
Copyright © June 2012 Lattice Semiconductor Corporation.

LatticeMico DMA Controller

The LatticeMico DMA controller is a direct memory access controller that
provides a master read port, a master write port, and one slave port to control
data transmission.

Version
This document describes the 3.3 version of the LatticeMico DMA controller.

Features
The LatticeMico DMA controller includes the following features:

 WISHBONE B.3 interface

 WISHBONE Slave Interface to configure the DMA

 Two WISHBONE Master Interfaces: one to perform reads and the
second to perform writes

 WISHBONE data bus width of the WISHBONE slave and master
interfaces can be individually configured to be 8 or 32 bits wide.

 An interrupt port (INT_O) to indicate completion of a DMA transfer
(successful or not)

 Constant or incrementing address for the source and destination in a DMA
transfer. Addresses can be configured to increment by 1, 2, or 4 bytes.

 Classic or Burst WISHBONE cycles. Number of transfers in a burst can be
configured to be 4, 8, 16, 32, or 64.

 WISHBONE ERR support (DMA transfer is terminated) and ability to
indicate an unsuccessful completion via status register

Functional Description

2 LatticeMico DMA Controller

 WISHBONE RTY support

 DMA controller will retry current WISHBONE transfer after a timeout.

 Timeout can be configured to any value between 1 and 255
WISHBONE clock cycles.

For additional details about the WISHBONE bus, refer to the LatticeMico8
Processor Reference Manual or the LatticeMico32 Processor Reference
Manual.

Functional Description

The LatticeMico DMA controller provides a high performance memory-to-
memory data transfer engine for use in LatticeMico system platforms. The
DMA controller is simultaneously a WISHBONE master and a WISHBONE
slave. The slave side of the DMA controller is the controlled by the
LatticeMico8 microcontroller or the LatticeMico32 microprocessor. It's primary
role is to set up the parameters of a new transfer, monitor existing transfers,
and abort them if necessary. The master side of the DMA controller performs
the memory-to-memory transfers. It consists of independent read and write I/
O ports that can access memories via WISHBONE.

DMA transfers are initialized and initiated by the LatticeMico8 microcontroller
or the LatticeMico32 microprocessor. The processor sets the following
parameters of the transfer: source address, destination address, number of
bytes to be transferred, and number of bytes per WISHBONE transaction.
Once these parameters have been set, the processor then requests the DMA
engine to begin the transfer. The master side of the DMA engine starts the
transfer as soon as it has access to the WISHBONE bus. Figure 1 and
Figure 2 show the logical flow of data from source address to destination
address for different arbitration schemes. DMA transfers proceed unassisted
until a pre-programmed number of bytes have been transferred. There are
two special events that require special handling by the DMA engine:

 WISHBONE ERR: It is possible that the source or destination memory
may terminate a WISHBONE read/write initiated by the DMA engine with
an error signal. The DMA engine monitors for an error and terminates the
entire transfer immediately. The error event is registered within the Status
Register.

 WISHBONE RTY: It is possible that the source or destination memory
may terminate a WISHBONE read/write initiated by the DMA engine with
a retry signal indicating that the current WISHBONE transfer needs to be
restarted. The DMA engine monitors for a retry and terminates the current
WISHBONE transaction immediately, waits for a pre-programmed delay,
and restarts the terminated WISHBONE transaction.

Functional Description

LatticeMico DMA Controller 3

The microprocessor can use one of the following two methods for determining
when a DMA transfer has finished:

Figure 1: DMA Usage with Shared-Bus Arbitration in LatticeMico System

Figure 2: DMA Usage with Slave-Side Arbitration in LatticeMico System

SRAM EBR

DMA
read
master

DMA
write
master

Instruction
master

Data
master

LM8/LM32DMA

Arbiter

WISHBONE

SRAM EBR

DMA
read
master

DMA
write
master

Instruction
master

Data
master

LM8/LM32DMA

Arbiter

WISHBONE

Arbiter

WISHBONE

Functional Description

4 LatticeMico DMA Controller

 The first is to periodically poll the controller’s status register and monitor
the DMA_BUSY bit. As long as the DMA_BUSY bit is 1, the DMA
controller is in the process of transferring data.

 The second method is to configure the DMA controller to assert an
interrupt to the microprocessor. When the DMA controller completes the
preprogrammed number of memory transfers or ERR_I WISHBONE ERR
is asserted, the controller asserts the interrupt signal.

Regardless of the method used to detect the termination of the DMA cycle,
the microprocessor must perform the necessary clean-up to make the DMA
controller ready to accept the next transfer request.

The function of the DMA controller is illustrated in Figure 3.

DMA Transfer Flow
A typical DMA transfer includes the following steps:

1. The CPU first reads the DMA controller internal registers to ensure that
the DMA controller is idle.

2. The CPU sets up the DMA parameters by writing to the internal registers
through the WISHBONE slave port.

3. The CPU enables the DMA controller. The DMA controller starts the
transfer. The controller reads data through the read master port and writes
the data out through the write master port.

4. The number of transfers that the DMA performs depends on the transfer
mode. For a fixed-length transfer, the number is determined by the length
configuration set by the CPU.

5. After the transfer is complete, the DMA controller generates an interrupt
request to the CPU, when the interrupt enable bit in the status register is
asserted. The CPU must read the status register to clear this interrupt

Figure 3: DMA Controller Usage

MASTER (CPU)

Slave port

WB_DMA_CTRL

Master read Master write

Slave BSlave A

Configuration

LatticeMico DMA Controller 5

request; otherwise, this interrupt request is maintained until the next
interrupt request is generated. If interrupt generation is masked, it is up to
the firmware to poll the DMA_BUSY bit in the status register to detect the
end of a DMA transfer.

Supported Features:

1. Constant or incrementing address for the source and destination in a DMA
transfer. Addresses can be configured to increment by 1, 2, or 4 bytes.

2. Classic or Burst WISHBONE cycles. Number of transfers in a burst can be
configured to be 4, 8, 16, 32, or 64.

Limitations:

1. WISHBONE BTE is fixed at 00.

2. WISHBONE LOCK is not supported.

3. WISHBONE data bus width can be configured to 8 or 32 bits only. The 32-
bit data bus can accommodate 1, 2, or 4 byte transfers. The 8-bit data bus
can only accommodate a 1 byte transfer.

4. Transfer addresses must be aligned to the transfer size boundary. A 4
byte transfer means that the least-significant 2 bits of the address must be
zero.

