

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1067

The Lattice public key file key.txt is located at <Radiant_installed_directory>/
ispfpga/data/ folder. Aside of Lattice public key, the current version contains
the public key for Synopsys, Aldec, and Cadence.

A key file must contain properly declared pragmas such as key_keyowner,
key_keyname, key_method, and key_public_key for each of the specified
keys. The key value follows the key_public_key pragma.

The key file typically also contains the data_method pragma. It defines the
algorithm used in data block encryption of HDL source file.

Example of a Key File:

See Also “Running HDL Encryption from the Command Line” on
page 1060

 “Defining Pragmas” on page 1062

Running SYNTHESIS from the
Command Line
The Lattice synthesis tool SYNTHESIS allows you to synthesize Verilog and
VHDL HDL source files into netlists for design entry into the Radiant software
environment. Based on your strategy settings you specify in the Radiant
software, a synthesis project (.synproj) file is created and then used by
SYNTHESIS using the -f option. The Radiant software translates strategy
options into command line options described in this topic.

NOTE
If using Synplify Pro synthesis tool, both, the Lattice Public Key and the Synplify Pro
Public Key must be defined in the key file. The Synplify Pro Public Key is used during
the synthesis step to decrypt an encrypted design. The Lattice Public Key is used
during the post-synthesis flow to decrypt an encrypted design.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1068

Verilog source files are passed to the program using the -ver option and
VHDL source files are passed using the -vhd option. For mixed language
designs the language type is automatically determined by SYNTHESIS based
on the top module of the design. For IP design, you must also specify IP
location (-ip_dir), IP core name (-corename), and encrypted RTL file name (-
ertl_file).

Subjects included in this topic:

 Running SYNTHESIS

 Command Line Syntax

 SYNTHESIS Options

 Examples

Running SYNTHESIS SYNTHESIS will convert your input netlist (.v) file
into a structural Verilog file that is used for the remaining mapping process.

 To run SYNTHESIS, type synthesis on the command line with valid
options. A sample of a typical SYNTHESIS command would be as follows:

There are many command line options that give you control over the way
SYNTHESIS processes the output file. Please refer to the rest of the subjects
in this topic for more details. See examples.

Command Line Syntax synthesis [-a <arch>] [-p <device>] [-sp
<performance_grade>] [-t <package_name>] [{-path <searchpath>}] [-top
<top_module_name>] [-ver {<verilog_file.v>}] [-lib <libname>] [-vhd
{<vhdl_file.vhd/vhdl>}] [-udb <udb_file.udb>] [-hdl_param < param_name
param_value >] [-vh2008] [-optimization_goal <area | timing | balanced
(default)>] [-force_gsr <auto(default) | yes | no>] [-ramstyle <auto(default) |
distributed | block_ram(EBR) | registers>] [-romstyle <auto(default) | logic |
EBR>] [-output_edif <filename.edf>] [-output_hdl <filename.v>] [-sdc
<sdc_file.ldc>] [-logfile <synthesis_logfile>] [-frequency <target_frequency
(default 200.0MHz (ICE40))>] [-max_fanout <max_fanout (default 1000)>] [-
bram_utilization <bram_utilization (default 100%)>] [-use_dsp
<0|1(default)>] [-dsp_utilization <dsp_utilization (default 100%)>][-
fsm_encoding_style <auto(default) | one-hot | gray | binary>] [-
resolve_mixed_drivers <0(default)|1>] [-fix_gated_clocks <0|1(default)] [-
use_carry_chain <0|1(default)>] [-carry_chain_length <chain_length>] [-
use_io_insertion <0|1(default)>] [-use_io_reg <0|1|auto(default)>] [-
resource_sharing <0|1(default)>] [-propagate_constants <0|1(default)>] [-
remove_duplicate_regs <0|1(default)>] [-loop_limit <max_loop_iter_cnt
(default 1950)>] [-twr_paths <timing_path_cnt>] [-dt] [-comp] [-syn] [-ifd] [-f
<project_file_name>]

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1069

SYNTHESIS Options The table below contains descriptions of all valid
options for SYNTHESIS.

Table 6: SYNTHESIS Command Line Options
Option Description

-a <arch> Sets the FPGA architecture. This synthesis option must
be specified and if the value is set to any unsupported
FPGA device architecture the command will fail.

-p <device> Specifies the device type for the architecture (optional).

-f <proj_file_name> Specifies the synthesis project file name (.synproj). The
project file can be edited by the user to contain all
desired command line options.

-t <package_name> Specifies the package type of the device.

-path <searchpath> Add searchpath for Verilog “include” files (optional).

-top <top_module_name> Name of top module (optional, but better to have to
avoid ambiguity).

-lib <lib_name> Name of VHDL library (optional).

-vhd <vhdl_file.vhd/vhdl> Names of VHDL design files (must have, if language is
VHDL or mixed language).

-ver <verilog_file.v> Names of Verilog design files (must have, if language is
Verilor, or mixed language).

-hdl_param <name,
value>

Allows you to override HDL parameter pairs in the
design file.

-optimization_goal
<balanced (default)| area |
timing>

The synthesis tool allows you to choose among the
following optimization options:

 balanced balances the levels of logic.

 area optimizes the design for area by reducing the
total amount of logic used for design implementation.

 timing optimizes the design for timing.

The default setting depends on the device type. Smaller
devices, such as ice40tp default to balanced.

-force_gsr <auto | yes |
no>

Enables (yes) or disables (no) forced use of the global
set/reset routing resources. When the value is auto, the
synthesis tool decides whether to use the global set/
reset resources.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1070

-ramstyle <auto (default) |
distributed |
block_ram(EBR) |
registers>

Sets the type of random access memory globally to
distributed, embedded block RAM, or registers.The
default is auto which attempts to determine the best
implementation, that is, synthesis tool will map to
technology RAM resources (EBR/Distributed) based on
the resource availability.

This option will apply a syn_ramstyle attribute globally in
the source to a module or to a RAM instance. To turn off
RAM inference, set its value to registers.

 registers causes an inferred RAM to be mapped to
registers (flip-flops and logic) rather than the
technology-specific RAM resources.

 distributed causes the RAM to be implemented
using the distributed RAM or PFU resources.

 block_ram (EBR) causes the RAM to be
implemented using the dedicated RAM resources. If
your RAM resources are limited, for whatever
reason, you can map additional RAMs to registers
instead of the dedicated or distributed RAM
resources using this attribute.

 no_rw_check (Certain technologies only). You
cannot specify this value alone. Without
no_rw_check, the synthesis tool inserts bypass logic
around the RAM to prevent the mismatch. If you
know your design does not read and write to the
same address simultaneously, use no_rw_check to
eliminate bypass logic. Use this value only when you
cannot simultaneously read and write to the same
RAM location and you want to minimize overhead
logic.

Table 6: SYNTHESIS Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1071

-romstyle <auto (default) |
logic | EBR>

Allows you to globally implement ROM architectures
using dedicated, distributed ROM, or a combination of
the two (auto). This applies the syn_romstyle attribute
globally to the design by adding the attribute to the
module or entity. You can also specify this attribute on a
single module or ROM instance.

Specifying a syn_romstyle attribute globally or on a
module or ROM instance with a value of:

 auto allows the synthesis tool to choose the best
implementation to meet the design requirements for
performance, size, etc.

 EBR causes the ROM to be mapped to dedicated
EBR block resources. ROM address or data should
be registered to map it to an EBR block. If your ROM
resources are limited, for whatever reason, you can
map additional ROM to registers instead of the
dedicated or distributed RAM resources using this
attribute.

Infer ROM architectures using a CASE statement in
your code. For the synthesis tool to implement a ROM,
at least half of the available addresses in the CASE
statement must be assigned a value. For example,
consider a ROM with six address bits (64 unique
addresses). The case statement for this ROM must
specify values for at least 32 of the available addresses.

-output_hdl <filename.v> Specifies the name of the output Verilog netlist file.

-sdc <sdc_file.ldc> Specifies a Lattice design constraint (.ldc) file input.

-loop_limit
<max_loop_iter_cnt
(default 1950)>

Specifies the iteration limits for “for” and “while” loops in
the user RTL for loops that have the loop index as a
variable and not a constant.

The higher the loop_limit, the longer the run time. Also,
for some designs, a higher loop limit may cause stack
overflow during some of the optimizations during
compile/synthesis.

The default value is 1950. Setting a higher value may
cause stack overflow during some of the optimizations
during synthesis.

-logfile
<synthesis_logfile>

Specifies the name of the synthesis log file in ASCII
format. If you do not specify a name, SYNTHESIS will
output a file named synthesis.log by default.

-frequency
<target_frequency (default
200.0MHz (ICE40))>

Specifies the target frequency setting. Default frequency
value is 200.0 MHz.

-max_fanout <value> Specifies maximum global fanout limit to the entire
design at the top level. Default value is 1000 fanouts.

-bram_utilization <value> Specifies block RAM utilization target setting in percent
of total vacant sites. Default is 100 percent.

Table 6: SYNTHESIS Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1072

-fsm_encoding_style
<auto | one-hot | gray |
binary>

Specifies One-Hot, Gray, or Binary style. The -
fsm_encoding_style. Allows the user to determine which
style is faster based on specific design implementation.

Valid options are auto, one-hot, gray, and binary. The
default value is auto, meaning that the tool looks for the
best implementation.

-use_carry_chain <0|1> Turns on (1) or off (0) carry chain implementation for
adders. The 1 or true setting is the default.

-carry_chain_length
<chain_length>

Specifies the maximum length of the carry chain.

-use_io_insertion <0|1> Specifies the use of I/O insertion. The 1 or true setting is
the default.

-use_io_reg
<0|1|auto(default)>

Packs registers into I/O pad cells based on timing
requirements for the target Lattice families. The value 1
enables and 0 disables (default) register packing. This
applies it globally forcing the synthesis tool to pack all
input, output, and I/O registers into I/O pad cells.

NOTE: You can place the syn_useioff attribute on an
individual register or port. When applied to a register, the
synthesis tool packs the register into the pad cell, and
when applied to a port, packs all registers attached to
the port into the pad cell.

The syn_useioff attribute can be set on a:

 top-level port

 register driving the top-level port

 lower-level port, only if the register is specified as
part of the port declaration

-resource_sharing <0|1> Specifies the resource sharing option. The 1 or true
setting is the default.

-propagate_constants
<0|1>

Prevents sequential optimization such as constant
propagation, inverter push-through, and FSM extraction.
The 1 or true setting is the default.

-remove_duplicate_regs
<0|1>

Specifies the removal of duplicate registers. The 1 or
true setting is the default.

-twr_paths
<timing_path_cnt>

Specifies the number of critical paths.

-dt Disables the hardware evaluation capability.

-udb <udb_file.udb>

-ifd Sets option to dump intermediate files. If you run the tool
with this option, it will dump about 20 intermediate
encrypted Verilog files. If you supply Lattice with these
files, they can be decrypted and analyzed for problems.
This option is good to for analyzing simulation issues.

Table 6: SYNTHESIS Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1073

Examples Following are a few examples of SYNTHESIS command lines
and a description of what each does.

synthesis -a "ice40tp" -p itpa08 -t SG48 -sp "6" -mux_style Auto

-use_io_insertion 1

-sdc "C:/my_radiant_tutorial/impl1/impl1.ldc"

-path "C:/lscc/radiant/1.0/ispfpga/ice40tp/data" "C:/my_radiant_tutorial/impl1"
"C:/my_radiant_tutorial"

-ver "C:/my_radiant_tutorial/impl1/source/LED_control.v"

"C:/my_radiant_tutorial/impl1/source/spi_gpio.v"

"C:/my_radiant_tutorial/impl1/source/spi_gui_led_top.v"

-path "C:/my_radiant_tutorial"

-top spi_gui_led_top

-output_hdl "LEDtest_impl1.vm"

See Also “Command Line Program Overview” on page 1050

Running Postsyn from the Command
Line
The Postsyn process converts synthesized VM and integrates IPs into a
completed design in UDB format for the remaining mapping process.

Command Line Syntax postsyn [-w] [-a <architecture>] [-p
<device>] [-t <package>] [-sp <performance>] [-ldc <ldc_file>]
[-iplist <iplist_file>] [-o <output.udb>] [-keeprtl] [-top]
<input.vm>

-fix_gated_clocks
<0|1(default)>

Allows you to enable/disable gated clock optimization.
By default, the option is enabled.

-vh2008 Enables VHDL 2008 support.

Table 6: SYNTHESIS Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1074

See Also “Command Line Program Overview” on page 1050

Running MAP from the Command Line
The Map Design process in the Radiant software environment can also be
run through the command line using the map program. The map program
takes an input database (.udb) file and converts this design represented as a
network of device-independent components (e.g., gates and flip-flops) into a
network of device-specific components (e.g., PFUs, PFFs, and EBRs) or
configurable logic blocks in the form of a Unified Database (.udb) file.

Subjects included in this topic:

 Running MAP

 Command Line Syntax

 MAP Options

 Examples

Running MAP MAP uses the database (.udb) file that was the output of the
Synthesis process and outputs a mapped Unified Database (.udb) file with
constraints embedded.

Table 7:
Option Description

-h(elp) Print command help message.

-w Overwrite ouptut file.

-a Target architecture name.

-p Target device name.

-t Target package name.

-sp Target performance grade.

-oc Target operating condition: commercial | industrial |
automotive.

-ldc Load LDC file.

-iplist Load IP list file.

-o Output UDB file.

-keeprtl Keep RTL view if it exists in UDB file.

-top Indicate that the input is for the top design.

<input.vm> Input structural Verilog file.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1075

 To run MAP, type map on the command line with, at minimum, the
required options to describe your target technology (i.e., architecture,
device, package, and peformance grade), the input .udb along with the
input .ldc file. The output .udb file specified by the -o option. That
additional physical constraint file (*.pdc) can be applied optionally. A
sample of a typical MAP command would be as follows:

map counter_impl1_syn.udb impl1.pdc -o counter_impl1.udb

There are many command line options that give you control over the way
MAP processes the output file. Please refer to the rest of the subjects in this
topic for more details.

Command Line Syntax map [-h <arch>] <infile[.udb]> [<options>]

MAP Options The table below contains descriptions of all valid options for
MAP.

Examples Following are some examples of MAP command lines and a
description of what each does.

Example 1 The following command maps an input database file named
mapped.udb and outputs a mapped Unified Database file named
mapped.udb.

Note
The -a (architecture) option is not necessary when you supply the part number with the
-p option. There is also no need to specify the constraint file here, but if you do, it must
be specified after the input .udb file name. The constraint file automatically takes the
name “output” in this case, which is the name given to the output .udb file. If the output
file was not specified with the -o option as shown in the above case, map would place
a file named input.udb into the current working directory, taking the name of the input
file. If you specify the input.ldc file and it is not there, map will error out.

