
Copyright © December 2012 Lattice Semiconductor Corporation.

LatticeMico Timer

The LatticeMico timer is a highly configurable countdown timer with a
WISHBONE-compliant slave interface compatible with the LatticeMico32
microprocessor and LatticeMico8 microcontroller.

Version
This document describes the 3.1 version of the LatticeMico timer.

Features

The LatticeMico timer includes the following features:

 WISHBONE B.3 interface

 RTL-configurable period-counter width up to 32 bits

 RTL-configurable period-counter access modes (read and write)

 RTL-configurable start and stop controls for software-controlled start and
stop

 Maskable interrupt generation on countdown reaching zero

 Software programmable single-shot and continous countdown modes of
operation

For additional details about the WISHBONE bus, refer to the LatticeMico32
Processor Reference Manual or LatticeMico8 Processor Reference Manual.

Functional Description

2 LatticeMico Timer

Functional Description
The LatticeMico timer uses the WISHBONE clock to drive its counter. The
timer is implemented using a count-down register and can be programmed to
generate an interrupt request when the count reaches zero. The timer is
shown in Figure 1.

Details on each of these registers are given in “Register Definitions” on
page 5.

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico timer.

Figure 1: LatticeMico Timer

Internal counter

Control logic

Status register

Control register

Period register

Snapshot register

WB slave
port

S_INT_O

CLK_I RST_I

Configuration

LatticeMico Timer 3

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico
timer through the Mico System Builder (MSB) interface.

1 A tick is a clock cycle.

Table 1: Timer UI Parameters

Dialog Box Option Description Allowable Values Default
Values

Instance Name Specifies the name of the timer instance. Alphanumeric and
underscores

timer

Base Address Specifies the base address for configuring the timer
device. The minimum boundary alignment is 0X80.

0X00000000–
0XFFFFFFFF

0X00000000

Options

Writeable Tick Count1 Determines whether the period register is writable. 1 – true

0 – false

1

Readable Tick Count Determines whether the snapshot register is
readable.

1 – true

0 – false

1

Start Stop Control Determines whether the START and STOP bits are
controllable.

1 – true

0 – false

1

Settings

Default Reload Ticks Specifies the initial countdown value. The period
number is the reload value used to initialize the
counter. The value should be in the range that can be
represented by the period width.

0X00000000–
0XFFFFFFFF

20 (0X14)

Counter Width Controls the period register and internal counter's
width. The period width is the width of the adder-
subtractor used to implement the counter.

1-32 32

Wishbone Configuration

WISHBONE Data Bus
Width

Specifies the WISHBONE data bus width in bits 8, 32 32

Configuration

4 LatticeMico Timer

HDL Parameters
Table 2 lists the parameters that appear in the HDL.

I/O Ports
Table 3 describes the input and output ports of the LatticeMico timer.

Table 2: Timer HDL Parameters

Parameter Name Description Allowable Values

BASE_ADDRESS Specifies the base address for configuring the timer device. 0X00000000–
0XFFFFFFFF

WRITEABLE_PERIOD Determines whether the period register is writable. 1 (true), 0 (false)

READABLE_SNAPSHOT Determines whether the snapshot register is readable. 1 (true), 0 (false)

START_STOP_CONTROL Determines whether the start and stop bits are controllable. 1 (true), 0 (false)

PERIOD_NUM Specifies the initial countdown value, in decimal. The period
number is the reload value used to initialize the counter. The
value should be in the range that can be represented by the
period width.

0X00000000–
0XFFFFFFFF

PERIOD_WIDTH Controls the period register and internal counter's width. The
period width is the width of the adder-subtractor used to
implement the counter.

1-32

WB_ADR_WIDTH Defines the width of WISHBONE Address Bus. 8, 32

WB_DAT_WIDTH Defines the width of WISHBONE Data Bus. 8, 32

Table 3: Timer I/O Ports

I/O Port Active Direction Initial State Description

System Clock and Reset

CLK_I HIGH X Input clock signal

RST_I HIGH X Reset signal

WISHBONE Slave Interface

S_ADR_I XX X Slave address bus

S_DAT_I XX X Slave data input bus

S_WE_I HIGH X Slave write enable signal

S_STB_I HIGH X Slave strobe signal

Register Definitions

LatticeMico Timer 5

User Impact of Initial State
On power-up or reset, the timer stops, the period counter is loaded with the
Default Reload Ticks value, and the interrupt is disabled.

