

PCIe x4 IP Core

IP Version: v4.0.0

User Guide

FPGA-IPUG-02126-2.3

December 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language [FAQ 6878](#) for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents.....	3
Acronyms in This Document	18
1. Introduction	19
1.1. Overview of the IP	19
1.2. Quick Facts	19
1.3. IP Support Summary.....	20
1.4. Features.....	20
1.4.1. Hard IP PHY.....	20
1.4.2. Hard IP Link Layer	21
1.4.3. Soft IP	21
1.5. Licensing and Ordering Information.....	22
1.6. Hardware Support	22
1.7. Naming Conventions	22
1.7.1. Nomenclature.....	22
1.7.2. Signal Names	22
1.8. Speed Grade Supported	22
1.9. Hardware Evaluation	22
2. Functional Description	23
2.1. PCIe IP Architecture Overview	23
2.2. Clocking	25
2.2.1. Clocking Overview	25
2.2.2. User and System Clocks.....	26
2.2.3. Use of the 125 MHz Reference Clock	26
2.3. Reset.....	27
2.3.1. Reset Overview.....	27
2.3.2. Clock and Reset Sequence.....	28
2.4. Protocol Layers.....	28
2.4.1. ECC and Parity Data Path Protection.....	29
2.4.2. Error Handling	30
2.4.3. LTSSM State.....	32
2.5. PHY Equalization (8 GT/s).....	36
2.5.1. Equalization Process	36
2.5.2. Equalization Time Limit	36
2.5.3. Equalization Methods.....	36
2.5.4. Equalization Quality.....	42
2.6. Multi-Function Support	42
2.7. Power Management.....	42
2.7.1. Power Management Supported by PCIe IP Core	42
2.7.2. Configuring Core to Support Power Management.....	43
2.7.3. APSM L0s	43
2.7.4. APSM L1s	44
2.8. DMA Support.....	45
2.8.1. DMA Overview.....	45
2.8.2. DMA Descriptor	46
2.8.3. DMA Registers	49
2.8.4. DMA Transaction (AXI-MM)	58
2.8.5. DMA Transaction (AXI-Stream).....	61
2.8.6. DMA Performance (AXI-MM)	61
2.8.7. DMA Performance (AXI-Stream)	62
2.8.8. DMA With Bridge Mode	63
2.8.9. DMA User Interrupts	63
2.9. Non-DMA Support.....	64

2.9.1. Non-DMA Overview.....	64
2.9.2. Non-DMA Write.....	66
2.9.3. Non-DMA Read.....	66
2.10. Interrupts	66
2.10.1. Generation of the Interrupts	66
2.10.2. Legacy Interrupt	67
2.10.3. MSI Interrupt	68
2.10.4. MSI-X Interrupt	69
2.11. PCIe Endpoint Core Buffers	71
2.11.1. PCI Express Credits	71
2.11.2. Max Payload Size	72
2.12. Hard IP Interface	72
2.12.1. PHY Interface.....	72
2.12.2. TLP TX/RX Interface	72
2.12.3. LMMI Interface	82
2.12.4. UCFG Interface	83
2.13. Soft IP Interface.....	87
2.13.1. Data Interface Conversion	87
2.13.2. Register Interface Conversion	99
2.14. Resizable BAR Capability	101
2.14.1. Resizable BAR Registers Configuration.....	101
2.15. Multi-Protocol Support	102
2.16. Merging Between IPs	102
3. IP Parameter Description.....	104
3.1. General	104
3.2. Optional Port.....	106
3.3. ASPM Capability	106
3.4. DMA/Bridge Mode Support	107
3.5. Flow Control Update	108
3.6. Receive Buffer Allocation	109
3.7. Transmit Buffer Allocation	110
3.8. Function.....	112
3.8.1. Configuration.....	112
3.8.2. Resizable Bar Capability.....	113
3.8.3. Base Address Register (BAR) [0 to 5].....	113
3.8.4. Legacy Interrupt	115
3.8.5. MSI Capability.....	115
3.8.6. MSI-X Capability.....	116
3.8.7. Device Serial Number Capability	117
3.8.8. PCIe Capability.....	118
3.8.9. Advance Error Reporting Capability	118
3.8.10. ATS Capability	119
3.8.11. Atomic OP Capability	120
3.8.12. Latency Tolerance Reporting Capability	121
3.8.13. Power Budgeting Capability	121
3.8.14. Dynamic Power Allocation Capability.....	121
4. Signal Description	124
4.1. Clock Interface.....	124
4.2. Reset Interface	126
4.3. PHY Interface.....	127
4.4. Transaction Layer Interface.....	128
4.4.1. TLP Transmit Interface.....	128
4.4.2. TLP Receive Interface	129
4.5. Lattice Memory Mapped Interface (LMMI).....	132

4.6.	Legacy Interrupt Interface	133
4.7.	Power Management Interface	133
4.8.	Configuration Space Register Interface (UCFG)	135
4.9.	APB Configuration Interface	136
4.10.	AXI-Stream (Non-DMA) Data Interface	136
4.10.1.	AXI-Stream Transmitter Interface Port Descriptions	136
4.10.2.	AXI-Stream Receiver Interface Port Descriptions	137
4.11.	AXI Data Interface (DMA)	138
4.12.	AXI Data Interface (Bridge Mode)	140
5.	Register Description	143
5.1.	Hard IP Core Configuration and Status Registers	143
5.1.1.	EP Configuration Settings	143
5.1.2.	mgmt_tlb (0x02000)	144
5.1.3.	mgmt_ptl (0x03000)	208
5.1.4.	mgmt_ftl (0x04000)	234
5.1.5.	mgmt_ftl_mf[3:1] (0x05000,0x06000,0x07000)	264
5.1.6.	pcie_ll(0x0F000)	275
5.2.	PCI Express Configuration Space Registers	282
5.2.1.	Type 00 Configuration Header	282
5.2.2.	Type 01 Configuration Header	283
5.2.3.	Capability and Extended Capability Address Locations	283
5.2.4.	Type 00 Configuration Registers	284
5.2.5.	PCI Express Capability	285
5.2.6.	Power Management Capability	291
5.2.7.	MSI-X Capability	292
5.2.8.	MSI Capability	293
5.2.9.	Advanced Error Reporting Extended Capability	294
5.2.10.	ARI Extended Capability	296
5.2.11.	Vendor-Specific Extended Capability	297
5.2.12.	Secondary PCI Express Extended Capability	298
5.2.13.	ATS Extended Capability	299
5.2.14.	DSN Extended Capability	299
5.2.15.	Resizable BAR Capability	299
5.2.16.	Power Budgeting Capability	300
5.2.17.	Dynamic Power Allocation Capability	301
5.2.18.	L1 PM Substates Extended Capability	301
5.2.19.	Latency Tolerance Reporting Capability	302
6.	Example Design	303
6.1.	Example Design Supported Configuration	303
6.2.	Overview of Example Design and Features	304
6.3.	Example Design Components	305
6.3.1.	DMA Design (AXI-MM)	305
6.3.2.	DMA Design (AXI-Stream)	307
6.3.3.	Non-DMA Design (TLP Interface)	308
6.3.4.	Non-DMA Design (Bridge Mode)	313
6.3.5.	PDC Settings for Hardware Example Design	314
6.4.	Running the Example Design	315
6.5.	Debugging Example Design Issues	316
6.5.1.	Signals to Debug	316
7.	Designing with the IP	320
7.1.	Generating and Instantiating the IP	320
7.1.1.	Generated Files and File Structure	322
7.1.2.	Design Implementation	322
7.1.3.	Timing Constraints	322

7.1.4. Multi Seed Timing Closure.....	323
7.2. Running Functional Simulation	324
7.2.1. QuestaSim Lattice-Edition	324
7.2.2. QuestaSim Pro	329
7.3. Production Driver	334
7.3.1. DMA.....	334
7.3.2. Non-DMA.....	334
8. Debugging	335
8.1. Debug Methods.....	335
8.1.1. Debug Flow Charts.....	335
8.1.2. Internal Register Read for Debug	339
8.1.3. PCIe Loopback Test.....	339
9. Design Considerations	340
9.1. DMA Based Design	340
9.2. Non-DMA Based Design	340
Appendix A. Resource Utilization.....	341
Appendix B. Guide to Close Timing for Gen 3: (9-High-Perf_1.0 V) for DMA	342
References	343
Technical Support Assistance	344
Revision History	345

Figures

Figure 2.1. Lattice PCIe x4 IP Core Block Diagram	23
Figure 2.2. Lattice PCIe x4 Core Hard IP.....	24
Figure 2.3. PCIe IP Clock Domain Block Diagram for TLP Interface.....	25
Figure 2.4. PCIe IP Overall Clock Domain Block Diagram for DMA	25
Figure 2.5. Reset Signals in Lattice PCIe IP Core	27
Figure 2.6. Clock and Reset Sequence Diagram.....	28
Figure 2.7. F2H Data Transfer	59
Figure 2.8. H2F Data Transfer	60
Figure 2.9. User Interrupt Request and User Interrupt ACK Relationship	63
Figure 2.10. Non-DMA Application Data Flow – TLP Interface	64
Figure 2.11. Non-DMA Application Data Flow – AXI-Stream Interface.....	64
Figure 2.12. Non-DMA Application Data Flow – AXI-MM Interface (Bridge Mode)	65
Figure 2.13. Non-DMA Application Data Flow – AXI-Lite Interface (Bridge Mode)	65
Figure 2.14. Non-DMA Write Operation (TLP Data Interface)	66
Figure 2.15. Non-DMA Read Operation (TLP Data Interface)	66
Figure 2.16. MSI Capability Structure Variant.....	68
Figure 2.17. MSI Capability Structure Variant.....	69
Figure 2.18. MSI-X Capability Structure Variant	70
Figure 2.19. MSI-X Table Entries	70
Figure 2.20. Pending Bit Array	71
Figure 2.21. TLP Memory Request Header	73
Figure 2.22. TLP Memory Read Operation for Link0 (x4 Lane)	75
Figure 2.23. TLP Memory Read Operation for Link0 (x2 Lane)	75
Figure 2.24. TLP Memory Read Operation for Link0 (x1 Lane)	76
Figure 2.25. TLP Memory Read Operation for Link1 (x1 Lane)	76
Figure 2.26. Minimum link[LINK]_tx_ready_o Timing Diagram.....	76
Figure 2.27. Wait State of link[LINK]_tx_ready_o Timing Diagram	77
Figure 2.28. TLP Packet formation by the Lattice PCIe IP core	78
Figure 2.29. TLP Memory Write Operation for Link0 (x4 Lane)	79
Figure 2.30. TLP Memory Write Operation for Link0 (x2 Lane)	79
Figure 2.31. TLP Memory Write Operation for Link0 (x1 Lane)	79
Figure 2.32. TLP Memory Write Operation for Link1 (x1 Lane)	80
Figure 2.33. Minimum link[LINK]_rx_ready_i Timing Diagram	80
Figure 2.34. Wait State of link[LINK]_rx_ready_i Timing Diagram	80
Figure 2.35. LMMI Write Operation	82
Figure 2.36. LMMI Read Operation.....	83
Figure 2.37. UCFG Read Transaction Timing Diagram	84
Figure 2.38. AXI-Stream Data Interface, APB Register Interface	88
Figure 2.39. PCIe to AXI-Stream Transaction for x1.....	88
Figure 2.40. PCIe to AXI-Stream Transaction for x2.....	88
Figure 2.41. PCIe to AXI-Stream Transaction for x4.....	88
Figure 2.42. AXI-Stream to PCIe Transaction for x1.....	89
Figure 2.43. AXI-Stream to PCIe Transaction for x2.....	89
Figure 2.44. AXI-Stream to PCIe Transaction for x4.....	89
Figure 2.45. Bridge Mode Enablement (General Tab)	90
Figure 2.46. Bridge Mode Enablement (DMA/Bridge Mode Support Tab).....	90
Figure 2.47. User Interrupt Pins Example Waveform	91
Figure 2.48. AHB-L DMA APB Configuration	99
Figure 2.49. PCIe APB Register Set Address Bit Configuration.....	100
Figure 2.50. Resizable BAR Register Capability Structure	101
Figure 3.1. Attributes in the General Tab	104
Figure 3.2. Attributes in the Optional Port Tab	106