Configuration
The following sections describe the graphical user interface (UI) parameters
and the I/O ports that you can use to configure and operate the LatticeMico
DMA controller.

Configuration

6 LatticeMico DMA Controller

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico
DMA controller through the Mico System Builder (MSB) interface.

I/O Ports
Table 2 describes the input and output ports of the LatticeMico DMA
controller.

Table 1: DMA Controller UI Parameters

Dialog Box
Option

Description Allowable Values Default Value

Instance Name Specifies the name of the DMA controller
instance.

Alphanumeric and
underscores

dma

Base Address Specifies the base address for accessing the
internal registers. The minimum boundary
alignment is 0X80.

0X80000000–0XFFFFFFFF

If other components are
included in the platform, the
range of allowable values
will vary.

0X80000000

FIFO
Implementation

Determines whether the FIFO is implemented
as an EBR or a LUT.

EBR or LUT EBR

Settings

Retry Timeout Specifies the number of WISHBONE
clock cycles that the DMA controller must
wait after the source or destination
asserts the WISHBONE RTY before
retrying the same WISHBONE cycle.

1 – 255 16

WISHBONE Configuration

Control Port Data
Bus Width

Configures the control port’s WISHBONE data
bus to be 8 or 32 bits wide.

8, 32 32

Read/Write Port
Data Bus Width

Configures the read and write WISHBONE
master port data buses to be 8 or 32 bits wide.

8, 32 32

Table 2: DMA Controller I/O Ports

I/O Port Active Direction Initial
State

Description

Master Read Port

MA_ADR_O High O 0 Master A address bus

MA_WE_O High O 0 Master A write enable signal

MA_SEL_O High O 0 Master A select signal

MA_STB_O High O 0 Master A strobe signal

Configuration

LatticeMico DMA Controller 7

MA_CYC_O High O 0 Master A cycle signal

MA_LOCK_O High O 0 Master A lock signal

MA_CTI_O High O 0 Master A CTI signal

MA_BTE_O High O 0 Master A BTE signal

MA_DAT_I High I X Master A input data bus

MA_DAT_O High O 0 Master A output data bus

MA_ACK_I High I X Acknowledged signal from the slave device

MA_ERR_I High I X Error signal from the slave device, indicating abnormal
termination

MA_RTY_I High I X Retry signal from the slave device, requesting the write
master to generate the write cycles again

Master Write Port

MB_ADR_O High O 0 Master B address bus

MB_DAT_O High O 0 Master B data bus

MB_WE_O High O 0 Master B write enable signal

MB_SEL_O High O 0 Master B select signal

MB_STB_O High O 0 Master B strobe signal

MB_CYC_O High O 0 Master B cycle signal

MB_LOCK_O High O 0 Master B lock signal

MB_CTI_O High O 0 Master B CTI signal

MB_BTE_O High O 0 Master B BTE signal

MB_DAT_I High I X Master B input data bus

MB_ACK_I High I X Acknowledged signal from the slave device

MB_ERR_I High I X Error signal from the slave device, indicating abnormal
termination

MB_RTY_I High I X Retry signal from the slave device, requesting the write
master to generate the read cycles again

Slave Port

S_ADR_I High I X Slave address bus

S_DAT_I High I X Slave data input bus

S_WE_I High I X Slave write enable signal

S_STB_I High I X Slave strobe signal

S_CYC_I High I X Slave cycle signal

Table 2: DMA Controller I/O Ports (Continued)

I/O Port Active Direction Initial
State

Description

Register Definitions

8 LatticeMico DMA Controller

Register Definitions
The LatticeMico DMA controller includes the registers shown in Table 3.

Table 4 through Table 8 provide details about each register of the LatticeMico
DMA controller.

S_SEL_I High I X Slave select signal

S_LOCK_I High I X Slave lock signal

S_CTI_I High I X Slave CTI signal

S_BTE_I High I X Slave BTE signal

S_DAT_O High O 0 Output data bus

S_ACK_O High O 0 Acknowledge to master device

S_ERR_O High O 0 Slave error signal

S_RTY_O High O 0 Slave retry signal

S_INT_O High O 0 Interrupt to master (CPU)

Clock and Reset Signal

CLK_I High I X Input clock signal

RST_I High I X Reset signal (active high)

Table 2: DMA Controller I/O Ports (Continued)

I/O Port Active Direction Initial
State

Description

Table 3: Register Map

Register
Name

Offset 31-24 23-16 15-8 7 6 5 4 3 2 1 0

SA 0x00 LSB MSB

DA 0x04 LSB MSB

LR 0x08 LSB MSB

CR 0x0C Reserved BurstMode Burst Size Increment D_CON S_CON

SR 0x10 Reserved Start Status IE DMA_BUSY

Table 4: SA Register

Register Name Bit Access Mode Description

Source address 31: 0 Read/write Source address for the DMA transfer. Most-
significant byte of address is in bits 7:0 and least-
significant byte of address is in bits 31:24.

Register Definitions

LatticeMico DMA Controller 9

Table 5: DA Register

Register Name Bit Access Mode Description

Destination address 31: 0 Read/write Destination address for the DMA transfer. Most-
significant byte of address is in bits 7:0 and least-
significant byte of address is in bits 31:24.

Table 6: Length Register Bit Definition

Register Name Bit Access Mode Description

Length of Transfer 31:0 Read/write Length of the DMA transfer in bytes. Most-
significant byte of address is in bits 7:0 and least-
significant byte of address is in bits 31:24.

Table 7: Control Register Bit Definition

Bit Name Bit Default Access
Mode

Description

S_CON 0 0 Read/write The source address register is held constant when
S_CON is 1. Otherwise, it increments according to
the values in the INC register.

D_CON 1 0 Read/write The destination address register is held constant
when D_CON is 1. Otherwise, it increments
according to the values in the INC register.

INC 3-2 0 Read/write Increment the SA/DA/LR registers:

00 = increment SA/DA by 1, decrement LR by 1

01 = increment SA/DA by 2, decrement LR by 2

10 = increment SA/DA by 4, decrement LR by 4

11 = increment SA/DA by 4, decrement LR by 4

Burst Size 6-4 000 Read/write 000 = burst length = INC * 4

001 = burst length = INC * 8

010= burst length = INC * 16

011 = burst length = INC * 32

100 = burst length = INC * 64

Burst Mode Enable 7 0 Read/write 1 = Enable burst mode

0 = Disable burst mode

Reserved 31-8 0 Read/write Reserved

Timing Diagrams

10 LatticeMico DMA Controller

Timing Diagrams
The timing diagrams featured in Figure 4 through Figure 10 show the timing of
the DMA controller’s WISHBONE and external signals.

