Multi-Corner Timing Analysis for Lattice Nexus Devices

Application Note

FPGA-AN-02063-1.0

March 2023
Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer’s responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.
Contents

Acronyms in This Document ..5

1. Introduction ..6
 1.1. Audience ...6

2. Running Multi-Corner Timing Analysis ...7

Technical Support Assistance ..10

Revision History ...11
Figures

Figure 2.1. Run Place & Route Design .. 7
Figure 2.2. Open Timing Option Setting .. 7
Figure 2.3. Change Timing Option Setting .. 7
Figure 2.4. Load Timing Constraint File ... 8
Figure 2.5. Export Timing Reports ... 8
Figure 2.6. Place & Route Strategies ... 9
Acronyms in This Document

A list of acronyms used in this document.

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>PVT</td>
<td>Process Voltage Temperature</td>
</tr>
</tbody>
</table>
1. Introduction

The Lattice Radiant™ software can perform timing analysis on Lattice FPGA devices. This document provides step-by-step instructions to manually run timing analysis at various corners for Lattice Nexus™ devices. For more information, select Help from the Lattice Radiant software menu and refer to the Reading Timing Analysis Reports section.

The default setup and hold timing analysis on Nexus devices is as follows:
- **Setup Analysis** is performed at user speed grade and temperature based on the device type:
 - Commercial devices: 85 °C
 - Industrial devices: 100 °C
 - Automotive devices: 125 °C
- **Hold Analysis** is performed at m speed grade (where m speed grade is a virtual device speed grade which applies the process worst-case condition) based on the device type:
 - Commercial devices: 0 °C
 - Industrial devices: –40 °C
 - Automotive devices: –40 °C

For certain PVT variations, the user may need to run timing analysis at various corners to ensure they are meeting timing at all possible corners. For Nexus devices, if the user needs to perform multi-corner timing analysis, the user may perform timing analysis at various corners by manually changing the speed grade (between m and user speed grade for setup/hold analysis) and temperature values.

1.1. Audience

The intended audience for this document includes FPGA design engineers using the Lattice Radiant design software. The technical guidelines assume that the reader has some basic knowledge on Lattice Radiant timing analysis.
2. Running Multi-Corner Timing Analysis

To run multi-corner timing analysis:

1. Generate a .udb file by running the design until **Place & Route Design**. Perform sign-off timing analysis on the generated .udb file.

![Figure 2.1. Run Place & Route Design](image)

The generated .udb file is in the project implementation directory. Setup and hold analyses are performed using the default parameters in this .udb file unless the parameters are changed.

2. Vary the temperature and speed grade and use the **Standalone Timing Analyzer** tool to perform timing analysis at different temperature corners.

To run timing analysis at different corners:

 a. Create a separate .pdc file for each temperature corner along with the original timing constraints and use the file for timing analysis. The constraint to set temperature is **ldc_set_attribute {TEMPERATURE=<temp_value_in_Celcius>}**. This constraint can be added to the .pdc file (that is: **ldc_set_attribute {TEMPERATURE=0C}**).

 b. Change the speed grade for timing analysis using the **Standalone Timing Analyzer** tool by selecting **Edit > Timing Option Setting**.

![Figure 2.2. Open Timing Option Setting](image)

 c. In the **Timing Option Setting** dialog box, set the **Speed for setup** and **Speed for hold** as needed.

![Figure 2.3. Change Timing Option Setting](image)
d. After making the speed grade changes, load the new .pdc file with temperature and original timing constraints added for timing analysis. To load the new .pdc file, select File > Load Timing Constraint File.

![Figure 2.4. Load Timing Constraint File](image)

After loading the constraint file, the tool automatically runs timing analysis on the database using the new constraint file.

e. Generate separate .twr files for different temperatures and speed grades (default m and user speed grade for setup/hold analysis) for easy analysis. To export timing reports, select File > Export.

![Figure 2.5. Export Timing Reports](image)

Notes:
- If a –9 speed grade is used to perform place & route of the design, changing the speed grade to a lower speed grade is not recommended as moving to a slower speed grade may cause timing failures. If a –7 or a –8 speed grade is used, the user may change the speed grade to –9 to perform multi-corner setup timing analysis.
- For setup/hold analysis, the user may change the speed grade between m and user speed grade for multi-corner timing analysis.

f. After generating the timing report, review it and check if there are any timing violations at the specified temperature or speed grades.

g. If there are timing violations at a given speed grade, re-run Place & Route at that temperature and speed grade. Temperature constraints can be added to the original .pdc file to generate a new .udb file. The speed grade settings can be changed using the Place & Route Design Strategy dialog box. Note that place & route optimizations for setup analysis cannot be performed using the m speed grade.
h. After re-running **Place & Route** at the failing temperatures and speed grades, if there are timing violations, over constrain the failing clocks using the `set_clock_uncertainty` constraint and re-run **Place & Route** so that it can put in extra effort to meet timing.

However, the timing should be re-run on this new .udb by removing the `set_clock_uncertainty` constraint. The syntax for `set_clock_uncertainty` constraint is `set_clock_uncertainty [-setup] [-hold] [-from <clock>] [-to <clock>] <uncertainty> [clock list].`

Notes:
- If there are setup violations, use the `set_clock_uncertainty` constraint on the failing clock with the `-setup` option.
- If there are hold violations, use the `set_clock_uncertainty` constraint on the failing clock with the `-hold` option.
- If the failing path is from the input side, use the `set_clock_uncertainty` constraint with the `-to <clock>` option.
- If the failing path is at the output side, use the `set_clock_uncertainty` constraint with the `-from <clock>` option.

Follow steps 2b, 2c, and 2d to perform timing analysis at the speed grade and temperature used for place & route by removing the `set_clock_uncertainty` constraint.
Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.
Revision History

Revision 1.0, March 2023

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>