Table 8: MAP Command Line Options
Option Description

-h <arch> Displays all of the available MAP command options
for mapping to the specified architecture.

<infile[.udb]> Specifies the output design file name in .udb format.
The .udb extension is optional.

-inferGSR GSR inferencing if applicable.

-o <name[.udb]> Optional output design file .udb.

-mp <name[.mrp]> Optional report file (.mrp).

-xref_sig Report signal cross reference for renamed signals.

-xref_sym Report symbol cross reference for renamed
symbols.

-u Unclip unused instances.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1076

map counter_impl1_syn.udb impl1.pdc -o counter_impl1.udb

See Also “Command Line Data Flow” on page 1052

 “Command Line Program Overview” on page 1050

Running PAR from the Command Line
The Place & Route Design process in the Radiant software environment can
also be run through the command line using the par program. The par
program takes an input mapped Unified Database (.udb) file and further
places and routes the design, assigning locations of physical components on
the device and adding the inter-connectivity, outputting a placed and routed
.udb file.

The Implementation Engine multi-tasking option available in Linux is
explained in detail here because the option is not available for PCs.

Subjects included in this topic:

 Running PAR

 Command Line Syntax

 General Options

 Placement Options

 Routing Options

 PAR Explorer (-exp) Options

 Examples

 PAR Multi-Tasking Options

Running PAR PAR uses your mapped Unified Database (.udb) file that
were the outputs of the Map Design process or the map program. With these
inputs, par outputs a new placed-and-routed .udb file, a PAR report (.par) file,
and a PAD (specification (.pad) file that contains I/O placement information.

 To run PAR, type par on the command line with at minimum, the name of
the input .udb file and the desired name of the output .udb file. Design
constraints from previous stages are automatically embedded in the input
.udb file, however the par program can accept additional constraints with
either a .pdc or .sdc file. A sample of a basic PAR command would be as
follows:

par input.udb output.udb

There are many command line options that give you control over PAR. Please
refer to the rest of the subjects in this topic for more details.

Command Line Syntax par [-w] [-n <iterations:0,100>] [-t
<iteration:0,100>] [-stopzero] [-s <savecount:0,100>] [-m <nodelistfile>] [-
cores <number of cores>] [-r] [-k] [-p] [-x] [-pack <density:0,100>] [-sp

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1077

<setupspeedgrade>] [-hsp <holdspeedgrade>] [-dh] [-hos] [-sort <method>]
<infile> <outfile> [<pdcfile>]

General Options

Note
All filenames without special switches must be in the order <infile> <outfile> <pdcfile>.
Options may exist in any order.

Table 9: General PAR Command Line Options
Option Description

-f Read par command line arguments and switches
from file.

-w Overwrite. Allows overwrite of an existing file
(including input file).

-n Number of iterations (seeds). Use "-n 0" to run until
fully routed and a timing score of zero is achieved.
Default: 1.

-t Start at this placer cost table entry. Default
is 1.

-stopzero Stop running iterations once a timing score of zero is
achieved.

-s Save "n" best results for this run. Default: Save All.

-m Multi task par run. File "<node list file>", contains a
list of node names to run the jobs on.

-cores Run multiple threads on the local machine. You can
specify "<number of cores>" to run the jobs. For
cases when the user specifies both -cores and -m
with a valid node list file, PAR should apply both
settings (merge). If the user repeats the host
machine in the node list file, the settings in the node
list file take precedence over the setting in -cores (for
backwards compatibility).

-p Don't run placement.

-r Don't run router.

-k Keep existing routing in input UDB file.

Note: only meaningful when used with -p.

-x Ignore timing constraints.

-pack Set the packing density parameter.

Default: auto.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1078

Examples Following are a few examples of PAR command lines and a
description of what each does.

Example 1 The following command places and routes the design in the file
input.udb and writes the placed and routed design to output.udb.

par input.udb output.udb

Example 2 The following command runs 20 place and route iterations. The
iterations begin at cost table entry 5. Only the best 3 output design files are
saved.

par -n 20 -t 5 -s 3 input.udb output.udb

Example 3 (Lattice FPGAs only) This is an example of par using the -io
switch to generate .udb files that contain only I/O for viewing in the PAD
Specification file for adjustment of ldc_set_location constraints for optimal I/O
placement. You can display I/O placement assignments in the Radiant
Spreadsheet View and choosing View > Display IO Placement.

par -io -w lev1bist.udb lev1bist_io.udb

-sp Change performance grade for setup optimization.
Default: Keep current performance grade.

-hsp Change performance grade for hold optimization.

Default: M.

-dh Disable hold timing correction.

-hos Prioritize hold timing correction over setup
performance.

-sort Set the sorting method for ranking multiple
iterations. <method> "c" sorts by cumulative slack,
"w" sorts by worst slack.

Default: c.

<infile> Name of input UDB file.

<outfile> Name of output UDB file.

Table 10: PAR Placement Command Line Options
Option Description

<pdcfile> Name of optional constraint file.

Note: the contents of <pdcfile> will overwrite all
constraints saved in the input UDB file <infile>.

Table 9: General PAR Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1079

Using the PAR Multi-Tasking (-m) Option This section provides
information about environment setup, node list file creation, and step-by-step
instructions for running the PAR Multi-tasking (-m) option from the command
line. The PAR -m option allows you to use multiple machines (nodes) that are
networked together for a multi-run PAR job, significantly reducing the total
amount of time for completion. Before the multi-tasking option was developed,
PAR could only run multiple jobs in a linear or serial fashion. The total time
required to complete PAR was equal to the amount of time it took for each of
the PAR jobs to run.

For example, the PAR command:

par -n 10 mydesign.udb output.udb

tells PAR to run 10 place and route passes (-n 10). It runs each of the 10 jobs
consecutively, generating an output .udb file for each job, i.e., output_par.dir/
5_1.udb, output_par.dir/5_2.udb, etc. If each job takes approximately one
hour, then the run takes approximately 10 hours.

Suppose, however, that you have five nodes available. The PAR Multi-tasking
option allows you to use all five nodes at the same time, dramatically reducing
the time required for all ten jobs.

To run the PAR multi-tasking option from the command line:

1. First generate a file containing a list of the node names, one per line as in
the following example:

This file contains a profile node listing for a PAR multi
tasking job.
[machine1]
SYSTEM = linux
CORENUM = 2
[machine2]
SYSTEM = linux
CORENUM = 2
Env = /home/user/setup_multipar.lin
Workdir = /home/user/myworkdir

You must use the format above for the node list file and fill in all required
parameters. Parameters are case insensitive.The node or machine
names are given in square brackets on a single line.

The System parameter can take linux or pc values depending upon your
platform. However, the PC value cannot be used with Linux because it is
not possible to create a multiple computer farm with PCs. Corenum refers
to the number of CPU cores available. Setting it to zero will disable the
node from being used. Setting it to a greater number than the actual
number of CPUs will cause PAR to run jobs on the same CPU lengthening
the runtime.

The Env parameter refers to a remote environment setup file to be
executed before PAR is started on the remote machine. This is optional. If
the remote machine is already configured with the proper environment,
this line can be omitted. To test to see if the remote environment is
responsive to PAR commands, run the following:

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1080

ssh <remote_machine> par <par_option>

See the System Requirements section below for details on this
parameter.

Workdir is the absolute path to the physical working directory location on
the remote machine where PAR should be run. This item is also optional.
If an account automatically changes to the proper directory after login, this
line can be omitted. To test the remote directory, run the following,

ssh <remote_machine> ls <udb_file>

If the design can be found then the current directory is already available.

2. Now run the job from the command line as follows:

par -m nodefile_name -n 10 mydesign.udb output.udb

This runs the following jobs on the nodes specified.

Starting job 5_1 on node NODE1 at ...
Starting job 5_2 on node NODE2 at ...
Starting job 5_3 on node NODE3 at ...
Starting job 5_4 on node NODE4 at ...
Starting job 5_5 on node NODE5 at ...

As the jobs finish, the remaining jobs start on the nodes until all 10 jobs
are complete. Since each job takes approximately one hour, all 10 jobs
will complete in approximately two hours.

System Requirements ssh must be located through the PATH variable. On
Linux, the utility program’s secure shell (ssh) and secure shell daemon
(sshd) are used to spawn and listen for the job requests.

The executables required on the machines defined in the node list file are as
follows:

 /bin/sh

 par (must be located through the PATH variable)

Required environment variable on local and remote machines are as follows:

 FOUNDRY (points at FOUNDRY directory structure must be a path
accessible to both the machine from which the Implementation Engine is
run and the node)

 LM_LICENSE_FILE (points to the security license server nodes)

 LD_LIBRARY_PATH (supports par path for shared libraries must be a
path accessible to both the machine from which the Implementation
Engine is run and the node)

Note
If you attempt to use the multi-tasking option and you have specified only one
placement iteration, PAR will disregard the -m option from the command and run
the job in normal PAR mode. In this case you will see the following message:

WARNING - par: Multi task par not needed for this job. -m switch will be ignored.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1081

To determine if everything is set up correctly, you can run the ssh command
to the nodes to be used.

Type the following:

ssh <machine_name> /bin/sh -c par

If you get the usage message back on your screen, everything is set correctly.
Note that depending upon your setup, this check my not work even though
your status is fine.

If you have to set up your remote environment with the proper environment
variables, you must create a remote shell environment setup file. An example
of an ASCII file used to setup the remote shell environment would be as
follows for ksh users:

export FOUNDRY=<install_directory>/ispfpga/bin/lin64
export PATH=$FOUNDRY/bin/lin64:$PATH
export LD_LIBRARY_PATH=$FOUNDRY/bin/lin:$LD_LIBRARY_PATH
64

For csh users, you would use the setenv command.

Screen Output When PAR is running multiple jobs and is not in multi-
tasking mode, output from PAR is displayed on the screen as the jobs run.
When PAR is running multiple jobs in multi-tasking mode, you only see
information regarding the current status of the feature.

For example, when the job above is executed, the following screen output
would be generated:

Starting job 5_1 on node NODE1
Starting job 5_2 on node NODE2
Starting job 5_3 on node NODE3
Starting job 5_4 on node NODE4
Starting job 5_5 on node NODE5

When one of the jobs finishes, this message will appear:

Finished job 5_3 on node NODE3

These messages continue until there are no jobs left to run.

See Also “Implementing the Design” in the Radiant Software Help

 “Command Line Data Flow” on page 1052

 “Command Line Program Overview” on page 1050

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1082

Running Timing from the Command
Line
The MAP Timing and Place & Route Timing processes in the Radiant
software environment can also be run through the command line using the
timing program. Timing can be run on designs using the placed and routed
Unified Design Database (.udb) and associated timing constraints specified in
the design's (.ldc,.fdc, .sdc or .pdc) file or device constraints extracted from
the design. Using these input files, timing provides static timing analysis and
outputs a timing report file (.tw1/.twr).

Timing checks the delays in the Unified Design Database (.udb) file against
your timing constraints. If delays are exceeded, Timing issues the appropriate
timing error. See “Implementing the Design” in the Radiant Software Help and
associated topics for more information.

Subjects included in this topic:

 Running Timing

 Command Line Syntax

 Timing Options

 Examples

Running Timing Timing uses your input mapped or placed-and-routed
Unified Design Database (.udb) file and associated constraint file to create a
Timing Report.

 To run Timing, type timing on the command line with, at minimum, the
names of your input .udb and sdc files to output a timing report (.twr) file.
A sample of a typical Timing command would be as follows:

timing design.udb (constraint is embedded in udb)

There are several command line options that give you control over the way
Timing generates timing reports for analysis. Please refer to the rest of the
subjects in this topic for more details. See “Examples” on page 106.

Command Line Syntax timing <udb file name> [-sdc <sdc file name>]
[-hld | -sethld] [-o <output file name>] [-v <integer>] [-endpoints
<integer>] [-help]

Note
The above command automatically generates the report file named design.twr which is
based on the name of the .udb file.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1083

Timing Options The following tables contain descriptions of all valid
options for Timing.

Examples Following are a few examples of Timing command lines and a
description of what each does.

Table 11: Compulsory Timing Command Line Options
Compulsory Option Description

-db-file arg design database file name.

Table 12: Optional Timing Command Line Options
Optional Option Description

-endpoints arg (=10) number of end points.

-u arg (=10) number of unconstrained end points printed in the
table.

-ports arg (=10) number of top ports printed in the table.

-help print the usage and exit.

-hld hold report only.

-sp arg (=None) Setup speed grade.

-hsp arg (=M) Hold speed grade.

-rpt-file arg timing report file name.

-o arg timing report file name.

-alt_report Diamond like report.

-report_sdc Parsed file appears in report file.

-sdc-file arg sdc file name.

-sethld both setup and hold report.

-v arg (=10) number of paths per constraint.

-time_through_async Timer will time through async resets.

-iotime compute the input setup/hold and clock to output
delays of the FPGA.

-io_allspeed Get worst IO results for all speed grades.

-pwrprd Output clock information for PowerCalculator.

-nperend arg (=1) Number of paths per end point.

-html HTML format report.

-gui Call from GUI.

-msg arg Message log file.

-msgset arg Message setting.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1084

Example 1 The following command verifies the timing characteristics of the
design named design1.udb, generating a summary timing report. Timing
constraints contained in the file group1.prf are the timing constraints for the
design. This generates the report file design1.twr.

timing design1.udb (constraint is embedded in udb)

Example 2 The following command produces a file listing all delay
characteristics for the design named design1.udb. Timing constraints
contained in the file group1.prf are the timing constraints for the design. The
file output.twr is the name of the verbose report file.

timing -v design1.udb -o output.twr

Example 3 The following command analyzes the file design1.udb and
reports on the three worst errors for each constraint in timing.prf. The report is
called design1.twr.

timing -e 3 design1.udb

Example 4 The following command analyzes the file design1.udb and
produces a verbose report to check on hold times on any FREQUENCY,
CLOCK_TO_OUT, INPUT_SETUP and OFFSET constraints in the timing.prf
file. With the output report file name unspecified here, a file using the root
name of the .udb file (i.e., design1.twr) will be output by default.

timing -v -hld design1.udb

Example 5 The following command analyzes the file design1.udb and
produces a summary timing report to check on both setup and hold times on
any INPUT_SETUP and CLOCK_TO_OUT timing constraints in the timing.prf
file. With the output report file name unspecified here, a file using the root
name of the .udb file (i.e., design1.twr) will be output by default.

timing -sethld design1.udb

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

Running Backannotation from the
Command Line
The Generate Timing Simulation Files process in the Radiant software
environment can also be run through the command line using the backanno
program. The backanno program back-annotates physical information (e.g.,
net delays) to the logical design and then writes out the back-annotated
design in the desired netlist format. Input to backanno is a Unified Database
file (.udb) a mapped and partially or fully placed and/or routed design.

