which will be used for timing and power analysis.

iCEcube2 User Guide www.latticesemi.com 13

http://www.latticesemi.com/

= LATTICE

6. Start From Synthesis: This option allows you to start the flow from Synthesis. For current
example, select this option.

7. Start From BackEnd: This option allows you to start from Post Synthesis flow.

After the above selections the New Project GUI Wizard has the following settings as shown in
Figure 2-3.

W New Project L9 [

Project

Project Mame: qucik_start

Project Directory: C:\ShtTools \examples \blinky

Deevice
Device Famiy: .-CE‘IG v]
Device: K x]
Device Package: [VQ100 - |
Operating Condition
Ambient Temperature (in degrees Celsius)
Range: Best: Typical: Worsk:

[cmml ']

Core Voltage(V)
Violtage Tolerance Range: Best: Typical: Worst:
+{-5%{datasheet defau + 1.2% 1.2 - :
I0Bank Voltage(V)
topBank [2.5 - battomBank ;zs -
leftBank 2.5 - rightBank 25 -
Perform timing analysis based on

| Best Typical @ Worst

@ Start From Synthesis
Start From BackEnd
IP Generation

[et][conen

Figure 2-3: Tutorial Project Settings

8. Click Next to go to the Add Files dialog box shown in Figure 2-4. You will be prompted to
create a new project directory. Click Yes.

9. Inthe Add Files dialog box, navigate to: <iCEcube?2 installation directory>/examples/blinky
Highlight the following files:
blinky.vhd
blinky_syn.sdc*

iCEcube2 User Guide www.latticesemi.com 14

http://www.latticesemi.com/

= LATTICE

Select each file and click >> to add the selected file, or click >>> to add all the files in the
open directory (files can be removed using << and <<<) to your project. Click Finish to create
the project.

* The SDC file is a Synopsys constraint file, which contains timing constraint information.

W Add Files (2 [
Files to add
Look in: [C:,.fSbtTooIs,."e)(ampls_-s,.fblink\-I > (kP (&) @ E]
blinky_syn.sdc
T blinky.vhd
- = blinkywvhd -_>>
}&-, || blinky_cm225.pcf
My Computer | blinky_iceblink40_vql00.pcf
— || blinky_iceman65_cb284.pcf ==
! = blinky_syn.sdc
'
Home
File name: blinky. vhd
Files of type: [AII Files{*) V]
[Back] [Einish] [Cancel]

Figure 2-4: Add Files Dialog Box

After successfully setting up your project, you will return to the iCEcube2 Project Navigator
screen shown in Figure 2-5.

iCEcube2 User Guide www.latticesemi.com 15

http://www.latticesemi.com/

= LATTICE

W Lattice KEcube2 - [Dutput = | =
W Rl Yww ko Wirdow Hip _lelx

1 & (&
Frogact Mara: gt _ttwt & Ot
Project
P Pt
Dpen Progect
Cluse Profit
Fynthess Tool
* A Syrihisis Fles

& Clengn Fibes o]
Edinkgeted Synthesis input files are
Constramt Fles
Hlinky_syn.sck now addad to the QFUJEE[
Fun Latics LSE Symbesis
Faparts
PR Flow

Add PBR Filex

e -:-\,rlpnﬂng;
Fapoits
Bimap
Simulation Ratkst
4 DeaceOpershng Condbion
Dgsace [nfio
OeaceFamiy E4D
E‘““m "x;; Device information and
poE e VU7 e~ gperating conditions are
4 Dpssrating Concition now set
Core Wokageds) 114
Temperstyre(C] 83

Figure 2-5: iCECube2 Project Navigator View after Completing Project Setup

Synthesizing the Design

After a successful project setup, select a synthesis tool:

1. Inthe iCEcube2 window, right-click Synthesis Tool and choose Select Synthesis Tools.
The Select Synthesis Tool dialog box opens.

2. Select a tool: Synplify Pro or Lattice LSE.

3. Click OK.
The Run <Tool> Synthesis command changes to show the selected tool.

For this tutorial, select Lattice LSE.

Next, set options for the synthesis tool. Select Tool > Tool Options. In the Tool Options dialog
box, click the tab of the tool. To change the value of an option, either click in its Value cell and
start typing to replace the value or double-click to edit the value or to see a menu of values. In the
Synplif y Pro tab, cl i cthkopennSynplifydro.Wben,dn the Byaplifg Bro window,
click Implementation Options.

For now, do not change any option settings. Click Cancel.

Double-click Run Lattice LSE Synthesis in the project navigator window. See Figure 2-6. This
starts the Lattice Synthesis Engine running. See Figure 2-7.

iCEcube2 User Guide www.latticesemi.com 16

http://www.latticesemi.com/

= LATTICE

W Laiiice KEoube? - [Duipat)
W Al Yew Teodl Wardow Halp

1 ¥
Frogmct Mama: quct_ttact &
& Project
Pl Projiact
Open Project
Closi Profist
* Fyrthesis Tool
&dd Synithisis Flis
[Diesign Files
Elinkg shed
Constramt Fles
Blinky_sym o
[# Fun Lattics L5E Symihesis st
Rapots
P&R Flow

&cid PR Files

I

@ Quiput Fikes
Fapots
Bémap
Simulation hathst
Omace/Opersting Condiion
* Divice Info
Deireramily WEAD
Disdce HiiK
Dedce Packsge VOII0D
Posad Gracka
Cperating Condtion
Core Wolages 114
TempersturaC] 23

Double-click Run
Lattice LSE Synthesis

|

Figure 2-6: Launch Synthesis Tool

Once synthesis is complete, you will see a green checkmark next to the Run Lattice LSE
Synthesis command. The Output tab shows the actions taken along with any warning or error
messages. Scroll down toward the bottom to see the area, clock, and timing reports. See Figure

2-7.

iCEcube2 User Guide

www.latticesemi.com

17

http://www.latticesemi.com/

= LATTICE

W Lattice KEcubed - [Duiput] [E=E=E)

W Rl Yew ol Widow Halp

U@ T4 LCE R
Project Nama: quick_start B x -
s Proied - —
P Projit
Opeen Progect
o Projed
4 Synthens ool
» add Synthisis Fles
& Dengn Files
Einkgxhd
Constrami Fies

& Fun Lattice L5E Syniteses

& PIA Flow SESPEEEEEEETETERELE
o Sl vl Gt ot -
quck_sterladi
Add PER Fles
Fun PR
P imgeont PR Ingen Files
B Funplace

1%
b Genersts itr
Cutput Fikis
Reports
Bitmas
Smulshon et
Dedie/Operaing Condiion
Deare Info
DisdtiFamily KEAD
Oeare HX1E
Disdce Packega VOI00
Poswer Grace
+ Oparating Condiion
| Core Wokagedsy 114
Syt aucossd.

Figure 2-7: Synthesis Run Status

View Timing Constraints

Double Click on the blinky_syn.sdc file under the Constraint Files folder. See Figure 2-8. It will
open the timing constraints for the project shown in Figure 2-9.

iCEcube2 User Guide www.latticesemi.com 18

http://www.latticesemi.com/

= LATTICE

W Lattics KEcube? - [Duipat)

0@ T

|Project Mama: quick_start
Project
Pdiw Projid
Cpeen Progect
€lose Prejed
& Synthens Tool
Add Synihicis Fles
Cengn Fileg
Blinkgehd
Constraim Fles
Biinky_syn.sde =] |
+F Fun Lattios L5E Syntheses
Faports
& PERA Flow
2 o Sedind ol et adi o nopaR -
quick_startadi
F &dd PER Fles
Fun PER
P gt PR Ingant Fles
un Placer
ir

[
[H] erohe B
Culput Fikis
Feport:
Bibmap
Simuistinn Petiist
Dedce/Operaing Condiion
Oeare Info
DisceFamiy
Deace
Disdci Packega
Poswer Grace
Oparating Condiion
Core Wokageds
Synthemin nucomsd.

G

tmap

LE
HX1E
VR And

114

Cpen S0DC file,

leck Gspart FERERETEFETETETESE

Figure 2-8: Open the SDC File to View Timing Constraints

W Laitioe KEcube? - [blnky_smsde]

W Fis Edié Wew Tool Window Haip _ || =
D@ EaEZFEwsCE B B X000 o™ A
|Projuct s quick_tart 8% gt
4 Proget *| f Syropays, Ino. oocnacraine £ile =
Pl Projed O ERT ek g bl Ly - e
t Wrizcar oo Toa
Opeen Progect § by Symplify Bra,
Close Projied
& Synbheus Tool $
A Syrithisis Flis P medtesmiias
& Dengn Files
. H
blﬂl:'.lhd —
Constramt Fles i
dinky_symn.ade Ssfirs clock [CLF_BSOHz} -rems [CZE JSH2} -freg 8330 -olockgroup defsulr_sligroup 0
oF Fun Latfics L5E he Shfird oloti =2iiknls [} LR COTHITR[B]) -ramé (n-Divider co LR COTHTER[8]} =-clockgroup defsolc
e L5E Symibeses Safira_olock -&lsnle ey, COTWTER[40] | -same |=:DTVIDE SIMGE COONTIR(3]} -sloctgroup dafaclc_cl
Faports Ssfira_clock -Sisabls Sz, CODWERA[37]] -same {=:OTVINE_2aMax. COINTIR(37]} -clackgroup defaclc_ol
& PERA Flow Ssfirs_clock [CLE_SSMEHI} -rems [CSE_JSMHI} -freg 35 —clockgroup defanlc alkgmocy 4
o Sl vl Gt o Ao - . o
quick_startedi § Cloak ta Clack
© sdd PER Fles e
Fan PBR I .
P Bt PAR Inpat Fles P P a——
b+ FunPlacer ¥
b FunF .
b sha Ertrmap § Faglazecs
Ouipuk Fikis t
Feports H
Bimas & Dalay Pacha
Simulation Retist f
Disvice/Opiratng Condiion '
DOmare Info 2 Rinsuboed
DisateFamiy KEA £
Deace HX1K i
Disdce Mackaga VQind 8 100 Erancacds
Poswer Grade £
+ Oparating Condition B -
Core Wokages) 104 w| 4 i d ¥

Lnl Coll

iCEcube2 User Guide

Figure 2-9: View Timing Constraints

www.latticesemi.com

19

http://www.latticesemi.com/

= LATTICE

Select Implementation

Double-click on Select Implementation. See Figure 2-10. This will tell iCEcube2 which
synthesis implementation to process for place and route. If you have different synthesis
implementations, you will be able to select the synthesis implementation you wish to place and
route. Since we only have one implementation, select OK when the Select Synthesis
Implementation dialog box appears.

St e tator e b

Please ulect the mplementation as rout 1 PR

Figure 2-10: Select Synthesis Implementation

Importing Physical Constraints

Physical constraints such as pin assignments are stored in a .PCF file (Physical Constraint File).
Add the .PCF file to your project.

In the iCEcube2 Project Navigator, Right Click on Constraint Files. Select Add Fi Bees é
Figure 2-11.

Note: For information on importing physical constraints from iCEcube to iCEcube2, please refer
to the Importing Physical Constraints from iCEcube to iCEcube2 section at the end of this
quick start guide.

iCEcube2 User Guide www.latticesemi.com 20

http://www.latticesemi.com/

= LATTICE

W Siconiiue CEcube - JORST i

\r — oy e

W e View Tool Wodow Help - o)
W e

Progect Name: guck_strt ax oot

« Pregect

New Project

sis Fles
Design Fies
Constrant Fles
o Lunch Synthesis Yool
- PAR Flow
o Select implemertation|quek_s.
+ add PER Files
Design Fies
P Dessgn Fiks
Constras Bonr
Ren A8 Add Fes.
D woonsaR g es

4 Output Fles
Reports
stmap
Simuation Netist
+ Device/Operating Condmon
4 Device ifo
Devicefamly iCE40

Dewce MoK
Devce Package VQ100
Power Grade

Operating Conditica
Core Vokage(V) 114
TemperatreiQ 70

Figure 2-11: Add Constraints Files for Place and Route

Navigate to the <iCEcube2 Installation Directory>/examples/blinky and Add blinky.pcf file. See
Figure 2-12.

- =) |
W Add Files l_?&
: = e Fies to 5d4
Lookn: |C:/SbiToois/exampies/binky »| [0 (O] @] [E) =
: = . blinky_iceblink$0_vql00.pcf
] blinky em225.pcf E
'A blinky,_iceblink40_vql00.pcf]
My Computer blinky_icemant5_cb284 pcf
L i < blinky_synsdc >>>
-' quick_start
Desktop <<
J <<<
Home
Fie name: birky_iceblnk90_vgq100.pcf Detals
Fies of type: | Constrant(.sdc *.ct *ocf *.cb *.mic) 3
Ok | Cancel

Figure 2-12: Add .pcf File

iCEcube2 User Guide www.latticesemi.com 21

http://www.latticesemi.com/

= LATTICE

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click on Import P&R Input

Files in the Project Navigator. See Figure 2-13. Once completed you will see a green check
next to Import P&R Input Files. See Figure 2-14.

W Saconbive Choste? < JOM
— =

- "S-
ot
W Rl Ve ool Windew Melp

v

Promct rewne: 20_star] & x

Figure 2-13: Import P&R Input Files

T .
W otk Yeu ol fhedow
¥ O@=

P N st %

Figure 2-14: Successful Import of P&R Input Files

iCEcube2 User Guide www.latticesemi.com 22

http://www.latticesemi.com/

= LATTICE

Place the Design

Double-click on Run Placer.

Once placement is complete, a green check will appear and the Output window will show
information about the placement of the design. See Figure 2-15.

‘tu.mcl«k:&'l '"‘
e Yo oot Nmbow sty |

¥V O=
Progect N Qach_sta) o x

Information regarding placement
e.g.-Clock Summary
Place Complete e

&=

Figure 2-15: Placer Run Status Display

View Floor Planner

At this point, since placement has been completed, you can view the placement of the design by
opening the Floor Planner. You can open the Floor Planner by going to the menu and selecting
Tool > Floor Planner or you can also select the Floor Planner Icon. See Figure 2-16.

iCEcube2 User Guide www.latticesemi.com 23

http://www.latticesemi.com/

= LATTICE

‘

Floorplanner Icon -

lemetatico
quck started!
queck,start it
4 Add Pas Fhes
Owiign Files
 Desige files
o Comtrane Fles
Dleky_cebiekd_vq100 pef
Fun a8
& Irpont PR Inpet Fles
o Fun Placer
D fum ot

oG Y

R
bt
| o | e | e | e | e | e | e | e

+ Operating Condtion
Corw VoRaget) L4
TenperastoreiC) 0

N . . .

Figure 2-16: Floorplanner View

View the Package View

You can also see how pins were placed for your design by selecting the Package View. You can
select the package viewer by going to the menu and selecting Tool > Package View or you can
also select the Package View Icon. See Figure 2-17.

W fde S Yew Joo Yedow Lep =i
D BHABELCE B o~ aus-a[F .
[Project Name: quck _start & x Ot Focr Planner. Package View
+ project Pert &% Packsge P Legend &%
New Project Name Drection QO o
Open Project OO, Okt 0 % 9 % % o 9 : " ; ® plofen
Clote Project PMOD_BIR... Output oomNeOoOOONOOONOO® GO0O0OOOWMN © SPLSVSPL SIS SCK/SPL 55 8
+ Synthesss Tool PMOD_BIR.. Output ® Bank 0 = L
+ Add Synthesis Fles PMOD_BIE... Output ® o W vee
Design Fles PMOO_BIT.. Output W vCa0/V00K0 591
Consrabt Fiés PMOO_BIE.. Output @ O COONE/CRESET_B/DRESET B
o Launch Symthesis Tool :“:;‘9}‘“ Output [2 O 1 veervooe
+ P8R Fow 8 e n O
o o Select Implmestation(quick 5. :“':‘\’\::‘ o :::‘" B |
Quick_start.ed! | wea [O
quick startsct MK gt @ O ¢
4 Add PAR Fles B et
Design Fies ° n
1 Design Fies ® O
4 Coastraies Files | O
blinky_jceblink40_vq100.pef @ O ¢
Run Al @ Bark 3 Bark 1@
o Impont PAR Input Fies = @
o Run Placer ® y
D Run Router B
> S04 @ O
+ Oupet Files 2
Reports @ 3
Btmap @ O
Simutation Netsst
4 Device/Operating Condition g :
 Device Info
Oeviceamdy KEQ L)
Device HX1K .
Device Package VQI00 | Workd View LR O O
Power Grade eiiemsevemms e, © Bank 2 @
+ Opteatng Conditon folelolole] | [215] [e16] | [eleleimIMior-] [o1] |
Core Vortage(V) 1.14 - ‘ .
Temperatie(©) 70 l
i iCE40HX1K - VQ100
I——-————»-——-

Figure 2-17: Package View
Route the Design

iCEcube2 User Guide www.latticesemi.com 24

http://www.latticesemi.com/

= LATTICE

Double-click on Run Router in the project navigation window. Place and Route have been
separated into different steps as to allow you to re-route the design after making placement
modifications in the floor planner without having to re-run the placer.

Perform Static Timing Analysis

Now that you have routed the design, you can perform timing analysis to check to see if the
design meets your timing requirements. To launch the timing analyzer, go to the menu and
select Tool > Timing Analysis. You can also select the Timing Analysis Icon. See Figure 2-18.

[sconbive ifcubad - FlocePlan
W bl Vew Jool Wedow Help 100
@ T8 ‘LI‘C\E—Timing Analysis lcon
Jroect Name: quch_star? -] Qv Fiow Parnes Facage Yew ceiess_shiae Frang Anafyzer
2 Piegect
Hew Project ok Summary| |Cock Relwiorshg ey | Dalashest | | Arwiror Patfs T Cormur | |Gererate: brung report andudf | Full Sreen Hode:
Opsn Pr opt
Chise Project 3
P e— e Sy St Customre Cobmrs
* Add Synthesis Fles Clowke Mame Wostst Slackip) FRAXIMHI) Target FrequesscyMHI) Failing Fath #
Ousign Fles 1 CLE_IHE 40T ET) 083 0
Congiramt Fles
o Lisnch Synthesis Tosl CLEIMHZ 2753 m* 0
4 PAR Flow — .
4 o Sabect Imphemantation/quick 5. B« il g "
LR LT i gl s w4 "
quick_itarticf
4 Add PAR Filles
Dusign Filks
[P Desagn Filgs
4 Constrant Fles
biliicy_joetlinka0 w100 pof
Run Al
o Import PER Input Files
o Bun Hacer
o Fun Router (=== o8
[Generate Brmag ol Pl Save Summary| | Save Detal St | [Cusiomize Cokus
< Output Fles -
Feports Seait Pt End Pt Saek Delay Shew Lawesch Clock Captue Clotk
Rimap 1 Drideto e Dividerte IMe. JLNMTZ 1847 [CLK_3HER CLK_IIKHzR
Sat 0 Mgty
4 Device/Operating Coadiion
Dwwice Info
Diigefamily B0
Dnde HYIE
Devite Package V100
Power Grade
Qperabng Condilion
Core Vetagen] 114
Temperatur e (] nm
Lal Call

Figure 2-18: Timing Analysis Summary

You can see from the timing analysis that our 32-kHz design is running at over 395 MHz and our
32-MHz clock is running at over 222 MHz (worst case timing). If we were not meeting timing, the
timing analyzer would allow you to see your failing paths and do a more in-depth analysis. For
this tutorial, we wondét go into details on t

Perform Power Analysis

iCEcube?2 also comes with power estimator tool. To launch the power estimator, go to the menu
and select Tool > Power Estimator. You can alternatively select the power estimator icon.
There are multiple tabs in the Power Estimator tool including Summary, 10, and Clock Domain as
shown in Figure 2-19. On the Summary tab, change the Core Vdd to 1.2V and make sure all IO
voltages are at 2.5V. Then hit Calculate. The estimator will update with power information for
both static and dynamic power. For more information on using the IO and Clock Domain tabs,
please refer to the detailed section on the Power Estimator tool.

iCEcube2 User Guide www.latticesemi.com 25

mi

ng

s |

C

http://www.latticesemi.com/

= LATTICE

-
™ Power Estimator

SUmmary | 10 | Clock Domain |

Core Vdd{V}: Dynamic Power Breakdown

10 voltage Core Power(mW): 2.11817
Left Bank 10 Voltage(V): [2.5 - 10 Power(mW): |4.25
Right Bank 10 Voltage(V): [2.5 - Power Consumption
Static Power(mW): 0.3204
Top Bank 10 Voltage(V):
Dynamic Power(mW): 6,36317
Bottom Bank 10 Voltage(V): |2.5 -

Total Power(mW): 6.68857

Close

coe] |

Figure 2-19: Power Estimator

Programming the Device

In order to program a device, you will need to generate a programming file. In the project

navigator, double click on Generate Bitmap.

You are now ready to program an iCE40 device with the generated bitmap.

Start the stand-alone Diamond Programmer. In Windows, from the Start menu, choose Lattice

Diamond Programmer <version_number> > Diamond Programmer.

The Diamond Programmer Getting Started dialog box appears, as shown in Figure 2-20.

i Diamond Programmer - Getting Started @Iﬂ—hj

Select an Action

@ Create a new project from a scan

Cable: [HW-USBN-2A ~ | port: [E2UsB-0 v| | Detect Cable

(7) Create a new blank project
(7) Open an existing programmer project

C:fmachxo2_design/disp_mux_evalftest3/impl/zynplifyfctrl_board_demafimpl1/impl 1. xcf

[oK] [Cancel

Figure 2-20 : Getting Started Dialog Box

Choose Create a New Project from a Scan button and click OK. The Diamond

Programmer

main window appears. In the Cable Settings box in the upper right, click Detect Cable.

iCEcube2 User Guide www.latticesemi.com

26

http://www.latticesemi.com/

= LATTICE

Diamond Programmer will indicate in the bottom output tab that the Lattice HW-USBN-2A USB
in

shown

programming cable was detected, as
4.} Diamond Programmer - Untitled * =] B [
File Edit View Design Help
S ®
Enable Status Device Family Device Operation File Name Cable Settings L&

1 Generic JTAG Device JTAG-NOP Bypass
cable:
Custom port (HEX): i

1/O Settings

< mm

© Use default 1/O settings
©) Use custom T/O settings
INITN pin connected

DONE pin

Output

INFO - Scanning USB Port EzUSB-0...
Failed to scan board.

ERROR - Scan Failed - Creating Blank Programmer Project.

Cable Auto Detection Activated.
No Lattice HW-DLN-3C (parallel) cable detected.
Cable detected message in

Lattice HW-USBN-2A cable detected.
Programmer output tab

No Board with FTDI USB Host Chip detected.

INFO - Detected HW-USBN-2A cable at port E2USB-0

Output | Td Console

Ready

2-21.

4.t Diamond Programmer - Untitled *

File Help

Edit

View Design
Er
@

Device Family Device Operation File Name

JTAG-NOP Bypass

Generic JTAG Device

< I

Cable Settings

Detect Cable

cae:
Port: E2USB-0 2

2| Custom port (HEX):
&
o | 1/0settings
g © Use default 1/O settings
3 Use custom I/O settings
Il
INITN pir ted
DONE pin c

Output

Figure

INFO - Scanning USB Port EzZUSB-0...
Failed to scan board.

ERROR - Scan Failed - Creating Blank Programmer Project.

Cable Auto Detection Activated.

No Lattice HW-DLN-3C (parallel) cable detected.
Cable detected message in

Lattice HW-USBN-2A cable detected.
Programmer output tab

No Board with FTDI USB Host Chip detected.

INFO - Detected HW-USBN-2A cable at port E2USB-0

Td Console

| output
Ready

Figure 2-21 : Diamond Programmer Main

Window

In the Device Family field, click the Generic JTAG Device box and choose iCE40 from the drop-

down menu, as shown in Figure 2-22 .

iCEcube2 User Guide www.latticesemi.com

27

http://www.latticesemi.com/

4. Diamond Programmer - Untitled

File Edit View Design Help
SeEd BREG RS
Enable Status Device Family Device Operation File Name Cable Settings =
l 1 Generic JTAG Device ~ | JTAG-NOP Bypass Detect Cable
Generic JTAG Device -
MachXO3L l:l Cable: HW-USBN-2A -
iCE40_ENG Port: EzUSB-0 -
ICE40LM ” E
Platform Manager 2 & custom port (HEX):
sC Z
LatticeECP4UM w
LatticeECP4U g | (e setins
(O — E| @ Use default 10 settings
2| © Use custom 1O settings
3
INITM pin connected
DONE pin cannected
TRST pin connected
@ SetTRST high
ol i <
Output
INFO - Scanning USB Port EzUSE-0...
Failed to scan board.
ERROR - Scan Falled - Creating Blank Programmer Project. M
Cable Auto Detection Activated.
No Lattice HW-DLN-3C (parallel) cable detected.
Lattice HW-USBN-2A cable detected. E
Mo Board with FTDI USB Host Chip detected.
il
| INFO - Detected HW-USBN-2A cable at port EzUSB-0
Output | Td Console
Ready

Figure 2-22: Choosing iCE40 Device Family

In the Device column, choose iCE40HX1K from the drop-down menu, as shown in Figure 2-23.

[+ i Diamond Programmer - Untitled

File Edit View Design Help
el)= BEE R G
Enable Status Device Family Device Operation File Name Cable Settings |
1 iCE40 CE40HX 1K > | Fast Program Detect Cable
ICE40LP1K_SWG16
ICE40LP&40_SWG16 Cable: HW-USBN-24 A
iCE40LP334
ICE40LP 1K Port: EzUSE-0 b
ICE40LPAK B custom port (HEX):
ICE40HN 4 3
ICE40LPBK w "
ICE40HXEK g| Uosettings
E se default /0 settings
,%; ise custom 1/0 settings
G
INITN pin connected
DONE pin connected
TRST pin connected
@ Set TRST high
4 i -

Output

INFO - Scanning USE Port EzUSB-0...
Failed to scan board.

ERROR - 5can Failed - Creating Blank Programmer Project.
Cable Auto Detection Activated.

No Lattice HW-DLN-3C (parallel) cable detected.
Lattice HW-USBN-2A cable detected.
Mo Board with FTDI USE Host Chip detected.

|
Ii| INFO - Detected HW-USBN-24 cable at port EzUSB-0

m

Output | Td Console

Ready

Figure 2-23 : Choosing iCE40HX1K Device

There are three basic programming flows for configuring the iCE40 device. This section explains
programming iCE40 device using an external SPI Flash device available in iCEblink40-HX1K

evaluation board.

iCEcube2 User Guide

www.latticesemi.com

28

http://www.latticesemi.com/

= LATTICE

Choose Edit > Device Properties, or double-click the Operation box to display the Device
Properties dialog box, as shown in Figure 2-24.