Figure 3.3. Attributes in the ASPM Capability Tab	106
Figure 3.4. Attributes in the DMA/Bridge Mode Support Tab	107
Figure 3.5. Attributes in the Flow Control Update Tab	108
Figure 3.6. Attributes in Receive Buffer Allocation Tab	109
Figure 3.7. Attributes in Transmit Buffer Allocation Tab	110
Figure 3.8. Attributes in Function Configuration Tab	112
Figure 3.9. Attributes in Resizable Bar Capability Tab	113
Figure 3.10. Attributes in BAR Tab	113
Figure 3.11. Attributes in Legacy Interrupt	115
Figure 3.12. Attributes in MSI Capability	115
Figure 3.13. Attributes in MSI-X Capability	116
Figure 3.14. Attributes in Device Serial Number Capability	117
Figure 3.15. Attributes in PCIe Capability	118
Figure 3.16. Attributes in Advance Error Reporting Capability	118
Figure 3.17. Attributes in ATS Capability	119
Figure 3.18. Attributes in Atomic OP Capability	120
Figure 3.19. Attributes in Latency Tolerance Reporting Capability	121
Figure 3.20. Attributes in Power Budgeting Capability	121
Figure 3.21. Attributes in Dynamic Allocation Capability	121
Figure 6.1. PCIe x4 IP Example Design Block Diagram	305
Figure 6.2. Components within AXI-MM DMA Example Design	305
Figure 6.3. File List View of the Created AXI-MM DMA Example Design	306
Figure 6.4. Components within AXI-Stream DMA Example Design	307
Figure 6.5. File List View of the Created AXI-Stream DMA Example Design	308
Figure 6.6. Components within Non-DMA Design (TLP Interface)	309
Figure 6.7. Non-DMA Design Data Flow	310
Figure 6.8. Non-DMA Example Design (TLP Mode) Settings (General Tab)	311
Figure 6.9. Non-DMA Example Design (TLP Mode) Settings (Link 0: Function 0 Tab)	311
Figure 6.10. File List View of the Created Non-DMA Example Design	312
Figure 6.11. Non-DMA Example Design PDC File	312
Figure 6.12. Components within NON-DMA Design (Bridge Mode)	313
Figure 6.13. File List View of the Created Bridge Mode Example Design	314
Figure 6.14. PCIe x4 IP Example Design Flowchart	315
Figure 7.1. Module/IP Block Wizard	320
Figure 7.2. IP Configuration	321
Figure 7.3. Check Generated Result	321
Figure 7.4. Timing Constraint File (.sdc) for the PCIe x4 IP	322
Figure 7.5. PLL IP Configuration for Input Clock of 125 MHz	323
Figure 7.6. Timing Constraints for PCIe x4 IP Example	323
Figure 7.7. Placement Iteration Setup on Radiant under Strategies Tab	324
Figure 7.8. IP on Local	325
Figure 7.9. Parameterize the PCIE_X4	325
Figure 7.10. Testbench Files	326
Figure 7.11. Project Naming	326
Figure 7.12. Simulation Top Module	327
Figure 7.13. Simulation Setting	327
Figure 7.14. Expected Log Printing	328
Figure 7.15. Simulation Waveform	329
Figure 7.16. Testbench Files	329
Figure 7.17. Project Naming	330
Figure 7.18. Simulation Top Module	330
Figure 7.19. Simulation Setting	331
Figure 7.20. Transcript Log Printing	331
Figure 7.21. Command of Full License QuestaSim	332

Figure 7.22. Expected Log Printing	332
Figure 7.23. Simulation Waveform	333
Figure 8.1. Hardware Detection Failure Debugging Flow	335
Figure 8.2. Link Training Issue Debugging Flow	336
Figure 8.3. Data Transfer Issue Debugging Flow	337
Figure 8.4. Debugging the FPGA Configuration Issues Flow	338

Tables

Table 1.1. Summary of the PCIe x4 IP	19
Table 1.2. PCIe IP Support Readiness.....	20
Table 1.3. Lattice PCIe IP Core Supported Speed Grade.....	22
Table 2.1. PHY Clock and User Clock Frequencies	26
Table 2.2. Port Values when Reference Clock Frequency is 125 MHz	26
Table 2.3. General PCI Express Error List	30
Table 2.4. Physical Layer Error List.....	30
Table 2.5. Data Link Layer Error List.....	31
Table 2.6. Transaction Layer Error List.....	31
Table 2.7. LTSSM State Definition	32
Table 2.8. RX L0s State Description.....	35
Table 2.9. Descriptor Format	46
Table 2.10. DESC_CTRL (0x00)	46
Table 2.11. DMA_LEN (0x04)	46
Table 2.12. NEXT_DESC_ADDR_LO (0x08)	47
Table 2.13. NEXT_DESC_ADDR_HI (0x0C).....	47
Table 2.14. SRC_ADDR_LO (0x10).....	47
Table 2.15. SRC_ADDR_HI (0x14).....	47
Table 2.16. DEST_ADDR_LO (0x18).....	47
Table 2.17. DEST_ADDR_HI (0x1C)	47
Table 2.18. First Descriptor Chunk Fetching through MRd TLP	48
Table 2.19. Second Descriptor Chunk Fetching through MRd TLP:	48
Table 2.20. Third Descriptor Chunk Fetching through MRd TLP	49
Table 2.21. Access Types.....	49
Table 2.22. PCIe DMA Register Group	50
Table 2.23. H2F_DMA_CTRL (0x0000)	50
Table 2.24. H2F_DMA_STS (0x000C)	50
Table 2.25. H2F_DMA_INT_MASK (0x0010)	51
Table 2.26. H2F_CPLT_DESC_COUNT (0x0018)	52
Table 2.27. F2H_DMA_CTRL (0x0100)	52
Table 2.28. F2H_DMA_STS (0x010C)	52
Table 2.29. F2H_DMA_INT_MASK (0x0110)	53
Table 2.30. F2H_CPLT_DESC_COUNT (0x0118)	54
Table 2.31. H2F_DESC_ADDR_LOW (0x0200).....	54
Table 2.32. H2F_DESC_ADDR_HIGH (0x0204)	54
Table 2.33. H2F_CONT_REMAIN (0x0208).....	55
Table 2.34. F2H_DESC_ADDR_LOW (0x0300).....	55
Table 2.35. F2H_DESC_ADDR_HIGH (0x0304)	55
Table 2.36. F2H_CONT_REMAIN (0x0308).....	55
Table 2.37. INT_MODE (0x0400).....	55
Table 2.38. H2F_MSI_VEC (0x0404).....	55
Table 2.39. F2H_MSI_VEC (0x0408).....	56
Table 2.40. USR_MSI_VEC_P1 (0x040C)	56
Table 2.41. USR_MSI_VEC_P2 (0x0410)	56
Table 2.42. USR_MSI_VEC_P3 (0x0414)	57
Table 2.43. USR_MSI_VEC_P4 (0x0418)	58
Table 2.44. GENERAL_STS (0x0500).....	58
Table 2.45. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer	61
Table 2.46. Simulation Data Throughput Using Different Descriptor Size for Host-to-FPGA (H2F) Transfer	61
Table 2.47. Hardware Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer.....	62
Table 2.48. Hardware Data Throughput Using Different Descriptor Size for Host-to-FPGA (H2F) Transfer.....	62
Table 2.49. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer	62

Table 2.50. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer	62
Table 2.51. Register Access for Different Data Interfaces	65
Table 2.52. Base Address to Enable Interrupt	67
Table 2.53. Legacy Interrupt Register	67
Table 2.54. TLP Header Field	73
Table 2.55. Data Byte Order	81
Table 2.56. UCFG Address Space	84
Table 2.57. MSI Advertised Capabilities	92
Table 2.58. MSI-X Table Offsets	92
Table 2.59. MSI-X PBA Offsets	92
Table 2.60. MSI-X Advertised Capabilities	93
Table 2.61. Access Types	93
Table 2.62. USR_MSI_VEC_P1 (0x040C)	93
Table 2.63. USR_MSI_VEC_P2 (0x0410)	94
Table 2.64. USR_MSI_VEC_P3 (0x0414)	95
Table 2.65. USR_MSI_VEC_P4 (0x0418)	96
Table 2.66. USR0_MSIX_TABLE (0x8000)	97
Table 2.67. USR1_MSIX_TABLE (0x8010)	97
Table 2.68. PBA_TABLE (0xC000)	98
Table 2.69. Offset Address for Resizable Bar Capability Configurations	102
Table 2.70. Supported Combo within Quad	102
Table 2.71. Merging Input Ports	102
Table 3.1. General Tab Attributes Description	104
Table 3.2. Optional Port Attributes	106
Table 3.3. DMA/Bridge Mode Support Attributes	107
Table 3.4. Flow Control Attributes	108
Table 3.5. Receive Buffer Tab Attributes	109
Table 3.6. Receive Buffer Tab Attributes	111
Table 3.7. Function Configuration Tab Attributes	112
Table 3.8. Resizable Bar Capability Attributes	113
Table 3.9. BAR Tab Attributes	114
Table 3.10. Legacy Interrupt Attribute Descriptions	115
Table 3.11. MSI Capability Attributes	116
Table 3.12. MSI-X Capability Attributes	117
Table 3.13. Device Serial Number Capability Attributes	117
Table 3.14. PCIe Capability Attributes	118
Table 3.15. Advance Error Reporting Capability Attributes	119
Table 3.16. ATS Capability Attribute Description	119
Table 3.17. Atomic OP capability Attributes	120
Table 3.18. Latency Tolerance Reporting Capability Attributes	121
Table 3.19. Power Budgeting Capability Attributes	121
Table 3.20. Dynamic Allocation capability Attributes	122
Table 3.21. Function 1-3 Tab	122
Table 4.1. Clock Ports	124
Table 4.2. Reset Ports	126
Table 4.3. PHY Interface Descriptions	127
Table 4.4. TLP Transmit Interface Ports	128
Table 4.5. TLP Transmit Credit Interface Ports	129
Table 4.6. TLP Receive Interface Ports	129
Table 4.7. TLP Receive Credit Interface Ports	131
Table 4.8. Lattice Memory Mapped Interface Ports	132
Table 4.9. Legacy Interrupt Interface Ports	133
Table 4.10. Power Management Interface Ports	133
Table 4.11. Configuration Space Register Interface Ports	135