Subjects included in this topic:

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1085

 Running Backanno

 Command Line Syntax

 Backanno Options

 Examples

Running Backanno backanno uses your input mapped and at least
partially placed-and-routed Unified Database (.udb) file to produce a back-
annotated netlist (.v) and standard delay (.sdf) file. This tool supports all
FPGA design architecture flows. Only Verilog netlist is generated.

 To run backanno, type backanno on the command line with, at minimum,
the name of your input .udb file. A sample of a typical backanno command
would be as follows:

backanno backanno.udb

There are several command line options that give you control over the way
backanno generates back-annotated netlists for simulation. Please refer to
the rest of the subjects in this topic for more details.

Command Line Syntax (Verilog) backanno [-w] [-pre <prfx>] [-sp
<grade>] [-neg] [-pos] [-sup] [-min] [-x] [-fc] [-slice] [-slice0] [-slice1] [-
noslice] [-t] [-dis []] [-m [<limit>]] [-u] [-i] [-nopur] [-l <libtype>] [-s
<separator>] [-o <verilog<<.v>>] [-d <delays[.sdf]>] [-gui] [-msg
<msglogfile>] [-msgset <msgtypefile>] [<udbfile>]

Backanno Options The table below contains descriptions of all valid
options for backanno.

Note
The above command back annotates backanno.udb and generates a Verilog file
backanno.v and an SDF file backanno.sdf. If the target files already exist, they will not
be overwritten in this case. You would need to specify the -w option to overwrite them.

Table 13: Backanno Options
Option Description

-w Overwrite the output files.

-sp <grade> Override performance grade for backannotation.

-pre <prfx> Prefix to add to module name to make them
unique for multi-chip simulation.

-min Override performance grade to minimum timing
for hold check.

-dis Distribute routing delays by splitting the signal
and inserting buffers. is the maximum delay
(in ps) between each buffer (1000ps by default).

-m <limit> Shortens the block names to a given character
limit in terms of some numerical integer value.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1086

Examples Following are a few examples of backanno command lines and a
description of what each does.

Example 1 The following command back annotates design.udb and
generates a Verilog file design.vo and an SDF file design.sdf. If the target files
exist, they will be overwritten.

backanno -w design.udb

Example 2 The following command back annotates design.udb and
generates a Verilog file backanno.vo and an SDF file backanno.sdf. Any
signal in the design that has an interconnection delay greater than 2000 ps (2
ns) will be split and a series of buffers will be inserted. The maximum
interconnection delay between each buffer would be 2000 ps.

backanno -dis 2000 -o backanno design.udb

Example 3 The following command re-targets backannotation to
peforcxmance grade -2, and puts a buffer at each block input to isolate the
interconnection delay (ends at that input) and the pin to pin delay (starts from
that input).

backanno -sp 2 -i design.udb

Example 4 The following command generates Verilog netlist and SDF files
without setting the negative setup/hold delays to 0:

-u Add pads for top-level dangling nets.

-neg Negative setup/hold delay support. Without this
option, all negative numbers are set to 0 in SDF.

-pos Write out 0 for negative setup/hold time in SDF for
SC.

-x Generate x for setup/hold timing violation.

-i Create a buffer for each block input that has
interconnection delay.

-nopur Do not write PUR instance in the backannotation
netlist. Instead, user has to instantiate it in a test
bench.

<type> Netlist type to write out.

<libtype> Library element type to use.

<netfile> The name of the output netlist file. The extension

on this file will change depending on which type of

netlist is being written. Use -h <type>, where
<type> is the output netlist type, for more specific
information.

<udb file> Input file '.udb '.

Table 13: Backanno Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1087

backanno -neg -n verilog design.udb

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

Running Bit Generation from the
Command Line
The Bitstream process in the Radiant software environment can also be run
through the command line using the bit generation (bitgen) program. This
topic provides syntax and option descriptions for usage of the bitgen program
from the command line. The bitgen program takes a fully routed Unified
Database (.udb) file as input and produces a configuration bitstream (bit
images) needed for programming the target device.

Subjects included in this topic:

 Running BITGEN

 Command Line Syntax

 BITGEN Options

 Examples

Running BITGEN BITGEN uses your input, fully placed-and-routed Unified
Database (.udb) file to produce bitstream (.bit, .msk, or .rbt) for device
configuration.

 To run BITGEN, type bitgen on the command line with, at minimum, the
bitgen command. There is no need to specify the input .udb file if you run
bitgen from the directory where it resides and there is no other .udb
present.

There are several command line options that give you control over the way
BITGEN outputs bitstream for device configuration. Please refer to the rest of
the subjects in this topic for more details.

iCE40UP Command Line Syntax bitgen [-d] [-b] [-a] [-w] [-noebrinitq1] [-
noebrinitq2] [-noebrinitq3] [-noheader] [-simbitmap] [-nvcm] [-freq
<frequency_bit_setting>] [-spilowpower] [-warmboot] [-nvcmsecurity] {-g
<setting_value>} <infile> [<outfile>]

All devices except iCE40UP Command Line Syntax bitgen [-d] [-w] [-m
<format>] {-site <seirule>} {-site <seitype>} <infile> [<outfile>]

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1088

BITGEN Options The table below contains descriptions of all valid options
for BITGEN.

Note
Many BITGEN options are only available for certain architectures. Please use the
bitgen -h <architecture> help command to see a list of valid bitgen options for the
particular device architecture you are targeting.

Table 14: iCE40UP BITGEN Command Line Options
Option Description

-d Disable DRC.

-b Produce .rbt file (ASCII form of binary).

-a Produce .hex file.

-w Overwrite an existing output file.

-freq
<frequency_bit_setting>

Can setup different frequency: 0 = slow, 1 = medium, 2
= fast.

Depending on the speed of external PROM, this
options adjusts the frequency of the internal oscillator
used by the iCE40UP device during configuration.
This is only applicable when the iCE40UP device is
used in SPI Master Mode for configuration.

-nvcm Produce NVCM file.

-nvcmsecurity Set security. Ensures that the contents of the Non-
Volatile Configuration Memory (NVCM) are secure and
the configuration data cannot be read out of the
device.

-spilowpower SPI flash low power mode. Places the PROM in low-
power mode after configuration.

This option is applicable only when the iCE40UP
device is used as SPI Master Mode for configuration.

-warmboot Enable warm boot. Enables the Warm Boot
functionality, provided the design contains an instance
of the WARMBOOT primitive.

-noheader Don’t include the bitstream header.

-noebrinitq0 Don’t include EBR initialization for quadrant 0.

-noebrinitq1 Don’t include EBR initialization for quadrant 1.

-noebrinitq2 Don’t include EBR initialization for quadrant 2.

-noebrinitq3 Don’t include EBR initialization for quadrant 3.

-g NOPULLUP:ENABLED No IO pullup. Removes the pullup on the unused I/Os,
except Bank 3 I/Os which do not have pullup.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1089

-h <architecture> or -help
<architecture>

Display available BITGEN command options for the
specified architecture. The bitgen -h command with
no architecture specified will display a list of valid
architectures.

<infile> The input post-PAR design database file (.udb).

<outfile> The output file. If you do not specify an output file,
BITGEN creates one in the input file's directory If you
specify -b, the extension is .rbt. If you specify –a, the
extension is .hex. If you specify –nvcm, the extension
is .nvcm. Otherwise the extension is .bin.

A report (.bgn) file containing all of BITGEN's output is
automatically created under the same directory as the
output file.

Table 15: BITGEN Command Line Options (all devices except iCE40UP)
Option Description

-d Disable DRC.

-w Overwrite an existing output file.

-m <format> Create "mask" and "readback" files. Valid formats are:

 0: Output files in ASCII

 1: Output files in binary.

-g <opt:val> Set option to value, options are (First is default):

 CfgMode Disable, Flowthrough, Bypass

 RamCfg Reset, NoReset

 DONEPHASE T3, T2, T1, T0

 GOEPHASE T1, T3, T2

 GSRPHASE T2, T3, T1

 GWEPHASE T2, T3, T1

 ES Yes, No.

-h <architecture> or -help
<architecture>

Display available BITGEN command options for the
specified architecture. The bitgen -h command with
no architecture specified will display a list of valid
architectures.

Table 14: iCE40UP BITGEN Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1090

Example The following command tells bitgen to overwrite any existing
bitstream files with the -w option, prevents a physical design rule check (DRC)
from running with -d, specifies a raw bits (.rbt) file output with -b. Notice how
these three options can be combined with the -wdb syntax.

bitgen -wdb <design.udb>

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

Running Programmer from the
Command Line
You can run Programmer from the command line. The PGRCMD command
uses a keyword preceded by a hyphen for each command line option.

Running PGRCMD PGRCMD allows you to download data files to an
FPGA device.

 To run PGRCMD, type pgrcmd on the command line with, at minimum,
the pgrcmd command.

There are several command line options that give you control over the way
PGRCMD programs devices. Please refer to the rest of the subjects in this
topic for more details.

Command Line Syntax The following describes the PGRCMD command
line syntax:

pgrcmd [-help] [-infile <input_file_path>] [-logfile <log_file_path>] [-
cabletype <cable>]

-cabletype

lattice [-portaddress < 0x0378 | 0x0278 | 0x03bc | 0x<custom
address> >]

usb [-portaddress < EZUSB-0 | EZUSB-1 | ... | EZUSB-15 >]

usb2 [-portaddress < FTUSB-0 | FTUSB-1 | ... | FTUSB-15 >]

<infile> The input post-PAR design database file (.udb).

<outfile> The output file. If you do not specify an output file,
BITGEN creates one in the input file's directory If you
specify -b, the extension is .rbt. If you specify –a, the
extension is .hex. If you specify –nvcm, the extension
is .nvcm. Otherwise the extension is .bin.

A report (.bgn) file containing all of BITGEN's output is
automatically created under the same directory as the
output file.

Table 15: BITGEN Command Line Options (all devices except iCE40UP)
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1091

TCK [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

PGRCMD Options The following are PGRCMD options.

Help (Optional)

Input File (required)

Log File (optional)

Cable Type (optional)

Parallel Port Address (optional)

This option is only valid with parallel port cables.

Option Description

-help or -h Displays the Programmer command line options.

Option Description

-infile filename.xcf Specifies the chain configuration file (.xcf). If the file path includes spaces, enclose the
path in quotes.

Option Description

-logfile logfilename.log Specifies the location of the Programmer log file.

Option Description

-cabletype lattice Lattice HW-DLN-3C parallel port programming cable
(default).

-cabletype usb Lattice HW-USBN-2A USB port programming cable.

-cabletype usb2 Lattice FHW-USBN-2B (FTDI) USB programming cable
and any FTDI based demo boards.

Option Description

-portaddress 0x0378 LPT1 parallel port (default)

-portaddress 0x0278 LPT2 parallel port

-portaddress 0x03BC LPT3 parallel port

-portaddress 0x<custom
address>

Custom parallel port address

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1092

USB Port Address (optional)

Default is EZUSB-0 and FTUSB-0. Only valid with the USB port cables.

FTDI Based Demo Board or Cable Frequency Control (optional)

Calculation formula for USB-2B (2232H FTDI USB host chip): Frequency = 60
MHz / (1 + ClockDivider) *2

Calculation formula for USB-2B (2232D FTDI USB host chip): Frequency = 12
MHz / (1 + ClockDivider) *2

Only applicable for FTDI based demo boards or programming cable.

Return Codes

Option Description

-portaddress EZUSB-0 ...
EZUSB-15

HW-USBN-2A USB cable number 0 through 15

-portaddress FTUSB-0 ...
FTUSB-15

FTDI based demo board or FTDI USB2 cable
number 0 through 15

Option Description

-TCK 0, 1, 2, 3, 4, ,5 ,6 7, 8, 9,
10

0 = 30 Mhz

1 = 15 Mhz (default)

2 = 10 Mhz

3 = 7.5 Mhz

4 = 6 Mhz

5 = 5 Mhz

6 = 4 Mhz

7 = 3 Mhz

8 = 2 Mhz

9 = 1 Mhz

10 = 900 Khz

Code Definition

0 Success

-1 Log file error

-2 Check configuration setup error

-3 Out of memory error

-4 NT driver error

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1093

Examples The following is a PGRCMD example.

pgrcmd -infile c:\test.xcf

See Also “Command Line Data Flow” on page 1052

“Command Line Program Overview” on page 1050

Running Various Utilities from the
Command Line
The command line utilities described in this section are not commonly used by
command line users, but you often see them in the auto-make log when you
run design processes in the Radiant software environment. Click each link
below for its function, syntax, and options.

Synpwrap
The synpwrap command line utility (wrapper) is used to manage Synplicity
Synplify and Synplify Pro synthesis programs from the Radiant software
environment processes: Synplify Synthesize Verilog File or Synplify
Synthesize VHDL File.

-5 Cable not detected error

-6 Power detection error

-7 Device not valid error

-8 File not found error

-9 File not valid error

-10 Output file error

-11 Verification error

-12 Unsupported operation error

-13 File name error

-14 File read error

-17 Build SVF file error

-18 Build VME file error

-19 Command line syntax error

Note
For information on commonly-used FPGA command line tools, see “Command Line
Basics” on page 1052.

Code Definition

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1094

The synpwrap utility can also be run from the command line to support a
batch interface. For details on Synplify see the Radiant Software Help. The
synpwrap program drives synplify_pro programs with a Tcl script file
containing the synthesis options and file list.

This section illustrates the use of the synpwrap program to run Synplify Pro
for Lattice synthesis scripts from the command line. For more information on
synthesis automation of Synplify Pro, see the “User Batch Mode” section of
the Synplicity Synplify and Synplify Pro for Lattice User Guide.

If you use Synplify Pro, the Lattice OEM license requires that the command
line executables synplify_pro be run by the Lattice “wrapper” program,
synpwrap.

Command Line Syntax synpwrap [-log <log_file>] [-nolog] [-int
<command_file>] [-gui] [-int <project_file> | -prj <project_file>] [-dyn] [-
notoem] [-oem] [-notpro] [-pro] [-rem] [-scriptonly <script_file>] -e
<command_file> -target <device_family> -part <device_name> [-options
<arguments>]

Note
This section supersedes the “Process Optimization and Automation” section of the
Synplicity Synplify and Synplify Pro for Lattice User Guide.