Register Definitions
The LatticeMico timer includes the registers shown in Table 4.

S_CYC_I HIGH X Slave cycle signal

S_CTI_I HIGH X Slave cycle type indicator

S_BTE_I HIGH X Slave burst type

S_LOCK_I HIGH X Slave bus locked

S_SEL_I HIGH X Slave select signal

S_DAT_O XX 0 Slave output data bus

S_ACK_O HIGH 0 Slave acknowledge signal

S_RTY_O HIGH 0 Slave retry

S_ERR_O HIGH 0 Slave error

Other Auto-Connected Internal Signals

S_INT_O HIGH 0 Slave interrupt signal to master (CPU)

Table 3: Timer I/O Ports

I/O Port Active Direction Initial State Description

Table 4: Register Map

Register Name Offset 31-4 3 2 1 0

Status 0x00 Reserved RUN TO

Control 0x04 Reserved STOP START CONT ITO

Period 0x08 Period register

Snapshot 0x0c Snapshot register

Note

Offsets in the register table must be listed in C hexadecimal and use a minimum of two
hexadecimal digits with zero padding.

Register Definitions

6 LatticeMico Timer

Table 5 through Table 8 provide details about each register in the LatticeMico
timer.

Table 5: Status Register Bit Definition

Register
Name

Bit Default Access Mode Description

TO 0 0 Read/write When the internal counter reaches zero, the timeout (TO) bit is
set to 1. After it has been set, the TO bit remains set until it is
cleared by a master component. You can clear the TO bit by
writing zero to the status register.

RUN 1 0 Read only When the internal counter is running, the RUN bit is read as 1.
When the internal counter is not running, it is read as 0. A write
operation to the status register does not change the RUN bit.

Reserved 31:2 0 Read/write Reserved

Table 6: Control Register Bit Definition

Register Name Bit Default Access Mode Description

ITO 0 0 Read/write Specifies the interrupt enable signal. It is active high. The
default is 0. Write 1 to enable interrupt requests and 0 to disable
them.

CONT 1 0 Read/write The continuous (CONT) bit determines how the internal counter
behaves when it reaches zero. If the CONT bit is 1, the counter
will keep running until it is stopped by the STOP bit. If the CONT
bit is 0, the counter will stop when it reaches zero. When it
reaches zero, the counter reloads with the 32-bit value stored in
the period register, regardless of the CONT bit. When
START_STOP_CONTROL is turned off, the timer keeps running
and is not affected by the value of this bit.

START 2 0 Read/write The START bit enables the counter when a write operation is
performed. Writing a 1 to the START bit causes the internal
counter to begin counting down. If the timer is stopped before
reaching zero, writing a 1 to the START bit will cause the timer
to restart counting from the number currently held in its counter.
If the timer is already running, writing a value to START will have
no effect.

STOP 3 0 Read/write The STOP bit disables the counter when a write operation is
performed. Writing a 1 to the STOP bit causes the internal
counter to stop. The STOP bit has no effect if the timer is
already stopped, if a 0 is written to the STOP bit, or if the timer
hardware has been configured with the
START_STOP_CONTROL bit option turned off. An undefined
result is produced when a 1 is written to both the START and
STOP bits simultaneously.

Reserved 4:31 0 Read/write Reserved

Register Definitions

LatticeMico Timer 7

When START_STOP_CONTROL is turned on, writing the period register
updates the internal counter, and the countdown continues. If the
START_STOP_CONTROL option is turned off, writing the period register
does not affect the internal counter. When the hardware is configured with the
WRITEABLE_PERIOD option disabled, writing the period register causes the
counter to reset to the fixed PERIOD_NUM value.

The structure shown in Figure 2 depicts the register map layout for the timer
component. The elements are self-explanatory and are based on the register
map shown in Table 4. This structure, which is defined in the MicoTimer.h
header file, enables you to directly access the timer registers, if desired. It is
used internally by the device driver for manipulating the timer.