Table 4.12. APB Configuration Interface Ports	136
Table 4.13. AXI-Stream Transmitter Interface Ports.....	136
Table 4.14. AXI-Stream Receiver Interface Ports.....	137
Table 4.15. AXI-MM Manager Interface (DMA)	138
Table 4.16. AXI-Stream RX Interface (DMA)	140
Table 4.17. AXI-MM Manager Write Interface (Bridge Mode)	140
Table 4.18. AXI-Lite Manager Interface (Bridge Mode)	142
Table 5.1. Register Access Abbreviations	143
Table 5.2. Base Address for Hard IP Core Registers.....	143
Table 5.3. Hard PCIe Core Register Mapping	143
Table 5.4. CSR Values Recommended for EP Applications	144
Table 5.5. Itssm_simulation Register 0x0	144
Table 5.6. Itssm_cfg_lw_start Register 0x34	144
Table 5.7. Itssm_latch_rx Register 0x38	145
Table 5.8. Itssm_cfg Register 0x3c	145
Table 5.9. Itssm_port_type Register 0x40	147
Table 5.10. Itssm_ds_link Register 0x44	147
Table 5.11. Itssm_detect_quiet Register 0x48.....	147
Table 5.12. Itssm_rx_det Register 0x4c	147
Table 5.13. Itssm_nfts Register 0x50	148
Table 5.14. Itssm_ds_initial_auto Register 0x54	148
Table 5.15. Itssm_select_deemphasis Register 0x58.....	148
Table 5.16. Itssm_beacon Register 0x5c.....	149
Table 5.17. Itssm_mod_cpl Register 0x60	149
Table 5.18. Itssm_rx_elec_idle Register 0x64.....	149
Table 5.19. Itssm_compliance_toggle Register 0x68.....	150
Table 5.20. Itssm_prevent_rx_ts_entry_to Register 0x6c	151
Table 5.21. Itssm_link Register 0x80.....	151
Table 5.22. Itssm_Itssm Register 0x84.....	152
Table 5.23. Itssm_rx_l0s Register 0x88.....	154
Table 5.24. l0_to_rec Register 0x8c.....	155
Table 5.25. Itssm_rx_detect Register 0x90	156
Table 5.26. Itssm_configured Register 0x94	157
Table 5.27. Itssm_direct_to_detect Register 0x98	157
Table 5.28. Itssm_equalization Register 0x9c	157
Table 5.29. Itssm_crosslink Register 0xa0	158
Table 5.30. Physical Layer Tx Underflow Error Status Register – 0xa4	158
Table 5.31. Physical Lane Rx Status Registers.....	158
Table 5.32. pl_rx0 Register 0xa8 – Lane Rx Status 0 Register	158
Table 5.33. pl_rx1 Register 0xac – Lane Rx Status 1	160
Table 5.34. pl_rx2 Register 0xb0 – Lane Rx Status 2	163
Table 5.35. pl_rx3 Register 0xb4 – Lane Rx Status 3	166
Table 5.36. pl_rx4 Register 0xb8 – Lane Rx Status 4	168
Table 5.37. debugself_crosslink Register 0xc0	171
Table 5.38. debug_rx_det Register 0xc4.....	171
Table 5.39. debug_force_tx Register 0xc8	172
Table 5.40. debug_direct_scramble_off Register 0xcc	172
Table 5.41. debug_force_scramble_off_fast Register 0xd0	172
Table 5.42. balign Register 0xd4	173
Table 5.43. debug_pipe_rx Register 0xe0.....	174
Table 5.44. debug_direct_to_loopback Register 0x100	174
Table 5.45. debug_loopback_control Register 0x104	174
Table 5.46. debug_loopback_master_5g Register 0x108	175
Table 5.47. debug_loopback_slave_5g Register 0x10c	176

Table 5.48. debug_loopback_master_8g_deemph Register 0x110.....	176
Table 5.49. debug_loopback_slave_8g_deemph Register 0x114.....	177
Table 5.50. debug_direct_to_loopback_status Register 0x118.....	177
Table 5.51. debug_loopback_err_reset Register 0x11c	178
Table 5.52. debug_loopback_err Register 0x120	178
Table 5.53. phy_control Register 0x140	178
Table 5.54. phy_control_8g Register 0x144	178
Table 5.55. phy_eq_tx_override Register 0x148 F	179
Table 5.56. phy_eq_tx_max Register 0x14c	179
Table 5.57. phy_eq_tx_force Register 0x150	180
Table 5.58. phy_preset_to_coef_conv_control Register 0x15c	180
Table 5.59. phy_preset_conv_tab_pre Register 0x160	181
Table 5.60. phy_preset_conv_tab_post Register 0x170.....	181
Table 5.61. eq_control Register 0x180	181
Table 5.62. eq_ts_control Register 0x184	182
Table 5.63. eq_reduced_swing Register 0x188	184
Table 5.64. eq_method Register 0x1bc	184
Table 5.65. eq_fmerit_control Register 0x1c0.....	184
Table 5.66. eq_preset_method_control Register 0x1c4.....	185
Table 5.67. eq_alg_method_control Register 0x1c8	185
Table 5.68. eq_table_method_control Register 0x1cc	186
Table 5.69. eq_table_method_table Register 0x1d0.....	186
Table 5.70. eq_updn_control Register 0x240.....	187
Table 5.71. eq_firmware_control Register 0x280	188
Table 5.72. eq_pre_cursor Register 0x290	189
Table 5.73. eq_post_cursor Register 0x2a0.....	189
Table 5.74. eq_status Register 0x2c0	190
Table 5.75. eq_status_error Register 0x2c4	191
Table 5.76. eq_status_preset_coef Register 0x2c8	191
Table 5.77. eq_status_feedback_fom Register 0x2d0.....	191
Table 5.78. eq_status_feedback_dir Register 0x2e0	192
Table 5.79. eq_status_remote_fs Register 0x2e8	192
Table 5.80. eq_status_remote_if Register 0x2f4	192
Table 5.81. eq_status_remote_precursor Register 0x300.....	192
Table 5.82. eq_status_remote_postcursor Register 0x30c	193
Table 5.83. pl_rx Register 0x33c	193
Table 5.84. pl_16g Register 0x340	193
Table 5.85. pl_tx_skp Register 0x344	194
Table 5.86. pl_tx_debug Register 0x348	195
Table 5.87. pl_ctrl Register 0x34c	195
Table 5.88. pl_ts_matching Register 0x350	195
Table 5.89. dl_retry_timeout Register 0x380	196
Table 5.90. dl_ack_timeout_div Register 0x384	196
Table 5.91. dl_tx_ctrl Register 0x38c	197
Table 5.92. dl_ctrl Register 0x390.....	198
Table 5.93. dl_stat Register 0x394	201
Table 5.94. dl_ack_to_nak Register 0x398	204
Table 5.95. dl_inject Register 0x39c	204
Table 5.96. dllp_inject Register 0x3a0	205
Table 5.97. eq_status_table_control Register 0x3d8	205
Table 5.98. eq_status_table_info Register 0x3dc	206
Table 5.99. eq_status_table Register 0x3e0	206
Table 5.100. eq_capture_sel Register 0x3f0.....	207
Table 5.101. eq_capture Register 0x3f4	207

Table 5.102. phy_eq_tx_force_per_lane Register 0x400	207
Table 5.103. phy_eq_tx_force_per_lane_8g_pre Register 0x404	208
Table 5.104. phy_eq_tx_force_per_lane_8g_post Register 0x410	208
Table 5.105. Simulation Register 0x0.....	208
Table 5.106. pm_aspm_l0s Register 0x40	208
Table 5.107. pm_aspm_l1 Register 0x50	209
Table 5.108. pm_aspm_l1_min Register 0x54	209
Table 5.109. pm_l1 Register 0x60	209
Table 5.110. pm_l1_min Register 0x64	209
Table 5.111. pm_l1pmss Register 0x68	210
Table 5.112. pm_l2 Register 0x70	210
Table 5.113. pm_pme_to_ack_ep Register 0x80	210
Table 5.114. pm_pme_to_ack_ds Register 0x84	210
Table 5.115. pm_pme Register 0x88	211
Table 5.116. pm_status Register 0x90	211
Table 5.117. tlp_tx Register 0x1c4	212
Table 5.118. fc_credit_init Register 0x1c8	212
Table 5.119. rx_c Register 0x200	212
Table 5.120. rx_ctrl Register 0x208	213
Table 5.121. p_stat_rx Register 0x210	214
Table 5.122. u_stat_rx Register 0x214	214
Table 5.123. vc_rx control Register 0x218	215
Table 5.124. vc_rx_status Register 0x21c	217
Table 5.125. u_rx_credit_stat_p_init Register 0x220	217
Table 5.126. u_rx_credit_stat_p_curr Register 0x224	217
Table 5.127. u_rx_credit_stat_n_init Register 0x228	218
Table 5.128. u_rx_credit_stat_n_curr Register 0x22c	218
Table 5.129. u_rx_credit_stat_c_init Register 0x230	218
Table 5.130. u_rx_credit_stat_c_curr Register 0x234	219
Table 5.131. rx_alloc_size_p Register 0x240	219
Table 5.132. rx_alloc_size_n Register 0x244	219
Table 5.133. rx_alloc_size_c Register 0x248	219
Table 5.134. rx_alloc_lim Register 0x24c	220
Table 5.135. rx_alloc_p Register 0x250	220
Table 5.136. rx_alloc_n Register 0x254	220
Table 5.137. rx_alloc_c Register 0x258	221
Table 5.138. rx_alloc_sel Register 0x25c	221
Table 5.139. rx_alloc_error Register 0x260	221
Table 5.140. tx_c Register 0x280	223
Table 5.141. tx_ctrl Register 0x284	224
Table 5.142. vc_tx_credit_cleanup Register 0x288	224
Table 5.143. stat_tx Register 0x290	225
Table 5.144. p_stat_tx Register 0x294	225
Table 5.145. vc_tx_control Register 0x298	226
Table 5.146. vc_tx_status Register 0x29c	228
Table 5.147. p_tx_credit_stat_p_init Register 0x2a0	228
Table 5.148. p_tx_credit_stat_p_curr Register 0x2a4	229
Table 5.149. p_tx_credit_stat_n_init Register 0x2a8	229
Table 5.150. p_tx_credit_stat_n_curr Register 0x2ac	229
Table 5.151. p_tx_credit_stat_c_init Register 0x2b0	230
Table 5.152. p_tx_credit_stat_c_curr Register 0x2b4	230
Table 5.153. tx_alloc_size_p Register 0x2c0	230
Table 5.154. tx_alloc_size_n Register 0x2c4	231
Table 5.155. tx_alloc_size_c Register 0x2c8	231