Table 16: SYNPWRAP Command Line Options
Option Description

-log <log_file> Specifies the log file name.

-nolog Does not print out the log file after the process is finished.

-options <arguments> Passes all arguments to Synplify/Pro. Ignores all other
options except -notoem/-oem and -notpro/-pro. The -
options switch must follow all other synpwrap options.

-prj <project_file> Runs Synplify or Synplify Pro using an external prj Tcl file
instead of the Radiant software command file.

-rem Does not automatically include Lattice library files.

-e <command_file> Runs the batch interface based on a Radiant software
generated command file. The synpwrap utility reads
<project>.cmd with its command line to obtain user
options and creates a Tcl script file.

-gui Invokes the Synplify or Synplify Pro graphic user
interface.

-int <command_file> Enables the interactive mode. Runs Synplify/Pro UI with
project per command file.

-dyn Brings the Synplify installation settings in the Radiant
software environment.

-notoem Does not use the Lattice OEM version of Synplify or
Synplify Pro.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1095

Example Below shows a synpwrap command line example.

synpwrap -rem -e prep1 -target iCE40UP

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

IP Packager
The IP Packager (ippkg) tool can be run from the command line, allowing IP
developers to select files from disks and pack them into one IPK file.

The process of IP packager is as following:

 IP author prepares metadata files, RTL files, HTML files, etc (all files of a
Soft IP).

 IP Packager GUI provides UI for IP author to select files from the disk, and
call IP Packaging engine to pack them into an IPK file.

 IP Packaging engine encrypts RTL files if IEEE P1735-2014 V1 pragmas
are specified in RTL source

Command Line Syntax ippkg [-h] (-metadata METADATA_FILE | -
metadata_files METADATA_LIST_NAME) (-rtl RTL_FILE | -rtl_files
RTL_LIST_NAME) [-encrypt FORCE_ENCRYPT_FILE | -encrypt_files
FORCE_ENCRYPT_LIST_NAME] [-plugin PLUGIN_FILE] [-ldc LDC_FILE]
[-fdc FDC_FILE] [-testbench TESTBENCH_FILE | -testbench_files
TESTBENCH_LIST_NAME] [-driver_file DRIVER_FILE | -driver_files
DRIVER_LIST_NAME] [-eval_file EVAL_FILE | -eval_files
EVAL_LIST_NAME] (-help_file HELP_FILE | -help_files

-oem Uses the Lattice OEM version of Synplify or Synplify Pro.

-notpro Does not use the Synplify Pro version.

-pro Uses the Synplify Pro version.

-target <device_family> Specifies the device family name.

-part <device_name> Specifies the device. For details on legal <device_name>
values.

-scriptonly <script_file> Generates the Tcl file for Synplify or Synplify Pro. Does
not run synthesis.

Table 16: SYNPWRAP Command Line Options
Option Description

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1096

HELP_LIST_NAME) [-license_file LICENSE_FILE] [-o OUTPUT_ZIP_FILE]
[-key_file KEY_FILE]

Example The following is an ippkg command line example:

ippkg –metadata c:/test/test.xml –rtl_files c:/test/rtl_list –
help_file c:/test/introduction.html

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

ECO Editor
The ECO Editor tool can be run from the command line too.

Table 17: IPPKG Command Line Options
Option Description

-metadata The file name will be fixed to ‘metadata.xml.

-metadata_files Location of the file which stores the metadata files. One
line is a file path in specified file. Must have a file named
metadata.xml.

-rtl Specify the IP RTL file.

-rtl_files One line is a file path in specified file.

-encrypt Encrypt the whole RTL files.

-encrypt_files One line is a file path in specified file.

-plugin The file name will be fixed to ‘plugin.py’.

-ldc Specify the LDC file.

-fdc Specify the FDC file.

-testbench Specify the testbench file.

-testbench_files One line is a file path in specified file.

-driver Specify the driver file.

-driver_files One line is a file path in specified file.

-eval Specify the IP evaluation file.

-eval_files One line is a file path in specified file.

-help_file Specify the help file, must be <path>/introduction.html.

-help_files One line is a file path in specified file.

-license_file Specify the license file.

-o Specify the output zip file.

-key_file Specify the key file to encrypt the RTL files.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1097

ECO Editor is also able to dump the ECO TCL commands which user acted in
GUI view without saving any UDB file.

In the meanwhile, we will have one non-GUI ECO engine tool, it accepts the
dumped TCL script file with a UDB file and output a new UDB file.

User can set ‘Place & Route design‘ milestone post-script by Tcl command
prj_set_postscript par <eco.tcl>, then Radiant flow runs the ECO Tcl script
automatically after running place & route.

Command Line Syntax ecoc [-s <script_file>] [-o <output.udb>]
<input.udb>]

Example The following is an ecoc command line example:

ecoc -s mem.tcl ebr_test_impl_1.udb

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

Running Standalone Timing Analyzer from the
Command Line
The Standalone Timing Analyzer can be run from the command line too.

Command Line Syntax tavmain <udb file name> [<pdc file name>]

Example The following is a tavmain command line example:

tavmain design.udb design.pdc

See Also “Command Line Program Overview” on page 1050

 “Command Line Data Flow” on page 1052

Using Command Files
This section describes how to use command files.

Creating Command Files The command file is an ASCII file containing
command arguments, comments, and input/output file names. You can use

Table 18: ECO Editor Command Line Options
Option Description

-s ECO Tcl script file.

-o Output UDB file.

<input.udb> Input UDB file.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1098

any text editing tool to create or edit a command file, for example, vi, emacs,
Notepad, or Wordpad.

Here are some guidelines when you should observe when creating command
files:

 Arguments (executables and options) are separated by space and can be
spread across one or more lines within the file.

 Place new lines or tabs anywhere white space would otherwise be
allowed on the Linux or DOS command line.

 Place all arguments on the same line, or one argument per line, or any
combination of the two.

 There is no line length limitation within the file.

 All carriage returns and other non-printable characters are treated as
space and ignored.

 Comments should be preceded with a # (pound sign) and go to the end of
the line.

Command File Example This is an example of a command file:

#command line options for par for design mine.udb
-a -n 10
-w
-l 5
-s 2 #will save the two best results
/home/users/jimbob/designs/mine.udb
#output design name
/home/users/jimbob/designs/output.dir
#use timing constraint file
/home/users/jimbob/designs/mine.prf

Using the Command File The –f Option Use the –f option to execute a
command file from any command line tool. The –f option allows you to specify
the name of a command file that stores and then executes commonly used or
extensive command arguments for a given FPGA command line executable
tool. You can then execute these arguments at any time by entering the Linux
or DOS command line followed by the name of the file containing the
arguments. This can be useful if you frequently execute the same arguments
each time you perform the command, or if the command line becomes too
long. This is the recommended way to get around the DOS command line
length limitation of 127 characters. (Equivalent to specifying a shell Options
file.)

The –f indicates fast startup, which is performed by not reading or executing
the commands in your .cshrc | .kshrc | .shrc (C-shell, Korn-shell, Bourne-
shell) file. This file typically contains your path information, your environment
variable settings, and your aliases. By default, the system executes the
commands in this file every time you start a shell. The –f option overrides this
process, discarding the 'set' variables and aliases you do not need, making
the process much faster. In the event you do need a few of them, you can add
them to the command file script itself.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1099

Command File Usage Examples You can use the command file in two
ways:

 To supply all of the command arguments as in this example:

par -f <command_file>

where:

<command_file> is the name of the file containing the command line
arguments.

 To insert certain command line arguments within the command line as in
the following example:

par -i 33 -f placeoptions -s 4 -f routeoptions design_i.udb design_o.udb

where:

placeoptions is the name of a file containing placement command
arguments.

routeoptions is the name of a file containing routing command arguments.

Using Command Line Shell Scripts
This topic discusses the use of shell scripts to automate either parts of your
design flow or entire design flows. It also provides some examples of what
you can do with scripts. These scripts are Linux-based; however, it is also
possible to create similar scripts called batch files for PC but syntax will vary
in the DOS environment.

Creating Shell Scripts A Linux shell script is an ASCII file containing
commands targeted to a particular shell that interprets and executes the
commands in the file. For example, you could target Bourne Shell (sh), C-
Shell (csh), or Korn Shell (ksh). These files also can contain comment lines
that describe part of the script which then are ignored by the shell. You can
use any text editing tool to create or edit a shell script, for example, vi or
emacs.

Here are some guidelines when you should observe when creating shell
scripts:

 It is recommended that all shell scripts with “#!” followed by the path and
name of the target shell on the first line, for example, #!/bin/ksh. This
indicates the shell to be used to interpret the script.

 It is recommended to specify a search path because oftentimes a script
will fail to execute for users that have a different or incomplete search
path. For example:

PATH=/home/usr/lsmith:/usr/bin:/bin; export PATH

 Arguments (executables and options) are separated by space and can be
spread across one or more lines within the file.

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1100

 Place new lines or tabs anywhere white space would otherwise be
allowed on the Linux command line.

 Place all arguments on the same line, or one argument per line, or any
combination of the two.

 There is no line length limitation within the file.

 All carriage returns and other non-printable characters are treated as
space and ignored.

 Comments are preceded by a # (pound sign) and can start anywhere on a
line and continue until the end of the line.

 It is recommended to add exit status to your script, but this is not required.

Does global timing meet acceptable requirement range?
if [$timing -lt 5 -o $timing -gt 10]; then

echo 1>&2 Timing \"$timing\" out of range
exit 127

fi
etc...
Completed, Exit OK
exit 0

Advantages of Using Shell Scripts Using shell scripts can be
advantageous in terms of saving time for tasks that are often used, in
reducing memory usage, giving you more control over how the FPGA design
flow is run, and in some cases, improving performance.

Scripting with DOS Scripts for the PC are referred to as batch files in the
DOS environment and the common practice is to ascribe a .bat file extension
to these files. Just like Linux shell scripts, batch files are interpreted as a
sequence of commands and executed. The COMMAND.COM or CMD.EXE
(depending on OS) program executes these commands on a PC. Batch file
commands and operators vary from their Linux counterparts. So, if you wish
to convert a shell script to a DOS batch file or vice-versa, we suggest you find
a good general reference that shows command syntax equivalents of both
operating systems.

Examples The following example shows running design “counter” on below
device package

 Architecture: iCE40UP

 Device: iCE40UP3K

 Package: UWG30

 Performance: Worst Case

Command 1: logic synthesis
synthesis -f counter_impl1_lattice.synproj
 which the *.synproj contains
-a "iCE40UP"
-p iCE40UP3K
-t UWG30
-sp "Worst Case"
-optimization_goal Area

COMMAND LINE REFERENCE GUIDE : Command Line Tool Usage

Lattice Radiant Software 3.2 Help 1101

-bram_utilization 100
-ramstyle Auto
-romstyle auto
-dsp_utilization 100
-use_dsp 1
-use_carry_chain 1
-carry_chain_length 0
-force_gsr Auto
-resource_sharing 1
-propagate_constants 1
-remove_duplicate_regs 1
-mux_style Auto
-max_fanout 1000
-fsm_encoding_style Auto
-twr_paths 3
-fix_gated_clocks 1
-loop_limit 1950
-use_io_reg auto
-use_io_insertion 1
-resolve_mixed_drivers 0
-sdc "impl1.ldc"
-path "C:/lscc/radiant/1.0/ispfpga/ice40tp/data" "impl1"
-ver "C:/lscc/radiant/1.0/ip/pmi/pmi.v"
-ver "count_attr.v"
-path "."
-top count
-udb "counter_impl1.udb"
-output_hdl "counter_impl1.vm"

Command 2: post synthesis process
postsyn -a iCE40UP -p iCE40UP3K -t UWG30 -sp Worst Case -top -
ldc counter_impl1.ldc -keeprtl -w -o counter_impl1.udb
counter_impl1.vm

Command 3: Mapper
map "counter_impl1_syn.udb" "impl1.pdc" -o "counter_impl1.udb"

Command 4: Placer and router
par -f "counter_impl1.p2t" "counter_impl1_map.udb"
"counter_impl1.udb"

Command 5: Timer
timing -sethld -v 10 -u 10 -endpoints 10 -nperend 1 -html -rpt
"counter_impl1_twr.html" "counter_impl1.udb"

Command 6: back annotation
backanno "counter_impl1.udb" -n Verilog -o
"counter_impl1_vo.vo" -w -neg

Command 7: bitstream generation
bitgen -w "counter_impl1.udb" -f "counter_impl1.t2b"

Lattice Radiant Software 3.2 Help 1102

Chapter 19

Tcl Command Reference Guide

The Radiant software supports Tcl (Tool Command Language) scripting and
provides extended Radiant software Tcl commands that enable a batch
capability for running tools in the Radiant software’s graphical interface. The
command set and the Tcl Console used to run it affords you the speed,
flexibility and power to extend the range of useful tasks that the Radiant
software tools are already designed to perform.

In addition to describing how to run the Radiant software’s Tcl Console, this
guide provides you with a reference for Tcl command line usage and syntax
for all Radiant software point tools within the graphical user interface so that
you can create command scripts, modify commands, or troubleshoot existing
scripts.

About the Radiant software Tcl Scripting Environment The Radiant
software development software features a powerful script language system.
The user interface incorporates a complete Tcl command interpreter. The
command interpreter is enhanced further with additional Radiant software-
specific support commands. The combination of fundamental Tcl along with
the commands specialized for use with the Radiant software allow the entire
Radiant software development environment to be manipulated.

Using the command line tools permits you to do the following:

 Develop a repeatable design environment and design flow that eliminates
setup errors that are common in GUI design flows

 Create test and verification scripts that allow designs to be checked for
correct implementation

 Run jobs on demand automatically without user interaction

The Radiant software command interpreter provides an environment for
managing your designs that are more abstract and easier to work with than
using the core Radiant software engines. The Radiant software command
interpreter does not prevent use of the underlying transformation tools. You

TCL COMMAND REFERENCE GUIDE : Running the Tcl Console

Lattice Radiant Software 3.2 Help 1103

can use either the TCL commands described in this section or you can use
the core engines described in the “Command Line Reference Guide” on
page 1050.

Additional References If you are unfamiliar with the Tcl language you can
get help by visiting the Tcl/tk web site at https://www.tcl.tk. If you already know
how to use Tcl, see the Tcl Manual supplied with this software. For information
on command line syntax for running core tools that appear as Radiant
software processes, such as synthesis, map, par, backanno, and timing, see
the “Command Line Reference Guide” on page 1050.