Figure 4 shows how the DMA controller’s slave port updates the data in the
internal register.

Table 8: Status Register Bit Definition

Bit Name Bit Access
Mode

Description

DMA_BUSY 0 Read A 1 in this bit indicates that the DMA controller is busy.

IE (interrupt enable) 1 Read/write When set by the CPU, this bit causes the DMA controller
to generate an interrupt on completion of the transfer.

Status bit 2 Read This bit is read-only by the CPU. It indicates whether the
last transfer finished successfully. A 0 indicates that the
last transfer was successful. A 1 indicates that the last
transfer ended in a bus error.

Start bit 3 Write Writing a 1 in this bit position causes a transfer to start.
This bit should be written only when the DMA controller
is not busy. This bit is always 0 when read by the CPU.

Reserved 31:4 Read/write Reserved

Note

Reset value is 0 for all.

Figure 4: DMA Controller Write Internal Register

Timing Diagrams

LatticeMico DMA Controller 11

Figure 5 shows how the DMA controller’s slave port reads the data in the
internal register.

Figure 5: DMA Controller Read Internal Register

Timing Diagrams

12 LatticeMico DMA Controller

Figure 6 shows how the DMA controller’s master ports read the data from the
source address.

Figure 7 shows how the DMA controller’s master ports write the data to the
destination address.

Figure 6: DMA Controller Reading Data from Source Address

Figure 7: DMA Controller Writing Data to Destination Address

Timing Diagrams

LatticeMico DMA Controller 13

Figure 8 shows how the DMA controller’s master ports copy data from one
slave device to another.

Figure 9 shows the port names and timing diagram of the DMA memory
controller in single data transfer mode.

Figure 8: DMA Controller Reading Data from Slave A Device and Writing Data to Slave B Device

Figure 9: DMA Controller Timing Diagram for Single Data Transfer

EBR Resource Utilization

14 LatticeMico DMA Controller

Figure 10 shows the port names and timing diagram of the DMA memory
controller in burst data transfer mode.

EBR Resource Utilization
The number of EBRs in the LatticeMico DMA depends on the FIFO
implementation.

 If the FIFO is implemented as an EBR, the DMA has one EBR.

 If the FIFO is implemented as a LUT, the DMA has no EBRs.

Usage Model
This section describes the software usage model for the LatticeMico DMA
controller. The DMA device drivers provide a simple and easy-to-use interface
to interact with the physical DMA controller.

The device driver presents the DMA as a WISHBONE slave peripheral which
can be configured via the memory map shown in Table 3 on page 8. The DMA
can be configured through LatticeMico System Builder (MSB) to operate in an
interrupt-driven mode or in a polled mode. In the polled mode, the hardware
does not raise an interrupt to indicate whether a transfer has successfully
completed or failed. Therefore, it is the responsibility of the application layer to
keep track of the transfer. In the interrupt-driven mode, the hardware raises
an interrupt when the transfer has either completed or failed. Therefore, the
application layer does not need to continuously monitor the DMA controller.
The interrupt-driven mode is more suitable to an asynchronous mode of
operation.

Figure 10: DMA Controller Timing Diagram for Burst Data Transfer

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 15

LatticeMico32 Microprocessor Software Support
This section describes the LatticeMico32 microprocessor software support
provided for the LatticeMico DMA controller. It first describes the basic DMA
device-driver interface and then describes the DMA lookup service.

Register Map Structure

The structure in Figure 11 depicts the register map layout for the DMA
controller. The elements are self-explanatory and are based on the register
map shown in Table 3 on page 8. This structure, which is defined in the
MicoDMA.h header file, enables you to directly access the DMA registers, if
desired. It is also used internally by the device driver for manipulating the
DMA registers.

Note

The supporting routines are meant for use in a single-threaded environment. If you use
them in a multi-tasking environment, you must provide re-entrance protections.

Figure 11: DMA Controller Write Internal Register

LatticeMico32 Microprocessor Software Support

16 LatticeMico DMA Controller

Device Driver
The DMA device driver directly interacts with the DMA instance. This section
describes the type definitions, and structures of the DMA device driver.

The LatticeMico DMA controller has two master ports, each of which can be
connected to any address region. The programmer must set the DMA
parameters, including source and destination addresses, that are valid for a
given DMA instance. The DMA device driver implementation model requires
that you queue a DMA request. The parameters defining the required DMA
transaction are provided through a structure known as the DMA descriptor,
which is described in “DMA Descriptor Structure” on page 19. The DMA
device driver relies on DMA descriptors for initiating a DMA transaction. The
DMA device driver manages the state of each queued DMA descriptor as it
services them on a first-queued, first-serviced basis. The DMA device driver
implementation enables you to queue multiple DMA descriptors for multiple
DMA transfer requests. Such multiple requests are sequentially serviced by
the DMA device driver. The DMA device driver relies on the DMA interrupt
requests to identify the completion of a programmed DMA request. When a
DMA request is completed, the DMA device driver notifies you through a

Figure 12: DMA Controller Register Map Structure

typedef struct st_MicoDMA{
/* address to read data from */
volatile unsigned int sAddr;

/* address to write data to */
volatile unsigned int dAddr;

/* dma length */
volatile unsigned int len;

/* control register */
volatile unsigned int control;

/* status register */
volatile unsigned char status;

}MicoDMA_t;

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 17

callback routine that you provided when you queued the request. The state
diagram for a DMA descriptor is shown in Figure 13.

A descriptor is set to the pending state when it is queued, indicating that it is
added to the list of pending DMA descriptors for the associated DMA device.
The DMA interrupt service routine (ISR) sets up the DMA parameters for
performing a DMA transaction that is associated with a given descriptor. This
ISR always services in a first-in, first-out fashion and marks the DMA
descriptor that it is servicing as ACTIVE. When the DMA transaction is
completed, the ISR is invoked. It checks the completion status of the DMA
device. If the DMA device indicates a successful completion, it marks the
DMA descriptor just serviced with SUCCESS; if the DMA device indicates
error, the ISR marks the descriptor with ERROR. Whether the completion is
successful or not, the ISR calls the callback routine registered for the
descriptor to allow you to free up the descriptor, if desired, or perform any
other operation. After completion, the DMA descriptor that was just serviced is
removed from the list of descriptors. If a DMA descriptor is marked PENDING
and you issue a request to de-queue the descriptor, the state of the descriptor
is marked as ABORTED and is removed from the list of pending DMA
descriptors.