Table 5.156. tx_alloc_lim Register 0x2cc	231
Table 5.157. tx_alloc_p Register 0x2d0	231
Table 5.158. tx_alloc_n Register 0x2d4	232
Table 5.159. tx_alloc_c Register 0x2d8	232
Table 5.160. tx_alloc_sel Register 0x2dc	233
Table 5.161. tx_alloc_error Register 0x2e0	233
Table 5.162. Simulation Register 0x0	235
Table 5.163. decode Register 0x10	235
Table 5.164. decode_t1 Register 0x14	237
Table 5.165. tlp_processing Register 0x18	237
Table 5.166. Initial Register 0x20	237
Table 5.167. cfg Register 0x30	238
Table 5.168. ds_port Register 0x34	238
Table 5.169. us_port Register 0x38	238
Table 5.170. id1 Register 0x40	239
Table 5.171. id2 Register 0x44	239
Table 5.172. id3 Register 0x48	239
Table 5.173. Cardbus Register 0x4c	239
Table 5.174. Interrupt Register 0x50	240
Table 5.175. bar0 Register 0x60	240
Table 5.176. bar1 Register 0x64	240
Table 5.177. bar2 Register 0x68	240
Table 5.178. bar3 Register 0x6c	241
Table 5.179. bar4 Register 0x70	241
Table 5.180. bar5 Register 0x74	241
Table 5.181. exp_rom Register 0x78	242
Table 5.182. pcie_cap Register 0x80	242
Table 5.183. pcie_dev_cap Register 0x84	243
Table 5.184. pcie_link_cap Register 0x88	244
Table 5.185. pcie_link_stat Register 0x8c	245
Table 5.186. pcie_slot_cap Register 0x90	245
Table 5.187. pcie_dev_cap2 Register 0x98	247
Table 5.188. pcie_link_ctl2 Register 0xa0	248
Table 5.189. pm_cap Register 0xc0	249
Table 5.190. pm Register 0xc4	249
Table 5.191. pm_aux Register 0xc8	250
Table 5.192. ari_cap Register 0xe0	251
Table 5.193. aer_cap Register 0x100	251
Table 5.194. msi_cap Register 0xe8	252
Table 5.195. msix_cap Register 0xf0	252
Table 5.196. msix_table Register 0xf4	253
Table 5.197. msix_pba Register 0xf8	253
Table 5.198. vsec_cap Register 0x110	254
Table 5.199. sris_cap Register 0x120	254
Table 5.200. dsn_cap Register 0x130	254
Table 5.201. dsn_serial Register 0x134	255
Table 5.202. pwr_budget_cap Register 0x150	255
Table 5.203. dpa_cap Register 0x158	255
Table 5.204. dpa_xlcy Register 0x15c	256
Table 5.205. dpa_alloc Register 0x160	256
Table 5.206. ltr_cap Register 0x180	257
Table 5.207. l1pmss_cap Register 0x188	257
Table 5.208. rbar_cap Register 0x1a0	258
Table 5.209. rbar_cfg0 Register 0x1a4	258

Table 5.210. rbar_cfg1 Register 0x1a8	259
Table 5.211. rbar_cfg2 Register 0x1ac	260
Table 5.212. rbar_cfg3 Register 0x1b0	261
Table 5.213. rbar_cfg4 Register 0x1b4	262
Table 5.214. rbar_cfg5 Register 0x1b8	263
Table 5.215. ats_cap Register 0x1c0	263
Table 5.216. atomic_op_cap Register 0x1cc	264
Table 5.217. Base Address for mgmt_ftl_mf	264
Table 5.218. Function Register 0x8	264
Table 5.219. us_port Register 0x38	265
Table 5.220. id1 Register 0x40	265
Table 5.221. id2 Register 0x44	265
Table 5.222. id3 Register 0x48	265
Table 5.223. Cardbus Register 0x4c	265
Table 5.224. Interrupt Register 0x50	266
Table 5.225. bar0 Register 0x60	266
Table 5.226. bar1 Register 0x64	266
Table 5.227. bar2 Register 0x68	266
Table 5.228. bar3 Register 0x6c	267
Table 5.229. bar4 Register 0x70	267
Table 5.230. bar5 Register 0x74	267
Table 5.231. exp_rom Register 0x78	267
Table 5.232. msi_cap Register 0xe8	267
Table 5.233. msix_cap Register 0xf0	268
Table 5.234. msix_table Register 0xf4	268
Table 5.235. msix_pba Register 0xf8	269
Table 5.236. dsn_cap Register 0x130	269
Table 5.237. dsn_serial Register 0x134	269
Table 5.238. rbar_cap Register 0x1a0	269
Table 5.239. rbar_cfg0 Register 0x1a4	270
Table 5.240. rbar_cfg1 Register 0x1a8	271
Table 5.241. rbar_cfg2 Register 0x1ac	272
Table 5.242. rbar_cfg3 Register 0x1b0	273
Table 5.243. rbar_cfg4 Register 0x1b4	273
Table 5.244. rbar_cfg5 Register 0x1b8	274
Table 5.245. main_ctrl_0 Register 0x0	275
Table 5.246. main_ctrl_1 Register 0x4	276
Table 5.247. main_ctrl_2 Register 0x8	276
Table 5.248. main_ctrl_3 Register 0xC	277
Table 5.249. main_ctrl_4 Register 0x10	277
Table 5.250. main_ctrl_4 Register 0x10	278
Table 5.251. conv_port_0 Register 0x100	278
Table 5.252. conv_port_1 Register 0x104	279
Table 5.253. conv_port_2 Register 0x108	279
Table 5.254. stat_port_0 Register 0x200	280
Table 5.255. stat_port_0 Register 0x204	281
Table 5.256. Type 00 Configuration Header	282
Table 5.257. Type 01 Configuration Header	283
Table 5.258. Capability and Extended Capability Items	283
Table 5.259. Type 00 Configuration Registers	284
Table 5.260. PCI Express Capability	285
Table 5.261. Power Management Capability	291
Table 5.262. MSI-X Capability	292
Table 5.263. MSI Capability	293

Table 5.264. Advanced Error Reporting Extended Capability.....	294
Table 5.265. ARI Extended Capability	296
Table 5.266. Vendor-Specific Extended Capability	297
Table 5.267. Secondary PCI Express Extended Capability.....	298
Table 5.268. ATS Extended Capability	299
Table 5.269. DSN Extended Capability.....	299
Table 5.270. Resizable BAR Capability	299
Table 5.271. Power Budgeting Capability	300
Table 5.272. Dynamic Power Allocation (DPA) Capability	301
Table 5.273. L1 PM Substates Extended Capability.....	301
Table 5.274. Latency Tolerance Reporting (LTR) Capability.....	302
Table 6.1. PCIe x4 IP Configuration Supported by the Example Design.....	303
Table 6.2. AXI-MM DMA Signals to Debug Description	316
Table 6.3. AXI-Stream DMA Signals to Debug Description	317
Table 6.4. AXI-Lite Bridge Mode to Debug Description	318
Table 6.5. Non-DMA Signals to Debug Description	319
Table 7.1. Generated File List	322
Table A.1. Lattice PCIe IP Core Resource Utilization.....	341

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AHB	Advanced High-Performance Bus
APB	Advanced Peripheral Bus
AXI	Advanced Extensible Interface
AXI-MM	Advanced Extensible Interface – Memory Mapped
ASPM	Active State Power Management
BAR	Base Address Register
CSR	Configuration and Status Register
DLLP	Data Link Layer Packet
DMA	Direct Memory Access
ECC	Error Correction Coding
EP	Endpoint
FIFO	First In First Out
LMMI	Lattice Memory Mapped Interface
LTSSM	Link Training and Status State Machine
MSI	Message Signaled Interrupt
RTL	Register Transfer Language
PCI	Peripheral Component Interconnect
PCIE	Peripheral Component Interconnect Express
PCS	Physical Coding Sublayer
PLL	Phase-Locked Loop
PM	Power Management
PMA	Physical Medium Attachment
RAM	Random Access Memory
RC	Root Complex
RP	Root Port
TLP	Transaction Layer Packet
UCFG	User Configuration Interface

1. Introduction

1.1. Overview of the IP

PCI Express® is a high performance, fully scalable, and well-defined standard for a wide variety of computing and communications platforms. As a packet-based serial technology, the PCI Express standard greatly reduces the number of required pins and simplifies board routing and manufacturing. PCI Express is a point-to-point technology, as opposed to the multi-drop bus in PCI. Each PCI Express device has the advantage of full duplex communication with its link partner to greatly increase overall system bandwidth. The basic data rate for a single lane is double that of the 32-bit/33 MHz PCI bus. A four-lane link has eight times the data rate in each direction of a conventional bus.

The Lattice PCIe x4 IP Core provides a flexible, high-performance, easy-to-use Transaction Layer Interface to the PCI Express Bus. The Lattice PCIe x4 IP Core implementation is a hardened IP with soft logic provided for interface conversion options. The hardened IP is an integration of PHY and Link Layer blocks.

The Lattice PCIe x4 IP Core is supported in the CertusPro-NX™ and MachXO5™-NX FPGA device families and is available in the Lattice Radiant™ software.

Note: MachXO5-NX is configurable only up to x1.

1.2. Quick Facts

Table 1.1. Summary of the PCIe x4 IP

IP Requirements	Supported Devices	CertusPro-NX, MachXO5-NX (LFMXO5-55T, LFMXO5-100T, and LFMXO5-55TD, LFMXO5-55TDQ)
	IP Changes	Refer to the PCIe x4 IP Release Notes (FPGA-RN-02059) .
Resource Utilization	Supported User Interface	APB, AXI-MM, AXI-Lite, AXI-Stream, TLP
Design Tool Support	Lattice Implementation	IP Core v4.0.0 – Lattice Radiant Software 2025.2 or later
	Synthesis	Synopsys® Synplify Pro® for Lattice
	Simulation	QuestaSim Lattice-Edition, QuestaSim Pro

Notes:

1. For designs requiring x2 or x4 lane interfaces, contact your local Lattice Sales Representative for important design guidelines.
2. In some instances, the IP may be updated without changes to the user guide. This user guide may reflect an earlier IP version but remains fully compatible with the later IP version. Refer to the IP Release Notes for the latest updates.
3. Lattice Implementation indicates the IP version release coinciding with the software version release. Check the software for IP version compatibility with earlier or later software versions.