In the Device Properties dialog box, set options as follows:

1 Access Mode: SPI Flash Programming
1 Operation: SPI Flash Erease,Program,Verify

In the Programming File box, browse to the .hex file you generated with iCEcube2.

In the SPI Flash Options box, choose the following options:

1 Family :SPI Serial Flash
1 Vendor :STMicro
M Device :SPI-M25P 10-A

1 Package : 8-pin SOIC

The Device Properties dialog box should be configured as shown in Figure 2-24. In the Device
Properties dialog box, click OK.

T | -S|

4.k ICE4D - iICE40HX 1K - Device Properties

Device Operation

Access mode: lSF'I Flash Programming - I

Operation: |SPI Flash Erase,Program,verify ~ |

Programming Options

Programming file: Jick_start_Impimntfsbtfoutputs/bitmap/ficeblink<40_demo_bitmap.hex 7

Device Options

|| Reinitialize part on program error

SPI Flash Options

Farmily: [sPI Serial Flash -
vendor: lSI'Micro -]
Device: [sPI-M25P10-a -
Package: [8-pin sOIC -

SPI Programming
Data file size (Bytes): 32303
Start address {(Hex):

End address {Hex):

Load from File

[oxoo000000

[ox00o08000

=

[] Erase SPI part on programming error

Secure S5F1 flash golden pattern

="

Cancel I

Figure 2-24 : Device Properties Dialog Box

In the Diamond Programmer main window, choose Design > Program, or click the Program icon
in the toolbar, as shown in Figure 2-25. Once the SPI Flash is programmed, the output tab in the
lower left portion of Diamond Programmer indicates Operation successful.

iCEcube2 User Guide www.latticesemi.com 29

http://www.latticesemi.com/

= LATTICE

4.} Diamond Programmer - Untitled * iel=le S

File Edit View Design Help

Pmd e es e e@

Device Operatl File Name File Date| Cable Settings &
1 iCEAOHXIK SP1FIa ntfsbt/outputs bitmapjiceblink40_demo_bitmap. hex 3/13 14: [@
Program icon g FRERRAIER S |
g_ 1/O Settings
Té @ Use default I/O settings
2| (O Use custom 1O settings
S
« G r :) S o Il
Output
Disabing... =
Verifying...
Finalizing.

Execution tme: 00 min ; 02 sec

Operation Done. No E .
peration bone. o Brror Qutput tab showing

Elapsed time: 00 min : DZSE;/ Operation sucessful
Operation: successful.

Cutput | Td Console

Ready

T

Figure 2-25: Program the device.

The external SPI Flash on the Lattice iCEblink40-HX1K evaluation board has been programmed,
and the iICE40 is configured from the SPI flash.

Addendum:

Importing Physical Constraints from iCEcube to iCEcube2

For users who have created physical constraints using iCEcube, this section describes how to
import and convert those constraints for use in iCEcube2. This section will demonstrate how to
import a .MTCL file from iCEcube and save it into .PCF format used in iCEcube2.

In the iCEcube2 project navigator, Right-click on Constraint Files and select Add Files. See
Figure 2-26.

iCEcube2 User Guide www.latticesemi.com 30

http://www.latticesemi.com/

= LATTICE

|
WNEN SEMICONDUCTOR.

[Fun Placer
[Run Router
[Genecate Bamap
4 Output Files.
Répats
f Bmag
Semulation Metks
4 Deace/Operatag Conditica
Device Info
Devicefamily iCE40
Deiice 1K
Device Package VQI00
Power Grade
4 Operating Condition
| Core Voltageny] 114
WemperatareiC) 70

(=

Figure 2-26: Add Constraint File

Navigate to the <iCEcube2 Installation Directory>/examples/blinky and Add blinky.mtcl file. See

Figure 2-27.

% Add Files
Look in: |C:,I'Sthools,l'examples,l'blinky Iv;| 0 O @
i EI Blinky. pcf
3 n blinky_constraints .mkcl
4| Blinky_syn.sde
My Computer I quick_start
Desktop
Home
File namne: |b|inky_c0nstraints.mtc| |

Files of type: |Constraint(*.sdc * scf *,pcf *.clb *.mtcl)

]

Files to add

P

]

<<

<

Dretails

[ok

][Canicel J

iCEcube2 User Guide

www.latticesemi.com

Figure 2-27: Add .mtcl File

31

http://www.latticesemi.com/

= LATTICE

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click on Import P&R Input
Files in the Project Navigator. See Figure 2-28. Once importing of files completed you will see a

green check next to Import P&R Input Files. See Figure 2-29.

0 SiliconBlue iCEcube2 - [Dutput]

W Fle View Tool Window Hep

P2 EEL K

Project Mame: quick_start

[=-Project
Mew Project
Open Project
Close Project
= Synthesis Tool
(= Add Synthesis Files
= Design Files
bilinky.whid
= Constraint Files
bilinky_syn.sdc
o Launch Synthesis Toal
E-P&R Flow
= o Select Implementation(quick_sta...
quick_start.edf
quick_start.scf
= Add PAR Files
Design Files
IF Design Files
= Constraint Files
bilinky_constraints. rtcl
Run Al
B Irnport PRR Input Files
Run Placer

Oukput

B

- ax

|> Run Router ‘Dnuh\e click to Import PRR Input Fllesh

|> Generate Bitmap
= Cutput Files
Reports
Bitmap
Sirnulation Metlist
(= Device/Operating Conditian
= Device Infio
DeviceFarmily ICEGS
Device Lo4
Device Package CB284
Power Grace L
- Operating Condition
Core Yoltaga(y) 114
Termperature(C) 70

Figure 2-28: Double-Clock on Import P&R Input Files

iCEcube2 User Guide

www.latticesemi.com

32

http://www.latticesemi.com/

= LATTICE

0 SiliconBlue iCEcube? - [Output]

W Fle View Tool Window Help

@og

- 8 %

Mewi Project
Open Project
Close Project
= Syrithesis Toal
= Add Synthesis Files
= Design Files
blinky. vhd
= Constraint Files
blinky_syn.sdc
o Launch Synthesis Toaol
(= P&R Flow
= o Select Implementation(guick_sta...
quick_start.edf
quick_start.scf
& Add PER Files
Design Files
1P Design Files
[= Constraint Files
blinky_constrairts, rtcl
Run &ll
o Irmport PRR Input Files
B Rur Placer
Run Router
[» Gererate Bitmap
= Output Files
Reports
Bitmap
Simulation Metlist
(= Device,/Operating Condition

Dy ©#E oY ®
Project Kame: quick_start & X ot
[Project -~

=-Device Info
DeviceFamily ICESS
Device: L04
Device Package CB294
Power Grade L

= Operating Conditian 4
Core Voltagedv) 114
Temperature(C) 70 b

"C:/8ETools_Mayl72011_Trunk/sht_backend/binfwin3Z/optiedifparser.exe” "C:)8BTools Mayl72011_Trunkisbt_backend|devices\ICES. dev"
“C:/SbtTools/exauples/blinky/quick_start/quick_start_Iuplont/quick_start.edf *
"C:/SbtTools/exanples /blinky/quick start/quick_start_Implunt)shbtinetlist" "-pCEZ84" "-

ne: /SbnTonls/exauples hlinky/hlinky constraincs wncl® —o

§iliconBlue Tech Edif Parser

Release: Z011.08. 16214

Euild Date: May 17 2011 11:54:40

Parsing edif file: C:/ShtTools/examples/blinky/euick_start/quick_start_Inplunt/gquick_start. edf. ..

Parsing constraint file: C:/ShtTools/examples/blinky/blinky constraints. meel.. .

Srored edif neclist ar C:/ShtTools/exemples/blinky/quick_stare/quick_scart_Impluneishtinetlistioadb-icetest. .
sdo_reader OK C:/8brTools/exauples/blinky/quick_start/quick_stere_Tmplmnc/quick_stert.scf

write Timing Constraint to C:/8btTools/examples/blinky/quick_start/quick_start_Inpluntisbt/Tenp/sbt_tenp.sdc

EDIF Parser succeeded
Top module is: icetest

EDF Parser run-time: 1 (sec)

edif parser succesd.

Figure 2-29: Successful Import of P & R Input Files

Saving Physical Constraints into .pcf Format

Open the Pin Constraints Editor by going to the menu and selecting Tool > Pin Constraints
Editor or you can also select the Pin Constraints Editor Icon. See Figure 2-30. You will see a list
of pin assignments that are locked under the locked column. Uncheck and Recheck one of the
pins under the locked column. The save icon will now become an active icon. Click on the
Save physical constraints icon. This will bring up a dialog box where you can save the PCF
file. Hit OK. See Figure 2-31. The .PCF file contains physical constraints in the design used for
place and route.

iCEcube2 User Guide www.latticesemi.com 33

http://www.latticesemi.com/

« LATTICE

n Constraints Editor]

W Fle Edt View Window Help . . g X
= = — <~ SavePhysical Constraints
Dg EEsCH D T
Froject Name: quick_staf 8 x Output | Fin Constraints Editor
= Project Lo’ Obiject List Type Pin Location Bank 10 Standard Pull Up ~
MNew Project § 1
openProject Pin Constraints |* MOD_B3T_139[1] output M7 Left
Close Project
= Synthesis Tool EditorIcon H PRD_B37_1392] output [Left
= Add Synthesis Files
= Design Flles 3 FMOD_B3T_IFB Output 7 Left
Blinky.vhd 4 PMOD_B3T_139[4 Output 5 Left
& Constraint Flles Bl oot Uncheck and Técheck Focked Box
blinky_syn.sdc 5 PMOD_B2R_130[1] Qutput van Bottom
o Launch Synthesis Tool
= PER Flow & PMOD_B2R_130[2] Qutput Vg Battom
= o Select Implementationiquick _sta...
quick_start.edf 7 PMOD_B2R_130[3] output 19 Bottom
quick_start.scf
= &dd PER Files 8 PMOD_B2R_130[4] output V17 Bottom
Design Files
TP Design Files] FMOD_BOR_J13[1] Output Hi4 Top
= Constraint Files
blinky_constraints. micl 10 PMOD_BOR_113[2] output c14 Top £
?;"Ifﬂ‘:)m PER Input Files 11 PMOD_BOR_113[3] output c1s Top
Ea: ;E:gr 12 PMOD_BOR_J13[4] Sutput cie Top
[> Generate Bitmap 13 PMOD_B38_J38(1] Output 3 Left
= Output Files
Reports 14 PMOD_B3B_138[2] Qutput u3 Left
Bitmap
Simulation Netlist 15 PMOD_B3B_138[3] Gutput i Left
= DeviceOperating Condition
& Device Info 16 PMOD_B3B_J38(4] output v3 Left
DeviceFamily iCEBS
Device 04 17 PMOD_BLT_J20[1] output D20 Right
Device Package CB284
Power Grade L 18 FMOD_BLT_J20[2) Output G20 Right
= Opeéz:g%_jg;;s; 114 19 PMOD_BLT_J20(3] output F13 Right
Temperature(C) 70 el - . N el

Phwsical constraints File:

Phywsical constrainks save as

Figure 2-30: Pin Constraints Editor

|:T1:u:u|s'l,examples'l,l:ulinky'|,|:||.|il:k_starI:'I,quil:k_starl:_ImpImnt'l,sbt'l,c-:unstraint'l,icetest J:":F_Sbt.pl:l:| E]

Ok H Cancel]

iCEcube2 User Guide

www.latticesemi.com

Figure 2-31: Save Physical Constraints File

34

http://www.latticesemi.com/

HLATTICE

SE

Chapter 3 iCEcube2 Project Setup and Navigation

Introduction

This chapter describes the features of the iCEcube2 Project Manager and how to set up a design
Project. The primary functions of the Project Manager include project setup, launching the Lattice
Synthesis Engine (LSE) or Synplify pro for synthesis, placing and routing the design, launching
the Aldec Active-HDL for simulation and launching the software required to Program the target
device.

This chapter assumes that the reader is familiar with the New Project creation process as
described in Chapter 2 Quick Start.

Project Manager GUI

Figure 3-1 below displays the Project Manager GUI. A new project can be opened by clicking on
the New Project icon or the File > New Project menu item. Similarly, an existing project can be
opened or closed using the Open Project and Close Project icons.

W Lattice iCEcube2

File View Tool ‘Window Help

PR

Design F X
=iProject
- Mewr Project

- (Open Proje
= Synthesis Taol
(= 4dd Synthesis Files

- Design Files

“ Constraint Files
[P Run LSE Synthesis
- Reports
= P& Flow
-~ Select Implerentation
[#-4dd PBR Files
-RuUn PR

E Irnport PER Input Files

Run Placer
Run Router
(Generate Bitmap
- IP Exporter
(= Output Files
- Reparts
- Bitrnap
- Simulation Metlist
(= Device/Operating Condition
= Davice Infa
- - DeviceFamily

Figure 3-1: iCEcube2 Project Flow Manager

Adding/Deleting Design and Constraint Files

Design and Constraint files can be added or removed from the project by selecting Design Files
or Constraint Files respectively as displayed in Figure 3-2.

iCEcube2 User Guide www.latticesemi.com 35

http://www.latticesemi.com/

= LATTICE

W Lattice iCEcube? - [Output]

B AE)

Project Mame: quick_start:

W File View Tool Window Help

" [3 Eﬂ
L . |

ﬁlx|

= Project
Mew Project
Open Project
Close Project
= Synthesis Tool
(= &dd Synthesis Files
=)
blirky.vhd
(= Constraint Files
blirky_syn.sdc

Reports
= PER Flow

Add PER Files
Fun PER
[Import PER Input Files
FLn Flacer
[Run Router
|> Generate Bitmap
- Output Files
Reports
Bitrmap
Simulation hetlist
= Device,/Operating Condition
[Device Info

[» Run Lattice LSE Synthesis

[select Implementation guick_...

DeviceFarnily iCE40
Device LPEK
Device Package CM225

CQukput

Remove Files. ..

e

Project Directory is C:%iCEcubez\tutoriallquick start

Figure 3-2 : Adding/Removing Design Files to the design project

Deleting a specific file can be accomplished by selecting the file hame and clicking the right-
button on the mouse. Figure 3-3 below displays the state of the GUI upon clicking the mouse

button.

? Lattice iCEcube? - [Output]

T File Wiew Tool Wwindow

PN 4K k=

Praject Mame: quick_start

Help

a1 A

g X

= Project
MNews Project
Cpen Project
Close Project
= Synthesis Tool
= &dd Synthesis Files
= Design Files
blinky.vhd

Reports
=+ P&R. Flowy

B Select Irmplementationiquick_. .
Add PER Files

Cukpuk

Project Directory is CibviCEcubed'tutorialboquick astart

Figure 3-3: Removing Files from the design project

iCEcube2 User Guide

www.latticesemi.com

36

http://www.latticesemi.com/

= LATTICE

Selecting Synthesis Tool and Setting synthesis Options

The iCEcube2 software supports Synplify-pro synthesis tool and Lattice Synthesis tool (LSE) to
synthesis the design. In order to change the synthesis tool, click right-mouse button on
fSynthesis Toold i tem and select théFigweBthesi s tool as shown

¥ Lattice iCEcube? - [Output]

W File View Tool ‘window Help

D cHE L & =N

Project Mame: quick_skark (=4

2k

= Project

Mew Project
Open Project
Close Project

Project Directory is C:%sbtTools' tut
"E:hinstallbVApr Z6_ 2013 1303%1lscchyi
Copwright (C) 1992-2013 Lattice Semi
Information : Using arcuments of syr
tuntime 1751230315 seconds
[lementation quick_start_ 1

b 101
= Add Synithesis Files
Design Files
Constraint Files
[Run Synplify Pro Synthesis
Reports
[=H PER Flaw
[» Select Implermentationiguick_...
Add PER Files
Fun FER
[Irnport PER Input Files
[Run Placer
[Run Router
|> Generate Bitmap
= Output Files
Reports
Bitrmap
Simulation Metlist
= Device /Operating Condition

Figure 3-4 : Select Synthesis Tool

¥ Select Synthesis Tool

Swnkthesis Tools:
) Synplify Pro
(&) Laktice LSE

F .

| iOK ! | Cancel

Figure 3-5: Synthesis Tool Selection Wizard

To set the LSE synthesis tool options, c right-kmouBed butt on ABE Synthesisd Rai
shown in Figure 3-6.

iCEcube2 User Guide www.latticesemi.com 37

http://www.latticesemi.com/

= LATTICE

SettheL S E

To set the Synplify-P r o

Pro
thewor d

iCEcube2 User Guide

¥ Lattice iCEcubeZ - [Output]

W File

D T4l &

Project Mame: quick_start

Wiew Tool wWindow

Help

o JHA

B X

=+ Project
MNew Project
Open Project
Close Project
= Synthesis Tool
= Add Synthesis Files
Design Files
Corstraint Files
» Fun Lattice LS
Reports
= P&R Flow

Project Din
"E:%installl
Copyright |1
Information
SJynthesis o
Current Imp.

Cptions ... |

[» sSelect Implermentationiguick_...

Figure 3-6 : Open LSE Tool Options Wizard

tool options

and

cl

ck on

i OK O

Synplify Pro LSE Placer Router EBitmap Floor Planner Texk Editor
karne Twpe value B>
1 Use I Regiskers Lisk Auko
b= Use IO Inserkion TIF True
3 Use Carry Chain TIF True
4 | Top-Lewvel Unit Texk blinky_top|
= Target Frequency (MHz) Furn 200
& Resource Sharing TIF True
7 Fesalve Mixed Drivers TIF False
& Remowe Duplicate Registers TIF True
=} R Check on RAM TIF Fal=e
10 ROM Skyle Lisk Auko
11 RAM Stvle Lisk Auko
12 Propagate Constants TIF True
13 | Optimization Goal Lisk Area
14 | Mumber of Critical Paths Mum 3
15 Memory Initial Yalue File Search Path | Dir B
16 Max Fanout Limik RMurn 10000
17 Intermediate File Dump TIF True
15 Fix Gated Clocks TIF True =
. ——na i ot A "
I Ok] [Cancel]

Sy nitem.eTshiisso wi | |

Figure 3-7 : LSE tool options wizard

synt hesi s

pop
fi hopen ehé Symplify-Pro GUI.

t eghittmowspdt | owntst, o nc | a rc kt Hie

up

www.latticesemi.com

button

t

(0]

i R

t heintii&ypfi plOipfty oRis @0 wi

38

save
un S
albr d¢

http://www.latticesemi.com/

= LATTICE

Tool Options b4

ES';.-'aniF'y' P"'35| LSE " Placer || Router " Bitmap " Floor Planner || Text Editar |
Tao set Swnplify Pro option

o | o]

Figure 3-8: Invoke Synplify-Pro GUI

Inthe Synplify-Pr o wi ndow, Sel ect i lsethe ®ohatiohsaandisaver Retupt i ons O
the Synplify synthesis.

T File Edt View Project Import Run Analysis HDL-dnalyst Options Window Wb Hel DBk
YdDROEIRDPARR LT IITHMEA03,00 K allb
MHSET: e o

¥ Implementation Options - quick_start_syn : quick_start_Implmnt ‘E|E|

Implementations:

] Ru n Device | Options = Corsfraints | Implementation Resuts | Timing Report | YHOL | GZC | Place and Route
quiick_start_Implmnt Search SolvNet
—1 Technalogy. Fart Package:
s
5 pen Project.. | Latice ice4n +| [iceaorick +| [vquoo -
B Close Project
Device Mapping Options
|4 Acd File... quick_start_Implmnt
|% Change Fike... ‘ Option ‘alue & 1
4 acd Implementation... Update Compile Point Timing Data 1
r] 0
g4 Trplermentaton Optiore.ny Read Write Check on RAM O 1
annotated Properties for Analyst [QD)
BR 4dd PER Implementation -
Resalve Mixed Drivers O -
&, Wiew Log L
Fraquency (MHz): Click on an option for description Memory |Date/Time
4/6/203
& Autn Const, @) 2:15:12 PM @

System Designer Board Fils
l I(-]

p— e

B quick_start_syn.prj

. =

TCL Script | Messages

I =28 x 5@
Figure 3-9: Set Implementation Options

iCEcube2 User Guide www.latticesemi.com 39

http://www.latticesemi.com/

= LATTICE

Selecting the Target Device and Operating Conditions

The iCEcube2 software provides the ability to specify the operating conditions for the target
device. In order to change the Target Family, Device and/or the Operating Conditions, click the
right-button on the mouse, in the Device/Operating Condition window to display the Edit
action. This is shown in Figure 3-10.

= Devicefogeratinﬁ Condition

=
DeviceFamily icE40 | |
Device H 1k
Device Package %0100
Power Grade

= Operating Condition
Core Voltage) 114
Temperature(Cy 85

Edit Device COptions

Figure 3-10 : Modifying the Device Selection/Operating Conditions

Device options wizard is shown in Figure 3-11.

) Device Options

Device

Devece erity: (I
Device: |H><1K v|
Device Package: |VQIDD v|

Operating Condition

Junction Temperature (jin degrees Celsius)

Range: Best: Typical: ‘warst:
|C0mmercial V| |D | |25 | |85
Core Yoltageiy)
volkage Tolerance Range: Best: Typical: ‘Worst:
[+/-5%(datashest defaul v [1.2 | [tz v [1.14 |
ICEBank voltagely)
topBank 25 R battomBank 25 R
leftBank 25 R rightBank 25 R

Perform timing analysis based on

OBest

OTypical

[Ok H Cancel]

Figure 3-11: Device Options for iCE40 Family

In order to specify a suitable target Device, the following steps need to be performed:

iCEcube2 User Guide www.latticesemi.com 40

http://www.latticesemi.com/

= LATTICE

1. Specify a Device Family

2. Specify a Device using the drop-down menu

3. Select a suitable Device Package for the device selected in the previous step
Specifying the Operating Conditions for the target device involves the following steps:
1. Junction Temperature

a. Select an appropriate Junction Temperature Range from the options available.
Depending on the Power Grade selected for the target device, the software provides
built-in options such as Commercial and Industrial temperature ranges.

b. | f the deviceds operating c o0 n €aontmieraial sor tldeo not f al
Industrial temperature ranges, the software also permits the user to specify a
customized junction temperature. This is accomplished by selecting the Custom option,
and manually specifying the Best, Typical and Worst Case junction temperatures.

2. Core Voltage: Select a Voltage Tolerance Range from the provided options.

3. 10 Bank Voltage: This option is available only for iCE40 family as shown in Figure 3-11.
Select a bank voltage from the provided options for the top, bottom, left, right banks. The
specified 10 Voltage values are used by Power Estimator and Static Timing Analysis tools.

In order for Static Timing Analysis to be performed at the desired Operating Conditions, the
software provides the ability to select the Best Case, Typical Case or Worst Case conditions.

Output Window

The iCEcube2 Project Flow Manager software provides an Output Window to display messages,
warnings and errors.

Simulation Wizard

The iCEcube2 windows software installs Aldec Active-HDL, a windows based simulator tool to

perform functional and timing verification of the i m
the project navigator allows the user to create a simulation project for Aldec Active-HDL, select

the simulation netlist, simulation language and invokes the Aldec Active-HDL interface.

Select Active-HDL i con to invoke the @ASi Fgutea3tl2 Refer Wi zar do as
¢ h a p Simulating Design with ALDEC Active-HDLO f or more details about si mul
simulation steps with Aldec Active-HDL.

iCEcube2 User Guide www.latticesemi.com 41

http://www.latticesemi.com/

= LATTICE

U SiliconBlue iCEcube? : counter - [Output]
W Fle Wew Tool Window Hep

ks -. '-?e‘xw»a_
Project Name: counter (-4

= Project
New Project
Cpen Project
Close Project
= Synthesks Tool
= Add Synithesis Files
= Design Files
countervhd
¥ Emnmmm is Tool L Simulation Wizard
= PBR Flow
D> Select Implementation(counte
Add PER Files

PIX

Enter a name For your simulation praject and specify a directory where the project E
\ file: will be stored.

Simulation Project Name

Project name: |counter_rt|sim |

Praoject location: |C:'gtutorial'l,countar'l,aldec | E]

=

Figure 3-12 : Invoking Simulation Wizard.

PLL Module Generator

Certain devices of the iCE40 family include a Phase Lock Loop (PLL) function. The PLL function
requires configuration before it can be used in a design. To help configure the PLL, the iCEcube2
Project Flow Manager includes a PLL Module Generator, which can be launched from the Tool >
Configure > Configure PLL Module menu item, as displayed in Figure 3-13.

iCEcube2 User Guide www.latticesemi.com

42

http://www.latticesemi.com/

BLATTICE

% Lattice iCEcube 2

File Wigw

Tonol|

Window Help

'.;_3 Timing Constrainks Editor

d8 Pin Constraints Editor

“% Power Estimator

: Programmer ...

22 Floar Planner

Package Yiew

&

Zenerate Simulation Metlist
Tirming Analysis
PLL Parameter Editor

Configure PLL Module ...

Yiew Report

Run all Chrl+A
Run 2vnplify+P+R,
Run Ta ...

Tool Cptions ..,

Figure 3-13: Launching the PLL Module Generator

: Generate Bitmap
- 1P Exporter

= Output Files

- Feports

- Bitmap

“ Simulation Netlist

= Device/Operating Condition

Configure DVI Modudle ..

The PLL Module Generator allows the user to create a new PLL configuration, or edit an existing
one as shown in Figure 3-14.

The output of the PLL Module Generator is a PLL module file (Verilog), that instantiates a PLL, as
configured by the user. A secondary file (wrapper), that includes an instance of the PLL module,

is generated

in order to help i

module file should be included in the list of design files.

Once a PLL

iCEcube2 User Guide

module file has been
PLL configurhRBguedhMp option (

www.latticesemi.com

nstantiate the

generated, i

43

C

PLL

an

mo

be

http://www.latticesemi.com/

= LATTICE

U PLL Module Generator X

Device Family: iCE40 v

Do you want to modify an existing PLL configuration or create a new one 7

(%) Create a new PLL configuration
PLL Module Name: | mypll
(O Modify an existing PLL configuration

PLL Module File:

[OK H Cancel]

Figure 3-14: Create/Modify a PLL configuration

Configuring the iCE65 PLL

In the PLL Module Generator wizard, select Device Family as iCE65 and provide the PLL
Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the
user configure the PLL as per the design requirements. This section describes the features of
iICE65 family PLL modules.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2
software supports the following PLL types. These PLL type options can be selected on the first
page of the wizard, as displayed in Figure 3-15.