Figure 13: DMA Descriptor State Chart

Pending

Active Aborted

Success Error

On queued

On dequeuedOn service by
DMA - ISR

On completion
without error

On completion
with error (bus error)

LatticeMico32 Microprocessor Software Support

18 LatticeMico DMA Controller

Type Definitions
This section explains the type definitions for the DMA device context
structure, descriptor structure, and completion callback prototype.

DMA Device Context Structure The DMA device context structure, shown
in Figure 14, contains the DMA component instance-specific information and
is dynamically generated in the DDStructs.h header file. This information is
largely filled in by the MSB managed build process, which extracts the DMA
component-specific information from the platform definition file. The members
should not be manipulated directly, because this structure is used exclusively
by the device driver.

Table 9 describes the parameters of the DMA device context structure shown
in Figure 14.

Figure 14: DMA Device Context Structure

typedef struct st_MicoDMACtx_t {
const char* name;
unsigned int base;
unsigned int irq;
unsigned int maxLength;
DeviceReg_t lookupReg;
unsigned int flags;
void * pCurr;
void * pHead;
void * prev;
void * next;
} MicoDMACtx_t;

Table 9: DMA Device Context Structure Parameters

Parameter Data Type Description

name const char * Instance-specific component name entered in
MSB

base unsigned int MSB-assigned base address

irq unsigned int MSB-assigned interrupt line

maxLength unsigned int Maximum length of any DMA transaction

lookupReg DeviceReg_t Used by the device driver to register the DMA
controller component instance with the
LatticeMico32 lookup service. Refer to the
LatticeMico32 Software Developer User Guide
for a description of the DeviceReg_t data type.

flags unsigned int Used internally by the device driver

pCurr void * Used internally for tracking active DMA
descriptors

pHead void * Used internally for tracking queued DMA
descriptors

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 19

DMA Descriptor Structure The DMA descriptor structure in Figure 15
contains information for a single DMA operation. It is key to all device-driver-
implemented DMA functions, as described in “Functions” on page 21.

prev void * Used internally by the lookup service for
tracking multiple registered DMA instances

next void * Used internally by the lookup service for
tracking multiple registered DMA instances

Note

You may need to access the DMA device registers directly, but some of these registers
are write-only. Implementing shadow registers in RAM can be an effective way to
replace this missing capability.

Figure 15: DMA Descriptor Structure

typedef struct st_DMADesc_t DMADesc_t;
struct st_DMADesc_t{

/* address to read data from */
unsigned int sAddr;

/* address to write data to */
unsigned int dAddr;

/* Length of transfer.
 * NOTE: This is NOT length in bytes; it is the
 * number of data units to transfer. So for a 32-byte
 * transfer, this value must be set to 32; for thirty-two
 * 32-bit transfers, this value must still be set to 32.
 */
unsigned int length;

/* DMA transfer qualifier */
unsigned int type;

/* User-provided private data */
void *priv;

/* descriptor state */
unsigned int state;

/* used internally for chaining descriptors */
DMACallback_t onCompletion;
DMADesc_t *prev;
DMADesc_t *next;

};

Table 9: DMA Device Context Structure Parameters (Continued)

Parameter Data Type Description

LatticeMico32 Microprocessor Software Support

20 LatticeMico DMA Controller

The type and description of each parameter in the DMA descriptor structure
are shown in Table 10.

Table 10: DMA Descriptor Structure

Parameter Data Type Description

sAddr unsigned int Starting address from which to read data for a DMA transaction

dAddr unsigned int Starting address to write data for a DMA transaction

length unsigned int Specifies the number of reads and writes to perform. This value must be set
to the number of units to transfer. For a 32 8-bit transfer, this parameter must
be set to a value of 32. For a 32 32-bit transfer, this value must still be set to
32 but the type parameter must be set to indicate a 32-bit transfer.

Note: The device driver code changes the length value before writing it to
the DMA controller length register.

The DMA controller expects a length value of 128 in order to perform 32 32-
bit transfers. The DMA controller expects a length value of 64 to perform 32
16-bit transfers.

The device-driver code performs the necessary arithmetic to make sure the
correct number of transactions are performed.

type DMAType_t Can be an OR of the following enumerated type values:

 DMA_CONSTANT_SRC_ADDR

 DMA_CONSTANT_DST_ADDR

 DMA_16BIT_TRANSFER

 DMA_32BIT_TRANSFER

 DMA_BURST_SIZE_4

 DMA_BURST_SIZE_8

 DMA_BURST_SIZE_16

 DMA_BURST_SIZE_32

 DMA_BURST_SIZE_64
 DMA_BURST_ENABLE (Legacy. Replaced by BURST_SIZE_X)

 DMA_BURST_SIZE (Legacy. Replaced by BURST_SIZE_X)

state unsigned int Used internally to indicate the state of the descriptor. It is one of the
following values once it is queued:

 MICODMA_STATE_SUCCESS

 MICODMA_STATE_PENDING

 MICODMA_STATE_ACTIVE

 MICODMA_STATE_ERROR

 MICODMA_STATE_ABORTED

onCompletion DMACallback_t Callback routine, if non-zero, to be invoked as part of the DMA ISR to
indicate completion (success or failure) of this descriptor

prev DMADesc_t * Used internally for maintaining a list of queued descriptors

next DMADexc_t * Used internally for maintaining a list of queued descriptors

priv void * Your private data pointer

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 21

DMA Completion Callback Prototype This prototype is the expected
completion callback routine prototype. You can provide a valid pointer to a
function like the callback routine that is invoked when a DMA descriptor
transaction is completed.

typedef void(*DMACallback_t)(DMADesc_t *desc, unsigned int
status);

This callback takes two parameters:

 Pointer to the DMA descriptor

 Status of the DMA descriptor, which denotes the state of the DMA
descriptor, as given in the “DMA Descriptor Structure” on page 19.

Functions
This section describes the implemented device-driver-specific functions.

MicoDMAInit Function
void MicoDMAInit(MicoDMACtx_t *ctx);

This function initializes a LatticeMico DMA instance according to the passed
DMA context structure. This initialization function is responsible for stopping
the DMA (not currently supported in RTL) and initializing members of the
passed DMA context.

As part of the managed build process, the LatticeDDInit function calls this
initialization routine for each DMA instance in the platform.

Table 11 describes the parameter in the MicoDMAInit function syntax.