Table 7: Period Register (0x08)(W/R)

Register Name Description

Period [period_width-1:0] Controls the period register and the width of the internal counter. The
period width is the width of the adder-subtractor used to implement the
counter.

The internal counter is loaded with the period_width-bit value stored in
the period register whenever a write operation to the period register
occurs or the internal counter reaches zero.

Table 8: Snapshot Register (0x0c)(R)

Register Name Description

Snapshot [period_width-1:0] Specifies the snapshot value of the internal counter.

The internal counter is loaded with the period_width-bit value stored in
the period register whenever a write operation to the period register
occurs or the internal counter reaches zero.

Note

A WISHBONE master port can request a snapshot of the current period_width-bit
internal counter by performing a master read operation to the snapshot registers.
Requesting a snapshot does not change the internal counter’s operation.

Figure 2: Timer Register Map Structure

/* mico-timer register structure */
typedef struct st_MicoTimer{

volatile unsigned int Status;
volatile unsigned int Control;
volatile unsigned int Period;
volatile unsigned int Snapshot;

}MicoTimer_t;

Timing Diagrams

8 LatticeMico Timer

Interrupt Behavior
When the internal counter reaches zero and the counter stops, the ITO bit of
the control register is set to 1 and the timer generates an interrupt request.
One of the following methods can be used to acknowledge the interrupt
request:

 Clear the TO bit of the status register.

 Clear the ITO bit of the control register to disable the interrupt.

The timer keeps the IRQ asserted, even if the counter keeps counting down,
until the interrupt is acknowledged by writing a 0 to the status register or until
the interrupt is masked by writing a 0 to the ITO bit of the control register.

Timing Diagrams
The timing diagrams featured in Figure 3 and Figure 4 show the timing of the
timer’s WISHBONE and external signals.

Figure 3 shows how the timer’s master ports update the data in the internal
register.

Figure 3: Write Internal Register

EBR Resource Utilization

LatticeMico Timer 9

Figure 4 shows how the timer’s master ports read the data in the internal
register.

Figure 5 shows that the interrupt goes high when the timer hits 0.

EBR Resource Utilization
The LatticeMico timer uses no EBRs.

LatticeMico32 Microprocessor Software Support
This section describes the software support provided for the LatticeMico
timer. After discussing the usage model for the timer, it describes the timer
device driver that directly interacts with a timer instance, then goes on to

Figure 4: Read Internal Register

Figure 5: When Interrupt Occurs

LatticeMico32 Microprocessor Software Support

10 LatticeMico Timer

describe the timer services that manage multiple timer instances and any
related collective service. Code examples are provided at the end of this
section that show the typical usage of the software.

The supporting routines are meant for use in a single-threaded environment.
If they are used in a multi-tasking environment, you must provide re-entrance
protection.

Usage Model
The LatticeMico timer is a countdown timer. When you activate it by writing to
the control register, it starts with the period count value and counts down to
zero. You can operate it in continuous mode so that when it reaches zero, the
period count is reloaded and the countdown continues. Alternatively, you can
operate it in a single-shot mode so that when it reaches zero, it stops
automatically. In either mode of operation, you can explicitly stop the timer
countdown by writing an appropriate value to the control register. You can
reload the period count at run time if it is configured for write access as part of
the timer RTL configuration. You can read the countdown value as the timer
counts down if the period count is configured for read access as part of the
timer RTL configuration.

The actual usage of the timer depends on the end application. Some typical
usage scenarios are the following:

 Operating the timer in a continuous mode to generate periodic timer
interrupt requests for performing periodic software activities such as
generating a system tick for an operating system

 Operating the timer in a single-shot mode and using the start and stop
control in conjunction with the ability to read the countdown value for
performing timing measurements

Device Driver
The timer device driver directly interacts with a timer instance. This section
describes the type definitions for the timer device context structure.

This structure, shown in Figure 6, contains timer component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the timer component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

LatticeMico32 Microprocessor Software Support

LatticeMico Timer 11

Table 9 describes the parameters of the timer device context structure shown
in Figure 6.

Functions
This section describes the implemented device-driver-specific functions.