1.3. IP Support Summary

Table 1.2. PCIe IP Support Readiness

Device Family	IP	User Interface	Gen Speed	Link Width	Data Rate (Gbps)	Radiant Timing Model	Hardware Validated
CertusPro-NX	PCIe EP DMA	AXI-MM	Gen 3	x4, x2, x1	32, 16, 8	Final	Yes
			Gen 2	x4, x2, x1	20, 10, 5	Final	Yes
			Gen 1	x4, x2, x1	10, 5, 2.5	Final	Yes
	PCIe EP	AXI-Stream	Gen 3	x4	32	Final	No
		TLP	Gen 3	x4, x2, x1	32, 16, 8	Final	Yes
			Gen 2	x4, x2, x1	20, 10, 5	Final	Yes
			Gen 1	x4, x2, x1	10, 5, 2.5	Final	Yes
		AXI-Stream	Gen 3	x4, x2, x1	32, 16, 8	Final	No
			Gen 2	x4, x2, x1	20, 10, 5	Final	No
			Gen 1	x4, x2, x1	10, 5, 2.5	Final	No
		AXI-MM/ AXI-Lite	Gen 2	x1	5	Final	Yes
			Gen 1	x1	2.5	Final	Yes
MachXO5-NX	PCIe EP DMA	AXI-MM	Gen 2	x1	5	Final	Yes
			Gen 1	x1	2.5	Final	Yes
	PCIe EP	TLP	Gen 2	x1	5	Final	Yes
			Gen 1	x1	2.5	Final	Yes
		AXI-Stream	Gen 2	x1	5	Final	No
			Gen 1	x1	2.5	Final	No
		AXI-MM/AXI-Lite	Gen 2	x1	5	Final	Yes
			Gen 1	x1	2.5	Final	Yes

1.4. Features

The key features of the PCIe x4 IP include:

1.4.1. Hard IP PHY

- Transmitter
 - Configurable driver impedance, amplitude, and 3-tap pre-emphasis
 - Support for four lanes
- Receiver
 - Configurable receiver impedance, Continuous Time Linear Equalizer (CTLE) gain, 1-Tap Decision Feedback Equalization (DFE), and support for equalizer adaptation
 - Baud rate Eye Monitoring capability to map eye density at receiver post equalization
 - Bit skip feature to allow adjusting of received byte clock alignment
- PCS
 - Rate negotiation support
 - Selectable parallel data widths such as 5, 10, and 16
 - 8b/10b encoding at 2.5 Gbps and 5 Gbps, while at 8 Gbps is 128b/130b encoded
 - Test support features such as near-end loopback and PLL bypass modes
 - Protocol-compatible features such as LOS, squelch, and power modes
 - L1-substates and special L1P2 support for PCIe 2.0 and PCIe 3.0
 - Configuration interface for each lane

1.4.2. Hard IP Link Layer

- PCI Express Base Specification Revision 4.0 compliant, including compliance with earlier PCI Express Specifications
 - Backward compatible with PCI Express 3.x, 2.x, and 1.x
- x4 PCI Express Lanes with bifurcation options such as 1x4, 1x2, and 1x1 lane configurations
- 8.0GT/s, 5.0 GT/s, and 2.5 GT/s line rate support
- Comprehensive application support – Endpoint
- Multi-Function support with 1-4 Physical Functions per Link
- Support for Autonomous and Software-Controlled Equalization
- Support for Figure of Merit and Up/Down PIPE PHY Equalization
- Flexible Equalization methods (Algorithm, Preset, User-Table, Adaptive-Table, and Firmware-controlled)
- ECC RAM and Parity Data Path Protection
- Core Data Width
 - 32 bits for x1 lane
 - 64 bits for x2 lanes
 - 128 bits for x4 lanes
- Complete error-handling support
 - AER, ECRC generation/checking, recovery from Parity and ECC errors
 - Supports detection of numerous optional errors and embedded simulation error checks/assertions
 - Simulation and hardware error injection features enable error testing
- Flexible core options allow for design complexity/feature trade-offs:
 - Configurable Receive, Transmit, and Replay Buffer sizes
- Supports Polarity Inversion, Up/Down-configure, Autonomous Link Width/Speed changes
- Power Management
 - Supports L1, ASPM L0s, and ASPM L1 (Support disabled until hardware testing is completed)
 - L1 PM Substates with CLKREQ (Support disabled until hardware testing is completed)
 - Power Budgeting
 - Dynamic Power Allocation
- Latency Tolerance Reporting
- Implements Type 0 Configuration Registers in Endpoint Mode
- Dual mode design supports EP or RP through the register changes
- The above features enable:
 - Decoding of received packets to provide key routing (BAR hits and Tag) information
 - Implementation of all aspects of the required PCIe Configuration Space
 - PCI Express Message TLPs to be consumed or left in a band
 - Interfaces to have consistent timing and function over all modes of operation
 - A wealth of diagnostic information for superior system-level debug and link monitoring
- Implements all three PCIe Layers (Transaction, Data Link, and Physical)

1.4.3. Soft IP

- Non-DMA
 - TLP Mode¹
 - AXI-Stream Data Interface¹
 - AXI-MM Data Interface (Bridge Mode)³
 - AXI-Lite Data Interface (Bridge Mode)³
- DMA
 - AXI-MM Data Interface¹
 - AXI-Stream Data Interface²
- LMMI Register Interfaces
 - APB Register Interface⁴

Notes:

1. Only link 0 is supported; x1, x2, and x4 modes are supported.

2. Only link 0 is supported; Only x4 mode is supported.
3. Only link 0 is supported; Only x1 mode is supported.
4. Only supported in Non-DMA AXI-Stream Data Interface.

1.5. Licensing and Ordering Information

The PCIe x4 IP is available with the Lattice Radiant Subscription software. To purchase the Lattice Radiant Subscription license, contact [Lattice Sales](#) or go to the [Lattice Online Store](#).

1.6. Hardware Support

Refer to the [Example Design](#) section for more information on the boards used.

1.7. Naming Conventions

1.7.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.7.2. Signal Names

- `_n` are active low (asserted when value is logic 0)
- `_i` are input signals
- `_o` are output signals
- `[LINK]` index identifies which PCIe Link (0 or 1)

1.8. Speed Grade Supported

The Lattice PCIe IP core supported speed grade is provided in this section. Different configurations may be supported using different speed grades due to fabric performance requirement.

- 9 – fastest speed grade

Table 1.3. Lattice PCIe IP Core Supported Speed Grade

PCIe Core Config	Device Family	Speed Grade
Gen3x1, Gen3x2, and Gen3x4	CertusPro-NX	9
Gen2x4 and below	CertusPro-NX/MachXO5-NX ¹	7/8/9 ²

Notes:

1. MachXO5-NX only supports up to Gen2x1.
2. Speed Grade 7 and 8 support up to 100 MHz.

1.9. Hardware Evaluation

The Lattice PCIe x4 IP Core supports Lattice's IP hardware evaluation capability. This makes it possible to operate the IP core that operates in hardware for a limited period (approximately four hours) without requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs. The hardware evaluation capability may be enabled/disabled in the *Strategy* dialog box. Hardware evaluation is enabled by default. To change this setting, go to *Project* > *Active Strategy* > *LSE/Synplify Pro Settings*.

2. Functional Description

2.1. PCIe IP Architecture Overview

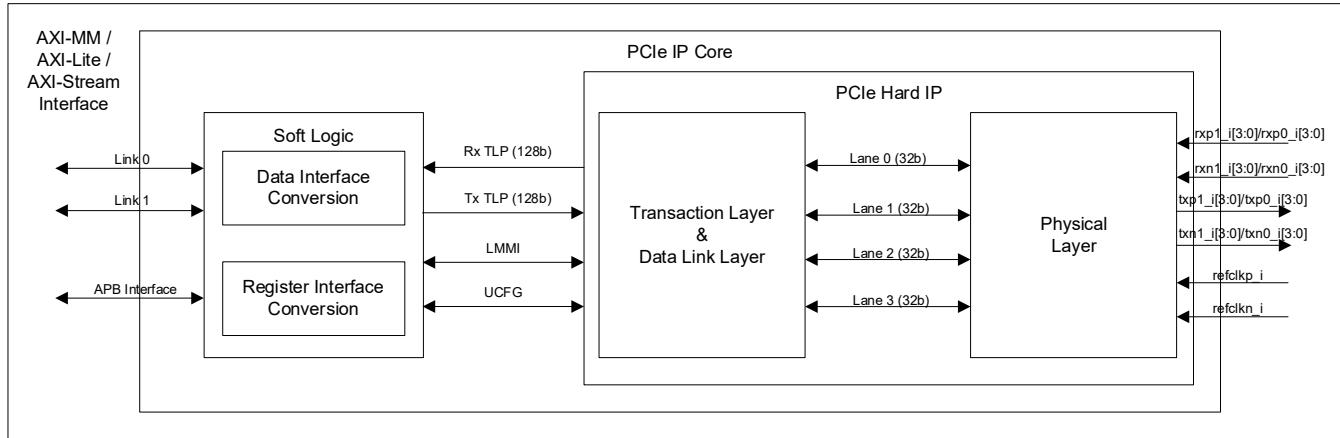


Figure 2.1. Lattice PCIe x4 IP Core Block Diagram

The Lattice PCIe x4 IP Core implements all three layers defined by the PCI Express Specification:

- Physical Layer
- Data Link Layer
- Transaction Layer

The soft logic is provided for optional interface conversion such as:

- Non-DMA AXI-Stream
- Non-DMA AXI-MM
- Non-DMA AXI-Lite
- APB for register accesses

The Lattice PCIe x4 Core Hard IP has the following interfaces as shown in [Figure 2.2](#). The details of each interface are discussed in the subsequent sections.

