ECP5 and ECP5-5G sysI/O Usage Guide

Technical Note

FPGA-TN-02032 1.4

January 2023
Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer’s responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.
Contents

Acronyms in This Document .. 5
1. Introduction ... 6
2. sysI/O Buffer Overview ... 6
3. Supported sysI/O Standards .. 6
4. sysI/O Banking Scheme ... 8
 4.1. V_{CC} (1.1 V) ... 8
 4.2. V_{CCIO} (1.2 V/1.35 V/1.5 V/1.8 V/2.5 V/3.3 V) .. 8
 4.3. V_{CCAUX} (2.5 V) .. 9
 4.4. V_{CCIO8} (1.2 V/1.5 V/1.8 V/2.5 V/3.3 V) .. 9
 4.5. V_{REF} .. 9
 4.6. Hot Socketing Support .. 9
 4.7. Standby .. 9
 4.8. LVDS sysI/O Buffer Pairs (A/B and C/D on Left and Right Sides) 10
 4.9. sysI/O Buffer Pair (A/B Pair on Top and Bottom Sides) .. 10
 4.10. Mixed Voltage Support in a Bank .. 13
 4.11. sysI/O Buffer Configurations ... 13
 4.11.1. Programmable Drive Strength ... 13
 4.11.2. Programmable Slew Rate .. 14
 4.11.3. Tri-state Control .. 14
 4.11.4. Open Drain Control ... 14
 4.11.5. Complementary Outputs ... 14
 4.11.6. Differential I/O Supported ... 14
 4.11.7. Complementary SSTL Output Support ... 15
 4.11.8. Differential Input Termination ... 15
 4.11.9. Single-Ended Input Termination ... 15
 4.11.10. Programmable CLAMP ... 16
 4.11.11. Differential SSTL and HSUL .. 16
 4.11.12. MIPI D-PHY Receiver IMIPI Interface ... 16
5. Software sysI/O Attributes .. 18
 5.1. IO_TYPE .. 18
 5.2. OPENDRAIN .. 19
 5.3. DRIVE ... 19
 5.4. DIFFDRIVE ... 20
 5.5. TERMINATION ... 20
 5.6. DIFFRESISTOR .. 20
 5.7. CLAMP .. 20
 5.8. PULLMODE .. 20
 5.9. SLEWRATE .. 20
 5.10. HYSTERESIS .. 20
 5.11. V_{REF} ... 20
 5.12. DIN/DOUT ... 21
 5.13. LOC ... 21
Appendix A. sysI/O Primitive Symbols and Instance Examples ... 22
 Primitive Symbols ... 22
 Instance Examples .. 22
Appendix B. sysI/O Attribute Examples ... 23
Appendix C. sysI/O Buffer Design Rules ... 24
Appendix D. sysI/O Attributes using the Diamond Spreadsheet View User Interface 27
Technical Support Assistance .. 28
Revision History .. 29
Figures
Figure 4.1. ECP5 and ECP5-5G sysI/O Banking ... 8
Figure 4.2. Bank V_{\text{Ref}} from One Specific Pad ... 9
Figure 4.3. sysI/O Buffer Pair for Left and Right Sides .. 11
Figure 4.4. sysI/O Buffer Pair for Top and Bottom Sides ... 12
Figure 4.5. Differential Input Termination ... 15
Figure 4.6. Single-Ended Input Termination .. 16
Figure 4.7. MIPI Primitive .. 16
Figure D.1. Port Attributes Tab of Spreadsheet View .. 27

Tables
Table 3.1. Single-Ended I/O Standards .. 7
Table 3.2. Differential I/O Standards ... 7
Table 4.1. Power Supplies ... 9
Table 4.2. Mixed Voltage I/O Support ... 13
Table 4.3. Programmable Drive Values for LVCMOS/LVTTL 14
Table 4.4. IMIPI Port List .. 17
Table 5.1. IO_TYPE Attribute Values ... 18
Table 5.2. Programmable Output Drive ... 19
Acronyms in This Document

A list of acronyms used in this document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLVDS</td>
<td>Bus Low-Voltage Differential Signaling</td>
</tr>
<tr>
<td>DDR</td>
<td>Double Data Rate</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>EBR</td>
<td>Embedded Block RAM</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-Programmable Gate Array</td>
</tr>
<tr>
<td>GPIO</td>
<td>General-Purpose Input/Output</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HSUL</td>
<td>High Speed Unterminated Logic</td>
</tr>
<tr>
<td>LVC莫斯</td>
<td>Low-Voltage Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>LVDS</td>
<td>Low-Voltage Differential Signaling</td>
</tr>
<tr>
<td>LVPECL</td>
<td>Low-Voltage Positive Emitter-Coupled Logic</td>
</tr>
<tr>
<td>LVTTTL</td>
<td>Low-Voltage Transistor-Transistor Logic</td>
</tr>
<tr>
<td>MIPI</td>
<td>Mobile Industry Processor Interface</td>
</tr>
<tr>
<td>MLVDS</td>
<td>Multipoint-Low Voltage Differential Signaling</td>
</tr>
<tr>
<td>PIC</td>
<td>Programmable I/O Cell</td>
</tr>
<tr>
<td>PIO</td>
<td>Programmable I/O</td>
</tr>
<tr>
<td>SERDES</td>
<td>SERializer/DESerializer</td>
</tr>
<tr>
<td>SDR</td>
<td>Single Data Rate</td>
</tr>
<tr>
<td>SLVS</td>
<td>Scalable Low-Voltage Signaling</td>
</tr>
<tr>
<td>SSTL</td>
<td>Stub Series Terminated Logic</td>
</tr>
</tbody>
</table>
1. Introduction
The sysI/O™ buffers in the ECP5™ and ECP5-5G™ devices give the designer the ability to easily interface with other devices using advanced system I/O standards. This technical note describes the sysI/O standards available and how to implement them using Lattice Diamond® design software.

