
 Serial Peripheral Interface

December 2010 Reference Design RD1075

www.latticesemi.com 1 rd1075_01.1

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The Serial Peripheral Interface (SPI) is used primarily for synchronous serial communication between a host pro-
cessor and its peripherals. The SPI bus is often selected because of its low pin count and full-duplex mode that can
achieve data throughput in the tens of Mbps range. The SPI bus uses a 4-wire interface with two unidirectional data
lines to communicate between the master and the selected slave. It supports one master with multiple slaves on
one bus and allows protocol flexibility for the bit transferred.

This reference design implements a SPI slave device interface that provides full-duplex, synchronous, serial com-
munication with the SPI master. A simple back-end parallel interface provides the flexibility to interface with any
system. This reference design instantly adds SPI bus capability to a device in an embedded system. It is available
in both Verilog and VHDL languages.

Features
Although the SPI bus is not governed by any standard organization, most applications adhere to the features listed
below.

• SPI slave with full-duplex capability.

• Supports 4-clock polarity and clock phase modes.

• Shares the SPI bus with other SPI slave devices.

• Receives and transmits registers configurable from 1 to 32 bits wide. Longer transfers can be done with software
support.

• Double-buffered transmission allows new data to be written at the same time that previous data is being shifted
out.

• Option for least-significant bit or most-significant bit first.

Functional Description
This reference design implements all the features commonly supported for SPI bus applications. When the SPI
master initiates data transfer by pulling down the slave select signal and generating the clock, data can be trans-
ferred in either or both directions simultaneously. The SPI master and slave determine whether the received data is
meaningful. Figure 1 provides an overview of the reference design’s architecture, including the SPI and back-end
interfaces. Table 1 lists the I/O port names of the SPI slave design.

Figure 1. Serial Peripheral Interface Block Diagram

rx_shift_register

tx_shift_register

rx_
data_

register

tx_
data_

register

Clock Polarity
and Phase Select

Back
End

Interface

Register
Status

MOSI_SLAVE

MISO_SLAVE

DATA_OUT

DATA_IN

CLL_I

RST_I

CSn

WR_RD

TX_RDY

TX_ERR

RX_ERR

RX_RDY

SCLK_SLAVE

CSn_SLAVE

Lattice Semiconductor Serial Peripheral Interface

2

Table 1. SPI-GPIOr I/O Port Names

SPI Interface
This reference design implements a SPI slave function with full-duplex capability. Within the 4-wire interface, three
wires are generated by the SPI master, thus becoming inputs to the SPI slave. The only SPI output signal from the
SPI slave is the MISO_SLAVE pin. It is a tri-state output which becomes high impedance when the CSn_SLAVE
pin is inactive. This function enables the SPI slave to share the SPI bus and SPI segments with other SPI slave
devices.

The SPI protocol has the flexibility of the length of bit transferred. This is achieved by configuring the
rx_shift_register and tx_shift_register between 1 and 32 bits. Once the length of the bits transferred is specified,
the SPI slave ignores any SPI communications in which the number of clock pulses is greater than the length of the
bits transferred. The parameter DATA_LENGTH is used to control the number of bit transferred. This parameter
also defines the bit width of the rx_data_register and the tx_data_register.

The rx_shift_register and tx_shift_register can also be configured either as the least-significant bit first or the most-
significant bit first. The parameter SHIFT_DIRECTION can be used for this purpose.

The clock polarity and clock phase parameters of the SPI bus interface determine which edge of the clock signal
will be used to drive or receive data. A master and slave must agree to use the clock polarity and clock phase mode
for communication. This design supports all four SPI clock polarity and clock phase modes. The mode is repre-
sented as (x,y), where x is the clock polarity and y is the clock phase.

In mode (0,0), the data are sampled on the rising edge of clock and are updated on the falling edge. In mode (1,0),
the data are sampled on the falling edge of clock and are updated on the rising edge, as shown in Figure 2.

Signal Name
Signal

Direction
Active
State Definition

SPI Master Interface

SCLK_SLAVE Input N/A SPI clock input from the master.