MicoDMAQueueRequest Function
unsigned int MicoDMAQueueRequest(MicoDMACtx_t *ctx, DMADDesc_t
*desc, DMACallback_t callback);

This function queues a DMA descriptor to the end of the list of the queued
descriptors. If it is the first descriptor being queued, this function initiates a
DMA transaction for this descriptor.

Set the following parameters of the DMA descriptor before calling this
function:

 sAddr – Specifies the starting address of the read location

 dAddr – Specifies the starting address of the write location

 length – Specifies the number of transactions to perform

Table 11: MicoDMAInit Function Parameter

Parameter Description

MicoDMACtx_t * Pointer to the DMA context representing a valid DMA
instance

LatticeMico32 Microprocessor Software Support

22 LatticeMico DMA Controller

 type – Specifies the type of transaction to perform. It must be an OR of the
listed values, if the transaction involves a constant source address (read)
or a constant destination address (write), or if it involves 16-bit or 32-bit
transfers. If DMA_16BIT_TRANSFER or DMA_32BIT_TRANSFER is not
part of the type member, the DMA transactions will be 8-bit transfers. The
type of transaction can be one of the following:

 DMA_CONSTANT_SRC_ADDR – For transferring from a single
source address

 DMA_CONSTANT_DST_ADDR – For transferring to a constant
destination address

 DMA_16BIT_TRANSFER – For transferring 16-bit data between 16-
bit locations

 DMA_32BIT_TRANSFER – For transferring 32-bit data between 32-
bit locations

 DMA_BURST_SIZE_4 – Indicates that the burst size is four times the
transfer size.

 DMA_BURST_SIZE_8 – Indicates that the burst size is eight times the
transfer size.

 DMA_BURST_SIZE_16 – Indicates that the burst size is sixteen times
the transfer size.

 DMA_BURST_SIZE_32 – Indicates that the burst size is thirty-two
times the transfer size.

 DMA_BUSRT_SIZE_64 – Indicates that the burst size is sixty-four
times the transfer size.

 DMA_BURST_SIZE – For selecting burst transfer sizes. This setting
is valid only when DMA_BURST_ENABLE is also set. When it is set,
the burst size is eight times the transfer size. When it is not set and
burst is enabled, the burst size is four times the transfer size. The
transfer length is required to be a multiple of the burst size. This
parameter is for legacy code.

 DMA_BURST_ENABLE – For enabling burst-mode transfers. This
parameter is for legacy code.

If none of the qualifiers are needed, the “type” parameter must be set to 0.

Note

The provided DMA descriptor must not be modified or removed from memory until
either the DMA transaction associated with this descriptor has been completed or until
it has been successfully dequeued.

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 23

Table 12 describes the parameters in the MicoDMAQueueRequest function
syntax.

Table 13 shows the values returned by the MicoDMAQueueRequest function.

MicoDMADequeueRequest Function
unsigned int MicoDMADequeueRequest(MicoDMACtx_t *ctx, DMADesc_t
*desc, unsigned int callback);

This function dequeues the provided descriptor from the list of queued
descriptors. Only those descriptors that are pending can be dequeued.

Table 12: MicoDMAQueueRequest Function Parameters

Parameter Description Notes

MicoDMACtx_t * Pointer to a DMA context

DMADesc_t * Pointer to a valid DMA
descriptor

Must be preserved until the
DMA operation is
completed and its callback
routine is invoked or until it
is successfully dequeued.

DMACallback_t Callback to be invoked
when a DMA transaction
associated with this
descriptor is completed

Can be 0 if no callback is
desired.

Table 13: Values Returned by MicoDMAQueueRequest Function

Return Value Description

0 Successfully queued the descriptor

MICODMA_ERR_INVALID_
POINTERS

Returned if either the DMA context pointer is null or
the descriptor pointer is null

MICODMA_ERR_DESC_
LEN_ERR

Returned if the requested length of the transaction
exceeds the maximum allowed by DMA or if the
requested length is 0

LatticeMico32 Microprocessor Software Support

24 LatticeMico DMA Controller

Table 14 describes the parameters in the syntax of the
MicoDMADequeueRequest function syntax.

Table 15 shows the values returned by the MicoDMADequeueRequest
function.

MicoDMAGetState Function
unsigned int MicoDMAGetState(DMADesc_t *desc);

This function retrieves the state of a queued descriptor and takes the pointer
to the descriptor as an argument.

The returned value indicates the state of the descriptor and is one of the
following values:

 MICODMA_STATE_SUCCESS

 MICODMA_STATE_PENDING

 MICODMA_STATE_ACTIVE

 MICODMA_STATE_ERROR

 MICODMA_STATE_ABORTED

Table 14: MicoDMADequeueRequest Function Parameters

Parameter Description Notes

MicoDMACtx_t * Pointer to a DMA context
representing a valid DMA
instance

DMADesc_t * Pointer to a valid DMA
descriptor

This descriptor must be
preserved until the DMA
operation is completed and
its callback routine is
invoked or until it is
successfully dequeued.

callback Indicates whether the
associated callback routine
with this descriptor should
be called, if successfully
dequeued

If this value is non-zero,
the associated callback, if
registered, will be called
with the status argument
set to MICODMA_STATE_
ABORTED.

Table 15: Values Returned by MicoDMADequeueRequest Function

Return Value Description

0 Successfully dequeued the descriptor

MICODMA_ERR_DESCRIPTOR_
NOT_PENDING

Descriptor was not in pending state and
therefore not removed, if still queued.

MICODMA_ERR_INVALID_POINTERS Returned to indicate that the ctx or desc
pointers are null or that the descriptor link-
list parameters seem invalid

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 25

MicoDMAPause Function
unsigned int MicoDMAPause(MicoDMACtx_t *ctx);

This function pauses the processing of the DMA descriptors queued for the
given DMA instance. Any active DMA transaction is allowed to finish.

Table 16 describes the parameter in the MicoDMAPause function syntax.

Table 17 shows the values returned by the MicoDMAPause function.

MicoDMAResume Function
unsigned int MicoDMAResume(MicoDMACtx_t *ctx);

This function resumes processing of any queued DMA descriptors associated
with the provided DMA instance.

Table 18 describes the parameter in the MicoDMAResume function syntax.

Table 19 shows the values returned by the MicoDMAResume function.