1. General Purpose 10 Pad or Core Logic: In this scenario, the PLL input (source clock) is
driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA
core, or it can be an external signal that was brought onto the FPGA using a General
Purpose 10 pad. The PLL output (generated clock) is available on the FPGA to drive a global
clock network, as well as regular routing.

2. Clock Pad: The PLL input clock (source) is driven by a dedicated clock pad located in 10
Bank 2

a. The PLL output (generated clock) is available to drive a global clock network, as well
as regular routing. The PLL source clock is not available on the FPGA.

b. The PLL output (generated clock) is available to drive a global clock network, as well
a regular routing. The PLL source clock is also available on the FPGA, and can drive
a global clock network, as well as regular routing.

iCEcube2 User Guide www.latticesemi.com 44

http://www.latticesemi.com/

= LATTICE

¥ PLL Module Generator.. E @

PLL type

How will the PLL Source Clock be driven ?
@ General Purpose 10 Pad or Core Logic

) Clock Pad

n addition to the PLL's generat

PLL Operation Modes ‘

How will the PLL output be generated ?
@ Using a feedback path internal to the PLL
_) Mo Compensation mode 1

_) Delay Compensation using only the Fine Delay Adjustment Block

@ Delay Compensation using the Phase Shifter and the Fine Delay Adjustment Block
) Using a feedback path external to the PLL

The external feedback path will indude a divider implemented by the user in logic

Fine Delay Adjustment / Phase Shift Settings

Which output of the Phase Shift Block will drive the PLL output ?

Do you want to dynamically control the delay of the Fine Delay Adjustment Block ?
) Yes
@ Mo

Fine delay adjustment setting (Enter a value in the range 0 - 15): &

Figure 3-15: Selecting the PLL Type and Operation Mode

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines
the feedback path of the PLL and enables phase alignment of the generated clock with respect to
the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1.

No Compensation mode: The PLL can be used for generating the desired output frequency,
without the ability to control the phase of the generated clock.

Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the
feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that
permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay
adjustment can be controlled dynamically through signals connected to the PLL, or it can be
fixed i.e. once configured, the delay contributed by the delay block can only be changed upon
re-programming the FPGA with a different bit configuration.

Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block:
The Phase Shifter provides four outputs corresponding to a phase shift of 0 degrees, 90
degrees, 180 degrees or 270 degrees. In addition, this feedback path provides additional
delay adjustment through the FDA block.

Delay Compensation using a feedback path external to the PLL: The feedback path traverses
through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)

iCEcube2 User Guide www.latticesemi.com 45

http://www.latticesemi.com/

= LATTICE

Block. Hence, in effect, two delay controls are available i the external path for coarse
adjustment and the FDA block for fine delay adjustment.

(it s ==

PLL Input/Output Frequency

Input frequency (Mhz):

Qutput frequency (Mhz):

Others

|:| Create a LOCK output port

[] Create a BYPASS port that will bypass the PLL reference dodk to the PLL output port
(Mote that the PLL requires re-locking when the BYPASS signal is de-asserted, for all modes other than the ™Mo Compensation mode™)
Low Power Mode
[Enable latching of PLL output clock ((CEGate)
(Mote that the PLL reguires re-locking after the latch signal is de-asserted, when the feedback path is external to the PLL)

Enable latching of PLL source dock

Mext = [Finish] [Cancel

Figure 3-16 : PLL Module Generator i Frequency Specification

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled

dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range

0-15 to specify the delay contributedtot he f eedback path. The delay for a
as follows

FDAdelay = (n+1)*0.15 ps, where fAnd is the value speci f]

Frequency Specification: The input and output frequency of the PLL should be specified in MHz
as shown in Figure 3-16. Depending on the values provided by the user, the PLL is internally
configured to generate the specified output frequency.

In case the frequency specified is not in the range permitted by the Operation Mode, the software
provides appropriate feedback, as displayed in Figure 3-17.

iCEcube2 User Guide www.latticesemi.com 46

http://www.latticesemi.com/

= LATTICE

PLL InputfCutput Frequency
Input Frequency (Mhz): s

Output Frequency (Mhz): |50

Others
D Create a LOCK output part
[] create a BYPASS port that will bypass the PLL reference clock ko the PLL output port
{ Moke that the PLL reguires re-locking when the BYPASS signal is de-asserted, For all modes other than the "ho Compensation mode")
Lows Power Mode
[[] Enable latching of PLL output: clock (CEGate)

{ Mate that the PLL requireggss

Eolisssiesu bs besise e sccsursd B LS L fs sk math is external ko the PLL)
ﬁi PLL Module Generator

[] Enable latching of PLL sourd

() Input Frequency must bebween 10 and 133.3333 (Mhz).
LI

Figure 3-17: Frequency Validation by PLL Configurator

Other options:

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.
Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it
such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode
through the iICEGate feature. The iCEGate feature latches the PLL Output signal, and prevents
unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required
to initialize the PLL functionality.

Configuring the iCE40 PLL

Most devices in the iCE40 family provide two PLL functions, each of which can be configured
independently.

In the PLL Module Generator wizard, select Device Family as iCE40 and provide the PLL
Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the
user configure the PLL as per the design requirements.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2
software supports the following PLL types. These PLL type options can be selected on the first
page of the wizard, as displayed in Figure 3-18.

1. Select the number of global net works to be driven by the PLL out |
generates a PLL which drives a single global clock network, as well as regular routing.
Setting the value to 20 generates a PLL which dri
two regular routing resources.

2. Specify the input to the PLL:

iCEcube2 User Guide www.latticesemi.com 47

http://www.latticesemi.com/

= LATTICE

General Purpose |0 Pad or Core Logic: In this scenario, the PLL input (source clock) is
driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA
core, or it can be an external signal that was brought onto the FPGA using a General
Purpose 10 pad.

Dedicated Clock Pad (Single Ended): The PLL input clock (source) is driven by a dedicated
single ended clock pad located in 10 Bank 2 (Bottom bank) or 10 Bank 0 (Top bank). (In case

two global networks were selected in the previous step, the input signal can be used as-is on

the logic fabric, i.e. it can bypass the PLL. In the rare situation that this is required, select the
check-b o x , AThe PLL source cl oc kut frequercy/plase/delay e d
adjust ment so.)

6 PLL Module Generator ‘g}

PLL Type
Select the number of global networks to be driven by the PLL outputs: |1 v
How will the PLL Source Clock be driven ?

(& General Purpose IO Pad or Core Logic

O Dedicted Clock Pad (Single Ended)

The PLL source clock will be used on chip without frequency/phasefdelay adjustments

PLL Operation Modes

How will the PLL output be generated ?
(® Using a feedback path internal to the PLL
(& No Compensation mode
() Delay Compensation using only the Fine Delay Adjustment Block

® Delay Compensation using the Phase Shifter and the Fine Delay Adjustment Block.
{Recommended mode For applications like LYDS Display Panel and DDR)

O Using a feedback path external to the PLL

The external fi ath will include a divider implemented by the user in logic, with default divide-by Factor of 1

Fine Delay Adjustment Settings

wamically control the delay of the Fine Delay Adjustment Black ?

Fine delay adjustment setting (Enter a value in the range 0 - 15):

Figure 3-18: iCE40 PLL - Selecting PLL Type and Operation Modes

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines
the feedback path of the PLL, and enables phase alignment of the generated clock with respect
to the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1. No Compensation mode: The PLL can be used for generating the desired output frequency,
without the ability to control the phase of the generated clock.

2. Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the
feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that
permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay
adjustment can be controlled dynamically through signals connected to the PLL, or it can be
fixed i.e. once configured, the delay contributed by the delay block can only be changed upon
re-programming the FPGA with a different bit configuration.

3. Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block.
For single port PLL types the Phase Shifter provides two outputs corresponding to a phase
shift of 0 degrees and 90 degrees. For two port PLL types, the Phase Shifter has two modes:
Divide-by-4 mode and Divide-by-7. In Divide-by-4 mode, the output of B port can be shifted

iCEcube2 User Guide www.latticesemi.com 48

o

n

ch

http://www.latticesemi.com/

= LATTICE

either O degrees or 90 degrees w.r.t to A port outputs. In Divide-by-7 mode, the B port output
frequency can be set to have a frequency ratio of 3.5:1 or 7:1 w.r.t the port A output
frequency. In addition to the delay compensation provided by the phase shifter, this feedback
path provides additional delay adjustment through the FDA block.

4. Delay Compensation using a feedback path external to the PLL: The feedback path traverses
through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)
Block. Hence, in effect, two delay controls are available i the external path for coarse
adjustment and the FDA block for fine delay adjustment.

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled
dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range
0-15 to specify the delay contributed to the
as follows

FDA delay = (n+1)*0.15 ps, where I nL is the value specified by the user,and 0 U n U 15.

Additional Delay Adjustment: In addition to Fine Delay Adjustment in the feedback path, the user
can specify additional delay on the PLL output ports as shown in Figure 3-19. The delay
contributed by the delay block can be Fixed or controlled dynamically during FPGA operation. If
Fixed, it is necessary to provide a number (n) in the range 0-15 to specify the delay contributed to

feedback

the feedback path. The delay for a setting Ano i

FDA delay = (n+1)*0.15 ps, where I nL is the value specified by the user,and0 U n U 15.
This additional delay is applied on the output of single port PLL and port A of two port PLL types.

Phase Shift Specification: Phase Shift specification allows the user to specify 0 degrees or 90
degrees phase shift.

& —_— » l
¥ PLL Module Generator [
Phase Shift Specification
Spedify the phase shift for the PLL output
Additional Deley Settings
Do you wish to specify additional delay on the PLL outputs ?
Yes
Do you want to dynamically control the delay of this Additional Delay Adjustment Block ?
Yes
No
Fine Delay Adjustment Block setting (Enter a value in the range 0 - 15)
| No
|
|
|
i
[
I

Figure 3-19: iCE40 PLL - Additional Delay and Phase Shift Options

iCEcube2 User Guide www.latticesemi.com 49

S

cal

http://www.latticesemi.com/

= LATTICE

Frequency Specification: The input and output frequency of the PLL should be specified in MHz
as shown in Figure 3-20. Depending on the values provided by the user, the PLL is internally
configured to generate the specified output frequency.

Frequency Specification window also checks for the input and output frequencies given by the
user. If the specified frequencies are at a range that cannot be generated by the PLL, then a
popup dialog box is displayed as shown in Figure 3-17 asking the user to enter the frequencies in
valid range.

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.
Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it
such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode
through the iICEGate feature. The iCEGate feature latches the PLL Output signal, and prevents
unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required
to initialize the PLL functionality.

) PLL Module Generator |Z|

PLL Input/Oukput Frequency
Input frequency (Mhz): |50

Qutput fregquency (Mhzl: | 133

Others

Create a LOCK output port
[create a BYPASS port that will bypass the PLL reference clock ko the PLL output port
{ Mote that the PLL requires re-locking when the BYPASS signal is de-asserted, For all modes other than the "Mo Compensation mode”)
Low Power Mode
[Enable Iatching of PLL output clock (CEGate)
{ Mate that the PLL requires re-locking after the latch signal is de-asserted, when the Feedback path is external ko the PLL)

Enable |atching of PLL source clock

Mext = [Finish] [Cancel

Figure 3-20: iCE40 PLL - Frequency Specification

PLL Summary: The PLL Configuration summary is shown in Figure 3-21. Click on
save the PLL configuration file.

iCEcube2 User Guide www.latticesemi.com 50

iSaveo

http://www.latticesemi.com/

= LATTICE

' PLL Module Generator

PLL Type: SB_PLL40_CORE

PLL Parameter

DivR:

DivF:

Diwly:

Filter Range:

Feedback Path:

Delay Adjustment Mode Feedback:
Delay Adjustment Mode Relative:
Fixed Delay Adjustment Feedback:
shiftreg Div Mode:

PLL Out Select:

Create a Reset port:

Create a LOCK output port:
Create a BYPASS port:

Enabls Icegate:

o010
0000111
001
(i)

PHASE_AND_DELAY

FIXED
DYMAMIC
15

o

Odeg

Yes

es

Mo

Mo

Actual Output Frequency | Phase Shift

Actual output Frequency(Mhz: 133,33 (Fout error: 0.25%)
Phase shift{deq): [u]

Mext =
Figure 3-21 : PLL Summary

Save Cancel

PLL Dynamic Reconfiguration

iCES5LP devices supports dynamic reconfiguration of PLL to change the output frequency, phase
shift and clock delays at runtime. Reconfiguration of PLL directly accesses the configuration bits
and changes the configuration on the fly while the design is running. This allows the user to run
the design at different frequencies.

To enable dynamic PLL reconfiguration, user needs to set the TEST_MODE parameter of the
PLL instance. Reconfiguration of PLL is done using the serial data input pin SDI. The
configuration bits are latched in a 27 bit shift register (PLLCFGREG) in the PLL block by
configuration clock SCLK.

The user can reconfigure the PLL either by using a build in configuration load module or by using
external control signals connected to the device.

PLL Reconfiguration Process
1. Assert the PLL RESET (Active low) signal.

2. Load the serial configuration bits via SDI pin. The data should be available at positive
edge of SCLK and the data is latched at negative edge of SCLK. The shift out bit is
available in SDO pin.

3. After 27 clock cycles stop the configuration clock signal. The recommended configuration
clock frequency range is 2 MHz to 12 MHz.

4. At the end of 27 clock cycles, the PLLCFGREG is loaded with 27 bit configuration bit.
The first data shifted in is available at PLLCFGREG [26].

5. De-assert the RESET signal after 10ns.
6. Wait for the PLL to lock.

iCEcube2 User Guide www.latticesemi.com 51

http://www.latticesemi.com/

= LATTICE

Dynamic configuration PLL instance model is given below. If the TEST_MODE is set, the PLL
output frequency is based on the PLLCFGREG settings.

Verilog:

SB_PLL40_PAD instSBPLL (

);

PACKAGEPIN (REFCLK),

.EXTFEEDBACK (),

.DYNAMICDELAY (),

BYPASS (BYPASS),

RESETB (RESETB),

LATCHINPUTVALUE (LATCHINPUTVALUE),
.LOCK (LOCK),

.SDI(SDI), /I serial data in
.SDO(SDO), /I serial data out
.SCLK(SCLK), /I Configuration clock

.PLLOUTCORE (PLLOUTCORE_net),
.PLLOUTGLOBAL (PLLOUTGLOBAL_net)

/I INPUT Fin=20MHz, Fout=200MHz

defparam instSBPLL.DIVR = 4'b0001;

defparam instSBPLL.DIVF = 7'b1001111;

defparam instSBPLL.DI VQ = 3'b010;

defparam instSBPLL.FILTER_RANGE = 3'b001;
defparam instSBPLL.FEEDBACK_PATH = "SIMPLE";
defparam instSBPLL.DELAY_ ADJUSTMENT_ MODE_FEEDBACK="FIXED";
defparam instSBPLL.FDA_RELATIVE = 4'b0000;

defparam instSBPLL.PLLOUT_SELECT = "GENCLK";
defparam instSBPLL .SHIFTREG_DIV_MODE = 2'b00 ;
defparam instSBPLL.ENABLE_ICEGATE =1,

/l Enable Dynamic PLL configuration

defparam instSBPLL.TEST_MODE = 1;

PLL Configuration Register Mapping

The following table maps the PLL configuration register bits to PLL parameter settings.

Configuration PLL Parameter Map Range/Values Description
Register
PLLCFGREGI3:0] DIVR 0,1, 2, ¢ EESEF\ZTU%ECLK
PLLCFGREG[10:4] DIVE 0,1,..,63 Feedback divider value
PLLCFGREG[13:11] DIVQ 1,2, &, VCODivider
PLLCFGREG[16:14] FILTER_RANGE 0., 1,e, PLLFilterRange

iCEcube2 User Guide

www.latticesemi.com

52

http://www.latticesemi.com/

= LATTICE

PLLCFGREG[25,18,17] FEEDBACK_PATH Ixx SIMPLE Feedback
(Internal)
000 DELAY
010/001 PHASE_AND_DELAY
011 EXTERNAL
PLLCFGREG[26,21] SHIFTREG_DIV_MODE 00 Divide by 4
01 Divide by 7
10 Invalid setting
11 Divide by 5
PLLCFGREG[20:19], | PLLOUT_SELECT_PORTB, 00 GENCLK
PLLCFGREG[24:23] PLLOUT_SELECT_PORTA 01 GENCLK_HALF
10 SHIFTREG_90deg
11 SHIFTREG_0Odeg
PLLCFGREG[22] Set PLL Primitive type. 0 CORE PLL
1 PAD PLL

The sample configuration register setting for a PAD PLL with 20 MHz reference clock and 200

MHz output frequency is
PLLCFGREG [26:0] =27'b0_1_00_00_00_00_001_010_1001111_0001;

SPI/I2C Module Generator
iCE40LM, iCE5SLP (iCE40 Ultra) device families contains hardened 12C and SPI IP blocks. These

devices do not pre-load the hard IP registers during configuration.

configure the 12C/SPI hard IP blocks in the design.

A soft IP is required to

The iCEcube2 Project Flow Manager includes an 12C/SPI Module Generator to generate soft IP
modules. Launch the module generator from Tool > Configure > Configure SPI/I2C Module
menu item, as shown in Figure 3-22.

iCEcube2 User Guide

www.latticesemi.com

53

http://www.latticesemi.com/

= LATTICE

Lattice KCEcube2 -
[® File View [Tool] Window Help

Output

Open Pr
Close Pr &
4 Synthesis Tq
4 Add sy
Desif
Cong reter Edito
D> Run Cenfigure ... » Configure PLL Module ...
Reports Configure DVI Module
4 P&R Flow gebiccl
D selelp, gunan
AddPBY . o o A
Run P&F °
D> mpg
P Run Tool Options ...
> Run
> Generate Bitmap
4 Output Files
Reports
Bitmap
Simulation Netlist
4 Device/Operating Condition
4 Device Info
Deviceramily ICEA0LM
Device a«
Device Package UMG225

Configure SPV2C Module ...

Power Grade

4 Operating Condition
Core Voltage(V) 1.14
Temperature(C) 85

Figure 3-22 : Launch I2C/SPI Module Generator.

The 12C/SPI Module Generator allows the user to create a new configuration, or edit an existing
one as shown in Figure 3-23.

W 12¢/5P Module Generator ‘ 9 5|

Do you want to modify an existing I2C/SPI configuration or create a new one?

0 Create anew I2C/SPI configuration

Module name: 12C_softlP

Outpttype: Vg =

) Modify an existing I2C/SP configuration

Figure 3-23: Create New [2C/SPI Module

The output of the Module Generator is a module file (Verilog), that instantiates a SPI/I2C, as
configured by the user. Note that the 12C/SPI module file should be included in the list of design
files.

Once an 12C/SPI module file has been generated, itcanbe edi t ed, by selecting the
existing PLL conFfgurg32d)ati ono opti on (

iCEcube2 User Guide www.latticesemi.com 54

http://www.latticesemi.com/

= LATTICE

"
 12/5PI Module Generator =

Do you want to modify an existing 12C/SPI configuration or create a new one?

Create a new 12C/SPI configuration

@ Modify an existing I2C/SPI configuration

Module file: D: lscc/iCEcube2/iCEcube2. 2013, 12/tutorial/12C_softiP.v| v { Browse... ‘

Figure 3-24: Modify Existing I2C/SPI configuration

Configuring 12C/SPI Hard IP

iCE40LM, iCE5LP (iCE40 Ultra) device contains two 12C and SPI hard IP blocks, each of which
can be configured independently.

In the I2C/SPI Module Generator wizard, selecti Cr eat e a new | 2 Cdn®deovideconf i gur a
the module Name. Click on the OK button. The Module generator launches a wizard to help the

user configure the 12C/SPI as per the design requirements. This section explains the options in

the wizard to enable and configure the I12C/SPI soft IP wrappers.

Enable Hard IP

The 6 Har d | P tab mallavs|the uder to enable the required left/right 12C, left/right SPI
instances in the wrapper and specify the system bus clock frequency. Selecting the hard IP type
enables the I12C and SPI Tabs in the wizard as shown in Figure 3-25.

W 12C/SPI Module Generator (B ===
Configuration 7\ Generat telog |
" Hard IP Enables | 12c | spr |

Enable Hard User IPs

[] Enable hard user 12C left

[¥] Enable hard user 12C right

7] Enable hard user SPI left

[¥] Enable hard user SPI right

System Clock

System bus dock frequency 50 MHz
12C 12C
SPI SPI

e

Figure 3-25: Enable Hard IP
Enable hard user 12C left: This option allows the user to enable left I2C on the 12C Tab.
Enable hard user 12C Right: This option allows the user to enable right 12C on the 12C Tab.
Enable hard user SPI Left: This option allows the user to enable left SPI on the SPI Tab.
Enable hard user SPI Right: This option allows the user to enable right SPI on the SPI Tab.

iCEcube2 User Guide www.latticesemi.com 55

http://www.latticesemi.com/

= LATTICE

System Clock: Specify the system clock frequency in Mhz. This value is used to derive the
divider settings of the I12C and SPI hard IP master clocks. i Gener at e0 butt on
value is set in this field.

Configure 12C

I2C Tab allows the user to configure the left and right 12C blocks independently as shown in
Figure 3-26. 12C Tab is enabled only when 12C hard IP is selected in the Hard IP Enables Tab.

L2 o |

W 12C/SPI Module Generator

Configuration | Generate Log

| Hard IP Enables |

Left12C Right 12C

General General
[] General call enable General call enable
[] wakeup enable

[¥] Indude 10 buffers

Master Clock Rate

Desired [100 ~] Kz
Actual KHz
12C Addressin g
10000 01
12C 12C
Interrupts Interrupts
[Arbitration lost
[] T/Rx ready T
[] overrun or NACK
SPI SPI [7] General call

50ns delay on SDA 50ns delay on SDA
[¥] SDA input D

[] SDA output

Close |

Figure 3-26: Configure Left/Right 12C hard IP.

I2C Controller General Options:

General Call Enable: This setting enables the I12C General Call response (addresses all devices
on the bus using the 12C address 0) in Slave mode. This setting can be modified dynamically by
enabling the GCEN bit in the 12C Control Register [2CCR1.

Wakeup Enable: Turns on the 12C wakeup on address match. The WKUPEN bit in the I2CCR1
can be modified dynamically allowing the Wake Up function to be enabled or disabled.

Include 10 Buffers: Include buffers to the 12C_SCL, I12C_SDA pins.

Master Clock (Desired): Specify the desired 12C master clock frequency. A calculation is then
made to determine a divider value to generate a clock close to this value from the input clock.
The frequency of the input System Bus clock is specified on the main/general tab. The divider
value is rounded to the nearest integer after dividing the input System Bus clock by the value
entered in this field.

iCEcube2 User Guide www.latticesemi.com 56

S

enabl

http://www.latticesemi.com/

= LATTICE

Master Clock (Actual): Since it is not always possible to divide the input System Bus clock to
the exact value requested by the user, the actual value will be returned in this read-only field.

I2C Addressing: This option allows the user to set 7-bit or 10-bit addressing and define the Hard
I2C address.

iCEcube2 User Guide www.latticesemi.com 57

http://www.latticesemi.com/

= LATTICE

I2C Controller Interrupts:

Arbitration Lost Interrupts: An interrupt which indicates 12C lost arbitration. This interrupt is bit
IRQARBL of the register | 2CI RQ. When enabl ed, it indicates
to this bit clears the interrupt. This option can be changed dynamically by modifying the bit
IRQARBLEN in the register I2CIRQEN.

TX/RX Ready: An interrupt which indicates that the 12C transmit data register (I2CTXDR) is

empty or that the receive data register (I2CRXDR) is full. The interrupt bit is IRQTRRDY of the

register I2CIRQ. When enabled, it indicatesthat TRRDY i s asserted. Writing a ¢
the interrupt. This option can be changed dynamically by modifying the bit IRQTRRDYEN in the

register I2CIRQEN.

t hat A

Overrun or NACK: An interrupt which indicates that the I2CRXDR received new data before the
previous data. The interrupt is bit IRQROE of the register I2CIRQ. When enabled, it indicates that
ROE is asserted. Wit iclearsntige interrupt. 1Tis dpton darh bheschanged
dynamically by modifying the bit IRQROEEN in the register I2CIRQEN.

General Call Interrupts: An interrupt which indicates that a general call has occurred. The
interrupt is bit IRQHGC of the register I2CIRQ. When enabled, it indicates that ROE is asserted.
Writing a 616 t o t hirhés ofdtiontcan bd chamged dyrtamieally ibynnvodifyingu p t .
the bit IRQHGCEN in the register I2CIRQEN.

I2C SDA delays

This option is available only for iCESLP (iCE40 Ultra) devices. Using these options, the user can
add 50ns delay to the SDA input, output signals.

SDA input: By default 50ns is added to the SDA input. Turn off this option if delay is not required.
SDA output: Turn on this setting to add 50ns delay to the SDA output.

Configure SPI

SPI Tab allows the user to configure the left and right SPI blocks independently as shown in
Figure 3-27. SPI Tab is enabled only when SPI hard IP is selected in the Hard IP Enables Tab.

W® 12C/SPI Module Generator 2|
Configuration | Generate Log
[Hard P Enables | 12 | sPr |
Left SPT Right SPI
[¥] Enable slave interface ¥| Enable slave interface
[] Enable master interface Enable master interface
Master Clock Rate Master Clock Rate
Desired 1 MHz Desired = Mtz
Actual 1 MHz Actual 1 MHz
Master Chip Selects Master Chip Selects
1 ~
12C 12C)
Interrupts
] Tx ready
SP1 SPI1] Rx overrun [
General General |
[[] wakeup enable [] wakeup enable
| LSB first LSB first
| Phase adjust | Phase adjust
(7] Inverted dock [Inverted dock
] Slave handshake mode 1 Slave handshake mode
] Indlude IO buffers ¥] Include 10 buffers
[Genera te | [Close

iCEcube2 User Guide

Figure 3-27: Configure Left/Right

www.latticesemi.com

SPI hard IP.

58

http://www.latticesemi.com/

= LATTICE

Enable Slave Interface: This option allows the user to enable Slave Mode interface for the initial
state of the SPI block. By default, Slave Mode interface is enabled.

Enable Master Interface: This option allows the user to enable Master Mode interface for the
initial state of the SPI block. This option can be updated dynamically by modifying the MSTR bit
of the register SPICR2.

Master Clock Rate (Desired): Specify the desired SPI master clock frequency. A calculation is
then made to determine a divider value to generate a clock close to this value from the input
System Bus clock frequency. The divider value is rounded to the nearest integer after dividing the
input System Bus clock by the value entered in this field.

