Introduction

CompactFlash is a removable mass storage device that electrically complies with the Personal Computer Memory Card International Association ATA standard. It is used in a wide variety of applications ranging from data storage cards, magnetic disk drives, fax modem cards, and wireless pager cards. CompactFlash cards support both 5V and 3.3V operation and can function at either voltage level. CompactFlash uses standard ATA registers and command set, and has automatic error correction and retry capabilities, including an error correction code.

CompactFlash supports three different modes of operation: PC Card ATA using Memory Mode, PC Card ATA using I/O Mode, and True IDE Mode. This document focuses on PC Card ATA Memory Mode.

Design Goals and Limitations

The following goals were considered during the development of this reference design:

- Implement PC Card ATA using Memory Mode
- Support common memory access
- 8-bit wide CompactFlash interface data path
- Sector data transfer with 512 bytes
- WISHBONE host interface
- Two FIFO(s) between the CompactFlash and the host interface
- Read/write cycle access time optimized according to the CompactFlash timing specification
- Support one sector transfer at a time

The reference design does not support the following features:

- Attribute memory access, I/O access and IDE mode access
- 16-bit wide CompactFlash interface data path
- CF-ATA command other than write and read command
- Multiple sector transfer at a time

Theory of CompactFlash Operation

Modes of Operation

CompactFlash supports three different modes of operation. To enter Memory mode, it is mandatory that the /OE (pin 9 of CompactFlash) be high during power-up.

Data Storage

It is important to understand that the ATA/IDE standard does not permit a single byte to be read or written to or from the CompactFlash at a time. The firmware must read or write data one or more sectors at a time, where one sector equals 512 bytes of data.

Sectors are identified according to two addressing schemes: Cylinder/Head/Sector (C/H/S) and Logical Block Address (LBA).
In LBA mode, the Logical Block Address is interpreted as follows:

- LBA7-LBA0: Sector Number Register
- LBA15-LBA8: Cylinder Low Register
- LBA23-LBA16: Cylinder High Register
- LBA27-LBA24: Drive/Head Register

ATA Registers

Communication to and from the CompactFlash is accomplished through a set of registers called ATA Registers. It is essential to write the command parameters to these registers before a read/write command because the controller in the CompactFlash executes the command according to the parameters present in these registers. In Memory mode, each register is selected by an access code applied on signals CS0, CS1, A10-A0, and REG. A read or write process is specified with the OE and WE signal respectively.

The ATA registers are grouped into two categories: Control Block Registers and Command Block Registers. The Command Block Registers are used for sending commands to the CompactFlash and returning the status of the CompactFlash. The status conditions include whether the CompactFlash is busy or ready, and whether errors have been detected. The Control Block Registers are used for controlling and providing an alterable means of returning the status of the CompactFlash. The following registers are used in this reference design: Data Register, Sector Count Register, Sector Number Register, Cylinder Low Register, Cylinder High Register, Drive/Head Register, Status Register and Command Register.

To understand the basic functionality of the CompactFlash, the Compact Flash Specification 2.0 document published by the CompactFlash Association (CFA) is recommended. Detailed functionality or electrical characteristics of the CompactFlash specification will not be discussed in this document.

Functional Description

This CompactFlash Controller reference design is used to interface a CompactFlash with a wishbone bus compatible host. It is located between the CompactFlash and the wishbone bus master and is intended to reduce the amount of effort necessary for the user to deal with the ATA/IDE command. The CompactFlash controller responds to read/write cycles started by the wishbone bus host. The controller functions as a data path controller, transferring data to and from the wishbone bus host onto the CompactFlash. Figure 1 shows the relationship of the controller between the host and the CompactFlash.