Table 16: MicoDMAPause Function Parameter

Parameter Description

MicoDMACtx_t * Pointer to a DMA context representing a valid DMA
instance

Table 17: Values Returned by MicoDMAPause Function

Return Value Description

0 Successfully paused the DMA transactions

MICODMA_ERR_INVALID_
POINTERS

Returned to indicate that the ctx value is 0

Table 18: MicoDMAResume Function Parameter

Parameter Description

MicoDMACtx_t * Pointer to a DMA context representing a valid DMA
instance

Table 19: Values Returned by MicoDMAResume Function

Return Value Description

0 Successfully resumed the DMA transactions

MICODMA_ERR_INVALID
_POINTERS

Returned to indicate that the ctx value is 0

LatticeMico32 Microprocessor Software Support

26 LatticeMico DMA Controller

Services
The DMA device driver registers DMA instances with the LatticeMico32
lookup service, using their instance names for device names and
“DMADevice” as the device type.

For information on the LatticeMico32 lookup service, refer to the
LatticeMico32 Software Developer User's Guide.

Software Usage Example
The default managed build process initializes the DMA instance by invoking
the DMA initialization function described in “Functions” on page 21. As a
result, the DMA instance becomes available to the LatticeMico32 lookup
service.

In the following example, it is assumed that the platform contains a DMA
controller named “dma.”

Figure 16: DMA Controller Sofware Example

#include <stdio.h>
#include "LookupServices.h"
#include "MicoDMA.h"
/*
 * This function is a DMA completion callback and is
 * invoked within an interrupt service routine.
 * Therefore, it must be quick and short.
 */
void OnDMAComplete(DMADesc_t *desc, unsigned int status)
{

/*
 * NOTE: It is already known at this point how the DMA
 * transaction ended in the "status" field.
 */
/* access the private data */
volatile unsigned int *p_iDone = desc->priv;

/*signal the DMA is done */
*p_iDone = 1;
return;

}

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 27

int main(void)
volatile unsigned int iDone = 0;
static DMADesc_t dmaDesc;
/* Static ensures that this remains valid for the duration
 * of the program */
/* Fetch dma device by name */
MicoDMACtx_t *dma = (MicoDMACtx_t *)MicoGetDevice("dma");

/* Prepare the DMA descriptor. We want to transfer:
 * 256 32-bit words from
 * 0x00002000 (valid memory location) to
 * 0x00004000 (valid memory location)
 */

dmaDesc.sAddr = 0x00002000; /* SOURCE ADDRESS */
dmaDesc.dAddr = 0x00004000; /* DESTINATION ADDRESS */
dmaDesc.length = 256; /* 256 reads/writes */
dmaDesc.type = DMA_32BIT_TRANSFER; /* 32-bit transfers */
dmaDesc.priv = (void *) &iDone; /* my private data */

/* Queue this DMA descriptor and provide a callback for
 * completion notification */
if {MicoDMAQueRequest (dma, &dmaDesc, OnDMAComplete) == 0;){

printf ("successfully queued DMA request\n");
}else{

printf("failed to queue DMA request\n");
}
/* wait for DMA transaction to be completed */
while(iDone == 0);
/*
 * Print status of DMA transaction (we knew it in the
 * callback already, but as an example, still query the
 * status of the DMA descriptor.)
 */

switch (MicoDMAGetState(&dmaDesc)){
case MICODMA_STATE_ERROR:{

/* Since DMA is complete, it can complete with error
 * if an address is incorrect */
printf("dma completed with error \n");
break;

}

case MICODMA_STATE_SUCCESS:{
/* Since DMA is complete, it can complete successfully
 * if the addresses are okay */
printf("successfully completed DMA \n");
break;

}

Figure 16: DMA Controller Sofware Example (Continued)

LatticeMico32 Microprocessor Software Support

28 LatticeMico DMA Controller

Accessing DMA Controller without
Device Drivers
The device driver functions and macros hide the DMA controller’s
implementation from the software developer by providing a software
translation layer between the developer’s application and the actual
hardware-specific details. It is, nevertheless, possible to directly access the
DMA controller without using Lattice-provided drivers. You can do this by
accessing (reading from or writing to) the registers defined in Table 3 on
page 8. The orientation of data is very important, because LatticeMico32 is a
big-endian microprocessor. Therefore the software developer is advised to
read the following information to understand the impact of endianness when
the microprocessor interacts with the component's registers. In a big-endian

case MICODMA_STATE_PENDING:{
/*
 * We queued a single request and waited for it to
 * be completed, and so the state will not
 * be this.
 */
printf("dma pending (cannot happen in this sample
code) \n");
break;

}

case MICODMA_STATE_ACTIVE:{
/*
 * We queued a single request and waited for it to be
 * completed, and so the state will not be this.
 */
printf("dma active (cannot happen in this sample code)
\n");
break;

}

case MICODMA_STATE_ABORTED:{
/*

* We queued a single request and waited for it to be
 * completed, and so the state will not be this
 */
printf("dma aborted (cannot happen in this sample
code) \n");
break;

}
default:{

printf("unknown state\n");
break;

}
}
return(0);

}

Figure 16: DMA Controller Sofware Example (Continued)

LatticeMico32 Microprocessor Software Support

LatticeMico DMA Controller 29

architecture, the most-significant byte of a multi-byte object is stored at the
lowest address, and the least-significant byte of that object is stored at the
highest address.

Assume that you have a design that contains the DMA controller and that it is
assigned a base address of 0x80000000. Now let’s consider that one wants to
write to the “SA” register at an offset of 0x0 from the base address. The least-
significant byte of the address is in bits 31-24 (byte address 3), while the
most-significant byte of the address is in bits 7-0 (byte address 0). Lets
assume that the source address of the DMA transfer is 0x10203040 and that
we want to update the SA register with this address. There are two ways in C
to write to this register, depending on whether one is performing a byte
(“unsigned char” or “signed char”) write or whether one is performing a word
(“unsigned int” or “signed int”) write.

LatticeMico8 Microcontroller Software Support

30 LatticeMico DMA Controller

Figure 17 shows sample code that uses a byte write.

Figure 18 shows sample code that uses a word write. It will write the value
0x10203040 to the SA register. This is correct.

On the other hand, the sample code in Figure 19 will produce incorrect
behavior, because a value of 0x40302010 will be written to the SA register.

LatticeMico8 Microcontroller Software Support
This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico DMA controller. It describes the basic DMA
device-driver interface.

Device Driver
The DMA device driver directly interacts with the DMA instance. This section
describes the type definitions, functions and macros of the DMA device driver.