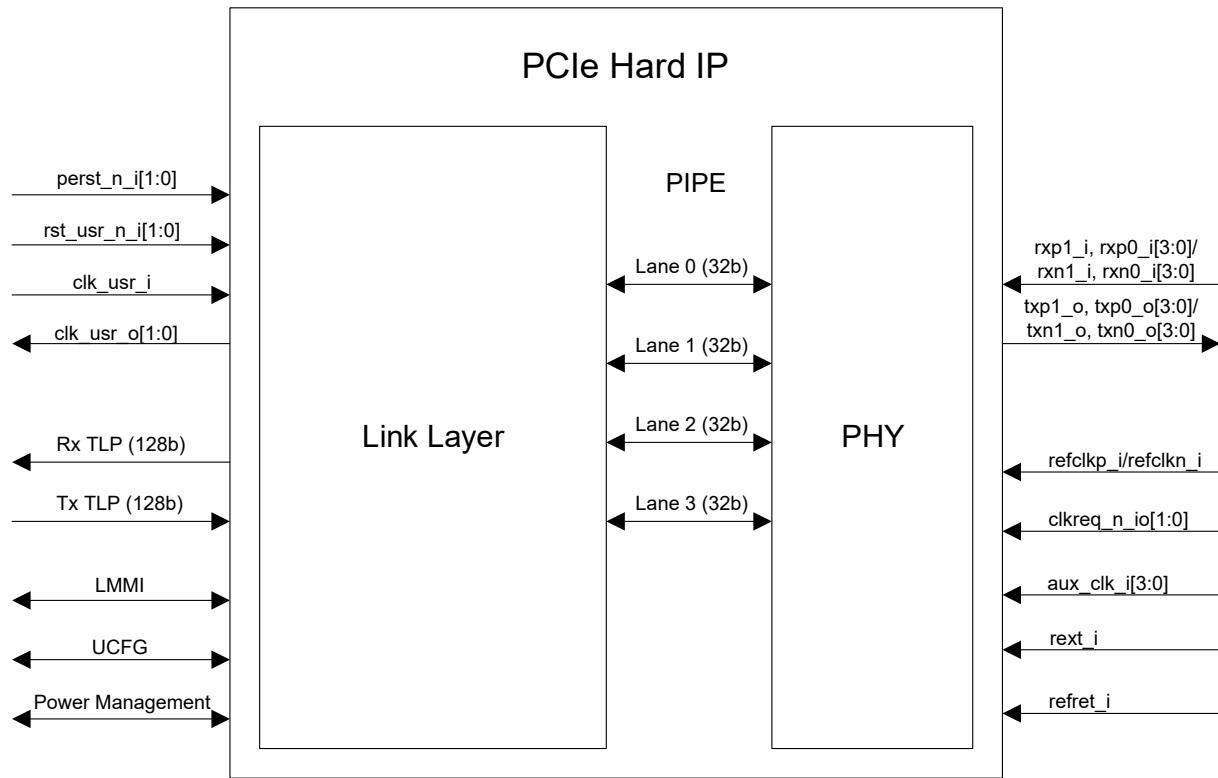


Figure 2.2. Lattice PCIe x4 Core Hard IP

- Clock and Reset Interface
 - The user domain interface can be clocked using the PHY PCLK output ($sys_clk_i = link[LINK]_clk_usr_o$) or by the user generated clock using a PLL.
Note: $sys_clk_i = link[LINK]_clk_usr_o$ is used for the TLP interface only.
- Reset Interface
 - The fundamental reset ($link[LINK]_perst_n_i$) resets the core (*PHY and Link Layer blocks*) except for the core configuration registers.
 - Another reset ($link[LINK]_rst_usr_n_i$) is provided to reset only the Link Layer block.
- PHY Interface
 - High-Speed Serial Interface that supports a maximum rate of 8 GT/s
- TLP Receive Interface
 - Receive TLPs from the PCIe link partner
 - High bandwidth interface
- TLP Transmit Interface
 - Transmit TLPs to the PCIe link partner
 - High bandwidth interface
- Power Management Interface
 - Ports for implementing power management capabilities
- UCFG – User Configuration Space Register Interface
 - Enables access to the PCIe Configuration Space Registers
- LMMI – Configuration and Status Register (CSR) Interface
 - This interface is used to write to and read from the core configuration and status registers. This interface can also be used to read status registers such as PLL locked and LTSSM state and to turn off a capability register that is not configurable through the PCIe IP user interface.

2.2. Clocking

2.2.1. Clocking Overview

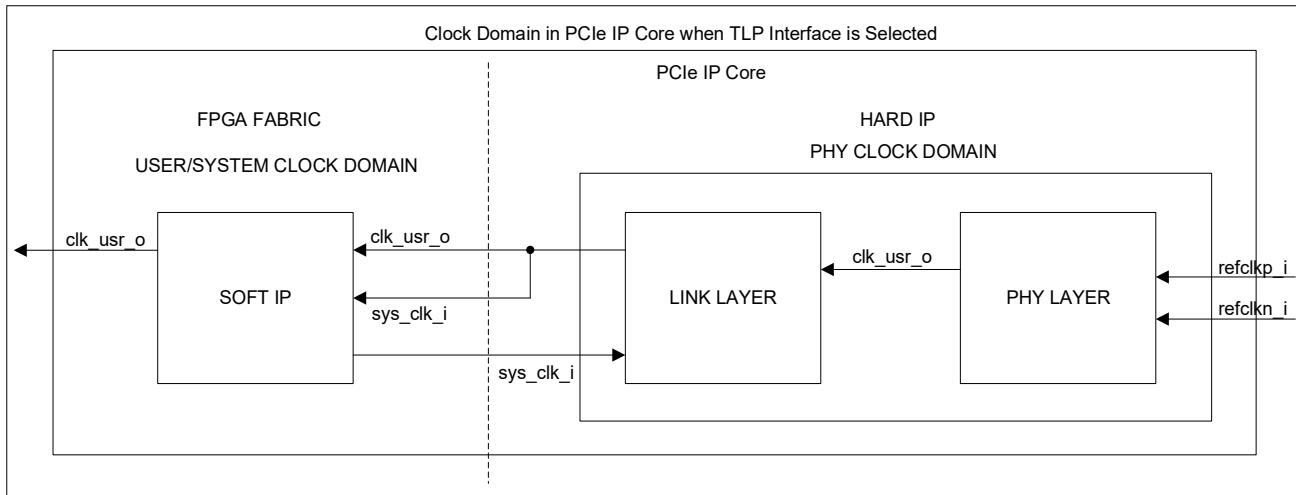


Figure 2.3. PCIe IP Clock Domain Block Diagram for TLP Interface

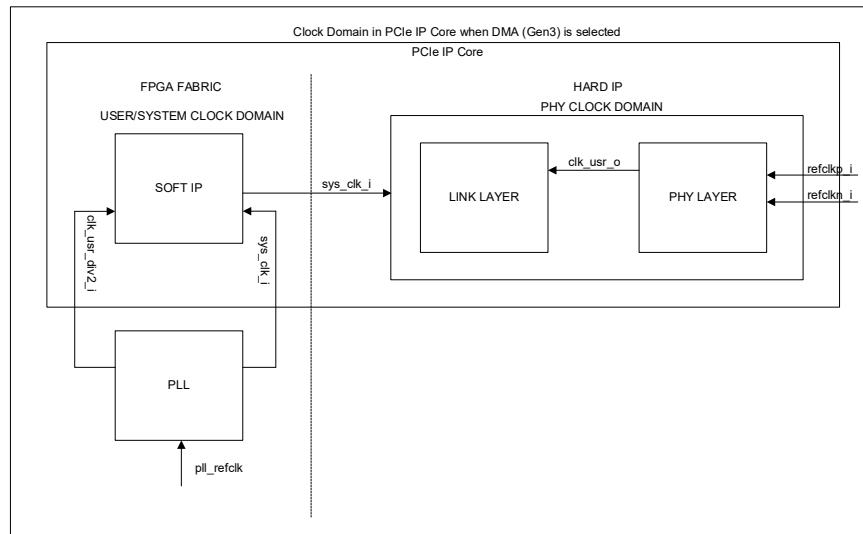


Figure 2.4. PCIe IP Overall Clock Domain Block Diagram for DMA

The PCIe x4 IP includes the following clock domains. The `sys_clk_i` and `clk_usr_div2_i` signals are generated during the PLL IP instantiation. For the TLP interface, you can connect `clk_usr_o` back to the `sys_clk_i`, as shown in [Figure 2.3](#).

- `refclkp_i/refclkn_i` are differential PHY reference clocks.
 - You can set the reference clock frequency in the PCIe IP Core.
 - There are two options available: 100 MHz or 125 MHz.
- `sys_clk_i/clk_usr_i` is the user clock domain input clock.
 - This clock is generated by the system PLL and shared to the Link layer blocks.
 - For the TLP interface variants, you can choose to connect `clk_usr_o` back to the `sys_clk_i` as shown in [Figure 2.3](#).
- `clk_usr_div2_i` is the user clock domain divided by two input clocks.
 - This clock is generated by the system PLL with simple division by two at half of the `sys_clk_i` frequency.
 - This clock does not apply to the TLP interface variants.

- `clk_usr_o` is the User Clock Domain Output Clock.
 - This is the pclk output that comes from the PHY of the PCIe IP core.
 - By default, `clk_usr_o` uses the divide-by-2 version of the 125 MHz pclk from the PHY.

2.2.2. User and System Clocks

The clock frequency for each interface signal is described in the [Signal Description](#) section. [Table 2.1](#) shows the clock frequency for each generation. Refer to the [Timing Constraints](#) section for details on the clock generation using the PLL IP and constraint specification.

Table 2.1. PHY Clock and User Clock Frequencies

Link Speed	PHY Clock Domain	User Clock Domain		
	<code>refclk_i/refclkn_i</code>	<code>sys_clk_i</code>	<code>clk_usr_div2_i</code>	Minimum Speed Grade
Gen 1	100 MHz/125 MHz	62.5 MHz	31.25 MHz	7
Gen 2	100 MHz/125 MHz	125 MHz	62.5 MHz	7
Gen 3	100 MHz/125 MHz	250 MHz	125 MHz	9

2.2.3. Use of the 125 MHz Reference Clock

In the PCIe IP core, the `sd_ext_0_refclk_i` and `sd_ext_1_refclk_i` clock ports are used when the reference clock selected in the user interface is 125 MHz. If the reference clock is 100 MHz, the default value of the clock port is zero.

[Table 2.2](#) shows the other port values when the 125 MHz reference clock is used.

Table 2.2. Port Values when Reference Clock Frequency is 125 MHz

Clock Ports	<code>use_refmux_i</code>	<code>clksel_i[1]</code>	<code>clksel_i[0]</code>	<code>diffioclk_i</code>	<code>refclkp_i/refclkn_i</code>	Unused Signals
<code>sd_ext_0_refclk0p_i</code> <code>sd_ext_0_refclk0n_i</code>	1'b1	1'b1	1'b0	1'b0	125 MHz	1'b0
<code>sd_ext_1_refclk1p_i</code> <code>sd_ext_1_refclk1n_i</code>	1'b1	1'b1	1'b0	1'b1	125 MHz	1'b0

To use the 125 MHz Reference Clock, perform the following steps:

1. Set `use_refmux_i` to **1'b1**.
2. Set `clksel_i` to **2'b10**.
3. Set unused signals to **1'b0**.
4. Configure the PLL to generate 125 MHz `refclkp_i/refclkn_i`.
`sd_ext_0_refclk0p_i` and `sd_ext_0_refclk0n_i` are used when `diffioclkSEL_i` is 0.
`sd_ext_0_refclk1p_i` and `sd_ext_0_refclk1n_i` are used when `diffioclkSEL_i` is 1.
5. When 100 MHz Reference Clock is used, input pins `sd_ext_0_refclk0p_i`, `sd_ext_0_refclk0n_i`, `sd_ext_0_refclk1p_i`, and `sd_ext_0_refclk1n_i` is hidden.

2.3. Reset

2.3.1. Reset Overview

There are two fundamental reset events that can occur in PCI Express:

- Cold Reset – This is a fundamental reset applied during power cycling. The signal `link[LINK]_perst_n_i` is asserted.
- Warm Reset – This is a fundamental reset triggered by hardware without the removal and re-application of power. The `perst_n_i` signal is asserted.

The fundamental reset `link[LINK]_perst_n_i` resets the core (Link Layer and PHY Layer blocks) while another reset, which is the user clock domain Link Layer reset `link[LINK]_rst_usr_n_i`, is used to reset the Link Layer block only.

Depending on the PCIe IP configuration, in non-DMA mode, `usr_Immi_resetn_i` is used.

For AHB-L DMA (only available in IP versions older than 3.0.0), reset signal `c_apb_preset_n_i` is used.