2. sysI/O Buffer Overview
The ECP5 and ECP5-5G sysI/O interface contains multiple Programmable I/O Cell (PIC) blocks. The primary building block is a quad or pair of GPIO depending on the side of the I/O. The GPIO functions are available on every PIO of all devices. The quad is built of four GPIOs (PIOA, PIOB, PIOC and PIOD) or two GPIOs (PIOA and PIOB). Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as ‘T’ and ‘C’). PIOA and PIOB comprise a differential pair and PIOC and PIOD comprise another pair. One true LVDS driver is connected only to the A/B pair. Each PIO includes a sysI/O buffer and I/O logic (IOLOGIC). The ECP5 and ECP5-5G sysI/O buffers support a variety of single-ended and differential signaling standards. The sysI/O buffer also supports the DQS strobe signal that is required for interfacing with the DDR memory. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks.

The top and bottom sides are grouped into eight I/O with the pitch matches to nine PLC from the core. These I/O support hot socket with I/O standards from 3.3 V to 1.2 V and mainly used for 3.3 V domain I/O. The left and right sides are grouped into 16 I/O that support one DQS group and pitch matches to 12PLC + EBR/DSP from the core. The left/right side I/O supports I/O standard from 3.3 V to 1.2 V with no hot socket capability. The left/right side also have one LVDS output driver per four I/O and one differential termination resistor per two I/O. For more information on the architecture of the sysI/O buffer, refer to ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012).

The IOLOGIC includes input, output and tri-state registers that implement both single data rate (SDR) and double data rate (DDR) applications along with the necessary clock and data selection logic. Programmable delay lines and dedicated logic within the IOLOGIC are used to provide the required shift to incoming clock and data signals and the delay required by DQS inputs in DDR memory. The DDR implementation in the IOLOGIC and the DDR memory interface support are discussed in more detail in ECP5 and ECP5-5G High-Speed I/O Interface (FPGA-TN-02035).

3. Supported sysI/O Standards
The ECP5 and ECP5-5G sysI/O buffers support both single-ended and differential standards. Single-ended standards can be further subdivided into internally ratioed standards such as LVCMOS, LVTTL; and externally referenced standards such as HSUL and SSTL.

The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In LVCMOS and LVTTL modes, the buffer has individually-configurable options for drive strength and bus maintenance (weak pull-up, weak pull-down). Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, SLVS (Rx only), differential LVCMOS, differential SSTL and differential HSUL.

For better support of video standards, subLVDS and MIPI receiver and transmitter are also supported. Table 3.1 and Table 3.2 list the sysI/O standards supported in ECP5 and ECP5-5G devices. To implement MIPI interface with ECP5 devices. Please refer to MIPI D-PHY Bandwidth Matrix and Implementation (FPGA-TN-02090) for detailed information.
Table 3.1. Single-Ended I/O Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>V_{REF}</th>
<th>V_{CCIO}</th>
<th>Input</th>
<th>Output</th>
<th>Bi-Directional</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVTTL33</td>
<td>—</td>
<td>3.3V</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVCMOS33</td>
<td>—</td>
<td>3.3V</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVCMOS25</td>
<td>—</td>
<td>2.5V</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVCMOS18</td>
<td>—</td>
<td>1.8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVCMOS15</td>
<td>—</td>
<td>1.5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVCMOS12</td>
<td>—</td>
<td>1.2V</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSTL18 Class I, II</td>
<td>0.9</td>
<td>—</td>
<td>Yes1</td>
<td>Yes</td>
<td>Yes1</td>
</tr>
<tr>
<td>SSTL15 Class I, II</td>
<td>0.75</td>
<td>—</td>
<td>Yes1</td>
<td>Yes</td>
<td>Yes2</td>
</tr>
<tr>
<td>SSTL135 Class I, II</td>
<td>0.675</td>
<td>—</td>
<td>Yes1</td>
<td>Yes</td>
<td>Yes1</td>
</tr>
<tr>
<td>HSUL12</td>
<td>0.6</td>
<td>—</td>
<td>Yes1</td>
<td>Yes</td>
<td>Yes1</td>
</tr>
</tbody>
</table>

Notes:
1. Left and right side I/O only.
2. Required for output only.

Table 3.2. Differential I/O Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>V_{REF}</th>
<th>Input</th>
<th>Output</th>
<th>Bi-Directional</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSTL18D I, II</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SSTL135D I, II</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SSTL15D I, II</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HSUL12D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LVTTL33D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LVCMOS33D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LVCMOS25D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LVCMOS18D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LVDS</td>
<td>—</td>
<td>Yes</td>
<td>A/B pair</td>
<td>Yes</td>
</tr>
<tr>
<td>LVDS25E</td>
<td>—</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BLVDS25</td>
<td>—</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BLVDS25E</td>
<td>—</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MLVDS25</td>
<td>—</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MLVDS25E</td>
<td>—</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVPECL33</td>
<td>—</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LVPECL33E</td>
<td>—</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SLVS</td>
<td>—</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SUBLVDS</td>
<td>—</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MIPI D-PHY HS Mode</td>
<td>—</td>
<td>Yes</td>
<td>A/B pair</td>
<td>Bi-Di</td>
</tr>
</tbody>
</table>
4. sysI/O Banking Scheme

ECP5 and ECP5-5G devices have general-purpose programmable sysI/O banks and a configuration bank. Each of the general-purpose sysI/O banks has a \(V_{CCIO} \) supply voltage and one reference voltage, \(V_{REF1} \). Every device has two banks on the left, right and top side.

The bottom side implements SERDES channels and only the biggest device 85K has one sysI/O bank.

Every ECP5 and ECP5-5G device has a TAP controller interface bank in the lower left corner of the device. This Bank 8 has four signal pins (TCK, TMS, TDI and TDO) and is powered by \(V_{CCIO8} \), located on the lower left side of the device, has shared I/O for configuration.

![Diagram of ECP5 and ECP5-5G sysI/O Banking](image)

*Note: Only 85K device has this bank.

Figure 4.1. ECP5 and ECP5-5G sysI/O Banking

4.1. \(V_{CC} \) (1.1 V)

The core power supply, \(V_{CC} \), is used to power the device internally before data is captured by the I/O buffers. \(V_{CC} \) is also used to power the 1.2V (LVCMOS12) ratioed buffers so these can be captured independently of \(V_{CCIO} \).