MicoTimerInit Function
void MicoTimerInit(MicoTimerCtx_t *ctx)

Figure 6: Timer Device Context Structure

typedef struct st_MicoTimerCtx_t {
const char* name;
unsigned int base;
unsigned int intrLevel;
DeviceReg_t lookupReg;
void * userCtx;
void * callback;
void * prev;
void * next;
} MicoTimerCtx_t;

Table 9: Timer Device Context Structure Parameters

Parameter Type Description

name const char * Is a pointer to the timer instance name

base unsigned int Specifies the base address of the timer
instance

intrLevel unsigned int Is the CPU interrupt to which the timer
instance’s interrupt line is connected

lookupReg DeviceReg_t Used by the device driver to register the timer
component instance with the LatticeMico32
lookup service. Refer to the LatticeMico32
Software Developer User Guide for a
description of the DeviceReg_t data type.

userCtx void * Used by the device driver to store the data
pointer that you provided when starting the
timer. The data pointer is provided as a
argument to the callback function.

callback void * Used by the device driver to store the user-
provided timer callback function pointer.

prev void * Used by the device driver service to keep track
of registered timer instances

next void * Used by the device driver service to keep track
of registered timer instances

LatticeMico32 Microprocessor Software Support

12 LatticeMico Timer

This function initializes a timer instance. It is called as part of the platform
initialization for managed builds for each instance of the timer. It sets the timer
in a known stopped state for future use and registers this timer for device
lookup service.

Table 10 describes the parameter in the MicoTimerInit function syntax.

MicoTimerStart Function
mico_status MicoTimerStart(MicoTimerCtx_t *ctx, TimerCallback_t
callback, void *priv,unsigned int timerCount,int periodic)

This function programs a timer for countdown, using the parameters that you
supply. Because the timer callback routine is activated as part of the timer
interrupt service routine (ISR), the interrupt requests are disabled. You must
not enable interrupt requests as part of the callback routine, and you must
keep the processing to a minimum to avoid large interrupt latencies. The timer
ISR, which is invisible to you, acknowledges the timer interrupt.

Table 11 describes the parameters in the MicoTimerStart function syntax.

Table 10: MicoTimerInit Function Parameter

Parameter Description Notes

MicoTimerCtx_t * Pointer to a timer context For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Table 11: MicoTimerStart Function Parameters

Parameter Description Notes

MicoTimerCtx_t * Pointer to a timer context Pointer to the desired timer
instance’s context
information

TimerCallback_t Pointer to the user-provided
timer callback function with
the following prototype:

typedef
void(*TimerCallback_t)
(void *);

The timer callback routine
is called by the ISR timer
when the timer count
expires and generates an
an interrupt request.

void * Pointer to user-supplied data Pointer provided as an
argument in the timer
callback routine

LatticeMico32 Microprocessor Software Support

LatticeMico Timer 13

Table 12 shows the values returned by the MicoTimerStart function.

MicoTimerStop Function
mico_status MicoTimerStop(MicoTimerCtx_t *ctx)

This function stops a timer. It is possible for the timer to expire while this
routine is being processed, triggering the ISR.

Table 13 describes the parameter in the MicoTimerStop function syntax.

Table 14 shows the values returned by the MicoTimerStop function.

unsigned int Timer count Used for programming the
timer count. You must
ensure that the value
specified corresponds to
the appropriate timer count
bit width.

int Periodicity If set to non-zero, the timer
is programmed to run
continuously. Otherwise,
the timer is set to run once.

Table 12: Values Returned by MicoTimerStart Function

Return Value Description

MICO_STATUS_E_INVALID_PARAM Returned if:

 Context is null

 Callback is null

 Timer count is zero

0 Success

Table 13: MicoTimerStop Function Parameter

Parameter Description

MicoTimerCtx_t * Pointer to a timer context

Table 14: Values Returned by MicoTimerStop

Return Value Description

MICO_STATUS_E_INVALID_PARAM Returned if the pointer is null.

0 Success

Table 11: MicoTimerStart Function Parameters (Continued)

Parameter Description Notes (Continued)

LatticeMico32 Microprocessor Software Support

14 LatticeMico Timer

MicoTimerSnapshot Function
unsigned int MicoTimerSnapshot(MicoTimerCtx_t *ctx)

This function reads the timer snapshot register.