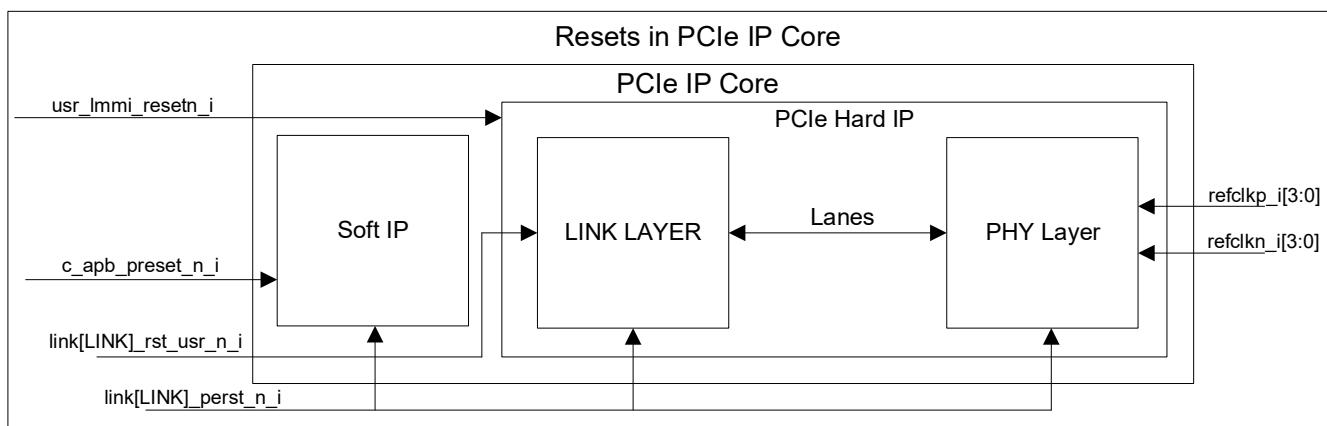
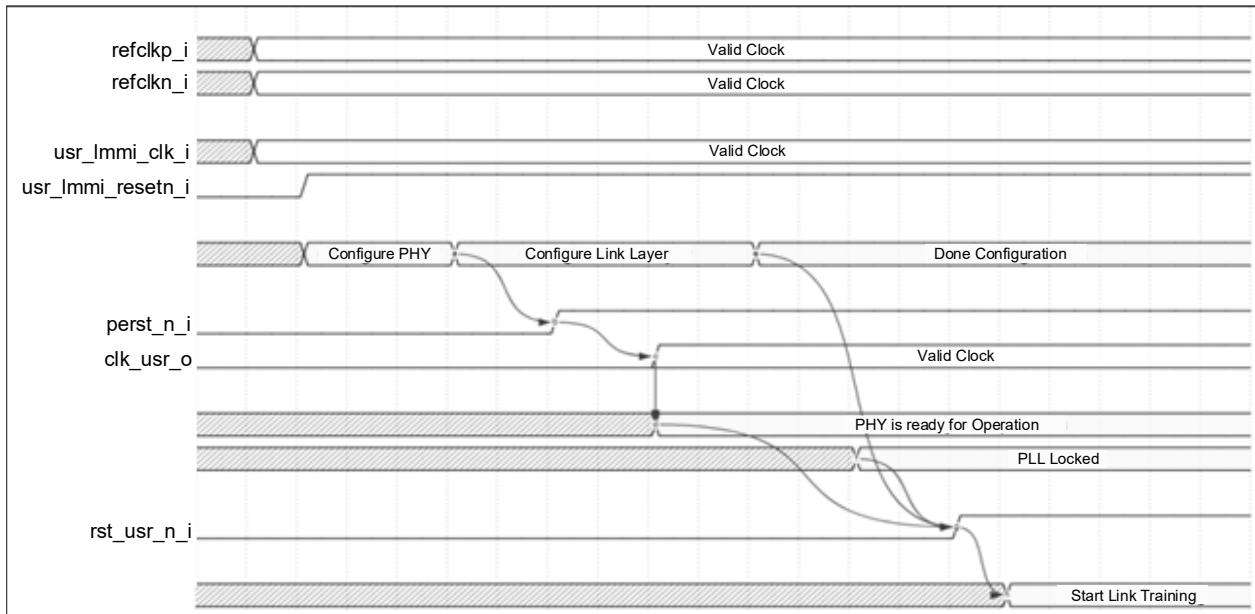



Figure 2.5. Reset Signals in Lattice PCIe IP Core

2.3.2. Clock and Reset Sequence

The PCIe IP clock and reset operation is shown in [Figure 2.6](#).

Figure 2.6. Clock and Reset Sequence Diagram

The Lattice PCIe x4 IP Core configuration register implementation has default values that are appropriate for most applications. You can change the register configuration through the LMMI or APB interface. When the LMMI or APB interface is used to configure the PHY layer registers, the configuration should be done before the deassertion of the `link[LINK]_perst_n_i` signal. The PHY Layer is released from reset and is ready for operation once it is able to generate the PIPE clock output (such as the `link[LINK]_clk_usr_o` signal). The user domain reset (such as `link[LINK]_rst_usr_n_i`) can be deasserted if the Link Layer register configuration is done or skipped.

To ensure that the clock is stable before the link training, you must wait for the PLL locked status for all four channels of Tx PLL before de-asserting the user domain reset (`link[LINK]_rst_usr_n_i`). If the you select the x2 or x1 link width, you may observe the two-channel Tx PLL locked status or one channel Tx PLL locked status respectively. The TX PLL status (*bit-4, offset 0x7F in PHY PMA Status register*) can be read through the LMMI or APB.

2.4. Protocol Layers

There are three major classes of packets in PCIe devices: Transaction Layer Packets (TLP), Data Link Layer Packets (DLLP), and Ordered Sets (OS). The function of the Protocol Layer is to generate and process these packets.

- **Transaction Layer**
The Transaction Layer manages the TLPs to communicate request and completion data with other PCIe devices. The TLP packets are assembled at the *transmit side* of the link and disassembled at the *receive side* of the link. The TLP communicates through different formats either in I/O request format or in the memory request format.
- **Data Link Layer**
The Data Link Layer transfers data from the Transaction Layer to the Physical Layer. It plays an important role in assuring good reception of the TLP packets. The DLLPs are used to convey information about the link initialization, power management, flow control, and TLP acknowledgements.

- Physical Layer

The Physical Layer converts the packets from the Data Link Layer into serialized bit streams and transfers it to the external physical link. The receive logic de-serializes the bits, reassembles the packets, and forwards it to the Data Link Layer. It conveys the communication between the Data Link Layer and the external physical link. The Physical layer is divided into the Logical sub-block and the Electrical sub-block. The Logical sub-block frames and deframes the packets and implements the LTSSM state machine. The scrambling, descrambling, and 8B/10B encoding and decoding of data are done in the logical sub-block. The Electrical sub-block provides the physical interface to the Link and contains the differential transmitters and receivers. The PLPs or ordered sets are exchanged during link training and link initialization.

2.4.1. ECC and Parity Data Path Protection

The Lattice PCIe x4 IP Core protects the TLP data path with Error Correction Coding (ECC) and Parity Protection. This is implemented in the Hard IP block.

ECC is used to protect TLP data in the following data path RAMs:

- Replay Buffer
- Receive Buffer
- Transmit Buffer

The ECC implementation enables correction for 1-bit errors and detection for 2-bit errors. The 8-bit of ECC information is included in the RAMs for each 64 (or fraction thereof) data bits.

Even (XOR) Parity ($parity[i] = \wedge(data[((i+1) \times 8)-1:(i \times 8)])$) is used to protect the data path. Parity provides detection for 1-bit errors (and other odd-bit errors). To enable continuous parity protection coverage, parity is passed through RAMs that are also protected by ECC.

The core includes the ability to enable/disable the reporting and handling of ECC/Parity errors. Correctable errors (ECC 1-bit errors) are fixed when correction is enabled. Uncorrectable ECC/Parity errors in the transmit data path result in the associated TLP being discarded or nullified when error handling is enabled. While error handling can be disabled, this is not recommended as passing a known TLP with bad contents can result in a more serious error condition than discarding the TLP.

2.4.1.1. Receive Data Path

For the receive data path, parity is generated for received TLPs prior to the removal and validation of the Link CRC (LCRC). Parity protection is thus overlapped with LCRC protection.

Received TLP parity is passed with the associated received TLP (header and payload) bytes through the Receive Buffer and onto the user Transaction Layer Receive interface. It is expected that parity is checked and errors are handled by the ultimate TLP consumer. Since TLP can have parity errors on any byte (toward the end of a longer TLP for instance), it is generally not possible to avoid processing the error TLP as the earlier portion of the TLP may already have been processed by the time that the error is detected.

Applications that do not want to process TLPs with errors need to store and forward the TLP for processing only after inspecting the parity of all data bytes. If the core Transaction Layer detects a parity error while it is consuming a received TLP (Type 0 Configuration Read/Write, Malformed TLP, and Message), the error is reported as Uncorrectable Error (in AER capability) and the core discards the TLP without processing it.

2.4.1.2. Transmit Data Path

For the transmit data path, parity is generated by the TLP source. For user TLPs (for example those transmitted on the core's Transaction Layer Transmit Interface), the parity is provided along with associated TLP (header and payload) bytes. The provided parity is kept with the associated data as it traverses the core. The parity is checked and discarded just after the TLP PCIe LCRC is generated.

Parity protection is thus overlapped with LCRC protection, including the associated PCIe replay mechanism. If the core detects a parity or uncorrectable ECC error during transmission of a TLP, the error is reported and the associated TLP is nullified (discarded) and not retransmitted. This is a serious error that must be handled by the software. The TLP is discarded to not propagate the error and risk potentially worse consequences in other components that receives TLPs with known bit errors.

2.4.1.3. Uncorrectable Error Recovery

PCI Express includes the ability to nullify or cancel a TLP transmission immediately after it is completed by inverting the LCRC and using End Bad (EDB) end framing instead of the normal TLP end framing. TLP can be nullified to reduce propagation, potentially multiplying the effects of the error. Nullified TLPs are not regenerated by the original TLP source as it is difficult for software to construct the missing TLP. As a result, there is a fatal system error condition regardless of whether the error TLP is nullified or not. When TLP is nullified due to errors, the core attempts to keep the transmit stream active so that the software can be notified of the error using the standard in-band mechanisms (for example, transmission of ERR_NFAT or ERR_FAT message).

TLPs are allocated a sequence number during transmission and the PCIe receiver only accepts TLPs in sequential order. When a TLP is nullified due to an uncorrectable error, the missing sequence number must be recovered before the link can continue to transmit TLPs.

TLPs are allocated Virtual Channel Flow Control Credits when they are transmitted by the Transaction Layer. The PCI Express device receiving the TLP over the PCI Express link frees the associated credits by sending Flow Control Update DLLPs. TLPs, which are nullified due to uncorrectable ECC and Parity errors, are allocated credits by the Transaction Layer, which is never freed since the TLP is nullified and not received by the Receiver. Nullified TLPs are discarded by the Receiver without affecting Flow Control Credits or Sequence Number.

Whenever a transmitted TLP is nullified due to an uncorrectable error, this causes the PCI Express link to be unable to process further TLPs. The sequence number and flow control credits that are allocated to the nullified TLP must be reclaimed before the link is repaired. The Lattice PCIe x4 IP Core contains logic to correct the link when TLPs are nullified due to uncorrectable errors.