4.2. \(V_{CCIO} \) (1.2 V/1.35 V/1.5 V/1.8 V/2.5 V/3.3 V)

Each bank has a separate \(V_{CCIO} \) supply that powers the single-ended output drivers in a bank. The bank \(V_{CCIO} \) is also used to power ratioed input buffers such as LVCMOS15 and LVCMOS18, as well as extended threshold ratioed buffers. For unused banks, it is recommended to set \(V_{CCIO} \) to 0 V to minimize power and hold the bank in hot socket.
4.3. \(V_{\text{CCAUX}} (2.5 \text{ V}) \)

In addition to the \(V_{\text{CCIO}} \) supply, every bank also has an auxiliary global supply called \(V_{\text{CCAUX}} \). The bank \(V_{\text{CCAUX}} \) supply is used to power the differential and referenced (SSTL) input buffer. Bank \(V_{\text{CCAUX}} \) is also used to power the push-pull output pre-driver sections.

4.4. \(V_{\text{CCIO8}} (1.2 \text{ V}/1.5 \text{ V}/1.8 \text{ V}/2.5 \text{ V}/3.3 \text{ V}) \)

The JTAG pins share power supply of Bank 8 \(V_{\text{CCIO}} \) supplies. \(V_{\text{CCIO8}} \) determines the electrical characteristics of the LVCMOS JTAG pins, both the output high level and the input threshold. Table 4.1 contains a summary of the required power supplies.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Description</th>
<th>Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CC}})</td>
<td>Core power supply</td>
<td>1.1 V</td>
</tr>
<tr>
<td>(V_{\text{CCIO}})</td>
<td>Power supply for the I/O banks</td>
<td>1.2 V/1.35 V/1.8 V/2.5 V/3.3 V</td>
</tr>
<tr>
<td>(V_{\text{CCAUX}})</td>
<td>Auxiliary power supply</td>
<td>2.5 V</td>
</tr>
<tr>
<td>(V_{\text{CCIO8}})</td>
<td>Power supply for JTAG pins and configuration bank I/O</td>
<td>1.2 V/1.5 V/1.8 V/2.5 V/3.3 V</td>
</tr>
</tbody>
</table>

*Note: Refer to ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012) for recommended minimum and maximum values.

4.5. \(V_{\text{REF1}} \)

Each bank can support one separate \(V_{\text{REF}} \) input voltage, \(V_{\text{REF1}} \), which is used to set the threshold for the referenced input buffers. A dedicated I/O in each bank can be used to drive the \(V_{\text{REF1}} \) bank reference voltage. An I/O used as a \(V_{\text{REF1}} \) input is also called a VREF1_DRIVER. A conceptual block diagram is shown in Figure 4.2.

![Figure 4.2. Bank VREF from One Specific Pad](image)

To assign a \(V_{\text{REF}} \) driver, use IO_TYPE=VREF1_DRIVER. To assign a \(V_{\text{REF}} \) to a buffer, use VREF=VREF1_LOAD.

4.6. Hot Socketing Support

The I/O located on the top and bottom sides are fully hot socketable. Refer to ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012) for hot socketing (IDK) requirements.

4.7. Standby

Using the Standby modes is a way to dynamically power-down the bank. It disables the differential/reference receiver, true differential driver, current mirrors and bias circuits.

In Standby mode, differential drivers and differential input buffers can be powered down to save power.

The Standby modes are enabled on a bank-by-bank basis. Each bank has user-routed input signals to enable the Standby (dynamic power-down) modes.

Refer to Power Consumption and Management for ECP5 and ECP5-5G Devices (FPGA-TN-02210) for detailed information.
4.8. **LVDS sysI/O Buffer Pairs (A/B and C/D on Left and Right Sides)**

The GPIOs are grouped as a quad building block, GPIOA, GPIOB, GPIOC and GPIOD. Each pair consists of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One referenced input buffer, per pair, can also be configured as a differential input. In addition to these buffers and drivers, each I/O has a weak pull-up and weak pull-down resistor. The programmability for these ‘weak’ features is limited to ON and OFF programmability on each I/O independently. The pull modes are always disabled in output mode. Left and right side GPIO has clamp always on. The two pads in the pair are described as ‘true’ and ‘comp’, where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O. The sysI/O buffers pairs are grouped as A/B pad pairs or C/D pad pairs. Each sysI/O pad pair supports programmable on/off differential input termination of 100 Ω. There is an added LVDS output driver in the A/B pad pairs of all arrays. The C/D pad pairs do not have the true LVDS differential output driver. The LVDS output driver does support tri-state. LVDS can be BIDI.

Figure 4.3 shows the sysI/O Buffer Pairs on left and right sides.

4.9. **sysI/O Buffer Pair (A/B Pair on Top and Bottom Sides)**

The GPIOs are grouped as a pair building block, GPIOA and GPIOB. Each pair consists of two single-ended output drivers and two sets of single-ended input buffers (ratioed only). In addition to these buffers and drivers, each I/O has a weak pull-up and weak pull-down resistor. The programmability for these ‘weak’ features is limited to ON and OFF programmability on each I/O independently. The pull modes are always disabled in output mode. All GPIO on top and bottom side support a clamp that is programmable on or off.

Figure 4.4 shows the sysI/O buffer pair on the top and bottom sides.
The PAD C and PAD D pio pair have the same configuration logic as PAD A and PAD B, with the exception, they do not have a true differential output driver.

Figure 4.3. sysI/O Buffer Pair for Left and Right Sides
The PAD C and PAD D pio pair have the same configuration logic as PAD A and PAD B.

Figure 4.4. sysI/O Buffer Pair for Top and Bottom Sides
4.10. Mixed Voltage Support in a Bank

ECP5 and ECP5-5G devices support mixed mode inputs in a given bank on all sides of the device. All differential and referenced inputs are supported independent of V_{CCIO}. When output is configured as an open drain it can be placed independent of V_{CCIO}. Some of the ratioed buffers are powered by V_{CCAUX} and V_{CC} and can therefore be placed independently of V_{CCIO}.