See Also “Running the Tcl Console” on page 1103

 “Accessing Command Help in the Tcl Console” on page 1105

 “Radiant Software Tool Tcl Command Syntax” on page 1109

 “Creating and Running Custom Tcl Scripts” on page 1105

 “Accessing Command Help in the Tcl Console” on page 1105

 Tcl Manual

Running the Tcl Console
The Radiant software TCL Console environment is made available for your
use in multiple different ways. In order to take full advantage of the FPGA
development process afforded by the Radiant software you must gain access
to the Radiant Tcl Console user interface.

On Windows In Windows you can interact with the Tcl Console by anyone
of the following methods:

 To launch the Radiant software GUI from the Windows Start menu,
choose Start > Lattice Radiant Software (version_number) > Radiant
Software.

After the Radiant software loads, you can click on the TCL Console tab.
With the Tcl Console tab active, you are able to start entering standard
syntax TCL commands or the Radiant software-specific support
commands.

 To launch the TCL Console independently from the Radiant software GUI
from the Windows Start menu choose Start > Lattice Radiant Software
(version_number) > TCL Console.

A Windows command interpreter will be launched that automatically runs
the TCL Console.

 To run the interpreter from the command line, type the following:

c:/lscc/radiant/<version_number>/bin/nt64/pnmainc

The Radiant TCL Console is now available to run.

https://www.tcl.tk
../../../../../tcltk/windows/doc/contents.htm

TCL COMMAND REFERENCE GUIDE : Running the Tcl Console

Lattice Radiant Software 3.2 Help 1104

 To run the interpreter from a Windows PowerShell from the Windows Start
menu choose Start > Windows PowerShell > Windows PowerShell
(x86).

A PowerShell interpreter window will open. At the command line prompt
type the following:

c:/lscc/radiant/<version_number>/bin/nt64/pnmainc

The Radiant TCL Console is now available to run.

On Linux In Linux operating systems you can interact with the Tcl Console
by one of the following methods:

 To launch the Radiant software GUI from the command line, type the
following:

/usr/<user_name>/radiant/<version_number>/bin/lin64/radiant

The path provided assumes the default installation directory and that the
Radiant software is installed. After the Radiant software loads you can
click on the TCL Console tab. With the TCL Console tab active, you are
able to start entering standard syntax TCL commands or the Radiant
software specific support commands.

 To launch the TCL Console independently from the Radiant software GUI
from the command line, type the following:

/usr/<user_name>/Radiant/<version_number>/bin/lin64/radiantc

The path provided assumes the default installation directory and that the
Radiant software is installed, and that you have followed the Radiant
software for Linux installation procedures. The Radiant TCL Console is
now ready to accept your input.

The advantage of running the TCL Console from an independent
command interpreter is the ability to directly pass the script you want to
run to the Tcl interpreter. Another advantage is that you have full control
over the Tk graphical environment, which allows you to create you own
user interfaces.

See Also “Running the Tcl Console” on page 1103

 “Radiant Software Tool Tcl Command Syntax” on page 1109

 “Creating and Running Custom Tcl Scripts” on page 1105

 “Accessing Command Help in the Tcl Console” on page 1105

 Tcl Manual

Note
The arrangement and location of each of the programs in the Windows Start menu will
differ depending on the version of Windows you are running.

../../../../../tcltk/windows/doc/contents.htm

TCL COMMAND REFERENCE GUIDE : Accessing Command Help in the Tcl Console

Lattice Radiant Software 3.2 Help 1105

Accessing Command Help in the Tcl Console
You can access command syntax help for all of the tools in the Tcl Console.

To access command syntax help in the Tcl Console:

1. In the prompt, type help <tool_name>* and press Enter as shown below:

help prj*

A list of valid command options appears in the Tcl Console.

2. In the Tcl Console, type the name of the command or function for more
details on syntax and usage. For the prj tool, for example, type and enter
the following:

prj_open

A list of valid arguments for that function appears.

See Also “Running the Tcl Console” on page 1103

 “Radiant Software Tool Tcl Command Syntax” on page 1109

 “Creating and Running Custom Tcl Scripts” on page 1105

 “Running Tcl Scripts When Launching the Radiant Software” on
page 1108

 Tcl Manual

Creating and Running Custom Tcl Scripts
This topic describes how to easily create Tcl scripts using the Radiant
software’s user interface and manual methods. FPGA design using Tcl scripts
provides some distinct advantages over using the graphical user interface’s
lists, views and menu commands. For example, Tcl scripts allow you to do the
following:

 Set the tool environment to exactly the same state for every design run.
This eliminates human errors caused by forgetting to manually set a
critical build parameter from a drop-down menu.

 Manipulate intermediate files automatically, and consistently on every run.
For example, .vm file errors can be corrected prior to performing
additional netlist transformation operations.

 Run your script automatically by using job control software. This gives you
the flexibility to run jobs at any time of day or night, taking advantage of
idle cycles on your corporate computer system.

Note
Although you can run the Radiant software’s core tools such as synthesis, postsyn,
map, par, and timing from the Tcl Console, the syntax for accessing help is different.
For proper usage and syntax for accessing help for core tools, see the “Command
Line Reference Guide” on page 1050.

../../../../../tcltk/windows/doc/contents.htm

TCL COMMAND REFERENCE GUIDE : Creating and Running Custom Tcl Scripts

Lattice Radiant Software 3.2 Help 1106

Creating Tcl Scripts There are a couple of different methods you can use
to create the Radiant software Tcl scripts. This section will discuss each one
and provide step-by-step instructions for you to get started Tcl scripting
repetitious Radiant software commands or entire workflows.

One method you have available is to use your favorite text editor to enter a
sequence of the Radiant software Tcl commands. The syntax of each the
Radiant software Tcl commands is available in later topics in this portion of the
Help. This method should only be used by very experienced Radiant software
Tcl command line users.

The preferred method is to let the Radiant software GUI assist you in getting
the correct syntax for each Tcl command. When you interact with the Radiant
software user interface each time you launch a scriptable process and the
corresponding Radiant software Tcl command is echoed to the Tcl Console.
This makes it much simpler to get the correct command line syntax for each
Radiant software command. Once you have the fundamental commands
executed in the correct order, you can then add additional Tcl code to perform
error checking, or customization steps.

To create a Tcl command script in the Radiant software:

1. Start the Radiant software design software and close any project that may
be open.

2. In the Tcl Console execute the custom reset command. This clears the Tcl
Console command history.

3. Use the Radiant software graphical user interface to start capturing the
basic command sequence. The Tcl Console echos the commands in its
window. Start by opening the project for which you wish to create the TCL
script. Then click on the processes in the Process bar to run them. For
example, run these processes in their chronological order in the design
flow:

 Synthesize Design

 Map Design

 Place & Route Design

 Export Files

4. In the Tcl Console window enter the command,

save_script <filename.ext>

The <filename.ext> is any file identifier that has no spaces and contains
no special characters except underscores. For example, myscript.tcl or
design_flow_1.tcl are acceptable save_script values, but my$script or
my script are invalid. The <filename.ext> entry can be preceded with a
absolute or relative path. Use the "/" (i.e. forward slash) character to
delimit the path elements. If the path is not specified explicitly the script is
saved in the current working directory. The current working directory can
be determined by using the TCL pwd command.

5. You can now use your favorite text editor to make any changes to the
script you feel are necessary. Start your text editor, navigate to the

TCL COMMAND REFERENCE GUIDE : Creating and Running Custom Tcl Scripts

Lattice Radiant Software 3.2 Help 1107

directory the save_script command saved the base script, and open the
file.

Sample Radiant software Tcl Script The following the Radiant software
Tcl script shows a very simple script that opens a project, runs the entire
design flow through the Place & Route process, then closes the project. A
typical script will contain more tasks and will check for failure conditions. Use
this simple example as a general guideline.

Running Tcl Scripts The Radiant software TCL scripts are run exclusively
from the Radiant TCL Console. You can use either the TCL Console
integrated into the Radiant software UI, or by launching the stand-alone TCL
Console.

To run a Tcl script in the Radiant software:

1. Launch the Radiant software GUI, or the stand-alone TCL Console.

Open the Radiant software but do not open your project. If your project is
open, choose File > Close Project.

2. If you are using the Radiant software main window, click the small arrow
pane switch in the bottom of the Radiant software main window, and then
click on the Tcl Console tab in the Output area at the bottom to open the
console.

3. Use the TCL source command to load and run your TCL script. The
source command requires, as it's only argument, the filename of the script
you want to load and run. Prefix the script file name with any required
relative or absolute path information. To run the example script shown in
the previous section use:

source C:/lscc/radiant/<version_number>/examples/counter/
myscript2.tcl

As long as there are no syntax errors or invalid arguments, the script will
open the project, synthesize, map, and place-and-route the design. Once
the design finishes it closes the project. If there are errors in the script,
you will see the errors in red in the Tcl Console after you attempt to run it.
Go back to your script and correct the errors that prevented the script from
running.

Note
In most all cases, you will have to clean up the script you saved and remove any
invalid arguments or any commands that cannot be performed in the Radiant
software environment due to some conflict or exception. You will likely have to
revisit this step later if after running your script you experience any run errors due
to syntax errors or technology exceptions.

Figure 1: Simple Radiant software Script
prj_archive -dir "C:/my_radiant/counter" -extract "C:/lscc/
radiant/1.1/examples/counter.zip"
prj_run_par
prj_close

TCL COMMAND REFERENCE GUIDE : Running Tcl Scripts When Launching the Radiant Software

Lattice Radiant Software 3.2 Help 1108

See Also “Running the Tcl Console” on page 1103

 “Radiant Software Tool Tcl Command Syntax” on page 1109

 “Running Tcl Scripts When Launching the Radiant Software” on
page 1108

 Tcl Manual

Running Tcl Scripts When Launching the Radiant
Software

This topic describes how launch the Radiant software and automatically run
Tcl scripts using a command line shell or the stand-alone Tcl console. Your Tcl
script can be standard Tcl commands as well as the Radiant software-specific
Tcl commands.

Refer to “Creating and Running Custom Tcl Scripts” on page 1105 for more
information on creating custom Tcl scripts.

To launch the Radiant software and run a Tcl script from a command line
shell or the stand-alone Tcl console:

 Enter the following command:

On Windows:

pnmain.exe -t <tcl_path_file>

On Linux:

radiant -t <tcl_path_file>

Sample Radiant software Tcl Script The following Radiant software Tcl
script shows a very simple script, running in Windows, that opens a project
and runs the design flow through the MAP process. Use this simple example
as a general guideline.

The above example is saved in Windows as the file mytcl.tcl in the directory
C:/test. By running the following command from either a DOS shell or the Tcl
console in Windows, the Radiant software GUI starts, the project io1.rdf
opens, and the MAP process automatically runs.

pnmain.exe -t c:/test/mytcl.tcl

See Also “Running the Tcl Console” on page 1103

 “Radiant Software Tool Tcl Command Syntax” on page 1109

Figure 2: Simple Radiant Software Script
prj_open C:/test/iobasic_radiant/io1.rdf
prj_run_map

../../../../../tcltk/windows/doc/contents.htm

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1109

 “Creating and Running Custom Tcl Scripts” on page 1105

 Tcl Manual

Radiant Software Tool Tcl Command Syntax
This part of the Tcl Command Reference Guide introduces the syntax of each
of the Radiant software tools and provides you with examples to help you
construct your own commands and scripts.

The Radiant software tries to make it easy to develop TCL scripts by mirroring
the correct command syntax in the Tcl Console based on the actions
performed by you in the GUI. This process works well for most designs, but
there are times when a greater degree of control is required. More control
over the build process is made available through additional command line
switches. The additional switches may not be invoked by actions taken by you
when using the GUI. This section provides additional information about all of
the Tcl commands implemented in the Radiant software.

The Tcl Commands are broken into major categories. The major categories
are:

 Radiant Software Tcl Console Commands

 Radiant Software Timing Constraints Tcl Commands

 Radiant Software Physical Constraints Tcl Commands

 Radiant Software Project Tcl Commands

 Reveal Inserter Tcl Commands

 Reveal Analyzer Tcl Commands

 Power Calculator Tcl Commands

 Programmer Tcl Commands

 Engineering Change Order Tcl Commands

Radiant Software Tcl Console
Commands
The Radiant software Tcl Console provides a small number of commands that
allow you to perform some basic actions upon the Tcl Console Pane. The
Radiant software Tcl Console commands differ from the other Tcl commands
provided in the Radiant software. This dtc program’s general Tcl Console
commands do not use the dtc_ prefix in the command syntax as is the
convention with other tools in the Radiant software.

Note
TCL Command Log is always listed after the project is closed. You can find it in the
Reports section under Misc Report > TCL Command Log.

../../../../../tcltk/windows/doc/contents.htm

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1110

The following table provides a listing of all valid Radiant software Tcl Console-
related commands.

Table 19: Radiant Software Tcl Console Commands
Command Arguments Description

clear N/A The clear command erases anything
present in the Tcl Console pane, and
prints the current prompt character in
the upper left corner of the Tcl Console
pane without erasing the command
history.

history N/A The history command lists the
command history in the Tcl Console
that you executed in the current
session.

Every command entered into the Tcl
Console, either by the GUI, or by direct
entry in the Tcl Console, is recorded so
that it can be recalled at any time.

The command history list is cleared
when a project is opened or when the
Tcl Console reset command is
executed.

reset N/A The reset command clears anything
present in the Tcl Console pane, and
erases all entries in the command line
history.
**It’s only used in GUI Tcl console and
not supported in stand-alone Tcl
console.

save_script <filename.ext> Saves the contents of the command
line history memory buffer into the
script file specified. The script is, by
default, stored into the current working
directory. File paths using forward
slashes used with an identifier are valid
if using an absolute file path to an
existing script folder.

**It’s only used in GUI Tcl console and
not supported in stand-alone Tcl
console.

set_prompt <new_character> The default prompt character in the Tcl
Console is the “greater than” symbol or
angle bracket (i.e., >). You can change
this prompt character to some other
special character such as a dollar sign
($) or number symbol (#) if you prefer.

**It’s only used in GUI Tcl console and
not supported in stand-alone Tcl
console.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1111

Radiant Software Tcl Console Command Examples This section
illustrates and describes a few samples of Radiant Tcl Console commands.

Example 1 To save a script, you simply use the save_script command in
the Tcl Console window with a name or file path/name argument. In the first
example command line, the file path is absolute, that is, it includes the entire
path. Here you are saving “myscript.tcl” to the existing current working
directory. The second example creates the same “myscript.tcl” file in the
current working directory.

save_script C:/lscc/radiant/myproject/scripts/myscript.tcl

save_script myscript.tcl

See “Creating and Running Custom Tcl Scripts” on page 1105 for details on
how to save and run scripts in the Radiant software.