Figure 1. CompactFlash Controller System
Table 1. CompactFlash Controller Pin Descriptions

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Type</th>
<th>Active State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactFlash Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>cf_addr</code></td>
<td>Output</td>
<td>N/A</td>
<td>These address lines, along with the -REG signal, are used to select the ATA register in the CompactFlash.</td>
</tr>
<tr>
<td><code>cf_dat</code></td>
<td>In/Out</td>
<td>N/A</td>
<td>These lines carry the Data, Commands and Status information between the CompactFlash and the controller.</td>
</tr>
<tr>
<td><code>cf_ce1_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal and the -CE2 signal are used to select the card and to indicate to the card whether a byte or a word operation is being performed. -CE1 accesses the low byte of the word.</td>
</tr>
<tr>
<td><code>cf_ce2_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal and the -CE1 signal are used to select the card and to indicate to the card whether a byte or a word operation is being performed. -CE1 accesses the high byte of the word. In this design, this signal is always assigned to 1.</td>
</tr>
<tr>
<td><code>cf_oe_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This is an output enable strobe signal. It is used to read data from the CompactFlash.</td>
</tr>
<tr>
<td><code>cf_iord_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal is not used in Memory mode. In this design, this signal is always assigned to 1.</td>
</tr>
<tr>
<td><code>cf_iowr_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal is not used in Memory mode. In this design, this signal is always assigned to 1.</td>
</tr>
<tr>
<td><code>cf_we_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal is driven by the controller and used for a strobe write data to the CompactFlash.</td>
</tr>
<tr>
<td><code>cf_ready</code></td>
<td>Input</td>
<td>1 = Ready</td>
<td>In Memory Mode, this signal is set high when the CompactFlash is ready to accept a new data transfer operation and is held low when the card is busy.</td>
</tr>
<tr>
<td><code>cf_cse1_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal is not used in Memory mode. In this design, this signal is always assigned to 0.</td>
</tr>
<tr>
<td><code>cf_reset</code></td>
<td>Output</td>
<td>High</td>
<td>When this signal is high, it resets the CompactFlash.</td>
</tr>
<tr>
<td><code>cf_reg_n</code></td>
<td>Output</td>
<td>Low</td>
<td>This signal, along with the address lines, are used to select the ATA register in the CompactFlash.</td>
</tr>
<tr>
<td>WISHBONE Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>adr_i</code></td>
<td>Input</td>
<td>N/A</td>
<td>These address lines indicate the Logic Block Address in the CompactFlash that the host initiates to read or write. The low bytes are assigned to LBA7-LBA0 and the high bytes are assigned to LBA15-LBA8. LBA27-LBA16 are all assigned to 0 in this design.</td>
</tr>
<tr>
<td><code>dat_i</code></td>
<td>Input</td>
<td>N/A</td>
<td>These lines are used to pass data to the CompactFlash from host.</td>
</tr>
<tr>
<td><code>dat_o</code></td>
<td>Output</td>
<td>N/A</td>
<td>These lines are used to pass data to host from the CompactFlash.</td>
</tr>
<tr>
<td><code>we_i</code></td>
<td>Input</td>
<td>1 = Write</td>
<td>This signal indicates whether the current local bus cycle is a READ or WRITE cycle. The signal is negated during READ cycles, and is asserted during WRITE cycles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Read</td>
<td></td>
</tr>
<tr>
<td><code>ack_o</code></td>
<td>Output</td>
<td>High</td>
<td>The acknowledge output, when asserted indicates the termination of a normal bus cycle.</td>
</tr>
<tr>
<td><code>err_o</code></td>
<td>Output</td>
<td>High</td>
<td>When this signal is asserted, it indicates that the bit 0 (error bit) of the status register in CompactFlash is set.</td>
</tr>
<tr>
<td><code>cyc_i</code></td>
<td>Input</td>
<td>High</td>
<td>When asserted, indicates that a valid bus cycle is in progress.</td>
</tr>
<tr>
<td><code>stb_i</code></td>
<td>Input</td>
<td>High</td>
<td>When asserted, indicates that the CompactFlash controller is selected.</td>
</tr>
<tr>
<td><code>clk</code></td>
<td>Input</td>
<td>N/A</td>
<td>The system clock. It coordinates all activities for the internal logic within the controller.</td>
</tr>
<tr>
<td><code>rst</code></td>
<td>Input</td>
<td>High</td>
<td>This signal forces all internal logic within the controller and CompactFlash to reset.</td>
</tr>
<tr>
<td><code>done</code></td>
<td>Output</td>
<td>High</td>
<td>When asserted, indicates that the CompactFlash completed the write or read process.</td>
</tr>
</tbody>
</table>
Register Transfer Level (RTL) Implementation

The RTL block diagram of the CompactFlash controller is shown in Figure 2. It consists of four modules: the top-level module, the host command state machine module, the CompactFlash interface state machine module and the data buffer module.