ECP5 and ECP5-5G devices support numerous mixed input voltage combinations by using a combination of three ratio receivers. The first receiver is powered by V_{CCIO} and uses overdrive/underdrive threshold adjustments to support 1.8 V and 1.5 V signaling. The second is a fixed threshold 1.2 V ratio receiver powered by V_{CC} that supports 1.2 V signaling. The third is powered with V_{CCAUX} (2.5 V), supports hysteresis, and is used for 3.3 V and 2.5 V signaling.

Table 4.2 lists the ratioed sysI/O standards that can be mixed in the same bank.

<table>
<thead>
<tr>
<th>V_{CCIO}</th>
<th>1.2 V</th>
<th>1.5 V</th>
<th>1.8 V</th>
<th>2.5 V</th>
<th>3.3 V</th>
<th>1.2 V</th>
<th>1.5 V</th>
<th>1.8 V</th>
<th>2.5 V</th>
<th>3.3 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 V</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.35 V</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.5 V</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.8 V</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2.5 V</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>3.3 V</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4.11. sysI/O Buffer Configurations

This section describes the various sysI/O features available on the ECP5 and ECP5-5G FPGA.

4.11.1. Programmable Drive Strength

The single-ended driver has programmable drive strength. The LVCMOS/LVTTL drive strength available at each value of V_{CCIO} is shown in Table 4.3. The ECP5 and ECP5-5G single-ended driver is a process, voltage and temperature compensating driver. Therefore, there is a good tolerance of drive strength. For LVCMOS and LVTTL I/O standards, guaranteed minimum drive strength is listed.

The user must consider the maximum allowable current per bank and the package thermal limit current when selecting the drive strength. Table 4.3 lists the available drive settings for each of the output standards.
Table 4.3. Programmable Drive Values for LVCMOS/LVTTL

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.8 mA</th>
<th>1.2 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 V</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.5 V</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1.8 V</td>
<td>12*</td>
<td>12*</td>
</tr>
<tr>
<td>2.5 V</td>
<td>16*</td>
<td>16*</td>
</tr>
<tr>
<td>3.3 V</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

*Note: Automotive device may not support drive setting.

The SSTL and HSUL nominal drive strengths are optimized for the performance and signal integrity of the I/O interface.

4.11.2. Programmable Slew Rate

The single-ended output buffer for each device I/O pin has programmable output slew rate control that can be configured for either low-noise (SLEWRATE=SLOW) or high-speed (SLEWRATE=FAST) performance. Each I/O pin has an individual slew rate control that allows designers to specify slew rate control on a pin-by-pin basis. Slew rate control affects both the rising and falling edges. Slew rates vary as a function of drive and PVT conditions. Slow slew rate reduces SSO noise. The software default for slew rate is SLEWRATE=SLOW.

Differential standards are not impacted by slew rate settings. However, slew rate settings have some impact on emulated differential standards, as they use single-ended output buffers and complementary outputs.

4.11.3. Tri-state Control

On the output side, each single-ended driver has a separate tri-state control. The differential driver has tri-state control as well.

4.11.4. Open Drain Control

In addition to tri-state control, single-ended drivers also support open drain operation on each I/O independently. Unlike non-open drain outputs that consist of both source and sink components, an open drain output is composed of only the sink section of the output driver.

All LVCMOS and LVTTL output buffers can be configured to function as open drain outputs. The user can implement an open drain output by turning on the OPENDRAIN attribute in the software.

4.11.5. Complementary Outputs

The single-ended driver associated with the complementary pad can optionally be driven by the complement of the data that drives the single-ended driver associated with the true pad. ECP5 and ECP5-5G devices use pads A and C as true pads and pads B and D as complement pads. This allows a pair of single-ended drivers to be used to drive complementary outputs. Pads A and B from a PIO pair and pads C and D from another PIO pair. This is used for driving complementary SSTL signals (as required by the differential SSTL clock inputs on synchronous DRAM and synchronous SRAM devices, respectively). It can also be used in conjunction with off-chip resistors to emulate LVPECL33, MLVDS, LVDS25E and BLVDS output drivers. When this option is selected, the tri-state control for the driver associated with the complement pad is driven by the same signal as the tri-state control for the driver associated with the true pad.

4.11.6. Differential I/O Supported

Differential inputs LVDS, SUBLVDS, MLVDS25, BLVDS, SLVS, MIPI Receiver (HS) are supported with differential receivers on both A/B pair and C/D pair PIOs and on left and right sides only. 50% of the sysl/O buffer pairs on the left and right sides only are true differential outputs. LVDS is supported with a dedicated differential output driver on the A/B PIO pair. The C/D pair pins do not support true differential outputs.

LVDS25E, LVPECL33E, MLVDS25E, and BLVDS25E outputs can be implemented via emulation on all A/B and C/D pin output pairs. These emulated differential outputs require external resistors. Refer to ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012) for detailed information.
MIPI Transmitter (HS) can be implemented via using emulated LVDS25E differential outputs with external resistor network. Refer to MIPI D-PHY Bandwidth Matrix and Implementation (FPGA-TN-02090) for detailed information.

4.11.7. Complementary SSTL Output Support
Differential SSTL outputs do not use external resistors, they use the complementary mux contained within each pair of single-ended output drivers.

4.11.8. Differential Input Termination
The ECP5 and ECP5-5G device supports on-chip 100 Ω input differential termination between all pairs of all banks on left and right sides. The only value supported is 100 Ω. It is programmable as on and off. When it is on and the I/O type is MIPI or a BIDI, it is dynamic.

Figure 4.5 below shows the discrete off-chip and on-chip solutions for dedicated, differential input termination. The differential termination is implemented using parallel legs that turn on and off to compensate for PVT variation. The termination also applies to input termination and is dynamic (enabled when output buffer is put in tri-state) or static (always on) to support MIPI and BIDI applications.