Type Definitions
This section explains the DMA device context structure shown in Figure 20. It
contains the DMA component instance-specific information and is generated
dynamically in the DDStructs.h header file. This information is largely filled in
by the MSB managed build process, which extracts the DMA component-

Figure 17: Correct access to SA register using byte write

unsigned char byte0 = 0x10;
unsigned char byte1 = 0x20;
unsigned char byte2 = 0x30;
unsigned char byte3 = 0x40;
*(volatile unsigned char *)0x80000000 = byte0;
*(volatile unsigned char *)0x80000001 = byte1;
*(volatile unsigned char *)0x80000002 = byte2;
*(volatile unsigned char *)0x80000003 = byte3;

Figure 18: Correct access to SA register using word write

unsigned int address = 0x10203040;
*(volatile unsigned int *)0x80000000 = address;

Figure 19: Incorrect access to SA register using word write

unsigned int address = 0x40302010;
*(volatile unsigned int *)0x80000000 = address;

LatticeMico8 Microcontroller Software Support

LatticeMico DMA Controller 31

specific information from the platform definition file. The members should not
be manipulated directly, because this structure is used exclusively by the
device driver.

Table 20 describes the parameters of the DMA device context structure
shown in Figure 20.

Functions
This section describes the implemented device driver-specific functions.

MicoDMAInit Function
void MicoDMAInit(MicoDMACtx_t *ctx);

This function initializes a LatticeMico DMA instance according to the passed
DMA context structure. This initialization function is responsible for stopping
the DMA (not currently supported in RTL) and initializing members of the
passed DMA context. As part of the managed build process, the LatticeDDInit
function calls this initialization routine for each DMA instance in the platform.

Table 21 describes the parameter in the MicoDMAInit function syntax.

MicoDMATransfer Function
This function configures the LatticeMico DMA instance for a new transfer,
initiates the transfer, and then optionally monitors the transfer for successful
or unsuccessful completion.

Figure 20: DMA Device Context Structure

typedef struct st_MicoDMACtx_t {
const char* name;
unsigned int base;
unsigned int irq;
} MicoDMACtx_t;

Table 20: DMA Device Context Structure Parameters

Parameter Data Type Description

name const char * Instance-specific component name entered in
MSB

base unsigned int MSB-assigned base address

irq unsigned int MSB-assigned interrupt line

Table 21: MicoDMAInit Function Parameter

Parameter Description

MicoDMACtx_t * Pointer to the DMA context representing a valid DMA
instance.

LatticeMico8 Microcontroller Software Support

32 LatticeMico DMA Controller

Table 22 describes the parameter in the MicoDMATransfer function syntax.

Table 22: MicoDMATransfer Function Parameters

Parameter Description

MicoDMACtx_t * Pointer to the DMA context representing a valid DMA
instance.

unsigned long srcAddress Source memory address of current DMA transfer.

unsigned long dstAddress Destination memory address of current DMA
transfer.

unsigned long totalBytes Total number of bytes in current DMA transfer.

unsigned char burst Indicates whether DMA engine should use
WISHBONE Burst cycles to perform current DMA
transfer or WISHBONE Classic cycles. 1 indicates
Burst and 0 indicates Classic. Burst transfers are
faster but lock up use of WISHBONE bus by the
DMA engine for longer durations than Classic
transfers.

unsigned char burstSize Indicates the number of transfers performed in each
WISHBONE Burst cycle. The legal values are 1, 4, 8,
16, 32, and 64. The larger the value, the faster the
transfer (at the expense of locking up the
WISHBONE bus for longer durations). A value of 1 is
the same as a WISHBONE Classic cycle.

unsigned char srcConstant Indicates whether the read address increments or
remains constant during the entire transfer. 1
indicates constant address transfer. 0 indicates linear
incrementing address transfer in which the read
address is incremented by a constant value for each
subsequent WISHBONE transfer.

unsigned char dstConstant Indicates whether the write address increments or
remains constant during the entire transfer. 1
indicates constant address transfer. 0 indicates linear
incrementing address transfer in which the write
address is incremented by a constant value for each
subsequent WISHBONE transfer.

unsigned char incValue Indicates the constant value by which the address is
incremented. The legal values are 1, 2, or 4. If the
WISHBONE data bus width is 8 bits, then the
function will always set the increment value to 1 byte
regardless of the value of this variable.

unsigned char interrupt Indicates whether the DMA engine should be
configured to raise an interrupt after the transfer is
complete. 1 indicates interrupts are to be enabled. 0
indicates that interrupts are to be disabled. When
interrupts are disabled, the function monitors the
Status register to check if the transfer has completed
and then exits.

LatticeMico8 Microcontroller Software Support

LatticeMico DMA Controller 33

MicoDMAISR Function

void MicoDMAISR(MicoDMACtx_t *ctx);

This function implements the interrupt handler for the DMA controller. When
the DMA controller is configured to raise an interrupt on the completion of the
DMA transfer, this function is invoked by LatticeMico8. This function is a
sample implementation. The software developer can customize it to their own
requirements by:

 Defining the __MICODMA_USER_IRQ_HANDLER__ preprocessor
macro which disables the sample implementation, and

 Implementing MicoDMAISR function in the user’s code.

Table 23 describes the parameter in the MicoDMAISR function syntax.

C Preprocessor Macro Definitions
This section describes the ‘function-like’ macro definitions that are defined in
the LatticeMico8 software driver for the DMA controller to access the
component’s Register Map shown in Table 3 on page 8 and perform certain
operations. All ‘function-like’ macro definitions take input parameters that are
used in performing the operations encoded within the macro. Table 24
describes these macros and can be found in C header file ‘MicoDMA.h’. The
macros have either one or two input arguments. The first input argument "X"
is always the base address of the DMA controller, as assigned by MSB. The

Table 23: MicoDMAISR Function Parameters

Parameter Description

MicoDMACtx_t * Pointer to the DMA context representing a valid DMA
instance.

LatticeMico8 Microcontroller Software Support

34 LatticeMico DMA Controller

second input argument "Y" is optional, depending on the macro’s function.
Table 24 also shows how each macro can be used by the software developer
in his application code.

Table 24: C Preprocessor Macros

Macro Name Second
Argument to
Macro

Description

MICO_DMA_RD_SRCADDR The current
contents of the
SA register in
Table 3 on
page 8.

This macro reads the contents of the SA register.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned long srcAddress;

MICO_DMA_RD_SRCADDR (0x80001000, srcAddress);

MICO_DMA_WR_SRCADDR The 32-bit
address of the
source memory
from which the
DMA engine will
start reading.

This macro updates the SA register with a new address of the
source memory from where the DMA engine will read.