Master Clock Rate (Actual): Since it is not always possible to divide the input System Bus clock
exactly to that requested by the user, the actual value will be returned in this read-only field.
When both the desired SPI clock and System Bus clock fields have valid data and either is
updated, this field returns the value (System Bus Frequency / SPI_CLK_DIVIDER), rounded to
two decimal places.

Master Chip Selects: The core has the ability to provide up to 4 individual chip select outputs for
master operation. This field allows the user to prevent extra chip selects from being brought out of
the core. This option can be updated dynamically by modifying the register SPICSR.

SPI Controller Interrupts

TX Ready: An interrupt which indicates the SPI transmit data register (SPITXDR) is empty. The
interrupt bit is IRQTRDY of the register SPIIRQ. When enabled, indicates TRDY was asserted.
Write ALoto this bit to clear the interrupt. This option can be change dynamically by modifying the
bit IRQTRDYEN in the register SPIIRQEN.

TX Overrun: An interrupt which indicates the Slave SPI chip select (SPI_SCSN) was driven low
while a SPI Master. The interrupt is bit IRQMDF of the register SPIIRQ. When enabled, indicates
MDF (Mode Fault) was asserted. Write fi 1lt@this bit to clear the interrupt. This option can be
change dynamically by modifying the bit IRQMDFEN in the register SPIIRQEN.

RX Ready: An interrupt which indicates the receive data register (SPIRXDR) contains valid
receive data. The interrupt is bit IRQRRDY of the register SPIIRQ. When enabled, indicates
RRDY was asserted. Write AiLoto this bit to clear the interrupt. This option can be change
dynamically by modifying the bit IRQRRDYEN in the register SPICSR.

RX Overrun: An interrupt which indicates SPIRXDR received new data before the previous data.
The interrupt is bit IRQROE of the register SPIIRQ. When enabled, indicates ROE was asserted.
Write a fiLoto this bit to clear the interrupt. This option can be change dynamically by modifying
the bit IRQROEEN in the register SPIIRQEN.

SPI Controller General Options:

Wakeup Enable: The core can optionally provide a wakeup signal to the device to resume from
low power mode. This option can be updated dynamically by modifying the bit WKUPEN_USER
in the register SPICRL1.

LSB First: This setting specifies the order of the serial shift of a byte of data. The data order
(MSB or LSB first) is programmable within the SPI core. This option can be updated dynamically
by modifying the LSBF bit in the register SPICR2.

Inverted Clock: Select this option to invert the clock polarity used to sample input and output
data. When selected the edge changes from the rising to the falling clock edge. This option can
be updated dynamically by accessing the CPOL bit of register SPICR2.

iCEcube2 User Guide www.latticesemi.com 59

http://www.latticesemi.com/

= LATTICE

Phase Adjust: An alternate clock-data relationship is available for SPI devices with particular
requirements. This option allows the user to specify a phase change to match the application.
This option can be updated dynamically by accessing the CPHA bit in the register SPICR2.

Slave Handshake Mode: Enables Lattice proprietary extension to the SPI protocol. For use
when the internal sup-port circuit (e.g. WISHBONE host) cannot respond with initial data within
the time required, and to make the Slave read out data predictably available at high SPI clock
rates. This option can be updated dynamically by accessing the SDBRE bit in the register
SPICR2.

Include 10 Buffers: Include buffers to the SPI_MISO, SPI_MOSI, SPI_SCK, SPI_MCSNO [0]
pins.

Generate Module

Once the settings are done generate the soft IP module by selectingii Gener at ed0 button.

wizard displays the status and the geasshowained fi
Figure 3-28.

N
W 12C/SPI Module Generator l&‘_d_h_J

”Conﬁgurah’;” Generate Log ‘

Issued command: D:
Vocal.ee207424\attice.odc\installb\2013. 12\Nov_15_2013_1312BetalsccCEcube2\LSE\bin\ntlipgen.exe n

softIP Jang verilog -arch lightning -type serialbus -freq 50 -clk hsoc -i2c both -i2c_general_call_enable none -
i2c_wakeup_enable none -i2c_iobuffer both -i2c_rate_left 100 -i2c_rate_right 100 -i2c_addr_left 1000001 -
i2c_addr_right 1000010 -i2c_arbitration_lost none -i2c_txrx_ready none -i2c_overrun none -i2c_general_call
none -spi both -spi_slave both -spi_master none -spi_rate_left 1 -spi_rate_right 1 -spi_cs_left 1 -spi_cs_right 1 -
spi_tx_ready none -spi_tx_overrun none -spi_rx_ready none -spi_rx_overrun none -spi_wakeup_enable none -
spi_lsb_first none -spi_phase_adj none -spi_inv_clk none -spi_hand_shake none -spi_iobuffer both

running command line: ipgen -n softIP Jang verilog -arch lightning -type serialbus -freq 50 -ck hsoc -i2c both -
i2c_general_call_enable none -i2c_wakeup_enable none -i2c_iobuffer both -i2c_rate_left 100 -i2c_rate_right 100
-i2c_addr_left 1000001 -i2c_addr_right 1000010 -i2c_arbitration_lost none -i2¢c_txrx_ready none -i2c_overrun
none -i2c_general_call none -spi both -spi_slave both -spi_master none -spi_rate_left 1 -spi_rate_right 1 -
spi_cs_left 1 -spi_cs_right 1 -spi_tx_ready none -spi_tx_overrun none -spi_rx_ready none -spi_rx_overrun none
-spi_wakeup_enable none -spi_lsb_first none -spi_phase_adj none -spi_inv_clk none -spi_hand_shake none -
spi_iobuffer both

12C_left_rate: 100

12C_right_rate: 100

SPI_left_rate: 1

SPI_right_rate: 1

File: D:Yocal.ee207424\attice \SW2013. 12 fsoftIP.v was created.

[Generate][Close }

Figure 3-28: 12C/SPI soft IP module generation.

iCEcube2 User Guide www.latticesemi.com 60

e

Th
det

http://www.latticesemi.com/

= LATTICE

Chapter 4 Lattice Synthesis Engine

Lattice Synthesis Engine (LSE) is the integrated synthesis tool that comes with iCEcube2.
This chapter describes:

1 LSE tool options

1 HDL coding tips

1 Attributes and directives supported by LSE

1 Synopsys design constraints (SDC) supported by LSE

LSE is a synthesis tool custom-built for Lattice products and fully integrated with iCEcube2.
Depending on the design, LSE may lead to a more compact or faster placement of the design
than another synthesis tool would do.

Also, LSE offers the following advantages:
1 More granular control through the tool options
1 Enhanced RAM and ROM inference and mapping, including:

o Dual-port RAM in write-through, normal, and read-before-write modes mapped to
BRAM

0 Clock enable and read enable packing
o Mapping for the minimal number of BRAM blocks
o BRAM mapping for minimal timing

1 Post-synthesis Verilog netlist suitable for simulation

Changing the LSE Tool Options

The LSE options can be changed by selecting Tool > Tool Options > LSE. This section lists all
the tool options associated with LSE. The following sections describe how to set the options to
optimize synthesis for either area or speed and some of the differences between LSE and
Synplify Pro options.

BRAM Utilization

Specifies BRAM utilization target setting in percent of total vacant sites. LSE will honor the setting
and do the resource computation accordingly. Default is 100 (in percentage).

Carry Chain Length

Specifies the maximum number of output bits that get mapped to a single carry chain. Default is
0, which is interpreted as infinite length.

Command Line Options

Enables additional command line options for the LSE synthesis process. Type in the option and
its value (if any) in the Value column.

Fix Gated Clocks

Turns on (True) or off (False) converting all gated clocks to data enables for best performance.
Turn off to save power. Default is True.

iCEcube2 User Guide www.latticesemi.com 61

http://www.latticesemi.com/

= LATTICE

FSM Encoding Style

Specifies the encoding style to use for finite state machines: Binary, Gray, or One-Hot. Default is
Auto, meaning that LSE chooses a style for each finite state machine.

Intermediate File Dump

If you set this to True, LSE will dump about 20 intermediate encrypted Verilog files. If you supply
Lattice with these files, they can be decrypted and analyzed for problems. This option is good for
analyzing simulation issues.

Max Fanout Limit

Specifies the maximum fanout setting. LSE will make sure that any net in the design does not
exceed this limit. Default is 10000 fanouts.

Memory Initial Value File Search Path

Allows you to specify a path to locate memory initialization files (.mem) used in the design. The
software will add the specified paths to the list of directories to search when resolving file
references.

To specify a search path, double-click the Value box, and directly enter the path.

Number of Critical Paths

Specifies the number of critical timing paths to be reported in the timing report.

Optimization Goal
Enables LSE to optimize the design for area, speed, or both. Valid options are:

1 Area (default) i Optimizes the design for area by reducing the total amount of logic used
for design implementation.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and
uses 1 MHz instead.

I Timing i Optimizes the design for speed by reducing the levels of logic.

When Optimization Goal is set to Timing and a create_clock constraint is available in an
dc file, LSE ignores the Target Frequency setting and uses the value from the
create_clock constraint instead.

1 Balanced i Optimizes the design for both area and timing.

Propagate Constants

When set to True (default), enables constant propagation to reduce area, where possible. LSE
will then eliminate the logic used when constant inputs to logic cause their outputs to be constant.
You can turn off the operation by setting this option to False.

RAM Style

Sets the type of random access memory globally to BRAM or registers.

The default is Auto which attempts to determine the best implementation. That is, LSE will map to
RAM resources based on the resource availability.

This option will apply a syn_ramstyle attribute globally in the source to a module or to a RAM
instance. To turn off RAM inference, set its value to Registers.

iCEcube2 User Guide www.latticesemi.com 62

http://www.latticesemi.com/

= LATTICE

Other options are:

1 Registers i Causes an inferred RAM to be mapped to registers (flip-flops and logic)
rather than the technology-specific RAM resources.

1 BRAM Causes the RAM to be implemented using the dedicated RAM resources. If your
RAM resources are limited, for whatever reason, you can map additional RAMs to
registers instead of the dedicated BRAM resources using this attribute.

Remove Duplicate Registers

Specifies the removal of duplicate registers. When set to True (default), LSE removes a register if
it is identical to another register. If two registers generate the same logic, the second one will be
deleted and the first one will be made to fan out to the second one's destinations. LSE will not
remove duplicate registers if this option is set to False.

Resolve Mixed Drivers

If a net is driven by a VCC or GND and active drivers, setting this option to True connects the net
to the VCC or GND driver.

Resource Sharing

When this is set to True (default), the synthesis tool uses resource sharing techniques to optimize
for area. With resource sharing, synthesis uses the same arithmetic operators for mutually
exclusive statements; for example, with the branches of a case statement. Conversely, you can
improve timing by disabling resource sharing, but at the expense of increased area.

ROM Style

Allows you to globally implement ROM architectures using dedicated, distributed ROM, or a
combination of the two (Auto).

This applies the syn_romstyle attribute globally to the design by adding the attribute to the
module or entity. You can also specify this attribute on a single module or ROM instance.

This option specifies a syn_romstyle attribute globally or on a module or ROM instance with a
value of:

1 Auto (default) i Allows the synthesis tool to choose the best implementation to meet the
design requirements for speed, size, and so on.

1 BRAM T Causes the ROM to be mapped to dedicated BRAM resources. ROM address or
data should be registered to map it to an BRAM block. If your ROM resources are limited,
for whatever reason, you can map additional ROM to registers instead of the dedicated or
distributed RAM resources using this attribute.

1 Logici Causes the ROM to be implemented using the normal logic.

Infer ROM architectures using a CASE statement in your code. For the synthesis tool to
implement a ROM, at least half of the available addresses in the CASE statement must be
assigned a value. For example, consider a ROM with six address bits (64 unique addresses). The
CASE statement for this ROM must specify values for at least 32 of the available addresses.

RW Check on RAM

Adds (True) or does not add (False) the glue logic to resolve read/write conflicts wherever
needed. Default is False.

iCEcube2 User Guide www.latticesemi.com 63

http://www.latticesemi.com/

= LATTICE

Target Frequency

Specifies the target frequency setting. This frequency applies to all the clocks in the design. If
there are some clocks defined in an .sdc file, the remaining clocks will get this frequency setting.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and uses
1 MHz instead.

When Optimization Goal is set to Timing and a create_clock constraint is available in an .sdc file,
LSE ignores the Target Frequency setting and uses the value from the create_clock constraint
instead.

Top-Level Unit

It is a good practice to specify the top-l e v e | unit (or module) of t
to determine the top-level unit. While usually accurate, there is no guarantee that LSE will get the
correct unit.

You may also want to change the top-level unit when experimenting with different designs or
switching between simulation and synthesis.

If the design is mix of EDIF and Verilog or VHDL, you cannot set an EDIF module as the top-level
unit.

Use Carry Chain

Turns on (True) or off (False) carry chain implementation for adders. Default is True. This option
is equi valueret ctac rtyhe hfai nd command i n LSE.

Use 10 Insertion

Turns on (True) or off (False) the use of I/O insertion. Default is True.

Use IO Registers

Enables (True) or disables (False) register packing. True forces the synthesis tool to pack all
input, output, and I/O registers into I/0 pad cells based on timing requirements. Default is Auto,
which selects True or False based on how Optimization Goal is set.

You can place the syn_useioff attribute on an individual register or port. When applied to a
register, the synthesis tool packs the register into the pad cell, and when applied to a port, packs
all registers attached to the port into the pad cell. The syn_useioff attribute can be set on a:

1 Top-level port
1 Register driving the top-level port

1 Lower-level port if the register is specified as part of the port declaration

Optimizing LSE for Area and Speed

The following strategy settings for LSE can help reduce the amount of FPGA resources that your
design requires or increase the speed with which it runs. (For other synthesis tools, see those
tool s6 document aethodsralong with other, gemeric ooding methods to optimize
your design.

Minimizing area often produces larger delays, making it more difficult to meet timing
requirements. Maximizing frequency often produces larger designs, making it more difficult to
meet area requirements. Either goal, pushed to an extreme, may cause the place and route
process to run longer or not complete routing.

iCEcube2 User Guide www.latticesemi.com 64

he

desi

gr

http://www.latticesemi.com/

= LATTICE

To control the global performance of LSE, modify the tool options. Choose Tool > Tool Options.
In the Tool Options dialog box, set the following options, which are found in the LSE tab. See the
following text for explanations and more details.

LSE Tool Options for Area and Speed

Option Area Speed
FSM Encoding Style Binary or Gray One-Hot
Max Fanout Limit <maximum> <minimum>
Optimization Goal Area Timing
Remove Duplicate Registers True False
Resource Sharing True False
Target Frequency <minimum>

FSM Encoding Style

If your design includes large finite state machines, the Binary or Gray style may use fewer
resources than One-Hot. Which one is best depends on the design. One-Hot is usually the fastest
style. However, if the finite state machine is followed by a large output decoder, the Gray style
may be faster.

Max Fanout Limit

A larger fanout limit means less duplicated logic and fewer buffers. A lower fanout limit may

reduce delays. The defaultis1000 0, whi ch i s essentially wunlimited f al
lower this value any more than needed to meet other requirements. To maximize speed, try much

lower values, such as 50.

You can change the fanout limit for portions of the design by using the syn_maxfan attribute. See
Asyn_maxf an8. SetrMaxpFarp@ Limit to meet your most demanding requirement.
Then add syn_maxfan to help other requirements.

Optimization Goal

If set to Area, LSE will choose smaller design forms over faster whenever possible. LSE will also

ignore the Target Frequency option, using a low 1 MHz target instead. If set to Timing, LSE will

choose faster design forms over smaller whenever possible. LSE will also use the timing
constraints in the designbds .sdc file to guide the
one requirement (area or speed) while optimizing for the other, try setting this option to

Balanced.

Remove Duplicate Registers

Removing duplicate registers reduces area, but keeping duplicate registers may reduce delays.

iCEcube2 User Guide www.latticesemi.com 65

http://www.latticesemi.com/

= LATTICE

Resource Sharing

If set to True, LSE will share arithmetic components such as adders, multipliers, and counters
whenever possible.

If the critical path includes such resources, turning this option off may reduce delays. However, it
may also increase delays elsewhere, possibly reducing the overall frequency.

Target Frequency

A lower frequency target means LSE can focus more on area. A higher frequency target may
force LSE to increase area. Try setting this value to about 10% higher than your minimum
requirement. However, if Optimization Goal is set to Area, LSE will ignore the Target Frequency
value, using a low 1 MHz target instead. If Optimization Goal is set to Timing and a create_clock
constraint is available in an .sdc file, LSE will use the value from the create_clock constraint
instead.

LSE Options versus Synplify Pro

If you are moving from using Synplify Pro to LSE, there are many differences in the options to
consider. Many of the Synplify Pro options have similar LSE options. But many also do not. See
the following table. And there are many LSE options that have no Synplify Pro equivalents. See
the lists following the table. For more information about the options, se e Chénging the LSE Tool
Optionsdb o n 6p.age

Synplify Pro Tool Options and LSE Equivalents

Synplify Pro Option LSE Equivalent Synplify Pro LSE

Default Default

Allow Duplicate Modules None False

Area Optimization Goal False Balanced

Arrange VHDL Files None True

Clock Conversion None True

Command Line Options Command Line Options

Default Enum Encoding FSM Encoding Style Default Auto

Disable 10 Insertion Use 10 Insertion False True

Export Diamond Settings to Synplify Pro GUI None No

Fanout Guide Max Fanout Limit 10000 1000

Force GSR None False

Frequency Target Frequency 200

FSM Encoding None True

Number of Critical Paths Number of Critical Paths 3

Number of Start/End Points None

iCEcube2 User Guide www.latticesemi.com 66

http://www.latticesemi.com/

= LATTICE

Output Netlist Format None None

Output Preference File None True

Pipelining and Retiming None Pipelining Only

Push Tristates None True

Resolved Mixed Drivers Resolve Mixed Drivers False False
Resource Sharing Resource Sharing True True
Update Compile Point Timing Data None False

Use Clock Period for Unconstrained I/O None False

Verilog Input None Verilog 2001

VHDL 2008 None False

LSE has additional options that provide more granular control than Synplify Pro. These options
include:

1 Carry Chain Length
1 BRAM Utilization
1 RAM Style
1 ROM Style
Other LSE options without Synplify Pro equivalents:
1 Intermediate File Dump
1 Memory Initial Value Search Path
Use Carry Chain
Use 10 Registers

Propagate Constants

=A =4 =4 =4

Remove Duplicate Registers

Coding Tips for LSE

If you are going to use LSE to synthesize the design, the following coding tips may help. Mostly

the tips are about writing code so that bl ocks of
implemented using logic cells or block RAM (BRAM) instead of registers. There are also tips

about inferring types of 1/0O ports and about style differences with Synplify Pro.

LSE Differences with Synplify Pro

LSE tends to apply the Verilog and VHDL specifications strictly, sometimes more strictly than
other synthesis tools including Synplify Pro. Following are some coding practices that can cause
problems with LSE:

1 Semicolons (;) to separate ports in a Verilog module statement. For example:

iCEcube2 User Guide www.latticesemi.com 67

http://www.latticesemi.com/

= LATTICE

module COUNTER (

input CLK ,

input RESET ; // LSE error on semicolon.
output TIMEOUT

);
Spaces in the location path.
Duplicate instantiation names (due to names in generate statements).

Module instances without instance names.

=A =4 =4 =4

Multiple files with the same module names. Synplify Pro will error out but LSE will not.
This could cause designs in LSE to use the incorrect module.

Global VHDL signals.
Modules that have a port mismatch between instance and definition.

1 Both ieee.std_logic_signed and unsigned packages in VHDL. When preparing VHDL
code for LSE, you can include either:

USE ieee.std_logic_signed.ALL;
or:
USE ieee.std_logic_unsigned.ALL;

Code with both signed and unsigned packages could fail to synthesize because
operators would have multiple definitions.

1 Mismatched variable types in VHDL. A std_logic_vector signal cannot be assigned to a
std_logic signal and an unsigned type cannot be assigned to a std_logic_vector signal.
For example:

din : in unsigned (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
dout <= din; // lllegal, mismatched assignment.

Such mismatched assignments generate errors that stop synthesis.

About Inferring Memory

Inferring memory means that LSE, based on aspects of the code, implements a block of memory
using logic cells or block RAM (BRAM)d logic cells for small memories, BRAM for larged instead
of registers. LSE can infer synchronous RAM that is:

9 single-port or pseudo dual-port
1 with or without asynchronous reset of the output
1 with or without write enables
M with or without clock enables
LSE can also infer synchronous ROM.

In some old VHDL coding styles, one-dimensional memories and CASE statements were used to
create two-dimensional memories. This coding style does not translate to memories properly in
LSE.

The following sections describe how to write code to infer different kinds of memory with LSE.

iCEcube2 User Guide www.latticesemi.com 68

http://www.latticesemi.com/

= LATTICE

Inferring RAM

The basic inferred RAM is synchronous. It can have synchronous or asynchronous reads and can
be either single- or dual-port. You can also set initial values. Other features, such as resets and
clock enables, can be added as desired. The following text lists the rules for coding inferred RAM.
Following that, Figure 4-1 (Verilog) and Figure 4-2 (VHDL) show the code for a simple, single-port
RAM with asynchronous read.

To code RAM to be inferred, do the following:

f
1

=A =4 =4 -4 =

iCEcube2 User Guide

Define the RAM as an indexed array of registers.

To control how the RAM is implemented (with block RAM), consider adding the

syn_ramstyle attribute. 85ee fisyn_ramsty
Control the RAM with a clock edge and a write enable signal.

For synchronous reads, see finferring RAM with Synchronous Readd o n 7p.ag e
For single-port RAM, use the same address bus for reading and writing.

For pseudo dual-port RAM, seefi | nf er r i n g -PBrsRAM dngpagP 12a |

If desired, assign initial values to the RAM as described in finitializing Inferred RAMO
page 74.

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width - 1:0] addr;
input[data_width - 1:0] din;
input write_en, clk;
reg [data_width - 1:0] mem [(1<<addr_width) - 1:0];
/I Define RAM as an indexed memory array.

always @(posedge clk) // Control with a clock edge.
begin
if (write_en) // And control with a write enable.
mem[(addr)] <= din;

end
assign dout = mem[addr];
endmodule
Figure 4-1: Simple, Single-Port RAM in Verilog
library IEEE;

use |IEEE.std_logic_1164.all;
use |IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural := 8;
data_width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);

www.latticesemi.com

| eo

on

69

on

pag

http://www.latticesemi.com/

= LATTICE

write_en : in std_logic;
clk : in std_logic;

din : in std_logic_vector (data_width - 1 downto 0);
dout : ou tstd_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is

type mem_type is array ((2** addr_width) - 1 downto 0) of

std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
-- Define RAM as an indexed memory array.
begin
process (clk)
begin

if (clk'event and clk = '1") then -- Control with clock

edge

if (write_en = '1") then -- Control with a write

enable.
mem(conv_integer(addr)) <= din;
end if;
end if;
end process;
dout <= mem(conv_integer(addr));
end rtl;

Figure 4-2: Simple, Single-Port RAM in VHDL

Inferring RAM with Synchronous Read

For synchronous reads, add a register for the read address or for the data output. Load the
register inside the procedure or process that is controlled by the clock. See the following
examples. They show the simple RAM of il nf e AMD n @ n BRPnaodifeed for synchronous

reads. Changes are in bold text.
Verilog Examples

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;

input [addr_width - 1:0] addr;
input [data_width - 1:0] din;
input write_en, clk;
output [data_width - 1:0] dout;
reg [data_width - 1:0] dout; // Register for output.
reg [data_width - 1:0] mem [(1<<addr_width) - 1:0];
always @(posedge clk)
begin
if (write_en)

mem[(addr)] <= din;
dout = mem[addr]; / Output register controlled by
clock.
end
endmodule

Figure 4-3: RAM with Registered Output in Verilog

iCEcube2 User Guide www.latticesemi.com

70

http://www.latticesemi.com/

= LATTICE

module ram (din, addr, write_en, clk, dout);
parameter ad dr_width = 8;
parameter data_width = 8;

input [addr_width - 1:0] addr;
input [data_width - 1:0] din;
input write_en, clk;
output [data_width - 1:0] dout;
reg [data_width - 1:0] raddr; /I Register for read address.
reg [data_width - 1:0] mem [(1<<addr_w idth) - 1:0];
always @(posedge clk)
begin
if (write_en)
begin
mem([(addr)] <= din;
end
raddr <= addr; /I Read addr. register controlled by
clock.
end
assign dout = mem|[raddr |;
endmodule

Figure 4-4: RAM with Registered Read Address in Verilog

VHDL Examples

library IEEE;
use |IEEE.std_logic_1164.all;
use |IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural := 8;
data_width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en : in std_logic;
clk : in std_logic;

din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
begin
process (clk)
begin
if (clk'event and clk = '1") then
if (write_en ='1") then
mem(conv_integer(addr)) <=din;

iCEcube2 User Guide www.latticesemi.com 71

http://www.latticesemi.com/

= LATTICE

end if;
end if;
dout <= mem(conv_integer(addr));
-- Output register controlled by clock.

Figure 4-5: RAM with Registered Output in VHDL

library IEEE;
use IEEE.std_logic_1164.all ;
use |IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural := 8;
data_width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en :in std_logic;
clk : in std_logic;

din :in std_logi c_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem: me m_type;
begin
process (clk)
begin
if (clk'event and clk = '1") then
if (write_en ='1") then
mem(conv_integer(addr)) <= din;
end if;
raddr <= addr;
-- Read address register controlled by clock.
end if;
end pr ocess;
dout <= mem(conv_integer(raddr));
end rtl;

Figure 4-6: RAM with Registered Read Address in VHDL

Inferring Pseudo Dual-Port RAM
For pseudo dual-port RAM:
1 Use two address buses.

1 If the design does not simultaneously read and write the same address, add the
syn_ramstyle attribute with the no_rw_check value to minimize overhead logic.