4.11.9. Single-Ended Input Termination
ECP5 and ECP5-5G devices support single-ended input parallel termination to $V_{CCIO}/2$. This is done by using output driver legs to emulate termination between the pad and V_{CCIO} as well as between the pad and VSS. Both static and dynamic termination are supported. Dynamic termination is used to support the DDR2 and DDR3 interface standards. Values of termination are 50 Ω, 75 Ω and 150 Ω. All input parallel terminations use a Thevenin termination scheme. As an example, 50 Ω to $V_{CCIO}/2$ is created by the Thevenin combination of 100 Ω between the pad and V_{CCIO} and 100 Ω between the pad and VSS.

Figure 4.6 shows the various off-chip, single-ended input termination schemes.
4.11.10. Programmable CLAMP
The buffers on top and bottom syst/I/O have optional clamp diodes that may optionally be specified in the Lattice Diamond design software. The programmable CLAMP can be turned ON or OFF.

4.11.11. Differential SSTL and HSUL
The single-ended driver associated with the complementary pad can optionally be driven by the complement of the data that drives the single-ended driver associated with the true pad. This allows a pair of single-ended drivers to be used to drive complementary outputs with the lowest possible skew between the signals. This is used for driving complementary SSTL and HSUL signals (as required by the differential SSTL and HSUL clock inputs on synchronous DRAM and synchronous SRAM devices, respectively).

Refer to the ECP5 and ECP5-5G Family Data Sheet (FPGA-Ds-02012) for a detailed description of the differential HSUL and SSTL implementations.

4.11.12. MIPI D-PHY Receiver IMIPI Interface
The MIPI D-PHY receiver IMIPI Interface is used only in input mode and only on the C/D pad pair. The differential C/D pad pair high-speed and pad C single-ended low-power inputs are handled through the pad C I/O logic. The pad D single-ended low-power inputs are handled through the pad D I/O logic.

- **HS mode**: 100 Ω differential termination is enabled with a differential receiver.
- **LP mode**: HS mode is disabled and ratio receiver is enabled on pad C.

The primitive shown in Figure 4.7 should be used when implementing the MIPI interface.

<table>
<thead>
<tr>
<th>Termination Type</th>
<th>Off-Chip Solution</th>
<th>On-Chip Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to VCCIO/2 at receiving end.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thevenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel to VCCIO/2 at receiving end with bidirectional enable/disable for DDR2 and DDR3.</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.6. Single-Ended Input Termination
Table 4.4. IMIPI Port List

<table>
<thead>
<tr>
<th>Port</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Input</td>
<td>Pad C input</td>
</tr>
<tr>
<td>AN</td>
<td>Input</td>
<td>Pad D input</td>
</tr>
<tr>
<td>HSSEL</td>
<td>Input</td>
<td>High-speed select signal. This is shared with the tri-state input of the buffer. HSSEL=1: High-speed mode, 100 Ω differential termination is on. Pad C logic select differential signal to IOL for gearing. HSSEL=0: Low-speed mode, 100 Ω termination is turned off. OHSLS selected as ratioed LVCMOS input buffer from the I input (pad C), OLS selected as LVCMOS input from the IN input (pad D).</td>
</tr>
<tr>
<td>OHSLS</td>
<td>Output</td>
<td>High-speed or low-speed output, depending on HSSEL</td>
</tr>
<tr>
<td>OLS</td>
<td>Output</td>
<td>Low-speed output</td>
</tr>
</tbody>
</table>

MIPI is supported via the IMIPI primitive instead of IO_TYPE in the front-end RTL and simulation.
5. Software sysI/O Attributes

The sysI/O attributes can be specified in HDL, using the Preference Editor Graphical User Interface (GUI) or in the ASCII Preference file (.prf) directly. The appendices of this document provide examples of how these can be assigned using each of the methods described above. This section describes each of the attributes in detail.

5.1. IO_TYPE

The IO_TYPE is used to set the sysI/O standard for an I/O. The \(V_{CCIO} \) required to set these I/O standards are embedded in the attribute names. The BANK \(V_{CCIO} \) attribute is used to specify allowed \(V_{CCIO} \) combinations for each IO_TYPE.

Default: LVCMOS25

<table>
<thead>
<tr>
<th>sysI/O Signaling Standard</th>
<th>IO_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT</td>
<td>LVCMOS25</td>
</tr>
<tr>
<td>LVDS 2.5 V</td>
<td>LVDS</td>
</tr>
<tr>
<td>Emulated LVDS 2.5 V</td>
<td>LVDS25E</td>
</tr>
<tr>
<td>Bus LVDS 2.5 V</td>
<td>BLVDS25</td>
</tr>
<tr>
<td>Emulated Bus LVDS 2.5 V</td>
<td>BLVDS25E</td>
</tr>
<tr>
<td>LVPECL 3.3 V</td>
<td>LVPECL33</td>
</tr>
<tr>
<td>Emulated LVPECL 3.3 V</td>
<td>LVPECL33E</td>
</tr>
<tr>
<td>MLVDS</td>
<td>MLVDS</td>
</tr>
<tr>
<td>Emulated MLVDS</td>
<td>MLVDS25E</td>
</tr>
<tr>
<td>SLVS</td>
<td>SLVS</td>
</tr>
<tr>
<td>Sub_LVDS</td>
<td>SUBLVDS</td>
</tr>
<tr>
<td>HSUL 1.2 V</td>
<td>HSUL12</td>
</tr>
<tr>
<td>Differential HSUL</td>
<td>HSUL12D</td>
</tr>
<tr>
<td>SSTL15 Class I and II</td>
<td>SSTL15_I, SSTL15_II</td>
</tr>
<tr>
<td>Differential SSTL15 Class I and II</td>
<td>SSTL15D_I, SSTL15D_II</td>
</tr>
<tr>
<td>SSTL135 Class I and II</td>
<td>SSTL135_I, SSTL135_II</td>
</tr>
<tr>
<td>Differential SSTL135 Class I and II</td>
<td>SSTL135D_I, SSTL135D_II</td>
</tr>
<tr>
<td>SSTL18 Class I and II</td>
<td>SSTL18_I, SSTL18_II</td>
</tr>
<tr>
<td>Differential SSTL18 Class I and II</td>
<td>SSTL18D_I, SSTL18D_II</td>
</tr>
<tr>
<td>Differential LVTTL</td>
<td>LVTTL33D</td>
</tr>
<tr>
<td>LVTTL</td>
<td>LVTTL33</td>
</tr>
<tr>
<td>LVCMOS 3.3 V</td>
<td>LVCMOS33</td>
</tr>
<tr>
<td>LVCMOS 2.5 V</td>
<td>LVCMOS25</td>
</tr>
<tr>
<td>LVCMOS 1.8 V</td>
<td>LVCMOS18</td>
</tr>
<tr>
<td>LVCMOS 1.5 V</td>
<td>LVCMOS15</td>
</tr>
<tr>
<td>LVCMOS 1.2 V</td>
<td>LVCMOS12</td>
</tr>
<tr>
<td>Differential LVCMOS 3.3 V</td>
<td>LVCMOS33D</td>
</tr>
<tr>
<td>Differential LVCMOS 2.5 V</td>
<td>LVCMOS25D</td>
</tr>
<tr>
<td>Differential LVCMOS 1.8 V</td>
<td>LVCMOS18D</td>
</tr>
</tbody>
</table>
5.2. OPENDRAIN