Figure 2. Block Diagram

Top-level Module
This is the top-level HDL block of this reference design. This module is created to instantiate the other lower level modules of the design.

Host Command State Machine
The host command state machine interprets write/read commands from the host, passing control to the CompactFlash interface state machine to execute repeated regular tasks with strict timing requirements. Because the ATA/IDE standard does not permit the reading or writing of one byte to or from CompactFlash at a time, the host must read or write data one or more sectors (512 bytes) at a time. Every time the host initiates to write or read the CompactFlash, one sector will be transferred to or from the CompactFlash in this design. The adr_i address lines indicate the sector address (LBA) in the CompactFlash and during the whole transfer, the value of adr_i will be latched until the end of the transferring.

Memory Write Cycle
The cyc_i and stb_i signals will be sampled at the rising edge of every clock cycle. If they are all active and the we_i signal is high, this indicates that the host will initiate write data to the CompactFlash. The host first writes data to FIFO based on ack_o signal until 512 bytes are written to the FIFO. The controller sends a relevant command to the CompactFlash and will check whether the CompactFlash is ready to receive data. If it is ready, the controller enables the CompactFlash to read data from the same FIFO. Otherwise, if the CompactFlash is busy, the controller will wait until the CompactFlash is ready. If an error occurs, the controller sends an err_o signal to the host.

Memory Read Cycle
The cyc_i and stb_i signals will be sampled at the rising edge of every clock cycle. If they are all active and the we_i signal is low, this indicates that the host will initiate read data from the CompactFlash. The controller sends a relevant command to the CompactFlash and will check whether the CompactFlash is ready to send data. If it is ready, the controller enables the CompactFlash to write data to the FIFO. Otherwise, if the CompactFlash is busy, the con-
Lattice Semiconductor

CompactFlash Controller

Controller will wait until the CompactFlash is ready. If an error occurs, the controller sends an err_o signal to the host. The host then reads data from the same FIFO based on the ack_o signal until 512 bytes are read from the FIFO.

CompactFlash Interface State Machine

Based on the sector transfer protocol, the CompactFlash interface state machine writes to or reads from the CompactFlash, and creates all the necessary control signals for the CompactFlash. The sector transfer protocol consists of five steps. Figure 3 shows these steps.

For each step, the controller creates the necessary control signals to access the CompactFlash and these control signals must fulfill the requirement of the CompactFlash access timing requirement. Figure 4 shows the memory read timing diagram and Figure 5 shows the memory write timing diagram.

Figure 3. Sector Transfer Protocol State Machine

Start

Set sector count register

Set sector number register

Set cylinder low register

Set cylinder high register

Set driver/head register

Set command register

Read the status register

Error happens

51h?

N

58h?

Y

58h?

N

Y

Access 512 times the data register

Wait the command input

(1) Set the logic sector address

(2) Set read or write command

(3) Polling until ready

(4) Burst data transfer

(5) Wait next command

Figure 4. Memory Read Timing
The access timing requirement is probably different for different CompactFlash devices and these timing parameters are defined in the file par.v. The designer can modify the value of these parameters if necessary.

Data Buffer Module

The data buffer module is implemented by two FIFO(s) which are generated by IPexpress™ in the ispLEVER® design tool. When the host initiates a write command, the CompactFlash controller first stores the data in the FIFO. If the CompactFlash is ready, then the controller enables the CompactFlash to read data from the same FIFO. On the other hand, when the host initiates a read command, the controller will check whether the CompactFlash is ready. If it is ready, then the controller enables the CompactFlash to write data to the FIFO, and informs the host to read data from the same FIFO.