1 If writing in Verilog, use non-blocking assignments as described in fAbout Verilog
Blocking Assignmentsd o n 7p.age

iCEcube2 User Guide www.latticesemi.com 72

http://www.latticesemi.com/

= LATTICE

The following examples are based on the simple RAMofii |l nf erri ng BIAMO
Verilog Examples

module ram (din, write_en, waddr, wclk, raddr, rclk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input[a ddr_width -1:0] waddr, raddr;

input [data_width - 1:0] din;

input write_en , welk, relk

reg [data_width - 1:0] dout;

reg [data_width - 1:0] mem [(1<<addr_width) - 1:0]

I* synthesis syn_ramstyle = "no_rw_check" */ ;

always @(posedge wclk) // Write mem ory .
begin

if (write_en)

memlwaddr] <= din; /I Using write address bus.

end
always @(posedge rclk) // Read memory.
begin

dout<=mem[raddr]; // Using read address bus.
end

endmodule

Figure 4-7: Pseudo Dual-Port RAM in Verilog

VHDL Examples
library IEEE;
use |IEEE.std_logic_1164.all;
use |IEEE.std_logic_unsigned.all;

entity ram is

generic (
addr_width : natural := 8;
data_width : natural := 8);

port (
write_en : in std_logic;
waddr :in std_logic_vector (addr_width - 1 downto 0);
wclk :in std_logic;
raddr : in std_logic_vector (addr_width - 1 downto 0);
rclk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_wid th - 1 downto 0));
end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
attribute syn_ramstyle: string;

attribute syn_ramstyle of mem: signal is "no_rw_check";
begin
process (wclk) -- Write memory.

iCEcube2 User Guide www.latticesemi.com

(0]

n

73

page

http://www.latticesemi.com/

= LATTICE

begin
if (wclk 'event and wclk ='1") then
if (write_en ="'1") then
mem(conv_integer(waddr)) <=din;
-- Using write address bus.

end if;
end if;
end p rocess;
process (rclk) -- Read memory.
begin
if (rclk'event and rclk = '1") then
dout <= mem(conv_integer(raddr));
-- Using read address bus.
end if;
end process;

end rtl;
Figure 4-8: Pseudo Dual-Port RAM in VHDL

Initializing Inferred RAM
Create initial values for inferred RAM in the usual ways for initializing memory.
Verilog

In Verilog, initialize RAM with the standard $readmemb or $readmemh tasks in an initial block.
Create a separate file with the initial values in either binary or hexadecimal form. For example, to
initialize a RAM block named fir a mo :

reg [7:0] ram [0:255];
initial
begin
$readmemh (“ram.ini", ram);
end

The data file has one word of data on each line. The data needs to be in the same order in which
the array was defined. That is, for fforranir[aOm 2[5255 50: Ot] h
the data starts with address 255. The ram.ini file might start like this:

OA /* Address 0 */
23
5C

VHDL

In VHDL, initialize RAM with either signal declarations or variable declarations. Define an entity
with the same ports and architecture as the memory. Use this entity in either a signal or variable
statement with the initial values as shown below.

For example, to initialize a RAM block named #fAram, 0 ¢
entity ram_init is
port (
clk : in std_logic;
addr: in std_logic_vector(7 downto 0);

iCEcube2 User Guide www.latticesemi.com 74

http://www.latticesemi.com/

= LATTICE

iCEcube2 User Guide

din : in std_logic_vector(7 downto 0);
we : in std_logic;
dout : out std_logic_vector(7 downto 0));
end;
architecture arch of ram_init is
type ram_init_arch is array(0 to 255)
of std_logic_vector (7 downto 0);

Then use the entity in a signal statement:

signal ram : ram_init_arch := (
"00001010",
"00100011",
"01011100",

others => (others =>'0");

Or use the entity in a variable statement:

variable ram : ram_init_arch := (
1 =>"00001010",

others => (1=>' 1', others =>'0");

Inferring ROM
To code ROM to be inferred, do the following:
1 Define the ROM with a case statement or equivalent if statements.

91 Assign constant values, all of the same width.

1 Assign values for at least 16 addresses or half of the address space, whichever is

greater. For example, if the address has 6 bits, the address space is 64 words, and at

least 32 of them must be assigned values.

To control how the ROM is implemented (with distributed or block ROM), consider adding

the syn_romstyle attribute. See fsyn_romstyleo

module rom(data, addr);
output [3:0] data;
input [4:0] addr;
always @(addr) begin
case (addr)

0 : data = 'h4;
1:data ='h9;
2 : data = 'hi;

15 : data = 'h8;

16 : data = 'h1;

17 : data = 'hO;

default : data = 'hO;

endcase
end
endmodule

on 98.age

Figure 4-9: ROM Inferred with Case Statement in Verilog

www.latticesemi.com

75

http://www.latticesemi.com/

= LATTICE

entity rom is

port (addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0));

end rom;

architecture behave of rom is

begin
process(addr)
begin
if addr = Othen data <="0100";
elsif addr = 1then data<="1001";
elsif addr= 2then data <="0001";

elsif addr = 15 then data <= "1000";
elsif addr = 16 then data <= "0001";
elsif addr = 17 then data <= "0000";
else data <= "0000";
end if;
end process;
end behave;

Figure 4-10: ROM Inferred with If Statement in VHDL

About Verilog Blocking Assignments

LSE support for Verilog blocking assignments to inferred RAM and ROM, such as

Airam[(=ddadtra);], 6 is | imited to a single such assignment
as you might use for dual-port RAM (see Figure 4-11), or a mix of blocking and non-blocking

assignments are not supported. Instead, use non-blocking assignments (<=). See Figure 4-12.

always @ (posedge clka)
begin
i f(write_ena)
ram[addra] = dina; // Blocking assignment A
douta = ram[addra];
end
always @ (posedge clkb)
begin
if (write_enb)
ram[addrb] = dinb; // Blocking assignment B
doutb = ram[addrb];
end

Figure 4-11: Example of RAM with Multiple Blocking Assignments (Wrong)

always @(posedge clka)
begin
if (write_ena)
ram[addra] <= dina;
douta <= ram[addra];
end

iCEcube2 User Guide www.latticesemi.com 76

http://www.latticesemi.com/

= LATTICE

always @(posedge clkb)
begin
if (write_enb)
ram[addrb] <= dinb;
doutb <= ram[addrb];
end

Figure 4-12: Example Rewritten with Non-blocking Assignments (Right)

Inferring DSP Multipliers
LSE can infer the following types of multipliers and map them to MAC16+ blocks:
1 Multiplier
1 Multiply/Add (multiplier followed by an addition)
1 Multiply/Sub (multiplier followed by a subtraction)
1 Multiply/Accumulate (multiplier followed by an accumulator)
Inferring works with multipliers with 3 to 16-bit inputs.
All multiplier types can have any combination of input, output, and pipeline registers.

Control signals (clock, enable, and reset) for any registers in a multiplier must be shared by all the
registers. That is, there can only be one clock, one enable, and one reset signal in a given
multiplier.

To control how the multiplier is implemented (with logic or DSP), consider adding the
syn_multstyle attribute. See syn_multstyle on page 87.

The following sections show code written to infer different kinds of DSP multipliers with LSE.

Verilog Examples
module mult_unsign_7_6(a,b,c);
parameter A_ WIDTH = 7;
parameter B_WIDTH = 6;

input unsigned [(A_WIDTH - 1):0] &
input unsigned [(B_WIDTH - 1):0] b;
output unsigned [(A_WIDTH + B_WIDTH - 1):.0]c ;
assignc=a * b;
endmodule

Figure 4-13 : Basic Multiplier without Registers

module multaddsub_add_unsign_7_6(a,b,c,din);
parameter A_ WIDTH = 7;
parameter B_WIDTH = 6;

input unsigned [(A_WIDTH - 1):0] &
input unsigned [(B_WIDTH - 1):0] b;
input unsigned [(A_WIDTH + B_WIDTH - 1):0] din;
output unsigned [(A_WIDTH + B_WIDTH - 1):0]c;
assignc=a * b + din;

endmodule

iCEcube2 User Guide www.latticesemi.com 77

http://www.latticesemi.com/

= LATTICE

Figure 4-14: Multiply/Add without Registers

module multaddsub_sub_sign_ir_7_6(clk,a,b,din,c,rst,set);
parameter A WIDTH = 7,
parameter B_WIDTH = 6;

input rst;

input set;

input clk;

input signed [(A_WIDTH - 1):0] &

input signed [(B_WIDTH - 1):0] b;

input signe d[(A_WIDTH + B_WIDTH - 1):0] din;
output signed [(A_WIDTH + B_WIDTH - 1):0]c;
reg signed [(A_WIDTH - 1):0]reg_a;

reg signed [(B_WIDTH - 1):0] reg_b;

reg signed [(A_WIDTH + B_WIDTH - 1):0] reg_din;
assignc=reg_a * reg_b - reg_din;

alway s @(posedge clk)
begin
if(rst)
begin
reg_a<=0;
reg_b <=0;
reg_din <= 0;
end
else if(set)
begin
reg_a<= -1;
reg_b<= -1;
reg_din <= -1;
end
else
begin
reg_a <= a;
reg_b <=b;
reg_din <= din;
end
end
endmodule

Figure 4-15: Multiplier/Sub with Input Registers

module multacc_unsign_7_6(clk,a,b,c,se 1);
parameter A_ WIDTH = 7;
parameter B_WIDTH = 6;

input set;

input clk;

input unsigned [(A_WIDTH - 1):0] &

input unsigned [(B_WIDTH - 1):0] b;

output unsigned [(A_WIDTH + B_WIDTH - 1):0]c;
iCEcube2 User Guide www.latticesemi.com

78

http://www.latticesemi.com/

= LATTICE

reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;

assign ¢ =reg_tmp_c;

always @(posedge clk)
begin
if(set)
begin
reg_tmp c <=0;
end
else
begin
reg_tmp_c <=a * b + c;
end
end
endmodule

Figure 4-16 : Multiplier/Accumulator without Registers

VHDL Examples

entity m_07x06 is
generic (widtha : natural := 7;
widthb : natural := 6);

port (
ina :in std_logic_vector (0 to widtha - 1),
inb :in std_logic_vector (O to widt hb - 1);
mout : out std_logic_vector (0 to widtha+widthb - 1)

end m_07x06;

architecture rtl of m_07x06 is

Figure 4-17 : Basic Multiplier without Registers

begin

mout <= ina * inb;
end rtl;
entity mu It_add_07x06 is

generic (widtha : natural := 7;
widthb : natural := 6);
port (
ina :in std_logic_vector (widtha
inb :in std_logic_vector (widthb
mout : out std_logic_vector (widtha+widthb
inc :in std_logic_vector (widtha+widthb
);
end mult_add_07x06;

architecture rtl of mult_add_07x06 is

begin
mout <=ina *inb +inc ;

iCEcube2 User Guide

- 1 downto 0);

- 1 downto 0);
- 1 downto 0);
- 1 downto 0)

www.latticesemi.com 79

http://www.latticesemi.com/

= LATTICE

end rtl;

Figure 4-18 : Multiply/Add without Registers

entity mult_sub_07x06_ir_ris
generic (widtha : natural := 7;
widthb : natural := 6);

port (
ina :in std_logic_vector (widtha - 1 downto 0);
inb :in std_logic_vector (widthb - 1 downto 0);
clk :in std_logic;
reset: in std_logi C;
mout : out std_logic_vector (widtha+widthb - 1 downto 0);
inc :in std_logic_vector (widtha+widthb - 1 downto 0)
);

end mult_sub_07x06_ir_r;

architecture rtl of mult_sub_07x06_ir_r is

signal regl_ina : std_logic_vector(widtha - 1 downto 0);
sig nal regl_inb : std_logic_vector(widthb - 1 downto 0);
begin

mout <=regl_ina * regl_inb - inc;

process (clk,reset) begin
if(reset ='1") then
regl_ina <= (others =>'0");
regl_inb <= (others =>'0";
elsif rising_edge (clk) then
regl _ina <=ina;
regl_inb <=inb;
end if;
end process;
end rtl;

Figure 4-19 : Multiplier/Sub with Input Registers

entity multacc_07x06_up is
generic (widtha : natural := 7;
widthb : na tural := 6);

port (
ina :in std_logic_vector (widtha - 1 downto 0);
inb :in std_logic_vector (widthb - 1 downto 0);

clk :in std_logic;

reset : in std_logic;

mout : out std_logic_vector (widtha+widthb - 1 downto 0)
);

end multacc 0 7x06_up;
architecture rtl of multacc_07x06_up is

signal reg_mout:std_logic_vector(widtha+widthb - 1 downto 0);
signal mout_s :std_logic_vector(widtha+widthb - 1 downto 0);

iCEcube2 User Guide www.latticesemi.com

80

http://www.latticesemi.com/

= LATTICE

begin
mout <= mout_s ;
mout_s <= reg_mout;

process (clk,reset) begin
if(r eset="1") then
reg_mout <= (others =>"'0");
elsif rising_edge (clk) then
reg_mout <= ina *inb + mout_s ;
end if;
end process;
end rtl;

Figure 4-20: Multiplier/Accumulator without Registers

Inferring 1/O

To specify types of /0O ports, follow these models.

Verilog
Open Drain:

output< port >;
wire < output_enable >
assign < port > =< output enable >7? 1'b0: 1'bz;

Bidirectional:

inout< port >;

wire < output_enable >
wire < oultput_driver >;
wire < jn put_signal >,

assign < port > =< output enable >7? < output _driver >: 1'bz;

assign < /nput_signal >=< port >;
VHDL
Tristate:

library ieee;
use ieee.std_logic_1164.all;
entity <tbuf> is
port (
<enable>: std_logic;
<input_sig> : in std_logic_vector (1 downto 0);
<output_sig> : out std_logic_vector (1 downto 0));
end tbuf2;
architecture <port> of <tbuf> is
begin
<output_sig> <= <input_sig> when <enable> ="'1" else "ZZ";
end;

Open Drain:

library ieee;
use ieee.std_logic_1164.all;
entity < od>is

iCEcube2 User Guide www.latticesemi.com

81

http://www.latticesemi.com/

= LATTICE

port (
<enable > : std_logic;
<output_sig > out std_logic_vector (1 downto 0));
end od2;
architecture < port >of < od>is
begin

<output sig ><="00"wh en< enable >="1"else "ZZ",

end;
Bidirectional:

library ieee;

use ieee.std_logic_1164.all;

entity < bidir >is

port (
<direction > std_logic;
<input_sig > :in std_logic_vector (1 down
<output sig > :outstd_logic_vector (1 downto 0);
<bidir_sig >:inout std_logic_vector (1 downto 0));

end bidir2;

architecture < port >of < bidir >is

begin

<bidir sig > <= < input_sig > when < direction

7",
<output sig ><=< bidir sig >,
end;

Event Inside an Event
Do not code an event within another event such as shown below:

always begin :main
guess = 0;
@(posedge clk or posedge rst);
if (rst) disable main;
while(1) begin
while(!result) begin
guess = 0;
while(! result) begin
@(posedge clk or posedge rst);
if (rst) disable main;
end
@(posedge clk or posedge rst);
if (rst) disable main;
end
while(result) begin
guess =1;
while(result) begin
@(posedge cl k or posedge rst);
if (rst) disable main;
end
@ (posedge clk or posedge rst);
if (rst) disable main;
end
end

iCEcube2 User Guide www.latticesemi.com

> = '0" else

82

http://www.latticesemi.com/

= LATTICE

end

Figure 4-21: Event within an Event (Wrong)

HDL Attributes and Directives

This section describes the Synplify Lattice attributes and directives that are supported by LSE.
These attributes and directives are directly interpreted by the engine and influence the
optimization or structure of the output netlist. Traditional HDL attributes, such as UGROUP, are
also compatible with LSE and are passed into the netlist to direct place and route.

black_box_pad_pin

Directive. Specifies pins on a user-defined black-box component as 1/0 pads that are visible to
the environment outside of the black box. If there is more than one port that is an 1/O pad, list the
ports inside double-quotes ("), separated by commas (,), and without enclosed spaces.

Verilog Syntaxobject /* synthesis syn_black box black_box_pad_pin = "portList" */ ;

where portList is a spaceless, comma-separated list of the names of the ports on black boxes that
are 1/0O pads.

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black _box black_box_pad pin="GIN[2:0],Q"
*/,

Figure 4-22: Verilog Example
VHDL Syntax
attribute black_box_pad_pin of object : objectType is "portList" ;

where object is an architecture or component declaration of a black box. Data type is string;
portList is a spaceless, comma-separated list of the black-box port names that are I/O pads.

library ieee;

use ieee.std_logic_1164.all;

package my_components is

component BBDLHS

port (D: in std_logic;

E: in std_logic;
GIN : in std_logic_vector(2 downto O)i
Q : out std_logic);

end component;

attribute syn_black_box : boolean;

attribute syn_black_box of BBDLHS : component is true;

attribute black _box_pad_pin : string;

attribute black_box_pad _pin of BBDLHS : component is
"GIN(2:0),Q";

end package = my_components;

Figure 4-23: VHDL Example

iCEcube2 User Guide www.latticesemi.com 83

http://www.latticesemi.com/

= LATTICE

syn_black_box

Directive. Specifies that a module or component is a black box with only its interface defined for
synthesis. The contents of a black box cannot be optimized during synthesis. A module can be a
black box whether it is empty or not. This directive has an implicit Boolean value of 1 or true.

Verilog Syntax
object /* synthesis syn_black_box */ ;

where object is a module declaration.

module bl_box(out,data,clk) /* synthesis syn_black box */;

Figure 4-24: Verilog Example

VHDL Syntax
attribute syn_black_box of object : objectType is true ;

where object is a component declaration, label of an instantiated component to define as a black
box, architecture, or component. Data type is Boolean.

architecture top of top - entity is
component ram4
port (myclk : in bit;
opcode : in bit_vector(2 downto 0);
a, b:inbit_ vector(7 downto 0);
rambus : out bit_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of ram4: component is true;

Figure 4-25: VHDL Example

syn_encoding

Directive for VHDL designs. Defines how enumerated data types are implemented. The type of
implementation affects the performance and device utilization.

VHDL Syntax
attribute syn_encoding of object : objectType is "value" ;

Where object is an enumerated type and value is one of the following: default, sequential, onehot,
or gray.

package testpkg is
type mytype is (red, yellow, blue, green, white,
violet, indigo, orange);
attribute syn_encoding : string;
attribute syn_encoding of mytype : type is "sequential”;
end package testpkg;
library IEEE;
use IEEE.std_logic_1164.all;

iCEcube2 User Guide www.latticesemi.com 84

http://www.latticesemi.com/

= LATTICE

use work.testpkg.all;

entity decoder is
port (sel : in std_logic_vector(2 downto 0);
color : out mytype);

end decoder;

architecture rtl of decoder is

begin
process(se)
begin
case sel is
when "000" => color <= red;
when "001" => color <= yellow;
when "010" => color <= blue;
when "011" => color <= green;
when "100" => color <= white;
when "101" => color <= v iolet;
when "110" => color <= indigo;
when others => color <= orange;
end case;
end process;
end rtl;
Figure 4-26: VHDL Example
syn_hier

Attribute. Allows you to control the amount of hierarchical transformation that occurs across
boundaries on module or component instances during optimization.

syn_hier Values
The following value can be used for syn_hier:

hard i Preserves the interface of the design unit with no exceptions. This attribute affects only the
specified design units.

object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values described in
syn_hier Values. Check the attribute values to determine where to attach the attribute.

module topl (Q, CLK, RST, LD, CE, D)
/* synthesis syn_hier = "hard" */;

Figure 4-27: Verilog Example

VHDL Syntax
attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values described in syn_hier
Values. Check the attribute values to determine the level at which to attach the attribute.

architecture struct of cpu is

iCEcube2 User Guide www.latticesemi.com 85

http://www.latticesemi.com/

= LATTICE

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

Figure 4-28: VHDL Example

syn_keep

Directive. Keeps the specified net intact during optimization and synthesis.
Verilog Syntax

object /* synthesis syn_keep =1 */;

where object is a wire or reg declaration. Make sure that there is a space between the object
name and the beginning of the comment slash (/).

module example2(outl, out2, clk, inl, in2);
output outl, out2;
inputcl k;
input inl, in2;
wire and_out;
wire keepl /* synthesis syn_keep=1 */,
wire keep2 /* synthesis syn_keep=1 */,
reg outl, out2;
assign and_out=in1&in2;
assign keepl=and_out;
assign keep2=and_out;
always @(posedge clk)begin;
outl<=keepl;
out2<=keep2;
end
endmodule

Figure 4-29: Verilog Example

VHDL Syntax
attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal.

entity example2 is
port (inl, in2 : in bit;

clk : in bit;

outl, out2 : out bit);
end example?2;
architecture rtl of example2 is
attribute syn_keep : boolean;
signal and_out, keepl, keep2: bit;
attribute syn_keep of keepl, keep2 : signal is true;
begin
and_out <= inl and in2;
keep 1 <= and_out;

iCEcube2 User Guide www.latticesemi.com 86

http://www.latticesemi.com/

= LATTICE

keep2 <= and_out;
process(clk)
begin
if (clk'event and clk = '1") then
outl <= keepl;
out2 <= keep2;
end if;
end process;
end rtl;

Figure 4-30: VHDL Example

syn_maxfan

Attribute. Overrides the default (global) fan-out guide for an individual input port, net, or register
output.

Verilog Syntax

object /* synthesis syn_maxfan = "value" */ ;

module test (registered_data_out, cloc k, data_in);
output [31:0] registered_data_out;

input clock;

input [31:0] data_in /* synthesis syn_maxfan=1000 */;

reg [31:0] registered_data_out /* synthesis syn_maxfan=1000
*/;

Figure 4-31: Verilog Example

VHDL Syntax

attribute syn_maxfan of object : objectType is "value" ;

entity test is
port (clock : in bit;
data_in : in bit_vector(31 downto 0);
registered_data_out: out bit_vector(31 downto 0)
);
attribute syn_maxfan : integer;
attri bute syn_maxfan of data_in : signal is 1000;

Figure 4-32: VHDL Example

syn_multstyle

Attribute. Specifies whether to use logic or DSP blocks. Multiply, multiply/add, and
multiply/accumulate blocks are automatically implemented as MAC16+ blocks when available
unless the syn_multstyle attribute is used.

The following values can be specified globally or on a module:

iCEcube2 User Guide www.latticesemi.com 87

http://www.latticesemi.com/

= LATTICE

1 Logici Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped
to logic.

1 DSP i Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped
to DSP blocks.

Verilog Syntax

object /* synthesis syn_multstyle = "string" */ ;

Where object is a multiply, multiply/add, and multiply/accumulate definition. The data type is

string.

module mult(a,b,c,r,en);

input [7:0] a,b;

output [15:0] r;

input [15:0] c;

input en;

wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp: c;

endmodule

Figure 4-33: Verilog Example

VHDL Syntax

attribute syn_multstyle of object : objectType is "string" ;
Where object is a signal that defines a multiply, multiply/add, and multiply/accumulate block. The
data type is string.

library ieee ;
use ieee.std _logic_116 4.all;
USE ieee.numeric_std.all;

entity mult is
port (clk : in std_logic ;

a : in std_logic_vector(7 downto 0) ;

b :in std_logic_vector(7 downto 0) ;

c : out std_logic_vector(15 downto 0))
end mult ;
architecture rtl of mult is
signal mul t_i: std_logic_vector(15 downto 0) ;
attribute syn_multstyle : string ;
attribute syn_multstyle of mult_i : signal is "logic" ;
begin
mult_i <= std_logic_vector(unsigned(a)*unsigned(b)) ;
process(clk)
begin

if (clk'event and clk ='1") then

c <=mult_i;

end if ;
end process

Figure 4-34 : VHDL Example

iCEcube2 User Guide www.latticesemi.com 88

http://www.latticesemi.com/

= LATTICE

syn_noprune

Directive. Prevents instance optimization for black-box modules (including technology-specific

primitives) with unused output ports.
Verilog Syntax
object /* synthesis syn_noprune =1 */;

where object is a module declaration or an instance. The data type is Boolean.

module top(al,bl,c1,d1,y1,clk);

output y1;

input al,bl,c1,d1;

input clk;

wire x2,y2;

reg yl;

syn_noprune ul(al,bl,cl,d1,x2,y2) [* synthesis
syn_noprune=1 */,

always @(posedge clk)
yl<=al,

endmodule

Figure 4-35: Verilog Example

VHDL Syntax

attribute syn_noprune of object : objectType is true ;

where the data type is boolean, and object is an architecture, a component, or a label of an

instantiated component.

library ieee;
use ieee.std_logic_1164.all;
entity top is
port (a1, bl :in std_logic;
cl,dlclk: in std_logic;
y1 :out std_logic);
end;
architecture behave of top is
component noprune
port (a, b, ¢, d : in std_logic;
X,y : out std_logic);
end component;
signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of ul : label is t rue;
begin
ul: noprune port map(al, b1, c1, di, x2, y2);
process begin
wait until (clk ='1") and clk'event;
yl <= al;

iCEcube2 User Guide www.latticesemi.com

89

http://www.latticesemi.com/

= LATTICE

end process;
end,;

Figure 4-36: VHDL Example

syn_pipeline

This attribute permits registers to be moved to improve timing. Depending on the criticality of the
path, the tool move the suitable output registers to the input side to improve timing. If there is no
candidate register identified for pipelining, this attribute will not be honored.

syn_pipeline attribute is applicable only for Timing and Balance mode optimization. The tool
ignores the attribute in Area mode optimization.

Verilog Syntax
object /* synthesis syn_pipeline = {1|0} */ ;

where object is a register declaration.

module pipeline (a, b, clk,r);
input [3:0] a,b;

input clk;

output [7:0] r;

reg [3:0] a_reg,b_reg;

reg [7:0] temp2/* synthesis syn_pipeline = 1 */;
reg [7:0] temps;

wire [7:0] templ;

assign templ =a reg * b_reg;
always @(posedge clk)

begi n

a_reg <= a;

b _reg <=b;

temp2 <= templ,

temp3 <= temp2,;

end
assign r = temp3;
endmodule

Figure 4-37 : Verilog Example
VHDL Syntax

attribute syn_pipeline of object : objectType is {true|false} ;

librar vyieee;
use ieee.std_logic_1164.all ;
USE ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity pipeline is
port (clk : in std_logic ;
a :in std_logic_vector(3 downto 0) ;
b :in std_logic_vector(3 downto 0) ;
r: out std_logic_vector(7 downto 0));

iCEcube2 User Guide www.latticesemi.com 90

http://www.latticesemi.com/

= LATTICE

end pipeline ;
architecture rtl of pipeline is
signal a_reg : std_logic_vector(3 downto 0) ;
signal b_reg : std_logic_vector(3 downto 0) ;
signal temp1 : std_logic_vector(7 downto 0) ;
signal temp2 : std_logic_vector(7 downto 0) ;
signa |temp3: std_logic_vector(7 downto 0) ;
attribute syn_pipeline : string ;
attribute syn_pipeline of temp2 : signal is "true" ;
begin
process(clk)
begin
if (clk'event and clk = '1") then
templ <=a reg * b_reg;
a_reg <= a;
b _reg <=b;
temp2 <= templ,;
temp3 <= temp2;
r <=temp3;
end if ;
end process ;
end rtl ;

Figure 4-38 : VHDL Example

syn_preserve

Directive. Prevents sequential optimization such as constant propagation, inverter push-through,
and FSM extraction.