Table 15 describes the parameter in the MicoTimerSnapshot function syntax.

Table 16 shows the value returned by the MicoTimerSnapshot function.

Services
The timer device driver registers timer instances with the LatticeMico32
lookup service by using their instance names for device names and
“TimerDevice” as the device type.

For information on the LatticeMico32 lookup service, refer to the
LatticeMico32 Software Developer User's Guide.

Timer services also implement system-specific timer functionality. This
section describes the type definitions, structures, and functions of the timer
services.

Type Definitions and Structures
This section explains the timer services type definitions for the LatticeMico
timer component.

System Timer Callback Type
typedef void (* MicoSystTimerActivity_t) (void *);

This structure declares the type of system timer callback routine required
when you register a system tick activity.

Table 15: MicoTimerSnapshot Function Parameter

Parameter Description Notes

MicoTimerCtx_t * Pointer to valid timer
context structure

The timer operates in
countdown mode, so the
returned value must be
subtracted from the initial count
to extract the elapsed count.

Table 16: Value Returned by MicoTimerSnapshot Function

Return Value Description

unsigned int Timer snapshot value

LatticeMico32 Microprocessor Software Support

LatticeMico Timer 15

Functions
This section describes the application programming interface (API) of the
timer service function.

MicoTimerServicesInit Function
void MicoTimerServicesInit(void)

This function initializes timer services and is called internally when a timer
instance is registered. You are not expected to call this routine.

RegisterSystemTimer Function
MicoTimerCtx_t* RegisterSystemTimer(MicoTimerCtx_t *, unsigned
int)

This function enables registering a timer instance as the system timer. There
can be only one system timer. When a system timer is registered, it cannot be
unregistered.

Table 17 shows the parameters in the MicoTimerCtx_t* RegisterSystemTimer
function syntax.

Table 18 shows the value returned by the MicoTimerCtx_t*
RegisterSystemTimer function.

MicoGetCPUTicks Function
void MicoGetCPUTicks(unsigned long long int *ticks)

This function returns the elapsed CPU ticks (not system ticks) as a 64-bit
value, beginning from the registration of a system timer. If no system timer is
registered, it returns 0. This process is described in detail in the LatticeMico32
Software Developer User Guide.

Table 17: MicoTimerCtx_t* RegisterSystemTimer Function Parameters

Parameter Description

MicoTimerCtx_t * Pointer to a valid timer instance context structure

unsigned int Time between system ticks, in milliseconds

Table 18: Value Returned by MicoTimerCtx_t* RegisterSystemTimer
Function

Return Value Description

MicoTimerCtx_t * Pointer to the current system timer’s context
information. If none exists, the value is 0.

LatticeMico32 Microprocessor Software Support

16 LatticeMico Timer

Table 19 describes the parameter in the MicoGetCPUTicks function syntax.

MicoRegisterActivity Function
void MicoRegisterActivity(MicoSysTimerActivity_t activity, void
*ctx)

This function allows the registration of a function that is activated on each
system tick. It is activated through a timer ISR, so it runs at interrupt level.
Interrupt requests must not be enabled within this activity function. There can
be only one system timer activity function.

Table 20 describes the parameters in the MicoRegisterActivity function
syntax.

Software Usage Examples
This section provides two examples of typical LatticeMico timer software
usage.

The example code in Figure 7 demonstrates the following timer driver usage:

 Starting the timer, including registering a callback routine

 Stopping the timer

 Reading the snapshot timer value

Table 19: MicoGetCPUTicks Function Parameter

Parameter Description

unsigned long long int* Pointer to a 64-bit value that contains the
elapsed CPU ticks

Table 20: MicoRegisterActivity Function Parameters

Parameter Description Notes

MicoSysTimerActivity * Pointer to a system timer
activity function

void * Pointer to user-specific
data

Pointer passed as an
argument in the system
timer activity function

Figure 7: Directly Accessing the Timer

void TimerInterrupt(void *ctx)
{

return;
}

LatticeMico32 Microprocessor Software Support

LatticeMico Timer 17

The example code in Figure 8 demonstrates the following timer services
usage:

 Registering a timer instance as the system timer

 Fetching CPU ticks elapsed since registration

main(){

MicoTimerCtx_t *pTestTimer;
 Const char *TEST_TIMER = “timer”;

unsigned int ElapsedTicks;

/* fetch timer-context by name. */
pTestTimer = (MicoTimerCtx_t *)MicoGetDevice(TEST_TIMER);

/* if the device could not be found, don't perform the tests
*/

if(pTestTimer == (MicoTimerCtx_t *)0){
printf("failed to find timer: %s\n", TEST_TIMER);

}

/* Start the timer for a value of 2 seconds */
MicoTimerStart(pTestTimer, TimerInterrupt, NULL,

MILLISECONDS_TO_TICKS(2000), 1);

/* wait for 1 second through s/w loop */
MicoSleepMilliSecs(1000);

/* read timer-count snapshot */
 ElapsedTicks = MILLISECONDS_TO_TICKS(2000) -
MicoTimerSnapshot(pTestTimer);

/* stop timer */
MicoTimerStop(pTestTimer);

}

Figure 8: Using the System Timer

Const char *TEST_TIMER = “timer”;
unsigned int ElapsedTicks;

/* fetch timer-context by name. */
pTestTimer = (MicoTimerCtx_t *)MicoGetDevice(TEST_TIMER);

Figure 7: Directly Accessing the Timer

LatticeMico8 Microcontroller Software Support

18 LatticeMico Timer

LatticeMico8 Microcontroller Software Support

This section describes the software support provided for the LatticeMico
Timer component, its relationship with the LatticeMico8 microcontroller, the
device driver, and services. It also provides software usage examples.

/* if the device could not be found, don't perform the tests
*/

if(pTestTimer == (MicoTimerCtx_t *)0){
printf("failed to find timer: %s\n", TEST_TIMER);

}

/* Start the timer for a value of 2 seconds */
MicoTimerStart(pTestTimer, TimerInterrupt, NULL,

MILLISECONDS_TO_TICKS(2000), 1);

/* wait for 1 second through s/w loop */
MicoSleepMilliSecs(1000);

/* read timer-count snapshot */
ElapsedTicks = MicoTimerSnapshot(pTestTimer);

/* stop timer */
MicoTimerStop(pTestTimer);

}
const char *const TEST_TIMER = "timer";
#define SYSTEM_TIMER_TIME_TO_WAIT_MS (5)
unsigned long long int begin;
unsigned long long int end;

/* fetch timer-context by name. */
pTestTimer = (MicoTimerCtx_t *)MicoGetDevice(TEST_TIMER);

/* if the device could not be found, don't perform the tests
*/

if(pTestTimer == (MicoTimerCtx_t *)0){
printf("failed to find timer: %s\n", TEST_TIMER);
while(1){};

}

end = begin;
RegisterSystemTimer(pTestTimer, 2000);
MicoGetCPUTicks(&begin);
MicoSleepMilliSecs(SYSTEM_TIMER_TIME_TO_WAIT_MS);
MicoGetCPUTicks(&end);
end = end - begin;

Figure 8: Using the System Timer (Continued) (Continued)

LatticeMico8 Microcontroller Software Support

LatticeMico Timer 19

The support routines for the Timer component are for use in a single-threaded
environment. If used in a multi-tasking environment, re-entrance protections
must be provided.

Device Driver

This section describes the type definitions for instance-specific structures and
the Timer device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the Timer in the platform. These instances are defined in DDStructs.c. The
information for these instance-specific structures is filled in by the managed
build process, which extracts Timer component-specific information from the
platform definition file. The members should not be manipulated directly
because the structure is used exclusively by the device driver.

Timer Device Context Structure

This structure, shown in Figure 9, contains Timer component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the Timer component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Figure 9 shows the GPIO device context structure. Table 21 describes the
parameters of the GPIO device context structure shown in Figure 9.

.