CSn_SLAVE Input Low SPI slave select input.

MOSI_SLAVE Input N/A Serial data input from the master.

MISO_SLAVE Output N/A Serial data output to the master.

Back End Interface

CLK_I Input N/A Synchronous clock from back end device.

RST_I Input High Asynchronous reset signal form back end device.

CSn Input Low Chip select signal from the back end device.

WR_RD Input High:Low Read/write signal from the back end device; ‘0’ indicates the back end device
writes data and ‘1’ indicates the back end device reads data.

DATA_IN Input N/A Parallel data from the back end device which is sent to the SPI master through
the SPI interface.

DATA_OUT Output N/A Parallel data to the back end device which is received from the SPI master
through the SPI interface.

TX_RDY Output High Transmit ready status: ‘1’ = empty. Indicates that the transmit register is empty
and can accept new data from the back end device.

RX_RDY Output High Receive ready status: ‘1’ = data available. Indicates that the receive register has
data and is ready to be read by the back end device.

TX_ERR Output High Transmit overrun error: ‘1’ = error. Error indicates that the transmit register
received new data before the previous data was moved to the shift register.

RX_ERR Output High Receive overrun error: ‘1’ = error. Error indicates that the receive register
received new data before the previous data was read.

Lattice Semiconductor Serial Peripheral Interface

3

Figure 2. Mode (0,0), Mode (1,0) Transfer Format

In mode (0,1), the data are sampled on the falling edge of clock and are updated on the rising edge. In mode (1,1),
the data are sampled on the rising edge of clock and are updated on the falling edge, as shown in Figure 3.

Figure 3. Mode (0,1), Mode (1,1) Transfer Format

The parameters CLOCK_POLARITY and CLCOK_PHASE are used to specify the SPI mode. The parameter
descriptions are summarized in Table 2.

Table 2. Parameters

Back-end Interface
This reference design implements a simple back-end parallel interface. After the SPI master finishes sending serial
data, the back-end interface converts the serial data to parallel data and sends it to the back-end device through
the rx_data_register. Conversely, the back-end interface receives the parallel data from the back-end device though
the tx_data_register and converts the parallel data to serial data to be transmitted through the SPI interface.

Parameter Description
Active
Value

Default
Value

DATA_LENGTH Specifies the number of serial data bits. 1 to 32 8

SHIFT_DIRECTION Specifies whether the most significant bit or least significant bit is first.
0 = MSB first. 1 = LSB first. 0, 1 0

CLOCK_POLARITY
Specifies the polarity of SCLK.
If 0, the idle state for SCLK is low.
If 1, the idle state for SCLK is high.

0, 1 0

CLOCK_PHASE

Specifies the SCLK phase.
If 0, the data is latched on the leading edge of SCLK and data changes on the
trailing edge of SCLK.
If 1, the data is latched on the trailing edge of SCLK and data changes on the
leading edge of SCLK.

0, 1 0

. . . .

. . . .

. . . .

. . . .

CSn

SCLK (CPOL=0)

SCLK (CPOL=1)

MOSI

MISO

. . . .

. . . .

. . . .

. . . .

CSn

SCLK (CPOL=0)

SCLK (CPOL=1)

MOSI

MISO

Lattice Semiconductor Serial Peripheral Interface

4

• CLK_I is the clock from the back-end device. Other signals in the back-end interface are synchronous to this
clock. It is possible that this clock is asynchronous to the SCLK and the frequency of this clock must be greater
than the frequency of SCLK.

• RST_I is the asynchronous reset signal from the back-end device.

• CSn is the chip select signal from the back-end device. Before the back-end device writes or reads, this signal
must be activated.

• WR_RD is the read/write signal from the back-end device. Low indicates that the back-end device will implement
a write operation and high indicates a read operation.

• DATA_IN is the parallel data from the back-end device. The bit width of this signal is defined by the parameter
DATA_LENGTH.

• DATA_OUT is the parallel data to the back-end device. The bit width of this signal is defined by the parameter
DATA_LENGTH.