Usage:

If DMA controller’s base address is 0x80001000 and source
memory’s address is 0x10000000 then,

MICO_DMA_WR_SRCADDR (0x80001000, 0x10000000);

MICO_DMA_RD_DSTADDR The current
contents of the
DA register in
Table 3 on
page 8.

This macro reads the contents of the DA register.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned long dstAddress;

MICO_DMA_RD_DSTADDR (0x80001000, dstAddress);

MICO_DMA_WR_DSTADDR The 32-bit
address of the
destination
memory to which
the DMA engine
will start writing.

This macro updates the DA register with a new address of the
destination memory to which the DMA engine will write.

Usage:

If DMA controller’s base address is 0x80001000 and destination
memory’s address is 0x10000000 then,

MICO_DMA_WR_DSTADDR (0x80001000, 0x10000000);

MICO_DMA_RD_XFERLEN The current
contents of the
LR register in
Table 3 on
page 8.

This macro reads the contents of the LR register.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned long totalBytes;

MICO_DMA_RD_XFERLEN (0x80001000, totalBytes);

MICO_DMA_WR_XFERLEN The 32-bit value
indicating the
number of bytes
that will be
transferred.

This macro updates the LR register with the total number of bytes
that need to be transferred in the current transfer.

Usage:

If DMA controller’s base address is 0x80001000 and the number
of bytes to transfer is 256 then,

MICO_DMA_WR_XFERLEN (0x80001000, 256);

LatticeMico8 Microcontroller Software Support

LatticeMico DMA Controller 35

MICO_DMA_RD_CONTROL The current
contents of the
CR register in
Table 3 on
page 8.

This macro reads the contents of the CR register.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned char control_reg;

MICO_DMA_RD_CR (0x80001000, control_reg);

MICO_DMA_WR_CONTROL The value to be
written to the CR
register in
Table 3 on
page 8.

This macro updates the CR register with type of transfer that is
performed by the DMA engine. Refer to Table 3 for details on how
to set up CR register for different types of transfers.

Usage:

If DMA controller’s base address is 0x80001000 and the value to
write to CR register is 0x80 then,

MICO_DMA_WR_CR (0x80001000, 0x80);

MICO_DMA_RD_STATUS The current
contents of the
SR register in
Table 3 on
page 8.

This macro reads the contents of the SR register.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned char status_reg;

MICO_DMA_RD_SR (0x80001000, status_reg);

MICO_DMA_WR_STATUS The value to be
written to the SR
register in
Table 3 on
page 8.

This macro updates the SR register. Refer to Table 3 for details on
how to set up SR register.

Usage:

If DMA controller’s base address is 0x80001000 and the value to
write to SR register is 0x08 then,

MICO_DMA_WR_SR (0x80001000, 0x08);

MICO_DMA_BUSY - This macro checks if the DMA engine is busy with a transfer.

Usage:

If DMA controller’s base address is 0x80001000,

unsigned char busy;

busy = MICO_DMA_BUSY (0x80001000);

MICO_DMA_START - This macro initiates a new transfer in the polling mode (i.e.,
interrupts are disabled).

Usage:

If DMA controller’s base address is 0x80001000,

MICO_DMA_START (0x80001000);

Table 24: C Preprocessor Macros (Continued)

Macro Name Second
Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

36 LatticeMico DMA Controller

Software Usage Example

The example in Figure 21 assumes that the platform contains a DMA
controller named “dma.” The DMA controller is configured to raise an interrupt
when a transfer is completed and the software developer is implementing his
own interrupt handler.

LatticeMico8 Microcontroller Software Support

LatticeMico DMA Controller 37

Figure 21: DMA Controller Sofware Example

#include "DDStructs.h"
#include "MicoDMA.h"

unsigned char done;

/*
 * This function is called when the DMA controller issues an
interrupt. The
 * interrupt is issued when the DMA completes the transfer or
when there is
 * an error in the transfer. Since the interrupt handler is
implemented in
 * user code, the __MICODMA_USER_IRQ_HANDLER__ preprocessor
macro must be
 * enabled while compiling the software project.
 */
void MicoDMAISR (MicoDMACtx_t *ctx)
{

/* signal the DMA is done */
done = 0x1;
return;

}

int main (void)
{

/* Fetch DMA instance named 'dma' */
MicoDMACtx_t *dma = &wb_dma_ctrl_dma;

/* Reset done flag */
done = 0x0;

/* Initiate DMA transfer */
MicoDMATransfer(dma,

0x10000000, // source address
0x20000000, // destination address
1024, // number of bytes to transfer
1, // use WISHBONE burst cycles for transfer
4, // 4 transactions per WISHBONE burst cycle
0, // source address linearly increments
0, // destination address linearly increments
1, // addresses increment by 1 byte
1); // raise interrupt on completion of transfer

/* Check if transfer is done */
do {

if (done == 0x1)
break;

} while (1);

return 0;
}

LatticeMico8 Microcontroller Software Support

38 LatticeMico DMA Controller

.

Revision History
Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Because the read and write channel worked in parallel,
the write channel started writing data to the slave as
soon as the FIFO is not empty.

Increased burst size to support bigger bursts from a
current value of 4 and 8 to 16 and 32, respectively. DMA
now supports four burst sizes: 4, 8, 16, and 32. The
Burst Size field of the control register was increased to 2
bits.

A glitch was removed on the S_ACK_O signal.

3.1 (8.0) DMA Engine upgraded to comply with Rule 3.100 of
Wishbone Specifications, which deal with byte
alignment for transfers that are less than the width of
Wishbone data bus.

3.2 (8.1 SP1) The data busses on the three WISHBONE interfaces
can be configured to be 8 or 32 bits. Support added for
handling WISHBONE RTY (retry) for burst transfers.
Support added for handling WISHBONE ERR (error).
Register map updated to support 8-bit and 32-bit
WISHBONE data bus.

3.3 Added software support for LatticeMico8.

3.3 Updated document with new corporate logo.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE,
ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA,
ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M,
LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2,
MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform
Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG,
SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple
Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other
countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

	LatticeMico DMA Controller
	Version
	Features
	Functional Description
	DMA Transfer Flow

	Configuration
	UI Parameters
	I/O Ports

	Register Definitions
	Timing Diagrams
	EBR Resource Utilization
	Usage Model
	LatticeMico32 Microprocessor Software Support
	Register Map Structure
	Device Driver
	Software Usage Example
	Accessing DMA Controller without Device Drivers

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example