Example 2 The following set_prompt command reassigns the prompt
symbol on the command line as a dollar sign ($). The default is an angle
bracket or “greater than” sign (>).

set_prompt $

Example 3 The following history command will print all of the command
history that was recorded in the current Tcl Console session.

history

Radiant Software Timing Constraints
Tcl Commands
The following table provides a listing of all valid Radiant software Timing
Constraints Tcl commands.

Table 20: Radiant Software Timing Constraints Tcl Commands
Command Arguments Description

create_clock create_clock -period
<period_value> [-name
<clock_name>] [-waveform
<edge_list>]
[<port_list|pin_list|net_list>]

Create a named or virtual clock.

create_generated_cl
ock

create_generated_clock [-name
<clock_name>] -source
<master_pin>[-edges <edge_list>] [-
divide_by <factor>]

[-multiply_by <factor>] [-duty_cycle
<percent>] [-invert] [-add]
[<pin_list|net_list|port_list>]

Create a generated clock object.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1112

ldc_define_attribute ldc_define_attribute -attr
<attr_type> -value <attr_value> -
object_type <object type> -object
<object> [-disable] [-comment
<comment>]

Set LSE synthesis attributes for given
objects

set_clock_groups set_clock_groups -group
<clock_list> <-logically_exclusive | -
physically_exclusive | -
asynchronous>

 Set clock groups.

set_clock_latency set_clock_latency [-rise] [-fall] [-
early | -late] <source> <latency>
<object_list>

Defines a clock’s source or network
latency

set_clock_uncertain
ty

set_clock_uncertainty [-setup] [-
hold] [-from <clock>] [-to <clock>]
<uncertainty> [<clock_list>]

Set clock uncertainty.

set_false_path set_false_path [-from
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-to
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-through
<port_list|pin_list|instance_list|net_li
st>]

 [-rise_from <clock_list>] [-rise_to
<clock_list>]

 [-fall_from <clock_list>] [-fall_to
<clock_list>]

 [-comment string]

Define false path

set_input_delay set_input_delay -clock
<clock_name> [-clock_fall] [-max] [-
min] [-add_delay] <delay_value>
<port_list>

Set input delay on ports

set_load set_load <capacitance> <objects> Commands to set capacitance on ports

Table 20: Radiant Software Timing Constraints Tcl Commands
Command Arguments Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1113

set_max_delay set_max_delay [-from
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-to
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-through
<port_list|pin_list|instance_list|net_li
st>]

 [-rise_from <clock_list>] [-rise_to
<clock_list>]

 [-fall_from <clock_list>] [-fall_to
<clock_list>] <delay_value>

 [-comment string]

 Specify maximum delay for timing
paths

set_min_delay set_min_delay [-from
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-to
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-through
<port_list|pin_list|instance_list|net_li
st>]

 [-rise_from <clock_list>] [-rise_to
<clock_list>]

 [-fall_from <clock_list>] [-fall_to
<clock_list>] <delay_value>

Specify minimum delay for timing paths

set_multicycle_path set_multicycle_path [-from
<port_list|pin_list|instance_list|net_li
st|clock_list>]

 [-to
<port_list|pin_list|instance_list|net_li
st|clock_list>]

[-through
<port_list|pin_list|instance_list|net_li
st>]

[-rise_from <clock_list>] [-rise_to
<clock_list>]

[-fall_from <clock_list>] [-fall_to
<clock_list>]

[-setup|-hold] [-start|-end]
<path_multiplier>

Define multicycle path

set_output_delay set_output_delay -clock
<clock_name> [-clock_fall] [-max] [-
min] [-add_delay] <delay_value>
<port_list>

Set output delay on ports

Table 20: Radiant Software Timing Constraints Tcl Commands
Command Arguments Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1114

Radiant Software Physical Constraints
Tcl Commands
The following table provides a listing of all valid Radiant software Physical
Constraints Tcl commands

Radiant Software Physical Constraints Tcl Commands Examples This
section illustrates and describes a few samples of Radiant Physical
Constraints Tcl commands.

Example 1 TThe following ldc_create_group command creates a sample
group with 3 instances, and places all instances within the group to a 2x2
bbox.

Table 21: Radiant Software Physical Constraints Tcl Commands
Command Arguments Description

ldc_create_group ldc_create_group -name
<group_name> [-bbox {height
width}] <objects>

Defines a single identifier that refers to
a group of objects

ldc_create_region ldc_create_region -name
<region_name> -site <site> -width
<width> -height <height>

Define a rectangular area

ldc_create_vref ldc_create_vref -name
<vref_name> -site <site_name>

Define a voltage reference

ldc_prohibit ldc_prohibit -site <site> -region
<region>

Prohibits the use of a site or all sites
inside a region

ldc_set_attribute ldc_set_attribute <key-value list>
[objects]

Set object attributes

ldc_define_global_a
ttribute

ldc_define_global_attribute -attr
<attr_type> -value <attr_value> [-
disable] [-comment <comment>]

Set LSE synthesis global attributes

ldc_define_attribute ldc_define_attribute -attr
<attr_type> -value <attr_value> -
object_type <object type> -object
<object> [-disable] [-comment
<comment>]

Set LSE synthesis attributes for given
objects

ldc_set_location ldc_set_location [-site
<site_name>] [-bank <bank_num>]
[-region <region_name>] <object>

Set object location

ldc_set_port ldc_set_port [-iobuf [-vref
<vref_name>]]|[-sso] <key-value
list> <ports>

Set port constraint attributes

ldc_set_sysconfig ldc_set_sysconfig <key-value list> Set sysconfig attributes

ldc_set_vcc ldc_set_vcc [-bank bank|-core] [-
derate derate] [voltage]

Sets the voltage and/or derate for the
bank or core

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1115

ldc_create_group -name sample_group -bbox {2 2} [get_cells
{i16_1_lut i18_2_lut i25_3_lut }]

Example 2 The following ldc_set_location command places the port clk to
pin E7.

ldc_set_location -site {E7} [get_ports clk]

Example 3 The following ldc_set_port command sets IO_TYPE, DRIVE,
SLEWRATE attributes of the port rst.

ldc_set_port -iobuf {IO_TYPE=LVCMOS33 DRIVE=8 SLEWRATE=FAST}
[get_ports rst]

Radiant Software Project Tcl
Commands
The Radiant software Project Tcl Commands allow you to control the contents
and settings applied to the tools, and source associated with your design.
Projects can be opened, closed, and configured to a consistent state using
the commands described in this section.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1116

Radiant Software Project Tcl Command Descriptions The following
table provides a listing of all valid Radiant software project-related Tcl
command options and describes option functionality.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

prj_create prj_create -name <project name> [-
dev <device name>] [-performance
<performance grade>] [-impl <initial
implementation name>] [impl_dir
<initial implementation directory>]
 [-synthesis <synthesis tool
name>]

Creates a new project inside the
current working directory. The new
command can only be used when no
other project is currently open.
The -name <project name> argument
specifies the name of the project. This
creates a <project name>.rdf file in the
current working directory.
The -impl <initial implementation
name> argument specifies the active
implementation when the project is
created. If this left unspecified a default
implementation called
“Implemenation0” is created.
The -dev <device name> argument
specifies the FPGA family, density,
footprint, performance grade, and
temperature grade to generate designs
for. Use the Lattice OPN (Ordering Part
Number) for the <device name>
argument.
The -performance <performance
grade> argument specifies the device
performance grade explicitly. For
iCE40UP device, performance grade
can’t be inferred from the device part
name such as iCE40UP3K-
UWG30ITR. If no performance grade
specified, default performance value is
used.
The -impl_dir <initial implementation
directory> argument defines the
directory where temporary files are
stored. If this is not specified the current
working directory is used.

prj_close prj_close Exits the current project. Any unsaved
changes are discarded.

prj_open prj_open <projectfile.rdf> Opens the specified project in the
software environment.

prj_save prj_save [projectfile.rdf] Updates the project with all changes
made during the current session and
the project file is saved.

prj_saveas prj_saveas -name <new project
name> -dir <new project directory> [-
copy_gen]

Save the current project as a new
project with specified name and
directory.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1117

prj_set_opt prj_set_opt
 : List all the options in the
current project
 prj_set_opt <option name>
[option value list]
 : List or set the option value
 prj_set_opt -append <option
name> <option value>
 : Append a value to the
specified option value
 prj_set_opt -rem <option
name>...
 : Remove the options of the
current project

 List, set or remove a project option.

prj_archive prj_archive [-includeAll]
<archive_file>
 : Archive the current project
into the archive_file
 prj_archive -extract -dir
<destination directory>
<archive_file>
 : Extract the archive file and
load the project

 Archive the current project.

prj_set_device prj_set_device [-family <family
name>] [-device <device name>]
 [-package <package
name>] [-performance
<performance grade>]
 [-operation <operation>] [-
part <part name>]
: Change the device to the specified
family, device, package,
performance,
 operation, part

 Set the device.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1118

prj_add_source prj_add_source [-impl <implement
name>] [-simulate_only|-
synthesis_only]
 [-include <path list for
Verilog include search path>]
[-work <VHDL lib name>] [-format
<format name>] [[-opt
<name=value>] ...] [-exclude]
 <src file>...

Adds a VHDL source file to the
specified or active implementation. The
syntax used for the Add function
depends upon the source file’s
implementation language.
[-work <VHDL lib name>]: Assigns the
source code to the specified library
name space.
[-impl <implementation name>]: This
switch is used to add a source file to a
Radiant software implementation. If this
switch is not specified the source file is
added to the active implementation.
[-format <format name>]: This switch is
used to add a source file format is
Verilog or VHDL.
[-opt name=value]: The -opt argument
allows you to set a custom, user-
defined option. See Example 7 for
guidelines and usage.
<sre file>...: One or more VHDL source
files to add to the specified
implementation.

prj_enable_source prj_enable_source [-impl
<implement name>] <src file> ...

Enables the excluded design sources
from the current project, that is, it will
activate a source file for synthesis, to
be used as a constraint, or for Reveal
debugging.

prj_disable_source prj_disable_source [-impl
<implement name>] <src file> ...

Disables the excluded design sources
from the current project, that is, it will
activate a source file for synthesis, to
be used as a constraint or for Reveal
debugging.

prj_remove_source prj_remove_source [-impl
<implement name>] -all
:Remove all the design sources in
project
prj_remove_source [-impl
<implement name>] <src file>

Deletes the specified source files from
the specified implementation. If an
implementation is not listed explicitly
the source files are removed from the
active implementation. The source files
are not removed from the file system,
they are only removed from
consideration in the specified
implementation.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1119

prj_set_source_opt prj_set_source_opt -src <source
name> [-impl <implement name>]
 : List all the options in the
specified source
 prj_set_source_opt -src <source
name> [-impl <implement name>]
 <option name> [option
value list]
 : List or set the source's
option value
 prj_set_source_opt -src <source
name> [-impl <implement name>]
 -append <option name>
<option value>
 : Append a value to the
specified option value
 prj_set_source_opt -src <source
name> [-impl <implement name>]
 -rem <option name>...
 : Remove the options of the
source

List, set or remove a source option.

prj_set_source_for
mat

prj_set_source_format -src
<source name> [-impl <implement
name>] <format name>
 : Currently, format name only
Verilog or VHDL is supported

Set a source format Verilog or VHDL.

prj_create_impl prj_create_impl <new impl name>
[-dir <implementation directory>] [-
strategy <default strategy name>] [-
synthesis <synthesis tool name>]

Create a new implementation in the
current project with ‘<new impl name>’.
The new implementation will use the
current active implementation’s
strategy as the default strategy if no
valid strategy is set.

prj_remove_impl prj_remove_impl <implement
name>

Delete the specified implementation in
the current project with ‘< impl name>’.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1120

prj_set_impl_opt prj_set_impl_opt [-impl <implement
name>]
 : List all the options in the
specified implementation
prj_set_impl_opt [-impl <implement
name>] <option name> [option value
list]
 : List or set the
implementation's option value
prj_set_impl_opt [-impl <implement
name>] -append <option name>
<option value>
 : Append a value to the
specified option value
prj_set_impl_opt [-impl <implement
name>] -rem <option name>...
 : Remove the the options in
the implementation

Allows you to add, list, or remove
implementation options with the name
<implement name> in the specified or
active implementation of the current
project.
If the -rem option is used, the following
option names appearing after it will be
removed.
If no argument is used (i.e.,
“prj_set_impl_opt”), the default is to list
all implementation options.
If only the <option name> argument is
used (i.e., “prj_impl option <option
name>), then the value of that option in
the project will be returned.
The command will set the option value
to the option specified by <option
name>. If the <option value> is empty
then the option will be removed and
ignored (e.g., prj_impl option -rem).
The -run_flow argument allows you to
switch from the normal mode to an
“initial” incremental flow mode and
“incremental” which is the mode you
should be in after an intial design run
during the incremental design flow.
With no value parameters specified, -
run_flow will return the current mode
setting.

prj_set_prescript prj_set_prescript [-impl
<implement name>] <milestone
name> <script_file>
 : milestone name can be
‘syn’, ‘map’, ‘par’, ‘export’

List or set user Tcl script before running
milestone.

prj_set_postscript prj_set_postscript [-impl
<implement name>] <milestone
name> <script_file>
 : milestone name can be
‘syn’, ‘map’, ‘par’, ‘export’

List or set user Tcl script after running
milestone.

prj_activate_impl prj_activate_impl <implement
name>

Activates the implementation with the
name <implement name>.

prj_clean_impl prj_clean_impl [-impl <implement
name>]

Clean up the implementation result files
in the current project.

prj_clone_impl prj_clone_impl <new impl name> [-
dir <new impl directory>] [-copyRef]
[-impl <original impl name>]

Clone an existing implementation.

prj_run_synthesis prj_run_synthesis Run synthesis process.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1121

Radiant Software Project Tcl Command Examples This section
illustrates and describes a few samples of Radiant software Project Tcl
commands.