Figure 9: Timer Device Context Structure

typedef struct st_MicoTimerCtx_t {
 const char* name;
 size_t base;
 unsigned char intrLevel;
 unsigned char period_width;
} MicoTimerCtx_t;

Table 21: Timer Device Context Structure Parameters

Parameter Type Description

name const char * A pointer to the timer instance name.

base size_t Specifies the base address of the timer

LatticeMico8 Microcontroller Software Support

20 LatticeMico Timer

Functions

This section describes the implemented device-driver-specific functions.

MicoTimerInit Function
void MicoTimerInit(MicoTimerCtx_t *ctx)

This function initializes a timer instance. It is called as part of the platform
initialization for managed builds for each instance of the timer. It sets the timer
in a known stopped state for future use and registers this timer for device
lookup service.

Table 22 describes the parameter in the MicoTimerInit function syntax.

MicoTimerStart Function
char MicoTimerStart(MicoTimerCtx_t *ctx, unsigned char
periodic, unsigned long timerCount)

This function programs a timer for countdown, using the parameters that you
supply. It starts the MICO count-down timer with timerCount as the initial
value. User MUSTmake sure that timerCount is within the counter range.

intrLevel unsigned char The CPU interrupt to which the timer instance
interrupt line is connected.

period_width unsigned char Specifies the internal counter of the timer.

Table 22: MicoTimerInit Function Parameter

Parameter Description Note

MicoTimerCtx_t
*

Pointer to a timer
context.

For a managed build, the structure referenced
is located in the DDStructs.c file.

Table 21: Timer Device Context Structure Parameters

Parameter Type Description

LatticeMico8 Microcontroller Software Support

LatticeMico Timer 21

Table 23 describes the parameters in the MicoTimerStart function syntax.

Table 24 shows the values returned by the MicoTimerStart function.

MicoTimerStop Function
char MicoTimerStop(MicoTimerCtx_t *ctx)

This function stops a timer and reset interrupt.

Table 25 describes the parameter in the MicoTimerStop function syntax.

Table 26 shows the values returned by the MicoTimerStop function.

MicoTimerSnapshot Function
unsigned int MicoTimerSnapshot(MicoTimerCtx_t *ctx)

Table 23: MicoTimerStart Function Parameters

Parameter Description Notes

MicoTimerCtx_t * Pointer to a timer
context

Pointer to the desired timer instance's
context information

int Timer count Used for programming the timer count. You
must ensure that the value specified
corresponds to the appropriate timer count
bit width.

unsigned int Periodic If set to non-zero, the timer is programmed
to run continuously. Otherwise, the timer is
set to run once.

Table 24: Values Returned by MicoTimerStart Function

Return Value Description

0 Successful starts

-1 Invalid timerCount

Table 25: MicoTimerStop Function Parameter

Parameter Description

MicoTimerCtx_t * Pointer to a timer context

Table 26: Values Returned by MicoTimerStop

Return Value Description

0 Success

LatticeMico8 Microcontroller Software Support

22 LatticeMico Timer

This function reads the timer snapshot register.

Table 27 describes the parameter in the MicoTimerSnapshot function syntax.

Table 28 shows the value returned by the MicoTimerSnapshot function.

Table 27: MicoTimerSnapshot Function Parameter

Parameter Description Notes

MicoTimerCtx_t * Pointer to valid timer
context structure

The timer operates in countdown mode,
so the returned value must be subtracted
from the initial count to extract the
elapsed count.

Table 28: Value Returned by MicoTimerSnapshot Function

Return Value Description

unsigned int Timer snapshot value

LatticeMico8 Microcontroller Software Support

LatticeMico Timer 23

.

Revision History
Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Version number change only. No RTL code change.

3.0 (7.0 SP2) Updated document with new corporate logo.

3.1 Added support for LatticeMico8-based designs in
addition to LatticeMico32-based designs.

 Added LatticeMico8 device drivers in addition to
LatticeMico32 device drivers.

 Timer can be used in designs that do not include a
processor.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

LatticeMico8 Microcontroller Software Support

24 LatticeMico Timer

	LatticeMico Timer
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Definitions
	Interrupt Behavior

	Timing Diagrams
	EBR Resource Utilization
	LatticeMico32 Microprocessor Software Support
	Usage Model
	Device Driver
	Functions
	Services
	Type Definitions and Structures
	Functions
	Software Usage Examples

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Functions