An I/O can be assigned independently to be an open drain when this attribute is turned on.

Values: ON, OFF

Default: OFF

5.3. DRIVE

The drive strength attribute is available for output standards that support programmable drive strength. The default depends on the I/O standard used.

Table 5.2. Programmable Output Drive

<table>
<thead>
<tr>
<th>Output Standard</th>
<th>DRIVE</th>
<th>DIFFDRIVE</th>
<th>VCCIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVTTL33</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>3.3</td>
</tr>
<tr>
<td>LVCMOS33</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>3.3</td>
</tr>
<tr>
<td>LVCMOS25</td>
<td>4 mA, 8 mA, 12 mA</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>LVCMOS18</td>
<td>4 mA, 8 mA, 12 mA</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>LVCMOS15</td>
<td>4 mA, 8 mA</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>LVCMOS12</td>
<td>4 mA, 8 mA</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td>LVTTL33 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>LVCMOS33 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>LVCMOS25 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>LVCMOS18 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>LVCMOS15 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>LVCMOS12 (open drain)</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>Note^2</td>
</tr>
<tr>
<td>HSUL12</td>
<td>4 mA, 8 mA</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td>SSTL135 I</td>
<td>8 mA</td>
<td>—</td>
<td>1.35</td>
</tr>
<tr>
<td>SSTL135 II</td>
<td>10 mA</td>
<td>—</td>
<td>1.35</td>
</tr>
<tr>
<td>SSTL18 I</td>
<td>8 mA</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>SSTL18 II</td>
<td>16 mA</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>SSTL15 I</td>
<td>8 mA</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>SSTL15 II</td>
<td>10 mA</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>Differential Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVTTL33D</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>3.3</td>
</tr>
<tr>
<td>LVCMOS33D</td>
<td>4 mA, 8 mA, 12 mA, 16 mA</td>
<td>—</td>
<td>3.3</td>
</tr>
<tr>
<td>LVCMOS25D</td>
<td>4 mA, 8 mA, 12 mA</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>SSTL1.35D I</td>
<td>8 mA</td>
<td>—</td>
<td>1.35</td>
</tr>
<tr>
<td>SSTL1.35D II</td>
<td>10 mA</td>
<td>—</td>
<td>1.35</td>
</tr>
<tr>
<td>SSTL18D I</td>
<td>8 mA</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>SSTL18D II</td>
<td>16 mA</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>SSTL15D I</td>
<td>8 mA</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>SSTL15D II</td>
<td>10 mA</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>HSUL12D</td>
<td>4 mA, 8 mA</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td>LVDS</td>
<td>—</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>LVDS25E^1</td>
<td>8 mA</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>BLVDS25E^1</td>
<td>16 mA</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>MLVDS25E^1</td>
<td>16 mA</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>LVPECL33E^1</td>
<td>16 mA</td>
<td>—</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Notes:

1. Emulated with LVCMOS drivers and external resistors.
2. Independent of VCCIO.
5.4. **DIFFDRIVE**

DIFFDRIVE attribute is available for the LVDS output standard. The default value is set to 3.5 mA.

Values: 3.5 mA
Default: 3.5 mA

5.5. **TERMINATION**

This attribute sets the on-chip input parallel termination to $V_{CCIO}/2$. Parallel termination is achieved using a Thevenin termination scheme. This programmable option can be set for each I/O individually. Both static and dynamic terminations are available.

Values: OFF, 50, 75, 150
Default: OFF

5.6. **DIFFRESISTOR**

This attribute is used to provide differential termination (dynamic differential). It is available only for differential IO_TYPES.

Values: OFF, 100
Default: OFF

5.7. **CLAMP**

The CLAMP options can be enabled for each I/O independently. CLAMP is available on only top and bottom sysI/O banks. CLAMP is not available when an output is set to open drain.

Values: ON, OFF
Default: OFF

5.8. **PULLMODE**

The PULLMODE options can be enabled for each I/O pin independently. The PULLMODE settings are not available when I/O pins are programmed output-only. It is available for I/O pins in Input mode and Bidi mode.

Values: UP, DOWN, NONE
Default: DOWN

5.9. **SLEWRATE**

Each I/O pin has an individual slew rate control. This allows designers to specify slew rate control on a pin-by-pin basis. This is not a valid attribute for inputs.

Values: FAST, SLOW, NA
Default: SLOW

Note: LVTTL and LVCMOS support fast and slow slew rates.

5.10. **HYSTERESIS**

The ratioed input buffers have an input hysteresis option. The HYSTERESIS option can be used to change the amount of hysteresis for the LVTTL33, LVCMOS33 and LVCMOS25 input and bi-directional I/O standards.