To write the CompactFlash sequence:

1. The adr_i address lines are loaded with the LBA address.
2. Write 512 bytes sequentially to the CompactFlash with the WISHBONE Classic Cycle.
3. Wait for at least 150us.

To read the CompactFlash sequence:

1. The adr_i address lines are loaded with the LBA address.
2. Read 512 bytes sequentially from the CompactFlash with the WISHBOE Classic Cycle.
3. Wait for at least 150us.

HDL Verification

Functional Blocks of the HDL Test Suite

The HDL code for the CompactFlash controller reference design test suite contains the following blocks:

- Top level test bench
- Host write and read task
- CompactFlash interface
- CompactFlash controller under test
Test Bench Top Level

The CompactFlash controller test bench is used to verify the timing and functionality of this reference design. It simulates the host read or write transfers and the interface with the CompactFlash device.

Host Write and Read Task

These two stimulus generators create the read or write cycles as a host initiator on the wishbone bus and check the data from the CompactFlash.

CompactFlash Interface

CompactFlash interface module responds to the host initiate write or read commands.

Timing Diagrams

The following timing diagrams show the major timing milestones in the simulation.

Figure 7. Verilog Read Timing
Implementation

This design is available in Verilog HDL and VHDL languages, and the Lattice ispLEVER design tool is used for implementation.
Table 2. Performance and Resource Utilization

<table>
<thead>
<tr>
<th>Device Family</th>
<th>Language</th>
<th>Speed Grade</th>
<th>Utilization (LUTs)</th>
<th>f<sub>MAX</sub> (MHz)</th>
<th>I/Os</th>
<th>Architecture Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>MachXO2™¹</td>
<td>Verilog</td>
<td>-6</td>
<td>173</td>
<td>>100</td>
<td>68</td>
<td>2 EBRs</td>
</tr>
<tr>
<td></td>
<td>VHDL</td>
<td>-6</td>
<td>174</td>
<td>>100</td>
<td>68</td>
<td>2 EBRs</td>
</tr>
<tr>
<td>MachXO™²</td>
<td>Verilog</td>
<td>-5</td>
<td>629</td>
<td>>100</td>
<td>68</td>
<td>1 EBR</td>
</tr>
<tr>
<td></td>
<td>VHDL</td>
<td>-5</td>
<td>626</td>
<td>>100</td>
<td>68</td>
<td>1 EBR</td>
</tr>
<tr>
<td>LatticeXP2™³</td>
<td>Verilog</td>
<td>-5</td>
<td>732</td>
<td>>100</td>
<td>68</td>
<td>1 EBR</td>
</tr>
<tr>
<td></td>
<td>VHDL</td>
<td>-5</td>
<td>730</td>
<td>>100</td>
<td>68</td>
<td>1 EBR</td>
</tr>
</tbody>
</table>

1. Performance and utilization characteristics are generated using LCMXO2-1200HC-6TG144CES, with Lattice Diamond™ 1.1 or ispLEVER® 8.1 SP1. When using this design in a different device, density, speed, or grade, performance and utilization may vary.

2. Performance and utilization characteristics are generated using LCMXO2280C-5T100C, with Lattice Diamond 1.1 or ispLEVER 8.1 SP1 software. When using this design in a different device, density, speed, or grade, performance and utilization may vary.

3. Performance and utilization characteristics are generated using LFXP2-5E-5TN144C, with Lattice Diamond 1.1 or ispLEVER 8.1 SP1 software. When using this design in a different device, density, speed, or grade, performance and utilization may vary.

References

- Compact Flash Specification 2.0 document, CompactFlash Association (CFA)

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2009</td>
<td>01.0</td>
<td>Initial release.</td>
</tr>
<tr>
<td>November 2009</td>
<td>01.1</td>
<td>Added VHDL support.</td>
</tr>
<tr>
<td>December 2009</td>
<td>01.2</td>
<td>Added support for LatticeXP2 device family.</td>
</tr>
<tr>
<td>November 2010</td>
<td>01.3</td>
<td>Added support for MachXO2 device family and Lattice Diamond design software.</td>
</tr>
</tbody>
</table>