Verilog Syntax
object /* synthesis syn_preserve =1 */ ;

where object is a register definition signal or a module.

module syn_preserve (outl,out2,clk,inl,in2)/* synthesis
syn_pr eserve=1 */,

output outl, out2;

input clk;

input inl, in2;

reg outl;

reg outz;

reg regl,;

reg reg2;

always@ (posedge clk)begin
regl <=inl &in2;

reg2 <=inl&in2;

outl <= Iregl;

out2 <= Iregl & reg2;
end

endmodule

Figure 4-39: Verilog Example

iCEcube2 User Guide www.latticesemi.com 91

http://www.latticesemi.com/

= LATTICE

VHDL Syntax
attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a state register or
architecture.

library ieee;
use ieee.std_logic_1164.al l;
entity simpledff is
port (g : out std_logic_vector(7 downto 0);
d :in std_logic_vector(7 downto 0);
clk : in std_logic);

-~ Turn on flip - flop preservation for the q output
attribute syn_preserve : boolean;
attribute syn_preserv e of q : signal is true;
end simpledff;
architecture behavior of simpledff is
begin
process(clk)
begin
if rising_edge(clk) then
-- Notice the continual assignment of "11111111" to g.
g <= (others =>'1";
end if;
end proce ss;
end behavior;

Figure 4-40: VHDL Example

syn_ramstyle

Attribute. The syn_ramstyle attribute specifies the implementation to use for an inferred RAM.
You apply syn_ramstyle globally to a module or to a RAM instance. To turn off RAM inference,
set its value to registers.

The following values can be specified globally or on a module or RAM instance:

1 registers i Causes an inferred RAM to be mapped to registers (flip-flops and logic) rather
than the technology-specific RAM resources.

1 block_ram i Causes the RAM to be implemented using the dedicated RAM resources. If
your RAM resources are limited, you can use this attribute to map additional RAMs to
registers instead of the dedicated or distributed RAM resources.

1 no_rw_check (some modes, but all technologies). i You cannot specify this value alone.
Without no_rw_check, the synthesis tool inserts bypass logic around the RAM to prevent
the mismatch. If you know your design does not read and write to the same address
simultaneously, use no_rw_check to eliminate bypass logic. Use this value only when
you cannot simultaneously read and write to the same RAM location and you want to
minimize overhead logic.

Verilog Syntax

object /* synthesis syn_ramstyle = "string" */ ;

iCEcube2 User Guide www.latticesemi.com 92

http://www.latticesemi.com/

= LATTICE

where object is a register definition (reg) signal. The data type is string.

module ram4 (datain,dataout,clk);
output [31:0] dataout;

input clk;

input [31:0] datain;

reg [7:0] dataout[31:0] [* synthesis
syn_ramstyle=" block_ram" */;

Figure 4-41: Verilog Example

VHDL Syntax
attribute syn_ramstyle of object : objectType is "string" ;

where object is a signal that defines a RAM or a label of a component instance. Data type is
string.

library ieee;
use ieee.std_logic_1164.all;
entity ram4 is
port (d : in std_logic_vector(7 downto 0);
addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : in std_logic;
ram_out : out std_logic _vector(7 downto 0));
end ram4;
library synplify;
architecture rtl of ram4 is
type mem_type is array (127 downto 0) of std_logic_vector
(7 downto 0);
signal mem : mem_type; -~ mem is the signal that defines
the RAM
attribute syn_ramstyle : string;
attri bute syn_ramstyle of mem : signal is "block_ram";

Figure 4-42: VHDL Example

syn_romstyle
Attribute. Allows you to implement ROM architectures using dedicated or distributed ROM. Infer
ROM architectures using a CASE statement in your code.

For the synthesis tool to implement a ROM, at least half of the available addresses in the CASE
statement must be assigned a value. For example, consider a ROM with six address bits (64
unigue addresses). The case statement for this ROM must specify values for at least 32 of the
available addresses. You can apply the syn_romstyle attribute globally to the design by adding
the attribute to the module or entity.

The following values can be specified globally on a module or ROM instance:

1 autoi (default) Allows the synthesis tool to chose the best implementation to meet the
design requirements for speed, size, and so on.

iCEcube2 User Guide www.latticesemi.com 93

http://www.latticesemi.com/

= LATTICE

logic i Causes the ROM to be implemented using logic cells.

BRAM i Causes the ROM to be implemented using the dedicated ROM resources. If
your ROM resources are limited, you can use this attribute to map additional ROM to

registers instead of the dedicated or distributed RAM resources.
Verilog Syntax
object /* syn_romstyle = "auto | logic | BRAM" */;

reg [8:0] z /* synthesis syn_romstyle = "BRAM" */;
Figure 4-43: Verilog Example

VHDL Syntax

attribute syn_romstyle of object : object_type is "block_rom | logic" ;

signal z : std_log ic_vector(8 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "logic";

Figure 4-44: VHDL Example

syn_use_carry_chain

Attribute. Used to turn on or off the carry chain implementation for adders.
Verilog Syntax

object synthesis syn_use_carry_chain ={1 | 0} */;

Verilog Example

To use this attribute globally, apply it to the module.

module test (a, b, «clk, rst; d) [/* synthesis
syn_use_ca rry_chain =1 */;

VHDL Syntax

attribute syn_use_carry_chain of object : objectType is true | false ;

architecture archtest of test is

signal temp : std_logic;

signal templ : std_logic;

signal temp2 : std_logic;

signal temp3 : std_logic;

attribute sy n_use_carry_chain : boolean;

iCEcube2 User Guide www.latticesemi.com

94

http://www.latticesemi.com/

= LATTICE

attribute syn_use_carry_chain of archtest : architecture is
true;

Figure 4-45: VHDL Example

syn_useioff

Attribute. Overrides the default behavior to pack registers into 1/0 pad cells based on timing
requirements for the target Lattice families. Attribute syn_useioff is Boolean-valued: 1 enables
(default) and 0 disables register packing. You can place this attribute on an individual register or
port or apply it globally. When applied globally, the synthesis tool packs all input, output, and I/O
registers into 1/0 pad cells. When applied to a register, the synthesis tool packs the register into
the pad cell; and when applied to a port, it packs all registers attached to the port into the pad
cell.

The syn_useioff attribute can be set on the following ports:
1 top-level port
1 register driving the top-level port
1 lower-level port, if the register is specified as part of the port declaration
Verilog Syntax
object synthesis syn_useioff = {1 | 0} */;
Verilog Example

To use this attribute globally, apply it to the module. To use this attribute on individual ports, apply
it to individual port declarations.

module test (a, b, clk, rst, d) /* synthesis syn_useiof f=
1%,

Figure 4-46: Verilog Example Applied Globally

module test (a, b, clk, rst, d);
input a;
input b /* synthesis syn_useioff = 1 */;

Figure 4-47: Verilog Example Applied to a Port

VHDL Syntax

attribute syn_useioff of object : objectType is true | false ;

architecture archtest of test is

signal temp : std_logic;

signal templ : std_logic;

signal temp2 : std_logic;

signal temp3 : std_logic;

attribute sy n_useioff : boolean;

attribute syn_useioff of archtest : architecture is true;

Figure 4-48: VHDL Example

iCEcube2 User Guide www.latticesemi.com 95

http://www.latticesemi.com/

= LATTICE

Synthesis Macro

Use this text macro along with the Verilog “ifdef compiler directive to conditionally exclude part of
your Verilog code from being synthesized. The most common use of the synthesis macro is to
avoid synthesizing stimulus that only has meaning for logic simulation. The synthesis macro is
defined so that the statement “ifdef synthesis is true. The statements in the ‘ifdef branch are
compiled; the stimulus statements in the “else branch are ignored. Because Verilog simulators do
not recognize a synthesis macro, the compiler for your simulator will use the stimulus in the “else
branch.

module top (a,b,c);
input a,b;
output c;

“ifdef synthesis
assignc=a&b;

“else
assignc=a|b;

“endif

Endmodule

Figure 4-49: Verilog Example

translate_off/translate_on

Directive. Allows you to synthesize designs originally written for use with other synthesis tools
without needing to modify source code. All source code that is between these two directives is
ignored during synthesis.

Verilog Syntax
/* pragma translate_off */

[* pragma translate_on */

module real_time (ina, inb, out);
input ina, inb;

output out;

[* pragma translate_off */
realtime cur_time;

[* pragma translate_on */
assign out = ina & inb;
endmodule

Figure 4-50: Verilog Example

VHDL Syntax
pragma translate_off

pragma translate_on

library ieee;

iCEcube2 User Guide www.latticesemi.com 96

http://www.latticesemi.com/

= LATTICE

use ieee.std_logic_1164.all;
entity adder is

port (a, b, cin:in std_logic;

sum, cout:out std_logic);

end adder;
ar chitecture behave of adder is
signal al:std_logic;
-- pragma translate_off
constant al:std_logic:='0";
-- pragma translate_on
begin

sum <= (a xor b xor cin);

cout <= (a and b) or (a and cin) or (b and cin); end
behave;

Figure 4-51: VHDL Example

Synopsys Design Constraints (SDC)

This section describes the Synopsys Design Constraint (SDC) language elements for timing-
driven synthesis that are supported by the Lattice Synthesis Engine (LSE). The SDC constraints
wi || drive optimization of t he d eithar tjning or Balahc8dE 6 s
in the active strategy file. Furthermore, in Timing or Balanced Optimization Goal, the SDC

Opt i mi

constraints are forward annotatedt o post P&R&és Static Timing Analysi :

saving the need for users to create another set of timing constraints.

In the case of LSE& optimization Goal is set to Area, SDC constraints will be ignored and not
forward annotated to STA. To enter timing constraints for STA, refer to firiming Constraints and
Static Timing Analysisa

To add SDC constraints to LSE, create the .sdc file using a text editor and add the file to
Synthesis Tool > Synthesis Input Files > Constraint Files. Do not use Timing Constraints Editor
as it used to enter timing constraints for STA for use with backend processes.

The current LSE timing does not take the PLL/DLL frequency or phase shift properties into
account. It also does not model the different IO_TYPE in the PIO. Therefore, it is necessary to
adjust the timing constraint. For example, you can explicitly include a timing constraint on the PLL
outputs with the phase-shift property.

create_clock

Creates a clock and defines its characteristics.
Note

In LSE timing, interclock domain paths are always blocked for create_clock. However, the interclock domain
path is still valid for constraints such as set_false_path and set_multicycle_path.

Syntax

create_clock -name name -period period_value source
Arguments

-name name

Specifies the name of the clock constraint, which can be referenced by other constraints.

iCEcube2 User Guide www.latticesemi.com 97

http://www.latticesemi.com/

= LATTICE

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which
the clock waveform repeats. The period_value must be greater than zero.

source

Specifies the source of the clock constraint. The source can be ports or nets (signals) in the
design. If you specify a clock constraint on a port or net that already has a clock, the new clock
will replace the existing one. Only one source is accepted. Wildcards are accepted as long as the
resolution shows one port or net.

Example

The following example creates two clocks on ports CK1 and CK2 with a period of 6:

create_clock - name my_user_clock - period 6 [get_ports CK1

]

create_clock - name my_other_user_clock dperiod 6 [get_nets
CK2]

set_false_path

Identifies paths that are considered false and excluded from timing analysis.
Syntax

set_false_path [-from port or cell] [-to port or cell]

or

set_false_path [-through through_net]

Arguments

-from port or cell

Specifies the timing path start point. A valid timing starting point is a clock, a primary input, a
combinational logic cell, or a sequential cell (clock-pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational
logic cell, or a sequential cell (data-pin).

-through through_net
Specifies a net through which the paths should be blocked.
Examples

The following example specifies all paths from clock pins of the registers in clock domain clkl to
data pins of a specific register in clock domain clk2 as false paths:

set_false_path ofrom [get_ports clk1] oto[get _cellsreg_2]
The following example specifies all paths through the net UO/sigA as false:

set_false_path dthrough [get_nets UO/sigA]

set_input_delay
Defines the arrival time of an input relative to a clock.

Syntax

iCEcube2 User Guide www.latticesemi.com 98

http://www.latticesemi.com/

= LATTICE

set_input_delay delay_value -clock clock_ref input_port
Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal
is available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory
argument.

input_port
Provides one or more input ports in the current design to which delay_value is assigned. You can
also use the keyword fdall _inputso to include
Example

The following example sets an input delay of 1.2 ns for port datal relative to the rising edge of
CLK1:

set_input_delay 1.2 - clock [get clocks CLK1] [get ports
datal]

set_max_delay

Specifies the maximum delay for the timing paths.

Syntax

set_max_delay delay_value [-from port or cell] [-to port or cell]

Arguments

delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay
value for specified paths.

If the path ending point is on a sequential device, the tool includes library setup time in the
computed delay.

-from port or cell

Specifies the timing path start point. A valid timing start point is a clock, a primary input, a
combinational logic cell, or a sequential cell (clock pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational
logic cell, or a sequential cell (data pin).

Examples

The following example sets a maximum delay by constraining all paths from ffla:CLK to ff2e:D
with a delay less than 5 ns:

set_max_delay 5 - from [get_cells ff1a] - to [get_cells ff2e]

set_multicycle_path

Defines a path that takes multiple clock cycles.

iCEcube2 User Guide www.latticesemi.com 99

al

npt

http://www.latticesemi.com/

= LATTICE

Syntax

set_multicycle_path ncycles [-from net or cell] [-to net or cell]
Arguments

ncycles

Specifies a value that represents the number of cycles the data path must have for setup check.
The value is relative to the ending point clock and is defined as the delay required for arrival at
the ending point.

-from net or cell

Specifies the timing path start point. A valid timing start point is a sequential cell (clock pin) or a
clock net (signal). You can also use the keyword fa
inputs.

-to net or cell

Specifies the timing path end point. A valid timing end point is a sequential cell (data-pin) or a
clock-n e t (signal). You can also use the keyword #fAall
inputs.

Example

The following example sets all paths between regl and reg2 to 3 cycles for setup check. Hold
check is measured at the previous edge of the clock at reg2.

set_multicycle_path 3 dfrom [get_cells regl] dto [get_cells
reg2]
set_output_delay
Defines the output delay of an output relative to a clock.
Syntax
set_output_delay delay_value -clock clock_ref output_port
Arguments
delay_value
Specifies the amount of time from a ficlock_refo to a
-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory
argument.

output_port

Provides one or more (by wildcard) output ports in the current design to which delay value is
assigned. You can also use the keyword fall _ _outputso

Example

The following example sets an output delay of 1.2 ns for all outputs relative to clki_c:

set_output_delay 1.2 - clock [get_clocks CLK1] [get_ports
OUT1]]
set_output_delay 1.2 - clock [get_clocks CLK1] [all_outputs]

iCEcube2 User Guide www.latticesemi.com 100

http://www.latticesemi.com/

= LATTICE

Chapter 5 iCEcube2 Physical Implementation Tools

Overview

The iCEcube2 Physical Implementation software constitutes the second half of the iCE design
flow, and is used to implement the design on the iCE FPGA devices. The inputs to Physical
Implementation Tools are an EDIF netlist and SDC constraint files.

In addition, the software supports additional Timing Constraints in SDC format, as well as
Physical Constraints in PCF format, that can be passed directly to the Physical Implementation
tools.

The outputs are the device configuration files used to program the device, and Verilog/VHDL and
SDF files for timing simulation in an industry standard simulator.

In addition, the software also provides several powerful and useful back-end tools such as a
Timing Constraints Editor (SDC), a Floor Planner, a Pin Constraints Editor, a device Package
Viewer, a Power Estimator, and a Static Timing Analyzer.

Tools for Physical Implementation

In addition to the Placer and the Router, iCEcube2 provides the following tools to appropriately
constrain, analyze/verify the design and program the target device.

1. Timing Constraint Editor (TCE): This tool allows the user to specify timing constraints in the
SDC format, which can be used to constrain the Placer and Router. Additional details on
using TCE are provided in a subsequent chapter.

2. Timing Analysis: The Static Timing Analysis tool provides design performance analysis, to
help identify critical paths in the design. The usage of this tool is explained in subsequent
chapters.

3. Physical Constraints Editor / Floor Plan Viewer. This tool has a dual function: It allows the
user to create physical constraints after importing the design, which are honored by the
Placer. After the Placer has run, this tool allows the user to view the logic and pin placement
before final bitmap generation. At this stage of the design flow, it allows the user to modify the
placement of logic cells, 10 cells and RAM cells, before final routing.

4. Package View: This utility allows the user to view the pin assignments before final bitmap
generation. It also allows the user to modify the pin placement.

5. Pin Attributes Editor: This tool allows the user to view and configure pin properties, such as
pin location, the 10 standard and the optional pin Pull Up resistor.

6. Power Estimator: This utility assists users in estimating device power for a given design via
a spreadsheet listing the various utilized resources of the device, the estimated maximum
operating frequency, the core voltage etc.

7. Bitmap Generator: To support device programming, the iCEcube2 Physical Implementation
Tools include a utility for generating device configuration data, referred to as a bitmap.

8. Device Programmer: The iCEcube2 Physical Implementation Tools also include a utility for
programming the iCE FPGA device

iCEcube2 User Guide www.latticesemi.com 101

http://www.latticesemi.com/

= LATTICE

Placing and Routing the Design

Once the synthesized design is loaded into the iCEcube2 Physical Implementation software, the
next step is to place and route the design. The placement and routing process is started by
clicking on the Run Placer and Run Router icons respectively. Note that if the placer/router is yet
to be run, there is a green arrow next to the appropriate icon. Upon successful completion of the
operation, the green arrow changes into a green check mark.

Changing the Placer Options

The placer options can be changed by selecting Tool > Tool Options > Placer. The options are
shown in Figure 5-1.

1. Effort Level: Placer supports three effort levels for placement Optimization. Standard,
Medium and high.

2. Auto Lut Cascade: This option is fiONOby default and the placer cascades four input LUTs
via dedicated LUT output routing to implement larger logic functions in iCE40 Devices.

3. Auto Ram Cascade: This option is AONO by default and the placer cascades the 4K RAM
Blocks to implement larger Block RAM in iCE40 Devices.

4. Power Driven: Enable this option to run the placer in power driven optimization mode.
'vaiTnnl Options |2|

Flacer Raouter Bitrmap Floor Planner Text Editar

Effort lewvel: standard
Ak Juk cascade

Auka ram cascade

1 Power driven

o | [cmem]

Figure 5-1: Placer Tool Options
Changing the Router Options

The router options can be changed by selecting Tool > Tool Options > Router. Note that all
changes to the options as shown in Figure 5-2 require the router to be rerun. The options are as
follows:

1. Timing Driven: The router algorithms try to honor the timing constraints specified by the
user.

2. Pin Permutation: This option is ON by default, and aids the router in making intelligent
decisions when routing signals to the inputs of the Look-Up table Logic cell.

iCEcube2 User Guide www.latticesemi.com 102

http://www.latticesemi.com/

= LATTICE

deﬂulOplinns |§|

Flacer R.ouker Bitrmap Floor Planner Text Editor

Invoke timing driven algorithms while routing
Permit pin permuktakion

o | [Comea]

Figure 5-2 : Router Options

Floor Planner

The device Floor Plan (Figure 5-3) can be viewed by selecting Tool > Floor Planner from the
Tool menu, by or clicking the Floor Planner icon in the Tools tree in the Project Name pane.

The subsequent details in this section pertain to the viewing capabilities of the Floor Planner.

The Floor Planner also allows the user to manually modify the placement of logic (Logic Cells and
RAM blocks) as well as 10 pins. Additional details on the creation/application of Physical
Constraints are provided in 0

Physical Constraints in iCEcube2.

iCEcube2 User Guide www.latticesemi.com 103

http://www.latticesemi.com/

= LATTICE

View TJool Window Help

3 Q@lmg% v-Q

Floor Planner

g X
» I xnm_uart_topa_uart_rowr 1_data_reg 0_... »
» I Inst_uart_topa_uart_xmit_1_tx_data_reg_re...
» I uvart_data_ina_reg_ 4_ THRU_LUT4 0 [SB_L...
» I xnm_uart_topa_uart_control_1_wr_fifo_C4...
> I xnm_rt_topb_uart_control_1_wr_fifo_exp_...
> Inst_uart_topb_uart_xmit 1_C1 13 [SB_LU...
» I xnm_opa_uart_xmit_1_t«_data_reg_reg_6_...
> I Inst_uart_topb_uart_control_1_wr_fifo_C1_...
> i €112 bfv_26521_[SB_LUT4]
- xnm_rt_topa_uart_contrel 1_wr_fifo_exp 1.,
» I xnm_rt_topa_uart_control 1_rd fifo_exp 1.
» I Inst_uart_topb_uart_novr 1_C94_C1 3 [SB_...
» & Inst_uart_topa_uart_xmit_1_C95_C18_c2 [S...
» I xnm_rt_topa_uart_control_1_wr_fifo_exp_1...
» I xnm_art_nevr_1_r_data_reg_reg_h_data 0_..
» 4 Inst_uart_topb_uart_xmit_1_exp_10_C3_C5...
» 4 Inst_uart_topb_uart_revr 1_C1256_C10_c2 ...
» 4 Inst_uart_topa_uart_xmit_1_exp_10_C3_CL...
> I Inst_uart_topa_uart_nor 1_C94_MN63_THR...
» I Inst_uart_topa_uart_nor 1_C1279_C3_C8_..
> I uvart_data_inb_reg_3_THRU_LUT4 0 [SB_L...
» I Inst_uart_topb_uart_control_1_wr_fifo_C1_..
> g IN_MUK_bfv_26407_[SB_CARRY_IN_MUX]
N xnm_uart_topb_uart_centrol 1_rd fifo_C4...
N xnm_uart_topa_uart_control_1_rd_fifo_C4..
=N Inst_uart_topb_uart_xmit_1_C205_C7_c2 [S..
» I Inst_uart_topa_uart_nor_1_clk_ent_reg 8_ ...
=N xnm_rt_topb_uart_contrel_1_wr_fifo_exp_...
» I xnm_ontrol_1_write_fifo_data_in_reg_6_T...
» I Inst_uart_topa_uart_nor_1_sync_cnt_reg 0.
- IN_MUX_bfv_26393_ [SB_CARRY_IN_MUX]
> I Inst_uart_topb_uart_control_1_wr_fifo_C1_... -

World View

Figure 5-3: The Floor Planner

Viewing the Device Floor Plan

The Floor Planner displays the placement of the netlist on the selected device, as shown in
Figure 5-4 with utilized resources depicted in green.

The 10 Tiles are depicted in grey, and are located along the periphery of the chip. Each 10 Tile
has two or three 10 Pin locations. Non-bonded 10s i.e. an 10 cell that does not bond out to a pin
on the device package is unusable. Such non-bonded 10s are depicted in a dark shade of grey.

The RAM block locations are depicted by the two brown columns, running vertically through the
Floor Plan. Utilized RAM blocks are depicted in green, and the corresponding RAM Tile in a dark
brown.

The Logic Tiles are depicted by the blue tiles, and contain eight rectangular blocks, each
signifying a Logic Cell (4-input LUT, a flip-flop, and Carry logic), and a small square in the bottom-
left corner of each tile, signifying the Carry-In from the Logic Tile directly below it.

iCEcube2 User Guide www.latticesemi.com 104

http://www.latticesemi.com/

= LATTICE

The layout of the cells follows an (X, Y, Z) co-ordinate numbering scheme, with the origin at the
bottom-left corner of the device. Mousing over the logic and 10 tiles displays the location co-
ordinates of the tile as a two dimensional (X, Y) co-ordinate location. Since each 10 and Logic tile
has multiple 10 and logic cells respectively, the IO and Logic cells within a tile are identified by the
Z co-ordinate, resulting in a (X, Y, Z) triplet that uniquely identifies each cell.

As mentioned above, the Logic Cell has multiple resources (LUT, flip-flop, Carry logic). It is
possible to view the utilized portions by performing a right-mouse-click > Show Content on a
selected Logic Cell, as displayed in Figure 5-4. This brings up a window that shows the portions
that have logic placed within. An example of a Logic Cell which contains a used LUT and flip-flop
but an unused Carry-In is displayed in Figure 5-5 below.

)
|
| ;
L] TMorve
Show Content
L Display Fan-in nets upon cell seleckion

Display Fan-ouk nets upon cell selection
Display Fan-in & Fan-out nets upon cell selaction

? Fin Permukation

Lock

Figure 5-4: Viewing the utilized portions of a Logic Cell

Figure 5-5: Example of the utilized portions of a Logic Cell

The View > Zoom In and View > Zoom Out menu items zoom in and out of the Floor Plan
respectively. Mousing over a cell or net also displays instance information for that cell or net.

A World View pane provides a view of the entire Floor Plan, and can be used to navigate the
floor plan when the Zoom In factor is high.

The placed Logic tiles in the Floor Planner have the following Color conventions. White color
represents an empty cell; Green color represents a placed cell. When you select a particular cell

iCEcube2 User Guide www.latticesemi.com 105

http://www.latticesemi.com/

= LATTICE

it would be highlighted in Yellow. A cell which was locked at a location would be highlighted in
green color with red checks. Also, a Lock symbol would be shown on the cell.

Navigating the Design Placement

Through the Floor Plan View, the user can trace the connectivity of an implemented design. This
can be achieved via a combination of the Logic/IO/RAM/Net pane and the Fan-in/Fan-out
functionality available for each used resource.

The Logic/IO/RAM/Net pane displays the used resources on the device. Selection of a node
within this pane highlights the corresponding cell/net in the Floor Plan view.

The right-button of the mouse brings up a context sensitive menu specific to the particular type of
resource selected. This menu allows the user to Search for specific nodes, or to Sort the listed
nodes. As an example, the menu for Logic Cells is displayed in Figure 5-6.

Qutput Flaor Planner
Logic 5 X

Logic Instance Instance Type Location e

Figure 5-6: Invoking the Sort and Search functionality in the Logic/IO/RAM/Net pane

HEHRE RN AR AR EEEE

¥

o+

) HuPedudn

o
$
$

Logic

GROUPO.GROUPDO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDO.COU...
GROUPO.GROUPOO.COU...
GROUPO.GROUPOO.COU....
GROUPO.GROUPO0O.COU...
GROUPO.GROUPO0D,COU..,
GROUPO.GROUPOD.COU...
GROUPO.GROUP0D.COU....
GROUPO.GROUPOO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDD.COU...
GROUPO.GROUPOD.COU...
GROUPO.GROUPO0D.COU...
GROUPO.GROUPO0.COU...
GROUPO.GROUP0D.COU...