The HYSTERESIS option for each of the input pins can be set independently.

Values: ON, OFF
Default: Default for LVCMOS33, LVCMOS25 and LVTTL33 is ON. Default for all other IO_TYPES is OFF.
5.11. **V_{REF}**

The V_{REF} option must be enabled for referenced input buffers (HSUL and SSTL). The V_{REF} can be specified in the HDL or in the Design Planner GUI.

Values: OFF, VREF1_LOAD

Default: VREF1_LOAD (software assigns the dedicated pin to be V_{REF}).

5.12. **DIN/DOUT**

This attribute can be used when an I/O register needs to be assigned. Using DIN asserts an input register and using DOUT asserts an output register in the design. By default, the software attempts to assign the I/O registers if applicable. Users can turn this OFF by using a synthesis attribute or the Preference Editor. These attributes can only be applied on registers.

5.13. **LOC**

This attribute can be used to make pin assignments to the I/O ports in the design. This attribute is used only when the pin assignments are made in HDL source code. Pins can also be assigned directly using the GUI in the Preference Editor. See the appendices of this document for further information.
Appendix A. sysI/O Primitive Symbols and Instance Examples

Primitive Symbols

IB: Input Buffer

```
IB: I → O
```

- **INPUT**: I
- **OUTPUT**: O

IBPD: Input Buffer with Pull-down

```
IBPD: I → O
```

- **INPUT**: I
- **OUTPUT**: O

IBPU: Input Buffer with Pull-up

```
IBPU: I → O
```

- **INPUT**: I
- **OUTPUT**: O

OB: Output Buffer

```
OB: I → O
```

- **INPUT**: I
- **OUTPUT**: O

OBPD: Output Buffer with Pull-down

```
OBPD: I → O
```

- **INPUT**: I
- **OUTPUT**: O

OBPU: Output Buffer with Pull-up

```
OBPU: I → O
```

- **INPUT**: I
- **OUTPUT**: O

OBW: Output Buffer with Keeper Mode

```
OBW: I → O
```

- **INPUT**: I
- **OUTPUT**: O

BB: Bi-directional Buffer

```
BB: I → O
```

- **INPUTS**: I, T
- **OUTPUT**: O
- **INOUT**: B

OB: Output Buffer

```
OB: I → O
```

- **INPUT**: I
- **OUTPUT**: O

OBZ: Output Buffer with Tristate

```
OBZ: I → O
```

- **INPUTS**: I, T
- **OUTPUT**: O

OBCO: Output Complementary Buffer

```
OBCO: I → OT, OC
```

- **INPUT**: I
- **OUTPUTS**: OT, OC

BBPD: Bi-directional Buffer with Pull-down

```
BBPD: T → O
```

- **INPUTS**: I, T
- **OUTPUT**: O
- **INOUT**: B

BBPU: Bi-directional Buffer with Pull-up

```
BBPU: T → O
```

- **INPUTS**: I, T
- **OUTPUT**: O
- **INOUT**: B

MIPI: MIPI Interface

```
MIPI: A → OHSLS, AN, HSSEL, OLS
```

- **INPUTS**: A, AN, HSSEL
- **OUTPUTS**: OHSLS, OLS
- **INOUT**: B
Instance Examples

Input Buffer (IB)

VHDL:
```vhdl
component IB
    port (I: in std_logic; O: out std_logic);
end component;

Inst_IB: IB
    port map (I=>clk, O=>buf_clk);
```

Verilog:
```verilog
IB IB_inst (.I(Data[7]), .O(buf_Data7));
```

Output Buffer (OB)

VHDL:
```vhdl
component OB
    port (I: in std_logic; O: out std_logic);
end component;

Inst_OB0: OB
    port map (I=>buf_qo0, O=>q(0));
```

Verilog:
```verilog
OB OB_inst (.I(Data[7]), .O(buf_Data7));
```

Bi-directional Buffer (BB)

VHDL:
```vhdl
component BB
    port (I: in std_logic; T: in std_logic; O: out std_logic; B: inout std_logic);
end component;

buf7: BB
    port map (I=>Q_out7, T=>Q_tri7, O=>buf_Data7, B=>Data(7));
```

Verilog:
```verilog
BB buf7 (.I(Q_out7), .T(Q_tri7), .O(buf_Data7), .B(Data[7]));
```
Appendix B. sysI/O Attribute Examples

IO_TYPE

VHDL:

ATTRIBUTE IO_TYPE: string;
ATTRIBUTE IO_TYPE OF portA: SIGNAL IS "LVCMOS18";
ATTRIBUTE IO_TYPE OF portB: SIGNAL IS "LVCMOS33";
ATTRIBUTE IO_TYPE OF portC: SIGNAL IS "SSTL33_I";
ATTRIBUTE IO_TYPE OF portD: SIGNAL IS "LVCMOS25";

Verilog:

output [4:0] portA /* synthesis IO_TYPE="LVTTL33" DRIVE="16" PULLMODE="UP" SLE-WRAPER="FAST"*/;

OPENDRAIN

VHDL:

ATTRIBUTE OPENDRAIN: string;
ATTRIBUTE OPENDRAIN OF q_lvttl33_17: SIGNAL IS "ON";

Verilog:

output [4:0] portA /* synthesis attribute OPENDRAIN of q_lvttl33_17 is ON */;

DRIVE

VHDL:

ATTRIBUTE DRIVE: string;
ATTRIBUTE DRIVE OF portD: SIGNAL IS "8";

Verilog:

output [4:0] portA /* synthesis DRIVE = "8" */;

DIFFDRIVE

VHDL:

ATTRIBUTE DIFFDRIVE: string;
ATTRIBUTE DIFFDRIVE OF portF: SIGNAL IS "3.5";

Verilog:

output [4:0] portF/* synthesis IO_TYPE="LVDS" DIFFDRIVE="3.5" */;

TERMINATION

VHDL:

ATTRIBUTE TERMINATION: string;
ATTRIBUTE TERMINATION OF portF: SIGNAL IS "50";