Example 1 To create a new project, your command may appear something
like the following which shows the creation of a ThunderPlus device.

prj_create -name "m" -impl "m" -dev iCE40UP3K-UWG30ITR

Example 2 To save a project and give it a certain name (save as), use the
project save command as shown below:

prj_save "my_project"

To simply save the current project just use the save function with no values:

prj_save

Example 3 To open an existing project, the command syntax would appear
with the absolute file path on your system as shown in the following example:

prj_open "C:/projects/radiant/adder/my_project.rdf"

prj_run_map prj_run_map Run map process.

prj_run_par prj_run_par Run par process.

prj_run_bitstream prj_run_bitstream Run bitstream process.

prj_create_strategy prj_create_strategy -name <new
strategy name> -file <strategy file
name>

Create a new strategy with default
setting.

prj_remove_strate
gy

prj_remove_strategy <strategy
name>

Deletes an existing strategy.

prj_copy_strategy prj_copy_strategy -from <source
strategy name> -name <new
strategy name> -file <strategy file
name>

Copies an existing strategy and saves it
to a newly created strategy file.

prj_import_strateg
y

prj_import_strategy -name <new
strategy name> -file <strategy file
name>

Import an existing strategy file.

prj_set_strategy prj_set_strategy [-impl
<implementation name>] <strategy
name>

Associate the strategy with the
specified implementation.

prj_list_strategy prj_list_strategy [-strategy
<strategy name>] <pattern>

List value to a strategy item.

prj_set_strategy_v
alue

prj_set_strategy_value [-strategy
<strategy name>] <option
name=option value> ...

Set value to a strategy item.

Table 22: Radiant Software Project Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1122

Example 4 To add a source file, in this case a source LDC file, use the
prj_src add command as shown below and specify the complete file path:

prj_add_source "C:/my_project/radiant/counter/counter.ldc"

Example 5 The following examples below shows the prj_run command
being used:

prj_run_par

In this final example, synthesis is run.

prj_run_synthesis

Example 6 To copy another project strategy that is already established in
another Radiant software project from your console, use the
prj_copy_strategy copy command as shown below and specify the new
strategy name and the strategy file name.

prj_copy_strategy -from source_strategy -name new_strategy -
file strategy.stg

Example 7 The prj_add_source command allows you to set a custom, user-
defined option. This -opt argument value, however, cannot conflict with
existing options already in the system, that is, its identifier must differ from
system commands such as "include" and "lib" for example. In addition, a user-
defined option may not affect the internal flow but can be queried for any
usage in a user's script to arrange their design and sources. All user-defined
options can be written to the Radiant software project RDF file.

In the example below, the -opt argument is used as a qualifier to make a
distinction between to .rvl file test cases.

prj_add_source test1.rvl -opt "debug_case=golden_case"
prj_add_source test2.rvl -opt "debug_case=bad_case"

Example 8 After you modify your strategy settings in the Radiant software
interface the values are saved to the current setting via a Tcl command. For
example, a command similar to the following will be called if Synplify
frequency and area options are changed.

prj_set_strategy_value -strategy strategy1 SYN_Frequency=300
SYN_Area=False

Example 9 To set the top-level module of a project, use the
prj_set_impl_opt command as shown below and specify the implementation
name and module name that will be set as top-level.

prj_set_impl_opt -impl impl1 top count

Simulation Libraries Compilation Tcl
Commands
This section provides Simulation Libraries Compilation extended Tcl
command syntax and usage examples.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1123

Simulation Libraries Compilation Tcl Command Descriptions The
following table provides a listing of all valid Simulation Libraries Compilation
Tcl Command arguments and describes their usage.

Note
Running cmpl_libs may take a long time and may cause the Radiant software to hang.

 It is recommended to run cmpl_libs using the Radiant TCL Console (Start Menu >
Lattice Radiant Software > Accessories > TCL Console).

or,

 Run cmpl_libs.tcl using the command line console. Refer to “Running cmpl_libs.tcl
from the Command Line” on page 1058.

Table 23: Simulation Libraries Compilation Tcl Command
Command Function (Argument) Description

cmpl_libs -sim_path <sim_path>
[-sim_vendor {mentor<default>}]
[-device
{ice40up|LIFCL|all<default>}]
[-target_path <target_path>]

The -sim_path argument specifies the
path to the simulation tool executable
(binary) folder. This option is
mandatory. Currently only Modelsim
and Questa simulators are supported.
NOTE: If you are a Windows user and
prefer the \ notation in the path, you
must surround it with {}. And "" or {} will
be needed if the path has spaces.
NOTE: To execute this command error
free, Questasim 10.4e or a later 10.4
version, or Questasim 10.5b or a later
version should be used for compilation.
The -sim_vendor argument is optional,
and intended for future use. It currently
supports only Mentor Graphics
simulators (Modelsim / Questa).
The -device argument specifies the
Lattice FPGA device to compile
simulation libraries for. This argument is
optional, and the default is to compile
libraries for all the Lattice FPGA
devices.
The -target_path argument specifies
the target path, where you want the
compiled libraries and modelsim.ini file
to be located. This argument is
optional, and the default target path is
the current folder. NOTES: (1) This
argument is recommended if you did
not change the current folder from the
Radiant software startup (binary) folder,
or if the current folder is write-
protected. (2) If you are a Windows
user and prefer the \ notation in the
path, you must surround it with {}. And
"" or {} will be needed if the path has
spaces.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1124

Simulation Libraries Compilation Tcl Command Examples This section
illustrates and describes a few examples of Simulation Libraries Compilation
Tcl command.

Example 1 The following command will compile all the Lattice FPGA
libraries for both Verilog and VHDL simulation, and place them under the
folder specified by -target_path. The path to Modelsim is specified by -
sim_path.

cmpl_libs -sim_path C:/questasim64_10.4e/win64 -target_path c:/
mti_libs

Reveal Inserter Tcl Commands
This section provides Reveal Inserter extended Tcl command syntax,
command options, and usage examples.

Reveal Inserter Tcl Command Descriptions The following table provides
a listing of all valid Reveal Inserter Tcl command options and describes option
functionality.

Table 24: Reveal Inserter Tcl Commands
Command Function (Argument) Description

rvl_new_project rvl_new_project <rvl file> Create a new reveal inserter project.

rvl_open_projec
t

rvl_open_project <rvl file> Open a reveal inserter project file.

rvl_save_projec
t

rvl_save_project <rvl file> Save the current reveal inserter project.

rvl_close_proje
ct

rvl_close_project Close the current reveal inserter project.

rvl_run_project rvl_run_project [-save] [-saveAs
<file>] [-overwrite] [-drc] [-
insert_core <core_name>]

 "Run inserting debug core task or DRC
checking on the current reveal inserter
project

 -save: Save the project before run
command

 -saveAs: Save as a different file before
run command

 -overwrite: Overwrite the existing file if
the saved as to file exists already

 -drc: Run DRC checking only

 -insert_core: Specify the core to be
inserted. All cores will be inserted if
none is specified"

rvl_add_core rvl_add_core <core name> Add a new core in current project.

rvl_del_core rvl_del_core <core name> Remove an existing core from current
project.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1125

rvl_rename_cor
e

rvl_rename_core <core name>
<new core name>

Rename an existing core from current
project.

rvl_set_core rvl_set_core [core name] List the default core or select a core as the
default core in current project.

rvl_list_core rvl_list_core List all cores in current project.

rvl_add_serdes rvl_add_serdes Add the IO EOM core into current project.

rvl_del_serdes rvl_del_serdes Remove the IO EOM core from current
project.

rvl_set_serdes rvl_set_serdes [clk=<clock name>]
[rst=<reset signal, default value is
VLO>]

List or set options of IO EOM core.

rvl_add_controll
er

rvl_add_controller Add the Controller Core into current project.

rvl_del_controll
er

rvl_del_controller Remove the Controller Core from current
project.

rvl_set_controll
er

rvl_set_controller [-item
LED|Switch|Register|PLL1|PLL2|...]
[-set_opt {opt_list}] [-set_sig
{sig_list}]

List or set options of Controller items in
current project

You can set opt_list with the following:

 Insert=[on|off] for all item

 Width=[1..32] for LED and Switch

 AddrWidth=[4..16] for Register

 DataWidth=[4..32] for Register.

sig_list with the following:

 SWn=signal where n=1 to Width for
Switch.

 LEDn=signal where n=1 to Width for
LED.

 Clock=clk_signal for Register.

 Enable=en_signal for Register.

 Wr_Rdn=wr_rdn_signal for Register.

 Address=addr_bus for Register.

 WData=wdata_bus for Register.

 RData=rdata_bus for Register.

rvl_add_trace rvl_add_trace [-core <core name>]
[-insert_at <position>] <signals list>

Add trace signals in a debug core in current
project. You can specify an existing trace
signal/bus name or a postion number in a
trace bus as the inserting position.

rvl_del_trace rvl_del_trace [-core <core name>]
<signals list>

Delete trace signals in a debug core in
current project.

Table 24: Reveal Inserter Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1126

rvl_rename_trac
e

rvl_rename_trace [-core <core
name>] -bus <bus name> <new bus
name>

Change the name of a trace bus in a debug
core in current project.

 rvl_list_trace rvl_list_trace [-core <core name>] List all trace signals in a debug core in
current project.

 rvl_move_trace rvl_move_trace [-core <core
name>] [-move_to <position>]
<signals list>

Move and rearrange the order of trace
signals in a debug core in current project.

You can specify an existing trace signal/bus
name or a postion number in a trace bus as
the new position.

rvl_group_trace rvl_group_trace [-core <core
name>] -bus <bus name> <signals
list>

Group specified trace signals in a debug
core in current project into a bus.

rvl_ungroup_tra
ce

rvl_ungroup_trace [-core <core
name>] <bus name>

Ungroup trace signals in a trace bus in a
debug core in current project.

rvl_set_traceopt
n

rvl_set_traceoptn [-core <core
name>] [option=value]

List or set trace options of a debug core in
current project.

You can set the following option:

SampleClk = [signal name].

rvl_set_trigoptn rvl_set_trigoptn [-core <core
name>] [option=value]

List or set trigger options of a debug core in
current project.

You can set the following option:

DefaultRadix = [bin|oct|dec|hex]

EventCounter = [on|off]

CounterValue = [2,4,8,16,...,65536] (depend
on FinalCounter is on)

TriggerOut = [on|off]

OutNetType = [IO|NET|BOTH] (depend on
TriggerOut is on)

OutNetName = [net name] (depend on
TriggerOut is on)

OutNetPri = [Active_Low|Active_High]
(depend on TriggerOut is on)

OutNetMPW = [pulse number] (depend on
TriggerOut is on).

rvl_list_tu rvl_list_tu [-core <core name>] List all trigger units in a debug core in
current project.

Table 24: Reveal Inserter Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1127

rvl_add_tu rvl_add_tu [-core <core name>] [-
radix <bin|oct|dec|hex>] [-name
<new TU name>] <TU definition>

Add a new trigger unit to a debug core in
current project.

TU definition format: "{signal list} Operator
Value"

Operator must be "==", "!=", ">", ">=", "<",
"<=",

".RE."(rising edge), ".FE."(falling edge) and
".SC."(serial compare).

A default trigger unit name will be created if
it's omitted in command..

rvl_del_tu rvl_del_tu [-core <core name>] <TU
name>

Remove an existing core from current
project.

rvl_rename_tu rvl_rename_tu [-core <core name>]
<old name> <new name>

Rename an existing core in current project.

rvl_set_tu rvl_set_tu [-core <core name>] [-
radix <bin|oct|dec|hex>] -name <TU
name>

 [-add_sig <signal list>]
[-del_sig <signal list>] [-set_sig
<signal list>]

 [-expr <TU definition>]
[-op operator] [-val value]

Set a trigger unit in a debug core in current
project.

TU definition format: "{signal list} Operator
Value"

Operator must be "==", "!=", ">", ">=", "<",
"<=",

".RE."(rising edge), ".FE."(falling edge) and
".SC."(serial compare)..

rvl_list_te rvl_list_te [-core <core name>] List all trigger expressions in a debug core
in current project.

rvl_add_te rvl_add_te [-core <core name>] [-
ram <EBR|Slice>] [-name <new TE
name>]

 [-expression
<expression string>] [-
max_seq_depth <max depth>] [-
max_event_count <max event
count>

Add a new trigger expression to a debug
core in current project.

A default trigger expression name will be
created if it's omitted in command.

rvl_del_te rvl_del_te [-core <core name>] <TE
name>

Delete an existing trigger expression in a
debug core in current project.

rvl_rename_te rvl_rename_te [-core <core name>]
<old name> <new name>

Rename an existing trigger expression in a
debug core in current project.

rvl_set_te rvl_set_te [-core <core name>] [-
ram <EBR|Slice>] [-expression
<expression string>]

 [-max_seq_depth <max
depth>] [-max_event_count <max
event count>] <TE name>

Change an existing trigger expression in a
debug core in current project.

Table 24: Reveal Inserter Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1128

Reveal Inserter Tcl Command Examples This section illustrates and
describes a few samples of Reveal Inserter Tcl commands.

Example 1 To create a new Reveal Inserter project with the .rvl file
extension in your project directory, use the rvl_project command as shown
below using the new option.

rvl_new_project my_project.rvl

Example 2 The following example shows how to set up TU parameters for
Reveal Inserter:

rvl_set_tu -name TU -add_sig {count[7:0]} -op == -val C3 -radix
Hex

rvl_add_controll
er

rvl_add_controller Add the Controller Core into current project.

rvl_del_controll
er

rrvl_del_controller Remove the Controller Core from current
project.

rvl_set_controll
er

rvl_set_controller [-item
LED|Switch|Register|PLL1|PLL2|...]
[-set_opt {opt_list}] [-set_sig
{sig_list}]

 You can set opt_list with the
following:

 Insert=[on|off] for all item

 Width=[1..32] for LED and Switch

 AddrWidth=[4..16] for Register

 DataWidth=[4..32] for Register

 You can set sig_list with the
following:

 SWn=signal where n=1 to Width
for Switch

 LEDn=signal where n=1 to
Width for LED

 Clock=clk_signal for Register

 Enable=en_signal for Register

 Wr_Rdn=wr_rdn_signal for
Register

 Address=addr_bus for Register

 WData=wdata_bus for Register

 RData=rdata_bus for Register

List or set options of Controller items in
current project.

Table 24: Reveal Inserter Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1129

Reveal Analyzer Tcl Commands
This section provides Reveal Analyzer extended Tcl command syntax,
command options, and usage examples.

Reveal Analyzer Tcl Command Descriptions The following table provides
a listing of all valid Reveal Analyzer Tcl command options and describes
option functionality.

Table 25: Reveal Analyzer Tcl Commands
Command Function (Argument) Description

rva_new_projec
t

rva_new_project <file> Create a new Reveal Analyzer project.

rva_open_proje
ct

rva_open_project <file> Open a Reveal Analyzer project file.

rva_save_proje
ct

rva_save_project <file> Save the current Reveal Analyzer project.

rva_close_proje
ct

rva_close_project <file> Close the current Reveal Analyzer project.

rva_export_proj
ect

rva_export_project -vcd <file
name> [-module <title>]

Export VCD file. Optional to include a title in
the VCD file.