IN_MUX_bfv_3_9_0

GROUPO.GROLIPOO.COU...
GROUPO.GROUPOD,COU...
GROUPD.GROUPOO.COU...
GROUPO.GROUPO0.COU...
GROUPD.GROUPON.COU ..
GROUPO.GROUPO0.COU...
' GROUPO.GROUPOO,COU... 5B DFE
GPIO | Global | Ram

World View

SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4

SB_CARRY_IN...

SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4

A0 EEREREE O W0 W0 0 WD D D0 0 0 W0 D D 0D

WOLWWWOWEEEEMWWLWWOLWLOLWWWWWLW W

om0 00 PRI RO NARARELOOON NN

b e
R

3,102

Met

Group

Move

Lock
Pin Permutation

Sort By Name
Sort By Cell
Search ...
Copy Item Text

& X

Selecting the Sort by Name option sorts the Logic instances based on instance names as shown

below

iCEcube2 User Guide

www.latticesemi.com

106

http://www.latticesemi.com/

= LATTICE

Cukpuk Floor Flanner
Logic (=4
Logic Instance Instance Type | Locakion L
4 GROUPD,GROUPOL COUMTERDE.C_cry_c[7] SE_CARRY a, 17, 7
H 4 GROUPD,GROUPOL, COUNTERDG.Q_cry_c[&] SE_CARRY 9, 15,0
H - g GROUPD.GROUPDL, COUMTERDS.Q_cry_c[9] SE_CARRY 9,18, 1
#- I GROUPD.GROUPOL, COUMTERDE,Q_RMO[0] SE_LUT4 9,17, 0
+- L GROUPD,GROUPDL, COUNTERDS.Q_RMO[10] SE_LUT4 9,15, 2
+- I GROUPD.GROUPOL,COUNTERDG.Q_RMO[11] SE_LUTH 9,18, 3
+ I GROUPD.GROUPOLCOUNTERDG.Q_RMO[12] SE_LUT4 9,15, 4
+ L GROUPO.GROUPDL, COUNTERDG.Q_RMO[13] SE_LUT4 9,158, 5
+ I GROUPD.GROUPOL,COUNTERDG.Q_RMO[14] SE_LUT4 9,158, 6
+ L GROUPD.GROUPOL, COUNMTERDE.Q_RMO[15] SE_LUTH 9,15, 7
+ I GROUPD.GROUPOL,COUMTERDG.Q_RMO[1] SE_LUTH 9,17, 1
#- I GROUPOGROUPOL, COUMNTERDE.Q_RMNO[2] SE_LUT4 9,17, 2
#- I GROUPD.GROUPOL, COUMTERDE.G_RMO[3] SE_LUT4 9,17, 3
#- I GROUPOGROUPOL, COUMNTERDE,C_RMO[4] SE_LUT4 9, 17, 4
+- I GROUPD.GROUPOL, COUMTERDE. G_RMO[S] SE_LUT4 9,17, 5
#- I GROUPD.GROUPOL, COUMTERDE.Q_RMO[&] SE_LUT4 9,17, 6
#- I GROUPO,GROUPOL, COUMNTERDE . G_RMNO[7] SE_LUT4 9,17, 7
- T GROUPD.GROUPOL . COUMTERDG.G_RMO[E] SE_LUT4 9,18, 0
#- I GROUPOGROUPOL, COUMTERDE Q_RMO[2] SB_LUT4 9,18, 1
H I GROUPD.GROUPOL, COUMTERO?. QD] SE_DFF 9,19, 0
#- I GROUPOGROUPOL, COUMTERDZ, Q[10] SB_DFF 9,20, 2
+- T GROUPOGROUPOL, COUMTERDZ Q[11] SB_DFF 9, 20, 3
+H LT GROUPO.GROUPOL, COUNMTERDZ. Q12] SE_DFF 9, 20, 4
+- I GROUPOGROUPOL, COUMTERDZ, Q[13] SB_DFF 9,20, 5
#- LT GROUPD.GROUPDL, COUMTERDZ Q[14] SE_DFF 9, 20, &
#- I GROUPOGROUPOL, COUMTERDZ, Q[15] SB_DFF 9,20, 7
#- I GROUPO.GROUPOL, COUMTEROT. (1] SE_DFF 9,19, 1 ~
Logic GPIO Global RAM Met Group
whorld Visw 3 X

Figure 5-7: Sort by Name Option

Selecting Sort by Cell option sorts the panel display based on logic cell grouping as shown in
Figure 5-8.

Catpuk Floor Planner

Logic [

Logic Instance Instance Type Locakion fa
+ GROUPD, GROUPOL, COUNMTERDS, O _RMO[S] SE_LUT4 9,17, 5
GROUPD, GROUPOL, COUMNTERDE, Q[E] SBE_DFF 9,17, 6
GROUPO, GROUPOL . COUNTEROS. O _cry_c[6] SE_CARRY 9,17, 86
GROUPD, GROUPOL, COUNMTERDS, O _RMO[E] SE_LUT4 9,17, 86
GROUPD, GROUPOL, COUNMTERDS, Q[F] SBE_DFF 9,17, 7
GROUPO, GROUPOL, COUNMTERDS. O _cry_c[7] SBE_CARRY 9,17, 7
GROUPD, GROUPOL, COUNMTERDS, Q_RMO[F] SE_LUT4 9,17, 7
IM_MUE_bfv_9_17_0_ SE_CARRY_IM... 9,17, 8
GROUPD, GROUPOL, COUNMTERDS, O[] SBE_DFF 9,18, 0
GROUPO, GROUPOL, COUNMTERDS. O _cry_c[8] SBE_CARRY 9,18, 0
9,15, 0

GROUPD. GROUPOL . COUMTERDG . O _RMO[E] SE_LUT+

BB -B-E-E-E-E-E-E-E-E-E-E-E-EHE

JueItePtBrositiedte)tie

GROUFO1L =

1
1

GROUPO. GROUPOL . COUNMTERDS . [10] SE_DFF a, 18, 2

GROUPO, SROUPOL, COUNTERDS . C_cry_c[10] SE_CARRY a, 18, 2

GROUPO. SROUPOL, COUNTERDS . Q_RMO[10] SE_LUT4 a, 18, 2

GROUPO, GROUPOL . COUNMTERDS . [11] SE_DFF a, 18, 3

GROUPO, GROUPOL, COUMTERDG. O _cry_c[11] SE_CARRY 9,18, 3

GROUPO, GROUPOL . COUMTERDG, _RMO[11] SE_LUTH 9,18, 3

GROUPO, GROUPOL. COUMTEROG [12] SE_DFF 9,18, 4

GROUPO, GROUPOL, COUMTERDG. Q_cry_c[12] SE_CARRY 9,18, 4 e

Logic SPIC Global Ruara et Group

Figure 5-8: Sort by Cell Option

Select Lock option to fix the instance location in the floor planner view.

Selecting the Search menu item brings up the user interface displayed in Figure 5-9. Note that
the same dialog box can also be invoked from the Edit > Search menu item.

The type of design node (Logic, Net, 10, RAM, Port) should be specified, in order to filter the
search process. In addition, a search pattern with wildcards (*,?) to match the required node

iCEcube2 User Guide www.latticesemi.com 107

http://www.latticesemi.com/

= LATTICE

names, can be specified. Clicking on the Search Button identifies and lists the nodes whose
names match the search pattern, for the specified node type.

When a node from the Search Results window is selected, it is highlighted in the corresponding
tab of the Logic/lIO/RAM/Net pane, as well as in the Floor Plan view.

Search Options

Search design for type: |Logic

Using search pattern: *mux®*ROM*C15_727

Case sensitive

Search results:

muw_if out ROM_0 ROM blk_muc 0 C16 10
muw_if out ROM_0_ROM_blk_mue 0 C16 1

Figure 5-9: Search Functionality in the Floor Planner

A Right-Mouse-Click on the selected node in the Floor Plan View invokes a menu that allows
the user to display the nets connected to the node. This menu can be invoked for Logic Cells,
Block RAM and 10 Cells. The resulting menu for a Block RAM cell is displayed in Figure 5-10.

iCEcube2 User Guide www.latticesemi.com 108

http://www.latticesemi.com/

= LATTICE

| | | |
]]]]
]]]]
]]]]
] —] —]]

[] [| [| | [] |

]]]]]]

]]]] E

Move —

]

Display fan-in nets -

Display fan-out nets —

Display fan-in & fan-out nets

]]]]

]]]] [|

]]]]]

]]] E E

| |

[|] | [|]

]]]]]

] —] —]] |]

[] [| [| [] [] []

]]]]]]

]]]]]]

L IRl B EE EE

Figure 5-10: Invoking the Move and Net Tracing Capability in the Floor Planner

The user now has the option to selectively display the nets connected to a cell. For example,
selecting the Display fan-in nets menu item displays only the nets that drive the node, i.e. the
fan-in nets. Similarly, if the user wishes to display only the nets that are driven by the selected
node, the Display fan-out nets menu item should be selected. Both, fan-in and fan-out nets, can
be displayed simultaneously, by selecting the Display fan-in & fan-out nets menu item.

As an example, both fan-in and fan-out nets of a Block RAM cell are shown in Figure 5-11. It
should be noted that the fan-in nets connect to the left side of the driven cell, and are depicted in
light yellow. Fan-out nets connect to the right side of the driver cell, and are depicted in dark pink.
Using fan-in and fan-out nets, the user can traverse the design from cell to cell, and make
appropriate decisions about modifying the placement manually.

SannnEme
([T LqF

Figure 5-11: Fan-in and Fan-out Nets displayed in Floor Plan

Note that by default, the fan-in and fan-out nets are displayed whenever a cell is selected. This
setting can be changed by disabling it in the Tool > Tool Options > Floor Planner tab, as
displayed in Figure 5-12 below.

iCEcube2 User Guide www.latticesemi.com 109

http://www.latticesemi.com/

= LATTICE
[Tool Options =

| Placer I Router Bitmap Floor Planner | Text Editor

Show fan-in nets after a cell is selected
Show fan-out nets after a cell is selected

0K Cancel

Figure 5-12: Floor Planner Options

Package View

The Package View tool (Figure 5-13) displays a pin map of the implemented design in the
targeted package, and allows the user to change Pin properties such as Location and IO
Standard. Note that these properties can also be modified from the Floor Planner and the Pin
Constraints Editor.

A Port pane is available and it permits the user to select a design pin, and highlight it in the
package view.

A World View pane provides a view of the entire package, and can be used to navigate the
package view when the Zoom In factor is high.

Mousing over a pin in the package view provides information on its usage, whether the pin is
available, the pin number and the pin name.

The package pins assigned to the userds design ports
be re-assigned to different locations.

iCEcube2 User Guide www.latticesemi.com 110

http://www.latticesemi.com/

= LATTICE

{41 SiliconBlue iCEcube - Version 2008

' File Edit View Tool Window Help

|i._J D N @l 00.92% ’@l @

Project Name: dpem_debug B x |

4 Design Flow
« Route
o/ Bitmap
4 Tools
ﬂ Clack Constraints Editor
& Pin Constraints Editor
& Floor Planner
]| Package View
E Power Estimator
ﬂ Programmer

Part

Package View

& X

muxcsel[1:0]
Fudat[3:0]
T fudat[0]
T fudat[l]
. I fudat(2]
. I fudat[3]
> Imemin[7:0]

+ Imemout(7:0]
s W{7:0)

> u[7:0]

> di[7:0]

> yl7:0]

> B ulat

B st

> B ylat

> B calcen

[

-

m

Files & X

4 Input Files -
dpcm_bfpga.edf
dpem_bfpga.pcf

Constraint Files

4 Output Files

4 packer
dpcm_info.log
dpem_sbt.mtcl

4 router
dpcm.route
dpcm.rt_log
dpem_rt_usage.log

4 bitmap L4
dpcm_bitmap.bin
dpem_bitmap.hex
dpcm_bitmap_inthex -

m

World View

5 6 7 8 9 10 11 12 13 14 15

16

17 18

19 20

21 22

elelelvlejele] |

iCEBG5L04 - CB284

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 5-13 : Package View

The Package Pin Legend (Figure 5-14) shows the color coding of the various pins available on
the selected package, identifying the functions of the pins. For example: power (VCC, VCCIO,
GND, VPP/VDDP, VREF), user 10, and other special purpose pins which provide access to the
low-skew global network (GBIN).

o]

Potnge P et I

SPLSIL/SPI_S0/SPT_SCK/SPI_55 B

B vcc

B vcco

[] CDOMNE/CRESET_B
[VPP/VDDP
I VREF

W TCK/TDITDO/TMS/TRST_B

Figure 5-14: Package Pin Legend

Editing Pin Properties

Modi fying a

pi nds

pl acement i

S accommlitiostesi®d ei t her

empty location, or by invoking the Pin Constraints dialog box (Figure 5-15) using the Right-

iCEcube2 User Guide

www.latticesemi.com

111

b

http://www.latticesemi.com/

= LATTICE

Mouse-Click>Edit Pin Constraint. | n addi ti on to its | ocation
resistor can also be configured from this dialog.

PortMame: Imemout_7

Pin Location: ['u'll

I0 Standard: |SB_LVCMOS

Pull Up: [Nu

Figure 5-15: The Pin Constraints dialog box invoked from the Package View

Undesired pin location changes can be reverted back to their initial state using the Edit > Undo
menu.

Once all changes are complete, the new pinout can be saved by clicking File > Save Package
View from the main menu.

Note: Any changes to the package pin assignment will require the router to be rerun.

Pin Constraints Editor

The Pin Constraints Editor (Figure 5-16) provides a table of all the pins in the design and their
attributes. The Editor allows the user to modify the location of the pin, assign an 10 Standard,
specify Load Capacitance on output pads, and set a Pull Up resistor.

In order to modify a cell value, click on the cell and select a value from the drop down box. The
drop-down selection for each cell presents only the relevant pin properties i.e. only those
destination pins that match the properties of the selected pin. Similarly, in the IO Standards
column, only the IO standards that are valid for the pin are available for selection. The same is
true for the Pull Up resistor column.

Once all changes are complete, the new pin-out can be saved by clicking File > Save Pin
Constraints Editor from the main menu.

Load Capacitance Entry: Pin Constraints Editor also allows specifying the output load
capacitance for output pads. The default value for load capacitance is 10pf (not displayed
explicitly in the cells) and the new desired value can be entered in the corresponding cells. The
capacitance values are used by Power Estimator and Static Timing Analysis tool to calculate
the power consumptions and paths delays based on output loads.

Once the router is run, a report file for the IO pins is generated. This file is named
<project>_pin_table.CSV (Comma delimited text file), is located in the
<project_directory>/<project>_Impl/sbt/outputs/packer directory.

iCEcube2 User Guide www.latticesemi.com 112

t

he

http://www.latticesemi.com/

= LATTICE

) iliconBlue CEcube? - [Output] - [Pin Constraints Editor]

W Fle Edt View Tod Wndow Hep =
J 10| e % " L}, ’ .
) V.0 Q‘-ﬁ B el B %) Load Capacfcance Entry
Project Name: quick_start 8 x Output I‘
= Project Objec Lit Tipe Pnloaton | Bk | 105tandad Pl Up
New Praject 1
Opganng[1 PMOD_BTUH].] Output Fs Left le
Close Project l
& Synifesis Too 2 PMoD BT _1342] Output £2 Left |
o Add Synthesis Files "‘
2 Desiy Fils 3 PMOD_BAT_J34(3) Output) Left '.
bliky yhd ‘.
p |
i Corsiabt Flks 4 PMOD BT J35(4] Output Dl Left ‘.
o Launch Synthesis Tool 5 o B 1] oupt Gl Lef "
= PRR Flow |
= of Select Implementabon(guick start Implrrt) 16 pwoo_ear_vuf2) ot @ Left ;
quick_start.edf |
Quick startsef 7 PHOD_ R JaN(3] oupt I Left |
4 Add PAR Files ¥
Run &l 8 PHOD_E2R_I(4] Output [Top SBLYCHOS e il
o Tmpart FAR Input Files
o RunPlcer 9 PMOD_BIR_IH1) Output % Left
Run Router
b (enerate Bltmep 10 PMOD}URJH?} ClIlDUt R I.Eh
=l Fil
ci”g;:mf 11 FMOD_BOR_)13(3) Output R Bottom 5B_LYCMOS e 1}
Bimap
P 4 4
St et 2 PHOD_BOR_)13(4) Output) Left
= DavicefOperating Condition 13 P00 638 751 ot @ it
& Device Info T

Figure 5-16: Pin Constraints Editor

Power Estimator

The iCEcube2 Tool Suite includes a utility for estimating device power consumption for a given

design. The Power Estimator (Figure 5-17) can be invoked by selecting Tools > Power Estimator
from the main menu.

The utility includes a listing of utilized device resources and power dissipated at the estimated
maximum operating frequency. The user can modify several design parameters to analyze their

impact on power consumption. These parameters can be modified on the various tabs of the
Power Estimator GUI.

The Summary tab displayed in Figure 5-17 below allows the specification of the following
operational parameters for the purpose of power calculation only. Note that the operating
conditions specified earlier for Timing Analysis are not impacted by changes to the Power
Estimation parameters.

1 Core Vdd: The voltage at which the core of the chip operates, in Volts.

1

IO Voltage: The voltage at which the IO cells operate, in Volts. This can be specified
individually per bank.

Process: The process corner selection for power calculations.

Temperature: The temperature at which the chip operates, in degree Celsius. The
operating temperature can vary from -40°C to 100°C.

iCEcube2 User Guide www.latticesemi.com

113

http://www.latticesemi.com/

= LATTICE

Clicking on Calculate computes the estimated power dissipation and displays the results under
Dynamic Power Breakdown and Power Consumption.

Clicking Reset resets the values to the initial power estimates, and also resets all the changes
back to their default values.

 Power Estimator

SuUmmary | L] Clock Domnain

Core vdd(Y): Crenamic Power Breakdown
10 violkage Core Power(mi): |2.21476 |
Left Bank IO Vokage(¥): |2.5 - 10 Power(mit); |4.25 |

Right Banik 10 Woltage(¥): Power Consumption

Static Power(mi) |D.395534 |

Top Bank 10 Woltage(W): (2.5 w

Drynianiic Pawmer i |6.464?6 |

Bottom Bank 10 Yolkage(v): |25 w
Total Power(mW): |6,86022 |

Process: |Typical v Temperature(®C): | 25,00 5

To determine the iCE40 peak start-up current data, refer ko the datashest,

[Calculate H Close

Figure 5-17 : Power Estimator - Summary Tab

The 10 tab displayed in Figure 5-18 permits the user to specify the toggle rate fort he desi gnés
input and output ports, as well as loading capacitance for output pins.

' Power Estimator

SuMmmary |T| Clack Damain
10 Port Mame Switching Frequency (MHz) | Output-Pin Load Capacitance (pF) &
1 PMOD_B3B_138(3] 4.00 10,00 3
2 PMOD_B3E_138[1] 4.00 30,01
3 PMOD B2L_J31[3] | 33.33 _
4 PMOD_BZR_IZ0[1] 3333 10,00
5 PMOD_B3T_139(Z] 4.00 10,00
& PMOD_BZL_131[4] 4.00 10,00
v
[Caloulate H Close

Figure 5-18: Power Estimator i 10 Tab

iCEcube2 User Guide www.latticesemi.com 114

http://www.latticesemi.com/

= LATTICE

0 Power Estimator @@

Surmary | [0 | Clock Domain

Clack. Clock Frequency (MHz) & of 5eq, LCs 9eq, LCs Swikching Frequency (MHz) # of Comb, LCs Comb, LCs Swikching Frequency (MHZ)

1 SCLK_SZKhz 1 9 0.06 1 0.06

clock_divider_1Hz|
COUNTER,_jnferred_clock[9]
clock_divider_320Hz|
COUMNTER inferred_clock[27]

Z Lo 9 0.06 1 0.0
100 9 0.06 0 0.0

¢ CLK_32he 3200 & 2 i 2m

Reset Al

Figure 5-19: Power Estimator i Clock Domain Frequency Specification

The Clock Domain tab allows the user to specify the clock frequency in MHz as shown in Figure
5-19. Note that changing this frequency adjusts the operating frequency of the individual logic
resources like the 10 Cells, LUTSs, Flip-Flops and Block RAMs (BRAM), as per the built-in toggle
rate estimates. In addition, the switching frequencies of the Sequential Logic Cells (Logic cell in
which the flip-flop is utilized), as well as the Combinational Logic Cells (Logic cell in which only
the LUT is utilized), can be specified, on a per domain basis.

Theuser can save t he c udatawhiletclosing thesPiowenEstimator.n eut time
when the Power Estimator is open, the previous s e s s iinput dat are populated automatically.

Generating a Bitmap

After routing is complete, the last step in the flow is to generate the configuration files (bitmap) for
programming the target device. Clicking the Bitmap icon in the Flow tab generates the bitmap.

Changing the Bitmap Options
The user can change the Bitmap options by selecting Tool > Tool Options > Bitmap. See Figure
5-20.

1. SPI Flash Mode Options: Checking the option will place the PROM in low power mode after
configuration. (Note: This option is applicable only when the iCE FPGA is used as SPI
master mode for configuration)

2. RAM4K Initialization Option: The device configuration files will not include RAM4K
initialization pattern when this option is unchecked.

3. Internal Oscillator Frequency Range: Depending on the speed of the external PROM, this
option adjusts the frequency of the internal oscillator used by the iCE FPGA during
configuration (Note: This is only applicable when the iCE FPGA is used in SPI master mode
for configuration)

iCEcube2 User Guide www.latticesemi.com 115

http://www.latticesemi.com/

= LATTICE

4, Other

a. Enable Warm Boot: This option enables the Warm Boot functionality, provided
the design contains an instance of the SB_WARMBOOT primitive, and the
Multiple Image Files are specified as explained in the section Programming the
Device.

b. Set security: Selecting this option ensures that the contents of the Non Volatile
Configuration Memory (NVCM) are secure and the configuration data cannot be
read out of the device.

c. Set all unused IO no pullup: Selecting this option removes the pullup on the
unused I0s (except Bank 3 10s which do not have pullup)

W Tool Options l —]

| Placer | Router Bitmap Floor Planner Text Editor

SPI Flash Mode Options

In 5PI Flash mode, place PROM in low-power mode after configuration

RAM4K, Initialization Options
Initialize RAM4K blocks with contents specdified in the design or to '0' if unspecified
Select the quadants for RAM4K initizlization
RAM4Ks in Quadrant O
RAME in Quadrant 1
RAMKE in Quadrant 2

RAME in Quadrant 3

Internal Osdllator Frequency Range

[Iuw -

Other
Enable warm boot

|:| Set security
[] set all unused 10 no pullup

o o]

Figure 5-20 : Bitmap Options

iCEcube2 User Guide www.latticesemi.com 116

http://www.latticesemi.com/

= LATTICE

Programming the Device

Standalone Lattice Diamond programmer is the device programmer required to program iCE
devices.

Diamond Programmer

Diamond programmer is fully integrated into Lattice Diamond software and also available as a
standalone application. When Diamond programmer is run within the Diamond GUI, it can be only
used to program devices supported by Diamond Software. When Diamond Programmer is run
standalone it can be used to program iCE devices.

Download and install the latest standalone programmer from http://www.latticesemi.com/ispvm.

Launch the standalone programmer to program iCE devices. The following options are available
in the getting started Dialog box as shown in Figure 5-21.

¢! Diamond Programmer - Getting Started [

Select an Action

@ Create a new project from a scan

Cable: [HW-USBN—ZA 'J Port: [EZUSB—O 'J l Detect Cable

(") Create a new blank project

_) Open an existing programmer project

[ok [conca |

Figure 5-21: Diamond Programmer i Getting started Window.

1 Create a new project from a scan: Use this option to create a project based on
scanning of the attached programming cable. Select the cable type, port and click on
detect cable button to create a new configuration project.

1 Create a new blank project: Create a new blank project.

1 Open an existing programmer project: Open an existing configuration project (.xcf)
file.

The following figure shows the programmer main windows. Main window shows the cable
settings, selected device and the programming mode options.

iCEcube2 User Guide www.latticesemi.com 117

http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

= LATTICE

@ Use default 1/0 settings

T N
4.} Diamond Programmer - Untitled * | (o] B
File Edt View Design Help
g o 3 ER
nemd @ @ &
” b Operation -
3 Cable Settings
1@ Jl Fast Program
- > 4 Detect Cable
™ Cable: HW-USBN-2A MINE
g
& :
2 Custom port:
=
g 1/0 Settings
o
£
]
i

") Use custom I/O settings

INITN

DONE pin

< i, ' TRST ot comecied

loutput Warning 8 x
Lattice VM Drivers detected (HW-DLN-3C (Paralie]) D Message

'| Programmer device database loaded
f INFO - Scanning USB Port EzUSB-0...
3

| output | Td Console Info* | Waming | Error®

Figure 5-22 : Programmer Main Window

Click on Device Family tab and select the device family. Similarly select the target device.

There are three programming modes available to configure iCE40 devices. Click on Operation tab
in the main window or select Edit -> Device Properties to select the configuration mode.

[L% - . -) é £ N
.} (CE40 - (CEAOHXIK - Device Properties 208380 | [k40 - CEAOHIK - Deice Propertes 1.2 i
General | Device i General | Device Informati
Device Operation /‘\ Device Operation
Access mode: i . Access mode:
CRAM Programming
Operation: NVCM Programming Mode Operation:
SPI Flash Programming
Programming Options 3 Programming Options
| Programming file: E] Programming file:
Device Options Device Options
[7] Reinitialize part on program error [Reinitialize part on program error
o) (o)
A V)

Figure 5-23 : Device Programming Modes
Access Mode:

CRAM Programming: Configuration Random Access Memory (CRAM) configuration is
accomplished by directly loading the iCE40 CRAM over the SPI bus. This flow use the iCEcube2
generated .hex, .bin files for programming the device.

NVCM Programming Mode: NCVM programming involves transmitting programming data over
the SPI bus to the NVCM array internal to the iCE40 device. The NVCM is one-time
programmable (OTP). This flow uses the .nvcm file.

SPI Flash Programming: iCE40 device is configured using an external SPI Flash device. In this

flow, the iCE40 device acts as the SPI bus master and will therefore control the data flow from the

iCEcube2 User Guide www.latticesemi.com 118

http://www.latticesemi.com/

= LATTICE

configuration device. This flow use the iCEcube2 generated .hex, .bin files for programming the

device.

Operation:

Each programming mode has various operation modes to erase, program and verify. Refer Help
-> Programming the FPGA -> Programmer Options -> Device Properties Dialog Box for the

supported operation modes.

Click on the program icon or select Design->Program to start program the device. The output

window displays the status of programming.