Verilog:

output [4:0] portA /* synthesis IO_TYPE="SSTL18_I" TERMINATION = "50"*/;

DIFFRESISTOR

VHDL:

ATTRIBUTE DIFFRESISTOR: string;
ATTRIBUTE DIFFERESISTOR OF portF: SIGNAL IS "100";

Verilog:

output [4:0] portA /* synthesis IO_TYPE="LVDS" DIFFRESISTOR = "100"*/;
<table>
<thead>
<tr>
<th>Feature</th>
<th>VHDL</th>
<th>Verilog</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULLMODE</td>
<td>ATTRIBUTE PULLMODE: string;</td>
<td>output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" PULLMODE = "PULLUP"*/;</td>
</tr>
<tr>
<td></td>
<td>ATTRIBUTE PULLMODE OF portF: SIGNAL IS "PULLUP";</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verilog:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" PULLMODE = "PULLUP"*/;</td>
</tr>
<tr>
<td>SLEWRATE</td>
<td>ATTRIBUTE SLEWRATE: string;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTRIBUTE SLEWRATE OF portF: SIGNAL IS "FAST";</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verilog:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" SLEWRATE = "FAST"*/;</td>
</tr>
<tr>
<td>CLAMP</td>
<td>ATTRIBUTE CLAMP: string;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTRIBUTE CLAMP OF portF: SIGNAL IS "ON";</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verilog:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" CLAMP = "ON"*/;</td>
</tr>
<tr>
<td>HYSTERESIS</td>
<td>ATTRIBUTE HYSTERESIS: string;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTRIBUTE HYSTERESIS OF portF: SIGNAL IS "ON";</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verilog:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>output [4:0] portA /* synthesis IO_TYPE="LVCMOS25" HYSTERESIS = "ON"*/;</td>
</tr>
</tbody>
</table>
Appendix C. sysI/O Buffer Design Rules

- Only one V_{CCIO} level is allowed in a given bank.
 - If V_{CCIO} for any bank is set to 2.5 V, it is recommended that it be connected to the same power supply as V_{CCAUX}, thus minimizing leakage. The software issues a message in the .pad file to the user about this if the V_{CCIO} of a bank is set to 2.5 V.
- When an output is configured as an OPENDRAIN, the PULLMODE is set to NONE and the CLAMP setting is set to OFF.
- When an output is configured as an OPENDRAIN, it can be placed independent of V_{CCIO}.
- When a ratioed input buffer is placed in a bank with a different V_{CCIO} (mixed mode), the Pull mode options of Up are no longer available.
- Left and right banks can support LVDS input buffers. True LVDS outputs are supported on 50% of the sysI/O pins of left and right banks. True LVDS outputs are available only on the A and B pairs of the I/O pairs of left and right banks. Emulated differential outputs are available on every output pair. Pad information can be found in the data sheet of the pad file.
- The IO_TYPE attribute for a differential buffer can only be assigned to the TRUE pad. The Lattice Diamond design tool automatically assigns the other I/O of the differential pair to the complementary pad.
- DIFFRESISTOR termination is available on all sysI/O pairs of left and right banks.
- If none of the pins is used for a given bank, the V_{CCIO} of the bank should be grounded except the JTAG bank.
Appendix D. sysI/O Attributes using the Diamond Spreadsheet View User Interface

sysI/O buffer attributes can be assigned using the Spreadsheet View in Lattice Diamond design software. The Port Assignments Sheet lists all the ports in a design and all the available sysI/O attributes in multiple columns. Click on each of these cells for a list of all the valid I/O preferences for that port. Each column takes precedence over the next. Therefore, when you choose a particular IO_TYPE, the columns for the PULLMODE, DRIVE, SLEWRATE and other attributes only list the valid entries for that IO_TYPE.

Pin locations can be locked using the Pin column of the Port Assignments Sheet or using the Pin Assignments Sheet. You can right-click on a cell and go to Assign Pins to see a list of available pins.

In Spreadsheet View, go to Design > Preference PIO DRC to look for incorrect pin assignments.

You can enter the DIN/DOUT preferences using the Cell Mapping tab. All the preferences assigned using the Spreadsheet view are written into the logical preference file (.lpf).

Figure D.1 shows the Port Assignments Sheet of the Spreadsheet View. For further information on how to use the Spreadsheet View, refer to the Diamond Help documentation, available in the Help menu option of the software.

![Figure D.1. Port Attributes Tab of Spreadsheet View](image-url)
Technical Support Assistance
Submit a technical support case via www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.
Revision History

Revision 1.4, January 2023
<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimers</td>
<td>Updated this section.</td>
</tr>
<tr>
<td>sysI/O Primitive Symbols and Instance Examples</td>
<td>Removed the OBZPU primitive from the primitive symbols.</td>
</tr>
</tbody>
</table>

Revision 1.3, January 2020
<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimer</td>
<td>Added this section.</td>
</tr>
</tbody>
</table>

Revision 1.2, March 2019
<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>• Changed document number from TN1262 to FPGA-TN-02032.</td>
</tr>
<tr>
<td></td>
<td>• Updated document template.</td>
</tr>
<tr>
<td>General</td>
<td>Updated information related to MIPI output support.</td>
</tr>
</tbody>
</table>

Revision 1.1, November 2015
<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added support for ECP5-5G.</td>
</tr>
<tr>
<td></td>
<td>Changed document title to ECPS and ECP5-5G sysI/O Usage Guide.</td>
</tr>
<tr>
<td>sysI/O Banking Scheme</td>
<td>Updated sysI/O Buffer Pair (A/B Pair on Top and Bottom Sides) section. Revised the following figures:</td>
</tr>
<tr>
<td></td>
<td>• Figure 4.3. sysI/O Buffer Pair for Left and Right Sides</td>
</tr>
<tr>
<td></td>
<td>• Figure 4.4. sysI/O Buffer Pair for Top and Bottom Sides</td>
</tr>
<tr>
<td>Technical Support Assistance</td>
<td>Updated this section.</td>
</tr>
</tbody>
</table>

Revision 1.0, August 2013
<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>