By default the title will be “<unknown>”.

rva_export_project -txt <file name>
[-siglist <signal list>]

Export TEXT file. Optional to export
selected signal list only.
By default all signals are exported.

rva_set_project rva_set_project [-frequency <val] [-
period <val>] [-tckdelay <val>] [-
cabletype <val>] [-cableport <val>]

No arguments specified will return options.
-frequency: sets the frequency value for
sample clock in MHz
-period: sets a period value for sample clock
in ns or ps
-tckdelay: sets a TCK clock pin pulse width
delay value
-cabletype: sets the type of cable. Values
are LATTICE|USB|USB2
-cableport: sets the port number as integer
>= 0.

rva_run rva_run Runs until trigger condition to capture data.

rva_stop rva_stop Stops without capturing data.

rva_manualtrig rva_manualtrig Manual Trigger to capture data.

rva_get_trace rva_get_trace Lists all trace signals in a core.

rva_set_core rva_set_core [-name <name>] [-run
<on|off>]

No arguments return list of core.

-name: Select core. Needed for other
actions

-run: Turns run option on/off for core.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1130

rva_set_tu rva_set_tu [-name <name>] [-
operator {== | != | > | >= | < | <= |
"rising edge" | "falling edge"}]
 [-value <value>] [?radix
{bin | oct | dec | hex | <token>}]

No arguments, return list of TU.
-name: Select TU. If no options, return
options and value for the selected TU.
-operator: Sets the comparison operator.
Operators are equal to (==),
 not equal to (!=), greater than (>),
greater than or equal to (>=),
 less than (<), less than or equal to
(<=), "rising edge",
 "falling edge", and serial compare
(serial).
-value: Sets TU value
-radix: Sets TU radix. Options are binary
(bin), octal (oct), decimal (dec),
 hexadecimal (hex), or the name of a
token set.

rva_rename_tu rva_rename_tu <name> <new
name>

This function renames TU.

rva_set_te rva_set_te [-name <name>] [-
expression <expression list>] [-
enable <on|off>]

No arguments, return list of TE.
-name: Select TE. If no options, return
options and value for the selected TE.
-expression: Sets TE expression
-enable: Enables/disables TE.

rva_rename_te rva_rename_te <name> <new
name>

This function renames TE.

rva_set_trigopt
n

rva_set_trigoptn [-teall <AND|OR>]
[-finalcounter <on|off>] [-
finalcountervalue <val>]
 [-samples <val>]
[-numtriggers <val>] [-position
<pre|center|post|val>]

No arguments specified will return list of
options.
-teall: Sets AND ALL or OR ALL for all TEs
-finalcounter: Turns final trigger counter on/
off
-finalcountervalue: Sets final trigger counter
value
-samples: Sets number of samples to
capture
-numtriggers: Sets number of triggers to
capture
-position: Sets trigger position to pre-
selected or user value.

rva_add_token rva_add_token <tokenset name>
<name=value>

Add a token with new name and value in a
specific token set.

rva_del_token rva_del_token <tokenset name>
<token name>

Delete a specific token in a specific token
set.

Table 25: Reveal Analyzer Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1131

rva_set_token rva_set_token <tokenset name>
<token name> -name <new token
name> -value <new token value>

Select specific token in specific token set.
-name: Set token name
-value: Set token value.

rva_add_tokens
et

rva_add_tokenset [-tokenset
<tokenset name>] [-bits <token
bits>] [-token <name=value>]

No arguments, add a token set with default
name and bits.
-tokenset: Set token set name
-bits: Set toke nset bits
-token: Add extra tokens.

rva_del_tokens
et

rva_del_tokenset <tokenset name> Delete the specific token set.

rva_del_tokenset -all Delete all token set.

rva_set_tokens
et

rva_set_tokenset <tokenset
name> -name <new token set
name> -bits <new token bits>

Select specific token set
-name: Rename a token set
-bits: Set number of bits in tokens.

rva_export_toke
nset

rva_export_tokenset <file name> Export all token set to a specific file.

rva_import_toke
nset

rva_import_tokenset <file name> Import and merge all token set from a
specific file.

rva_open_contr
oller

rva_open_controller Open Controller connection to Lattice
device before read/write begins.

rva_target_cont
roller

rva_target_controller Set Controller core as target before read/
write begins.

rva_close_contr
oller

rva_close_controller Close Controller connection to Lattice
device after read/write finished.

rva_read_contr
oller

rva_read_controller -addr
<addr32>

Read data from 32-bit address in hex.

rva_write_contr
oller

rva_write_controller -addr
<addr32> -data <data>

Write data to 32-bit address in hex.

rva_run_control
ler

rva_run_controller -read_led|-
read_switch|-write_switch <data>|-
dump_memfile <mem_file>|-
load_memfile <mem_file>|-read_ip
<ipname>|-write_ip <ipname>

Run command for Virtual LED, Virtual
Switch, User Register, and Hard IP.

-read_led: Read data from Virtual LED.

-read_switch: Read data from Virtual
Switch.

-write_switch: Write data to Virtual Switch.

-dump_memfile: Dump data from User
Register to mem_file.

-load_memfile: Load data from mem_file to
User Register.

-read_ip: Read data from Hard IP register.

-write_ip: Write data to Hard IP register.

Table 25: Reveal Analyzer Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1132

Reveal Analyzer Tcl Command Examples This section illustrates and
describes a few samples of Reveal Analyzer Tcl commands.

Example 1 The following command line example shows how to specify a
new project that uses a parallel cable port.

rva_new_project –rva untitled –rvl "count.rvl" –dev "LFXP2-
5E:0x01299043" –port 888 –cable LATTICE

Example 2 The following example shows how to set up TU parameters for
Reveal Analyzer:

rva_set_tu -name TU1 -operator == -value 10110100 -radix bin

Power Calculator Tcl Commands
This section provides Power Calculator extended Tcl command syntax,
command options, and usage examples.

Power Calculator Tcl Command Descriptions The following table
provides a listing of all valid Power Calculator Tcl command options and
describes option functionality.

rva_set_controll
er

rva_set_controller -option <value> Set the options for Controller core.
-cable_type: Set type of cable as USB or
USB2.
-cable_port: Set logical port of cable as
integer.
If no arguments specified, then return list of
options and values.

rva_export_cont
roller

rva_export_controller <rvc_file> Export Controller options to RVC file.

rva_import_con
troller

rva_import_controller <rvc_file> Import Controller options from RVC file.

Table 25: Reveal Analyzer Tcl Commands
Command Function (Argument) Description

Table 26: Power Calculator Tcl Commands
Command Function (Argument) Description

pwc_new_project pwc_new_project <file> Create a new project.

pwc_open_project pwc_open_project <file> Open a project file.

pwc_save_project pwc_save_project <file> Save the current project.

pwc_close_project pwc_close_project Close the current project.

pwc_set_afpervcd pwc_set_afpervcd <file> Open vcd file and set frequency and
activity factor.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1133

pwc_set_device pwc_set_device -family <family
name>

Set family.

pwc_set_device -device <device
name>

Set device.

pwc_set_device -package
<package name>

Set package.

pwc_set_device -speed <speed
name>

Set speed.

pwc_set_device -operating
<operating name>

Set operating.

pwc_set_device -part <part name> Set part.

pwc_set_processtyp
e

pwc_set_processtype <value> Set device power process type.

pwc_set_ambientte
mp

pwc_set_ambienttemp <value> Set ambient temperature value.

pwc_set_thetaja pwc_set_thetaja <value> Set user defined theta JA.

pwc_set_freq pwc_set_freq <frequency> Set default frequency.

pwc_set_freq -clock <frequency> Set Clock frequency.

pwc_set_freq -timing <option>
option: min | pref | trace

Set frequency by timing.

pwc_set_af pwc_set_af <value> Set default activity factor.

pwc_set_estimation pwc_set_estimation <value> Sets estimated routing option.

pwc_set_supply pwc_set_supply -type <value> -
voltage <value> -dpm <value>

Set multiplication factor and voltage of
named power supply.

pwc_add_ipblock pwc_add_ipblock -iptype <iptype
name>

Add IP Block row.

pwc_set_ipblock pwc_set_ipblock -iptype <iptype
name> -matchkeys {<key1>
<value1>}+ -setkey <key> <value>
 : iptypename
mapping to PGT section, key
mapping to _KEY in pgt session,
value is its value

Set IP Block row.

pwc_remove_ipbloc
k

pwc_remove_ipblock -iptype
<iptype name> -matchkeys {<key1>
<value1>}+

Remove IP Block row.

pwc_gen_report pwc_gen_report <file> Generate text report and write to file.

pwc_gen_htmlreport pwc_gen_htmlreport <file> Generate HTML report and write to file.

Table 26: Power Calculator Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1134

Power Calculator Tcl Command Examples This section illustrates and
describes a few samples of Power Calculator Tcl commands.

Example 1 The follow command below creates a PWC project (.pcf) file
namced “abc.pcf” from an input UDB file named “abc.UDB”:

pwc_new_project abc.pcf -udb abc.udb

Example 2 To set the default frequency to, for example, 100 Mhz:

pwc_set_freq 100

Example 3 The command below saves the current project to a new name:

pwc_save_project newname.pcf

Example 4 To create an HTML report, you would run a command like the
one shown below:

pwc_gen_htmlreport c:/abc.html

Programmer Tcl Commands
This section provides the Programmer extended Tcl command syntax,
command options, and usage examples. The below commands are only
supported in standalone Programmer currently.

Programmer Tcl Command Descriptions The following table provides a
listing of all valid Programmer Tcl command options and describes option
functionality.

Table 27: Programmer Tcl Commands
Command Function (Argument) Description

pgr_project pgr_project open <project_file> The open command will open the
specified project file in-memory.

pgr_project save [<file_path>] Writes the current project to the
specified path. If there is no file path
specified then it will overwrite the
original file.

pgr_project close Closes the current project. If a
Programmer GUI is open with the
associated project, then the
corresponding Programmer GUI will be
closed as well.

pgr_project help Displays help for the pgr_project
command.

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1135

Programmer Tcl Command Examples This section illustrates and
describes a few samples of Programmer Tcl commands.

pgr_program <no_argument> When pgr_program is run without
arguments it will display the current
status of the available settings. Note
that specifying a key without a value will
display the current value. The following
keys can be used to modify those
settings.

Generally, the pgr_program command
and its sub-commands allow you to run
the equivalent process commands from
the TCL Console window in the Radiant
software interface. These commands
can override connection options that
are set in user defaults.

pgr_program set -cable <LATTICE
| USB | USB2>

Sets the cable for downloading.

pgr_program set -portaddress
<0x0378|0x0278|0x03bc|0x0378|0x
0278|0x03bc|0x<custom address>>

<EzUSB-0|EzUSB-1|EzUSB-
2|...|EzUSB-15>

<FTUSB-0|FTUSB-1|FTUSB-
2|...|FTUSB-15>

Sets the port address for the
downloading.

pgr_program run Executes the current xcf with the
current settings. Note that there may be
warnings that are displayed in the TCL
Console window. These warnings will
be ignored and processing will
continue.

pgr_program help Displays help for pgr_program
command.

pgr_genfile <no_argument> Programmer generate files command
(not supported for customer use)

pgr_genfile set -process <svf |
vme12>

Sets file type for file generation.

pgr_genfile set -outfile <file path> Sets the output file.

pgr_genfile run Generates file based on the current xcf
and current settings.

pgr_genfile help Displays help for pgr_genfile command.

Table 27: Programmer Tcl Commands
Command Function (Argument) Description

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1136

Example 1 The first command below opens a Programmer XCF project file
that exists in the system. There can be many programming files associated
with one project. In the GUI interface, the boldfaced file in the Radiant
software is the active project file.>

pgr_project open /home/mdm/config_file/myfile.xcf

Example 2 The following command sets programming option using a USB2
cable at port address “FTUSB-1, then using pgr_program run to program”.

pgr_program set -cable USB2 -portaddress FTUSB-1

Example 3 The following command sets the file generation type for JTAG
SVF file, then using pgr_genfile run to generates an output file “mygenfile.svf”
in a relative path.

pgr_genfile set -process svf -outfile ../genfiles/mygenfile.svf

Engineering Change Order Tcl
Commands
This section provides Engineering Change Order (ECO) extended Tcl
command syntax, command options, and usage examples.

ECO Tcl Command Descriptions The following table provides a listing of
all valid ECO Tcl command options and describes option functionality.

ECO Tcl Command Examples This section illustrates and describes a few
samples of ECO Tcl commands.

Example 1 The following demonstrates the sysio command:

Table 28: ECO Tcl Commands
Command Function (Argument) Description

eco_save_design eco_save_design [-udb <udb_file>] Saves an existing design or macro.

eco_config_sysio eco_config_sysio -comp <comp
name> {<key=value>}...

Config sysio setting.

eco_config_memor
y

eco_config_memory -mem_id
<memory_id> {-init_file <mem_file> -
format HEX|BIN|ADDR} | -all_0 | -
all_1

Update memory initial value.

eco_config_sysio -comp {data}
{clamp=OFF;diffdrive=NA;diffresistor=OFF;drive=2;glitchfilter=
OFF;hysteresis=NA;opendrain=OFF;pullmode=NONE;slewrate=SLOW;te
rmination=OFF;vref=OFF}

TCL COMMAND REFERENCE GUIDE : Radiant Software Tool Tcl Command Syntax

Lattice Radiant Software 3.2 Help 1137

Example 2 The following demonstrates the memory command:

eco_config_mem -mem_id {mem} -init_file {D:/mem/init_hex.mem}
-format HEX

Lattice Radiant Software 3.2 Help 1138

Revision History

The following table gives the revision history for this document.

Date Version Description

06/23/2022 3.2 Updates for Radiant 3.2 software.

05/23/2022 3.1.1
MachX
O5-NX
Device
Update

Updates for RLattice Radiant 3.1.1 MachXO5-NX Device
Update.

03/17/2022 3.1.1 Updates for Radiant 3.1.1 software.

12/13/2021 3.1 Updates for Radiant 3.1 software.

06/14/2021 3.0 Updates for Radiant 3.0 software.

03/31/2021 2.2.1 Updates for Radiant 2.2.1 software.

11/05/2020 2.2 Updates for Radiant 2.2 software.

06/12/2020 2.1 Updates for Radiant 2.1 software.

02/25/2020 2.0 SP1 Updates for Radiant 2.0 SP1 software.

12/04/2019 2.0 Updates for Radiant 2.0 software.

03/29/2019 1.1 Updates for Radiant 1.1 software.

02/13/2018 1.0 Initial Release.