N
{_J Diamond Programmer * ==
File Edit View Design Help
fed BRA
Enable Status Device Fam!ly Operation L
Prcgram Cable Settings
B e —
&
o
& E
E
L] Custom port:
@
b1
5
9 1/0 Settings
©@ Use default I/O settings
< m | *) Use custom I/O settings -
Output Info & X
Lattice VM Drivers detected (HW-DLN-3C (Parallel)) D Message
Programmer device database loaded -
INFO - Scanning USB Port E2USB-0... = 2342002 INFO - Scanning USB Port EzUSB-0...
i
Output | Td Console | Info | Waming | Error |

Figure 5-24 : Program the device.

For more information on iCE40 Programming, refer Standalone Diamond programmer Help ->
Programming the FPGA > Programming and Configuring iCE40 Devices with Programmer.

Memory Initializer

iCEcube?2 provides a command line utility to initialize the block memory primitives (BRAM) in the
design after placement and routing. The memory initialize utility directly updates the memory
contents in the post route OA database. This feature allows the user to initialize a single or
multiple memory contents without re-implementing the design. The post route simulation netlist
can be regenerated through Tools ->Generate Simulation Netlist menu item for functional

verifications.

Dos Command

<<icecube?2_install_dir >>\ sbt_backend \ bin \ win32 \ opt \ mem
initializer.exe -- des- lib <design_OA database> -- mem
list -file <memlist -file -name>

iCEcube2 User Guide www.latticesemi.com 119

http://www.latticesemi.com/
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/programmer_options.htm%231367177
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm

= LATTICE

Bash Command

export LD_LIBRARY_PATH =

<<icecube2_install_dir >>/sbt_backend/lib/linux/opt/
$LD_LIBRARY_PATH

<<icecube2_install_dir >>/sht_backend/bin/I| inux /opt/mem
initializer -- des- lib <design_OA database> -- memlist -

file <memlist -file -name>

Options:
--des-lib <design_OA_database> : Specify the design OA database (oadb-XXXX).

--meme-list-file <meme-list-file-name> : File specifying the post-synthesis logical BRAM name or
the post-routed physical BRAM instance name and the
associated memory initialization file.

Memory list file Format: Memory list file is a text file which specifies the post-synthesis logical
BRAM instance name or the post-routed physical BRAM instance name as in the post route
simulation netlist and the associated memory initialization file. The format of the file is shown
below

Format: < BRAM logical/physical Instance name> <mem init file>

Example: sample_mem.list

memory0 raml.mem
memoryl ram2.mem
memory2_physical ram3.mem

The floor planner view shows the post synthesis BRAM logical instance names.

iCEcube2 User Guide www.latticesemi.com 120

http://www.latticesemi.com/

= LATTICE

W Fle Edit View Tood Window Help

Project Name: mem Init_Instance

13,

B} Poject RAM
- New Pmoject
- Open Project Logic Instance Instance Type | Location

- Chose Project LiSB_RAM4O_4K 8,23,0

[=}- Synthesis Tool SB_RAM40_4K 82
[+ Add Synthesis Files 4 memoryl SB_RAM40_4K 8,1

&} Design Files I memory0 SB_RAM40_4K 81

© b mmlBK_1KX16.v

- Constraint Files

- of Run Lattice LSE Synthesis

[#- Reports

E} P&R Flow

[¢ Select Implementation(meminit_Insta...

meminit_Instance.edf

‘o meminit_Instance.scf

[+ Add P&R Files

= Run P&R

J Import P&R Input Files

- o Run Placer

2| k[0 |@F= 1@ &

Output

1,0
90
7,0

EEEE

s Generate Bitmap
[=]- Output Files
[Reports

: gﬁn"fﬁmn Netlist £ e e T e B

M Acccadaoodioimacaang

Figure 5-25: Floorplanner view 1 BRAM logical instances

Memory initialization file Format (.mem) :

A memory initialization file (.mem) is an ASCII text file that contains memory initialization data in
hex format.

Data

The address and data must be in Hex (hexadecimal) Format. Each line consists of an address
followed by a colon and then any number of data words, separated by spaces. If the specified
address contains multiple data words, the data initialization starts at specified <address> and the
initialization continue for the next immediate sequential addresses till the last data word. If the
data has fewer bits than the expected data width then the most significant bits are filled with 0.
Any address not specified in the .mem file will be filled with 0. Use pound sign (#) in the .mem file
to add comments or block an address for memory initialization.

Format : <address> :< data> <data> <data>...

Example: memory256x16.mem

A0:0003 00F3 003E 004F

B2:3B 9F
#Set address B3 to fAn00.
#B3:FF

iCEcube2 User Guide www.latticesemi.com 121

http://www.latticesemi.com/

= LATTICE

This initialize the address A0 with 0003, A1 with 00F3, A2 with 003E, A3 with 004F, B2 with
003B, and B3 with 009F. Address B3 is not parsed and initialized to 0. The other addresses not
specified in the .mem file are initialized to 0.

Simulating the Routed Design

Once the design is routed successfully, the iCEcube2 Physical Implementation Software
generates Post route Verilog and VHDL models and SDF files in the
<project_dir>/<project_name>_Impl/sbt/outputs/simulation_netlist directory.

Verilog Simulation

The post-route files used for Verilog timing simulation are as follows:
Post-Route Verilog netlist : <top_level_design_name>_sbt.v
Verilog SDF Timing file : <top_level_design_name>_sbt.sdf

The iCEcube2 software provides Verilog simulation libraries at the following location:
<iCEcube2_installation_directory>/Verilog

Using the above files, the design can be simulated in Aldec Active-HDL simulator or simulated in
an industry standard Verilog simulator, and verified for functionality and timing.

VHDL Simulation

The post-route files used for VHDL timing simulation are as follows:
Post-Route VHDL netlist: <top_level_design_name>_sbt.vhd
VHDL SDF Timing file : <top_level_design_name>_sbt_vital.sdf

The iCEcube?2 software provides VHDL simulation libraries at the following location:
<iCEcube2_installation_directory>/VHDL

Using the above files, the design can be simulated in Aldec Active-HDL simulator or simulated in
an industry standard VHDL simulator, and verified for functionality and timing. The details of
simulating a design with Aldec Active-HDL are described in Simulating Design with ALDEC
Active-HDLChapter 10.

iCEcube2 User Guide www.latticesemi.com 122

http://www.latticesemi.com/

= LATTICE

Chapter 6 Timing Constraints and Static Timing Analysis

Overview

The iCEcube2 Static Timing Analysis (STA) software is useful for analyzing, verifying and
debugging the timing performances of your design. Static Timing analysis along with functional
verification allows you to verify the overall design operation.

The STA tool accepts timing constraints in Synopsys Design Constraints (SDC) format. The SDC
constraints can be forward annotated by Synplify Pro or LSE. In LSE, SDC constraints are
forward annotated in all Optimization Goal settings except for fAread SDC constraints can also
be specified separately by the user through the Timing Constraints Editor (TCE).

This chapter focuses on the following aspects:

1 Specifying Timing Constraints using the Timing Constraints Editor (TCE)
1 Analyzing Reports generated by STA

Specifying Constraints Using the Timing Constraints Editor (TCE)

The Timing Constraints Editor can be invoked by clicking Tool > Timing Constraints Editor.
This launches a spread sheet type editor for specifying timing constraints in the SDC format.

@ SiticonBlue iCEcube? - [Output] - [untitled] sdc] FREX
W Fie View Tool Window Help - 8 X
[T s = mp 1
U & a2 & g O =
Project Name: create_generated_.. & X '\\ Output unititied sdc
= Project h Enabled \Source Hamme Period{ns) Waveform{ns)
New Project N, .
Open Project N (]
Close Project
= Synthesis Tool N
= &dd Synthesis Files ‘\
Design Files N
= Constraint Files N
oreate_genclk_syns... N
Launch Syrthesis Tool ™, .
= m":m Save Constraints
5 o Select Implementation(...
create_generated_clock...

[N

Cbnstraint Editor

create_generated_clock...
Add PER Files
Run all AN
jmﬁf'“m“ Open New Constraint File
o Run Router
> Generate Bitmap
= Output Files
Reports
Bitmap
Simulation Netlist
= Device/Operating Condition
= Device Info
DeviceFamily [
Device L.
Device Package C...
Power Grade
= Operating Condition
Core Voltage (V) .
Temperatre(C) 70 ConstraintSelector

Clock. Generated Clock Source Clock Latency Input Dekay Output Dedary Max-delay False Path Muki-cycle

Figure 6-1: Timing Constraints Editor

The user can select the type of constraint in Constraint Selector tab as displayed in Figure 6-1.
When invalid constraints are specified, the TCE editor displays them in RED color and does not
forward annotate the constraints to the Placer/Router/STA tools.

iCEcube2 User Guide www.latticesemi.com 123

http://www.latticesemi.com/

= LATTICE

Searching for Pins/Ports in the design

The Timing Constraints Editor provides the ability to specify the design object patterns using
wildcards or to search for design objects to which constraints are be applied.

Right-clickonthe appropriate field in TCE displays the optic
Figure 6-2

,

W File View Tool Window Help

D THEBESCR P

Project Name: test_accum g X untitledd,sdc* |

— | & %
I

4 Project Flow .
4 Specify Synthesis Input Files
> Design Files
Constraint Files
& Launch Synthesis Tool
4 P&R Input Files
4 of Select Implementation (. |
test_accum.edf

Enabled Sourc Search Design Pericd(ns) Waveformins)

1 ¥
2\

Add Row

m

Delete Row

test_accum.sef
> Specify Additional Files
«” Import P&R Input Files
«” Run Placer
<’ Run Router
«” Generate Bitmap + || Clock Generated Clock I Input Delay I Output Delay I Max-delay Falze Path I Multi-cycle

! i

Figure 6-2: Searching for objects in the design

Selecting this option opens a new window where the user can search pin/clock/cell pin names as
shown in Figure 6-3. Theusercanalsous e t he @ * 0 ainihe siarch patternifields@mr d s
search for a specific pin/clock/cell pins.

) Search Design @

Search Options
Search design For bype: |Cell Fin v| Filters: in
out
Using se-arch pattern: |C1_10,|’ID | [] case sensitive inout
other
Search results: Selected to add:
C1_1010 =
<
<

’ Add ” Cancel]

Figure 6-3: Searching for object names to constrain

iCEcube2 User Guide www.latticesemi.com 124

http://www.latticesemi.com/

= LATTICE

SDC Constraints in TCE

Clock Constraints

To enter clock constraints, select the Clock tab in the Timing Constraints Editor GUI. The
following fields are displayed under the Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Enter the pin name or the port name for the clock in the Source field. The port or pin
name can be selected from the drop-down box. Alternately, the user can search for
ports/cell pins by using the search option. Right clicking in source field gives the option of
searching ports/cell pins, as shown in Figure 6-2.

Name: Enter the name for the clock in the Name field. This is an optional field.
Period: Enter the period in ns, for the clock in Period field.

Waveform: Duty cycle for the clock can be specified in the Waveform field, with rising and falling
time edges of the clock.

For example, when a clock is specified as displayed in Figure 6-4, the following SDC command is
generated:

Timing_Constraints

Enabled Source Mame Periodins) Waveformins)

1 clock. vy _clk 10

z O

Figure 6-4: Specifying a Clock Constraint

create_clock i name my_clk i period 10.00 i waveform {0 3} [get_ports {clock}]

Generated Clock Constraints

To enter generated clock constraints, select the Generated Clock tab in the Timing Constraints
Editor GUI. The following fields are displayed under the Generated Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Specify the port or pin name from which the clock is derived

Ref Clock Pin: Specify the generated clock pin name

Name: Enter the name of the generated clock in Name tab which is optional.

Select the option Divide by or multiply by or invert options and duty cycle according to constraint.

For example, when a generated clock is specified as displayed in Figure 6-5, the following SDC
command is generated:

create_generated_clock [get_pins {divby2clk_inst.SB_DFFSR_inst/Q}] i name divbyclk i source [get_ports
{clk_i}] -divide_by 2

iCEcube2 User Guide www.latticesemi.com 125

http://www.latticesemi.com/

= LATTICE

c.<] timingconstraints.sdc
5 a Enabled Source Ref Clock Pin Name Drvide By Wakiply By Duty Cyde Invert
c 1 divby2clk_inst.5B_DFFSR _inst/Q) k. divbyck 2 |

k 2 D

Figure 6-5: Generated Clock Constraint

Source Clock Latency Constraints

To create source clock latency constraints, select the Source Clock latency tab of the TCE GUIL.
The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.
Latency: Enter the source clock latency value.
Objects: Specify the clock source or the clock nhame.

For example, when source clock latency is specified as displayed Figure 6-6, the following SDC
command is generated:

timingconstrainks . sdc®
Enabled Latency abjecks

CLE_A,

0 &
]

Figure 6-6: Clock Latency Constraints

set_clock_latency -source 2.00 [get_clocks {CLK_A}].

Input Delay Constraints

To enter Input Delay constraints, select the Input Delay tab in the Timing Constraints Editor GUI.
The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Input List: Enter the Input pin name in the Input List.

Clock: This is the reference clock w.r.t to which the input signal is delayed.
Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the input is delayed w.r.t. the negative edge of the reference
clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an input delay is specified as displayed in Figure 6-7, the following SDC
command is generated:

iCEcube2 User Guide www.latticesemi.com 126

http://www.latticesemi.com/

= LATTICE

timingconstraints, sdc
Enabled InputList Clock Delay Value(ns) Clock Fall Add Delay
1 din_i myck 1 O O

2 O O O
Figure 6-7: Input Delay Constraint

set_input_delay -clock [get_clocks {myclk}] 1.00 [get_ports {dins_i}]

Output Delay Constraints

To create output delay constraints, select the output delay tab of the TCE GUI. The following
fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Output List: Enter the Output pin name.

Clock: Specify the Reference clock edge with respect to which the output delay is specified.
Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the output delay is specified w.r.t. the negative edge of the
reference clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an output delay is specified as displayed in Figure 6-8, the following SDC
command is generated:

timingconstraints.sdc
Enabled OutputList Clock Delay Value{ns) Clock Fall Add Delay
1 channellA_o myeclk 2 O

z O O O

Figure 6-8: Output Delay Constraints

set_output_delay -clock [get_clocks {myclk}] -add_delay 2.00 [get_ports {channellA o}]

Max Delay Constraints

To create Max Delay constraints, select the Max Delay tab. The following fields are displayed:
Enabled: Use the Enabled field to enable or disable the constraint.

Delay Value: Enter the delay value (non-negative number) in the Delay value field.

From: Enter the source pin or port of the constrained path. The constraint is applied for the data
paths launched on both rising and falling transitions.

Rise From: Enter the source pin or port of the constrained path. The constraint is applied only for
the paths launched on rising transitions.

Fall From: Enter the source pin or port of the constrained path. The constraint is applied only for
the paths launched on falling transitions.

iCEcube2 User Guide www.latticesemi.com 127

http://www.latticesemi.com/

= LATTICE

To: Enter destination pin or port, up to which the path is defined. The constraint is applied for the
paths captured on both rising and falling transitions.

Rise To: Enter destination pin or port, up to which the path is defined. The constraint is applied
only for the paths captured on rising transitions.

Fall To: Enter destination pin or port, up to which the path is defined. The constraint is applied
only for the paths captured on falling transitions. Through: Specify a pin to ensure that the
constrained path passes through this pin. This field is optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a Max Delay constraint is specified as displayed in Figure 6-9, the following
SDC command is generated:

set_max_delay -from [get_pins {pipel0/Q}] -to [get pins {pipell/D}] 3.00

Qutput timingconstraints.sdc
Enabled Delay Value{ns) From Rise From Fall From To Rise To Fal To Through
1 3 pipe10Q ppeL1fD
2 [

Figure 6-9: Max Delay Constraints

False Path Exceptions
To create False Path exceptions, select the False Path tab. The following fields are displayed:
Enabled: Use the Enable field to enable or disable the constraint.

From: Enter the port or pin from which the false path is defined. The exception is applied for the
data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the false path is defined. The exception is applied
only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the false path is defined. The exception is applied
only for the paths launched on falling transitions.

To: Enter the Port or pin up to which the false path is defined. The exception is applied for the
data paths captured on both rising and falling transitions.

Rise To: Enter the Port or pin up to which the false path is defined. The exception is applied only
for the paths captured on rising transitions.

Fall To: Enter the Port or pin up to which the false path is defined. The exception is applied only
for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is
optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a False Path exception is specified as displayed in Figure 6-10, the following
SDC command is generated:

iCEcube2 User Guide www.latticesemi.com 128

http://www.latticesemi.com/

= LATTICE

set_false_path -rise_from [get_clocks {CLK_A}] -to[get_clocks {CLK_B}]

timingconstraints,sdc*
Enabled From Rise From Fall From To Rise To Fall To Through
1 QKA ; i

20

Figure 6-10: False Path Exceptions

Multi Cycle Path Exceptions

To create Multi Cycle path exceptions, select the Multi-Cycle tab. The following fields are
displayed:

Enabled: Use the Enable field to enable or disable the exception.
Ncycles: Enter the number of clock cycles (non negative number) of the capture clock.

From: Enter the port or pin from which the exception is defined. The exception is applied for the
data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the exception is defined. The const exception rained
is applied only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the exception is defined. The exception is applied
only for the paths launched on falling transitions.

To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is applied
for the data paths captured on both rising and falling transitions.

Rise To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is
applied only for the paths captured on rising transitions.

Fall To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is
applied only for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is
optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a Multi Cycle exception is specified as displayed in Figure 6-11, the following
SDC command is generated:

set_multicycle_path -from [get_pins {pipel0/Q}] -to [get_pins {pipell/D}] 2

Oukput sdc_genclk.scf fimingeonstraints.sdc
Enabled Neyeles From Rise From Fall From To Rise To Fall To Thraugh

1 z pipelffg pipel1jD
20

Figure 6-11: Multi Cycle Path Exception

iCEcube2 User Guide www.latticesemi.com 129

http://www.latticesemi.com/

= LATTICE

Analyzing Reports Generated by the Static Timing Analyzer (STA)

The output of STA is a path report giving the details of each path in the design along with delays
along the paths. This section explains the timing reports generated by STA in the Timing Analyzer
window for a design targeted for iCE40 family and also provides directions on performing queries
on specific paths of interest.

The Timing Analyzer window can be opened by selecting the Timing Analysis tab on the top left
corner or through the Tools > Timing Analysis menu item.

The Timing Analyzer window provides the following features, each of which is explained below:
1 Clock Summary
1 Clock Relationship Summary
1 Data Sheet
1 Analyze Paths

Clock Summary Pane

The first window shown after opening the Timing Analyzer is the Clock Summary pane, as shown
in Figure 6-12. This section gives the details of computed frequency summaries and the
frequency defining paths for all clocks in the design. When a particular clock is selected, the
paths corresponding to that clock, and the path used for frequency computation, are displayed in
the path summary pane.

Qutput Timing Analyzer
[Chncksumnary]):\ock Relationship Summ&y] [Datashest] lﬂna!yze Paths] [Imlrg Cownerl [Gene;ate tirning report and sdf] [FLil Screen Mode
[che Surnmarv] | Sort | ‘Custumize Culumns‘ F
Clock Name Worst Slack(ps) FMAX(MHZ) Target Frequency(MHZ) Failing Path #
1 CLKA 5620 2283 100 Nf&
2 CLKE -9263 51.91 100 1
3 e 6722 305.1 100 i — List of Clocks
4 CLKD 6896 322,13 100 Hf&

Save Path Details Sort Results
- Max/Min Pane '

. 1'/.‘ \\ - |
C -) e = N
Critical Path{1) (Save Summaryi Save Detal s E Sort b Customize Columns
“\-'-i——-—l-/

StartPoint EndPoint Slack Delay = Skew = Launch Clock Capture Clock

114 reg_[4_LC.. 5620 TE06 4188 CLKAR CLKAR

Frequency defining path for CLKA

Figure 6-12: Clock Summary Report

For every frequency defining path (one per clock), the following fields are displayed in the Critical
Path Summary section:

Start Point: This indicates the pin at which the data path initiates. It can be a top-level design
port (input package pin), the output of a flip-flop or the RDATA output of a RAM block.

iCEcube2 User Guide www.latticesemi.com 130

http://www.latticesemi.com/

= LATTICE

End Point: This indicates the pin at which the data path ends. It can be a top-level design port
(output package pin), the input of a flip-flop or an input of a RAM block.

Launch Clock: The clock and its polarity at which the data is launched.
Capture Clock: The clock and its polarity at which the data is captured.
Slack: The slack value computed for the path. The critical path has the lowest slack.

Delay: The delay of the path as computed by the sum of the logic and routing elements between
the Start and End Points. This includes the Clock-to-Out delay of the starting FF or RAM block.

Skew: The clock skew between the edges of the launch clock and the latch clock.

Save Summary and Save Detail sections are useful in saving the reported path details in a text
format. Save Summary option writes out the simple delay computation details used in computing
the path delay. Save Detail option writes out detailed path delay computation details.

Sort Option in the clock summary section helps the user to sort the generated path results.

By clicking on the sort option, a window would popup asking for the feature to be used for sorting.

User can sort the results hierarchically based on every filed displayed in the summary section.

So, the sort option in critical path report section would sort according to Start Point, End Point,

Slack, Delay, Skew, Start Edge and End Edge.Us i ng t he O0Add Levelth®esef eature u
fields in priority basis and select their order in which the results need to be sorted.

(| AddLevel)Delete Level] [Move Up] [Move Down I [Add Level] lDeIetc Level] l Move Lip] l Mave Down]
S ——

Column Order Column Order

Sort by v Sortby Slack Largest bo Smallest
Start Point ‘

Drelay

Skew

Launch Clock
Capture Clack

Then by Start Edge AtoZ v

= o —
Zto A

I Ok I Cancel I <K] [=
Figure 6-13 Sorting Reported Paths

For example, in Figure 6-13 A S| ack d was added first in ascending or
added next in ascending order. So, the results are displayed with ascending order of slack first
and then, the results with same slack are sorted in ascending order of Start Edge.

It should be noted that:

1. Frequency computations are performed only on paths starting from input pads and flip-
flop/RAM outputs, and ending at output pads and flip-flop/RAM inputs.
2. If the paths triggered by a clock are not constrained (timing start point and timing end points),
then the columns Wor st Sl ack, FMAX and Failing Pa:
constraints are required in order for clock frequencies to be reported.
3. Inthe clock summary pane, only the most critical path for each constrained clock is displayed
irrespective of constraints met or not.
4. If the constraints are not met, the frailing Path #0 olemn shows the no of paths failed
including the most critical path displayed in the summary pane. All the other failing paths can
be viewed through query path options as described in Analyzing Constrained Paths.

iCEcube2 User Guide www.latticesemi.com 131

http://www.latticesemi.com/

= LATTICE

5. Frequency calculations do not include paths i nvol ving | O6s wunl ess

with Input and Output Delays.
6. Cross-clock domain paths are not reported in this pane.
Detailed Path Report
When a path in the Critical Path pane is selected, detailed path section for the path is displayed.
The detailed path report provides the following details as shown in Figure 6-14.

Path Detail: Gives the Timing Start Point, Timing End Point, reference clock used for slack
computation and the slack value. If the Timing Start Point or End Point is a register within an 10
pad, the summary panel displays either the default IO register name or the name of the user FF
that was originally in the logic fabric, but was merged into the 10 pad as shown in Figure 6-15 .

Data Required Time: Detailed path report for computing the data required time, at the capture
clock edge.

Data Arrival Time: Detailed path report for computing the data arrival time, starting from the
launch clock edge.

Launch Clock Arrival Time(CLK_3aMHzR#L) 0
-+ Launch Clack Source Latency 0

-+ Launch dock Path Delay 7130
+Clotk To 5

+Data Path Delay 5386

Arrival Time Computation

clack Summary] [clock Relstionstip surmary] [Datashest | [analyze Paths] [Timing Carer | [enerate timing report and sef | [Exit Ful sareen Made
Path Detail
’SEVE Summaryl l Sort] ’Cuslnrmze Cu|umrvs]
Clock Name wWorst Slack(ps) FMAX(MHZ) Target Fi é‘nz" LGSDCE%: 0.GROLPDL.COLNTERZ1.Q_1Z LT 179 4 flcout 1 i
N - . . - Reference CLK_32MHz — Path Start/End Points
— : Sebup Constraint 31250(p)
counter_pawer| PathSlack 18367(p) -
2 CLK_37ite 995527 22354 1
Capture Clock Arrival Time(CLE_S2MHziR#2) 31250
+ Capture Clock Source Latency i . . .
+ Capiure Ciack Path Delay o ~ Required Time Computation
- Cutput Delay i
End-of -path required time (ps) 31250 -

End-of-path arrival time {ps) 12683
Data path delay consists of logic delay (0 level(s}) 3744 ps, and routing delay 1643 ps.

Data Path Report

< > —ClockPath Report

= s o EDataPath)@""

crtical Path(1) [save Summary| [SveDetal | [sot | [customice Columns)

Start Point. o End Point Pin Name Model Name Delay ar Edge Fan|
GROUPO.GROUPDL, COUNTE. . | RISE LED[A] GROUPO.GROUPOT, COUNTERZ1,Q_12LC 1 2... LogicCelM0_SEQ_... 365 7495 RISE 2
Routing Delay 1644
LED_obuF_D_preinfD_OLIT_0 FREIOFINTV. 0 9136 RISE 1
. LED_obuf _1_preinfPADOLIT FRE_IO FIN_TVR.. 411 9549 RISE 1
Selected Critical path LED_pbuf _0_jopad/DIN 10_PAD 0 9549 RISE 1
LED_obuf _1_iopad/PACKAGE_PIN 0_PAD T334 12883 RISE 1
Lepfa] counter_power 0 12883 RISE 1

Routingdelay

Figure 6-14: Example of Detailed Path Summary for Frequency Computation

iCEcube2 User Guide www.latticesemi.com 132

t

he

http://www.latticesemi.com/

= LATTICE

Figure 6-15 : Path Summary Displaying user DFF merged with 10

Detailed Path Report Pane gives the routing delays and delay of each cell involved in the path
and the slack values. For detailed analysis of Timing Pat h Report s, refer to ADet
Patho section.

The detailed timing pathr e port can be saved in text format by wusir

Figure 6-16: Customize Report Options

Customize Columns option enables the user to choose the parameters that need to be used while

displaying the timing report. A sample customization option menu is shown in Figure 6-16. It also

enables the user to adjust the width of eatbteh col umn.
user can sort out the Columns.

iCEcube2 User Guide www.latticesemi.com 133

http://www.latticesemi.com/