• TX_RDY is the transmit ready status flag, output to the back-end device. When this signal is active, it indicates
that the tx_shift_register is empty and can accept new data from the back-end device.

• RX_RDY is the receive ready status flag, output to the back-end device. When this signal is active, it indicates
that the rx_shift_register has data and is ready to be read by the back-end device.

• TX_ERR is the transmit overrun error status flag, output to the back-end device. When this signal is active, it indi-
cates that the tx_shift_register will receive new data before the previous data is moved to the SPI master. The
new data from the back-end device is discarded if this occurs.

• RX_ERR is the receive overrun error status flag, output to the back-end device. When this signal is active, it indi-
cates that the rx_shift_register will receive new data from the SPI master before the previous data is read by the
back-end device. The previous data is lost if this occurs.

Test Bench Description
The test bench for this design consists the following functional blocks, as shown in Figure 4:

• SPI master module

• Back-end device module

• Design under test (SPI slave)

Figure 4. Test Bench Architecture

The parameters DATA_LENGTH, SHIFT_DIRECTION, CLOCK_POLARITY and CLOCK_PHASE are all set to
their default values for the simulation. The SPI master initiates two SPI communications. In the first communication,

SCLK_SLAVE

CSn_SLAVE

MOSI_SLAVE

MISO_SLAVE

SPI_slave

Back End Device
Module

Design Under
Test

SPI Master
Module

CLK_I

RST_I

DATA_IN

WR_RD

DATA_OUT

T_RDY

R_RDY

T_OE

R_OE

CSn

Lattice Semiconductor Serial Peripheral Interface

5

the SPI master sends 8-bit data 0x73 and the back-end device sends 8-bit data 0x08. When this data transfer is
complete, the SPI master receives data 0x08 and the back-end device receives data 0x73.

In the second communication, the SPI master sends 8-bit data 0x43 and the back-end device sends 8-bit data
0xed. When the data transfer is compete, the SPI master receives data 0xed and the back-end device receives
data 0x43.

After these two communications, the back-end device sends data before the tx_shift_register is empty, so the sig-
nal TX_ERR becomes active.

The SPI master sends data before the previous data is read by the back-end device, so the signal RX_ERR
becomes active. Figure 5 shows the simulation results.

Figure 5. Simulation Results

Implementation
Table 3. Performance and Resource Utilization

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Device Family Language Speed Grade Utilization fMAX (MHz) I/Os
Architecture
Resources

MachXO™ 1
Verilog -3 37 LUTs >80 28 N/A

VHDL -3 37 LUTs >80 28 N/A

ispMACH® 4000ZE2 Verilog -4 (ns) 60 Macrocells >80 28 N/A

VHDL -4 (ns) 60 Macrocells >80 28 N/A

Platform Manager™ 3
Verilog -3 37 LUTs >80 28 N/A

VHDL -3 37 LUTs >80 28 N/A

1. Performance and utilization characteristics are generated using LCMXO640C-3T100C with Lattice Diamond™ 1.1 or ispLEVER® 8.1 SP1
software. When using this design in a different device, density, speed or grade, performance and utilization may vary.

2. Performance and utilization characteristics are generated using LC4064ZE-4TN100C with Lattice ispLEVER Classic 1.4 software. When
using this design in a different device, density, speed or grade, performance and utilization may vary.

3. Performance and utilization characteristics are generated using LPTM10-12107-3FTG208CES,with ispLEVER 8.1 SP1 software. When
using this design in a different device,density,speed,or grade,performance and utilization may vary.

http://www.latticesemi.com/

Lattice Semiconductor Serial Peripheral Interface

6

Revision History
Date Version Change Summary

March 2010 01.0 Initial release.

December 2010 01.1 Added support for Platform Manager device family.

Added support for Lattice Diamond 1.1 and ispLEVER 8.1 SP1 design
software.

	Introduction
	Features
	Functional Description
	SPI Interface
	Back-end Interface
	Test Bench Description
	Implementation
	Technical Support Assistance
	Revision History