Whenever an uncorrectable ECC or Parity error is detected, it is recommended for you to reset the link through the software to reset the link although the link is corrected for further transmission.

2.4.2. Error Handling

The Lattice PCIe x4 IP Core detects and implements the appropriate response to most error conditions without user intervention. You generally only need to detect and report errors that the core does not have enough information to detect.

2.4.2.1. PCIe-Defined Error Types

The following defines the error types in the PCIe. The *Type* column in [Table 2.3](#) to [Table 2.6](#) defines the PCI Express defined error severity:

- COR – Correctable
- NFAT – Uncorrectable – Non-Fatal
- FAT – Uncorrectable – Fatal

Table 2.3. General PCI Express Error List

Error	Type
Corrected Internal Error	COR
Uncorrectable Internal Error	FAT
Header Log Overflow	COR

Table 2.4. Physical Layer Error List

Error	Type
Receiver Error	COR

Table 2.5. Data Link Layer Error List

Error	Type
Bad TLP	COR
Bad DLLP	COR
Replay Timeout	COR
REPLAY_NUM Rollover	COR
Data Link Layer Protocol Error	FAT
Surprise Down	FAT

Table 2.6. Transaction Layer Error List

Error	Type
Poisoned TLP Received	NFAT
ECRC Check Failed	NFAT
Unsupported Request	NFAT
Completion Timeout	NFAT
Completer Abort	NFAT
Unexpected Completion	NFAT
ACS Violation	NFAT
MC Blocked TLP	NFAT
AtomicOp Egress Blocked	NFAT
Receiver Overflow	FAT
Flow Control Protocol Error	FAT
Malformed TLP	FAT

2.4.2.2. User Error Reporting

The User Hardware design must be able to detect and report the following errors.

- Uncorrectable Internal Error
 - Signals if AER Version 0x2 is enabled in the core and user hardware is detected and unable to correct an application-specific error that is not reported through another error mechanism.
 - If AER is supported by the core, the header of the first TLP associated with the error may optionally be logged.
- Poisoned TLP Received with Advisory Non-Fatal Severity
 - Signals if the core's default poison handling is disabled (*ignore_poison == 1*) and you receive a poisoned TLP that is considered as *Advisory Non-Fatal* severity. If the data payload of a poisoned packet is used or the poison can be recovered from the software or other mechanism, the poison should be treated as *Advisory Non-Fatal* since a non-fatal error often causes a system operation to crash.
 - If AER is supported by the core and the core is operating in Endpoint mode, an ERR_COR message is requested and transmitted if enabled.
 - If AER is supported by the core, the header of the poisoned packet must be logged.
- Poisoned TLP with Non-Fatal Severity
 - Signals if the core's default poison handling is disabled (*ignore_poison == 1*) and you receive a poisoned TLP that is considered as *Non-Fatal* severity. Handling poison as *Non-Fatal* severity should be avoided when possible as this is often fatal to the system operation.
 - If AER is supported by the core, the header of the poisoned packet must be logged.

- Unsupported Request
 - A Type0 Vendor-defined message that is received but not supported by user logic is an Unsupported Request. This is uncommon since only devices designed to receive Type0 Vendor-defined messages should receive these. However, compliance tests may require this error to be handled; hence, it is recommended to implement this check. Receiving a message with Message Code == 0x7E should cause Unsupported Request to be reported, unless the user design is designed to receive these messages.
 - Completions that are received with a Reserved Completion status must be handled as if the Completion status is an Unsupported Request.
- Completion Timeout
 - If you initiate a non-posted request (all reads, I/O Write, and Configuration Write), you are required to implement a completion timeout timer that fires if completions to a non-posted request are not received in the allotted time period. This error check needs to be implemented by the user design that includes initiating non-posted requests.
- Completion Abort
 - Signals if permanently unable to process a request due to a device-specific error condition. Generally, this error is only signaled if you choose to implement a restricted programming model (that requires the software to always perform DWORD size transactions and not support burst transactions). This is not recommended unless that the only software that can access the user design is your own software, which is designed to conform with the restricted programming model.
 - If AER is supported by the core, the header of the aborted request must be logged.
- Unexpected Completion
 - You must signal if a completion is received but the tag does not match any outstanding requests.
 - If the core is enabled for Target_Only mode indicating that the user design does not initiate non-posted requests, the core considers all completions as Unexpected Completions, discards them, and generates the appropriate response. In this case, you do not handle this error.
 - If AER is supported by the core, then the header of the completion must be logged.

As a minimum, it is recommended to report the following errors:

- Completion Timeout if user logic initiates non-posted requests (for example, DMA read requests)
- Unsupported Requests for the cases described above
- Unexpected Completion for the case described above
- Poison, when the core's default poison handling is disabled (ignore_poison == 1)

2.4.3. LTSSM State

2.4.3.1. Main LTSSM

The Lattice PCIe x4 IP Core follows the PCI Express specification for the Link Training and Status State Machine. However, to help hit higher frequencies, the LTSSM is split into one Major State LTSSM state machine and several separate LTSSM sub-state machines, with one sub-state state machine for each major state.

The Lattice PCIe x4 IP Core implements additional LTSSM sub-states that are necessary to meet PCIe specification LTSSM operation but are not given an explicit sub-state in the PCIe specification. [Table 2.7](#) lists each state.

Table 2.7. LTSSM State Definition

LTSSM Major State	LTSSM Sub-state	Description
0 – Detect	0 – DETECT_INACTIVE	The sub-state is DETECT_INACTIVE whenever the LTSSM major state is not Detect.
	1 – DETECT QUIET	Detected.Quiet
	2 – DETECT_SPD_CHGO	Detected.Quiet – Sub-state to change speed change back to 2.5G if needed. Request PHY speed change.
	3 – DETECT_SPD_CHG1	Detected.Quiet – Sub-state to change speed change back to 2.5G if needed. Wait for speed change to complete.
	4 – DETECT_ACTIVE0	Detected.Active – First Rx Detection.
	5 – DETECT_ACTIVE1	Detected.Active – Wait 12 ms between Rx Detection attempts.
	6 – DETECT_ACTIVE2	Detected.Active – Second Rx Detection (if needed).

LTSSM Major State	LTSSM Sub-state	Description
7 – DETECT_P1_TO_P0	7 – DETECT_P1_TO_P0	Detect.Active – Change PHY power state from P1 to P0 (inactive to active) if needed (that is on Detect – Polling transition).
	8 – DETECT_P0_TO_P1_0	Change PHY power state from P0 to P1 (active to inactive) – Transmit Electrical Idle Ordered Sets to notify the link partner that the link is idle.
	9 – DETECT_P0_TO_P1_1	Change PHY power state from P0 to P1. Wait for TX Electrical Idle Ordered Set transit request made in DETECT_P0_TO_P1_0 to get transmitted at the output of the core.
	10 – DETECT_P0_TO_P1_2	Change PHY power state from P0 to P1. Wait for PHY to reach P1 state before continuing.
1 – Polling	0 – POLLING_INACTIVE	The sub-state is <i>POLLING_INACTIVE</i> whenever the LTSSM Major State is not Polling.
	1 – POLLING_ACTIVE_ENTRY	<i>Polling.Active</i> – Entry to <i>Polling.Active</i> State exists since in some cases, the LTSSM must exit Polling without Tx of TS OS.
	2 – POLLING_ACTIVE	<i>Polling.Active</i>
	3 – POLLING_CFG	<i>Polling.Configuration</i>
	4 – POLLING_COMP	<i>Polling.Compliance</i> – Transmitting compliance pattern.
	5 – POLLING_COMP_ENTRY	<i>Polling.Compliance</i> entry state – Directs a speed change through POLLING_COMP_EIOS, POLLING_COMP_EIOS_ACK, and POLLING_COMP_IDLE when necessary, before going to POLLING_COMP.
	6 – POLLING_COMP_EIOS	<i>Polling.Compliance</i> – Transmit Electrical Idle Ordered Sets to notify the link partner that the link is idle.
	7 – POLLING_COMP_EIOS_ACK	<i>Polling.Compliance</i> – Wait for the Electrical Idle Ordered Sets transmitted in POLLING_COMP_EIOS to exit the core.
	8 – POLLING_COMP_IDLE	<i>Polling.Compliance</i> – Perform speed change now that link is idle.
2 – Configuration	0 – CONFIGURATION_INACTIVE	The sub-state is <i>CONFIGURATION_INACTIVE</i> whenever the LTSSM Major State is not Configuration.
	1 – CONFIGURATION_US_LW_START	Acting as Upstream Port – Configuration.Linkwidth.Start
	2 – CONFIGURATION_US_LW_ACCEPT	Acting as Upstream Port – Configuration.Linkwidth.Accept
	3 – CONFIGURATION_US_LN_WAIT	Acting as Upstream Port – Configuration.Lanenum.Wait
	4 – CONFIGURATION_US_LN_ACCEPT	Acting as Upstream Port – Configuration.Lanenum.Accept
	5 – CONFIGURATION_DS_LW_START	Acting as Downstream Port – Configuration.Linkwidth.Start
	6 – CONFIGURATION_DS_LW_ACCEPT	Acting as Downstream Port – Configuration.Linkwidth.Accept
	7 – CONFIGURATION_DS_LN_WAIT	Acting as Downstream Port – Configuration.Lanenum.Wait
	8 – CONFIGURATION_DS_LN_ACCEPT	Acting as Downstream Port – Configuration.Lanenum.Accept
	9 – CONFIGURATION_COMPLETE	Configuration.Complete
	10 – CONFIGURATION_IDLE	Configuration.Idle

LTSSM Major State	LTSSM Sub-state	Description
3 – LO	0 – LO_INACTIVE	The sub-state is <i>LO_INACTIVE</i> whenever the LTSSM Major State is not LO.
	1 – LO_LO	LO – Link is in LO.
	2 – LO_TX_EL_IDLE	Tx_LOs.Entry, L1.Entry, or L2.Entry – Transmit Electrical Idle Ordered Sets to notify the link partner that the link is idle (that is for preparing to enter low power states such as Tx_LOs, L1, and L2).
	3 – LO_TX_IDLE_MIN	Tx_LOs.Entry, L1.Entry, or L2.Entry – Guarantee the minimum Tx Elec Idle time when entering electrical idle and also require Rx EIOS to have been received when necessary.
4 – Recovery	0 – RECOVERY_INACTIVE	The sub-state is <i>RECOVERY_INACTIVE</i> whenever the LTSSM Major state is not <i>Recovery</i> .
	1 – RECOVERY_RCVR_LOCK	Recovery.RcvrLock
	2 – RECOVERY_RCVR_CFG	Recovery.RcvrCfg
	3 – RECOVERY_IDLE	Recovery.Idle
	4 – RECOVERY_SPEED0	Recovery.Speed – Transmit Electrical Idle Ordered Sets to notify the link partner that the link is idle.
	5 – RECOVERY_SPEED1	Recovery.Speed – Determine to which speed to change.
	6 – RECOVERY_SPEED2	Recovery.Speed – Wait for remote device to enter electrical idle and wait for the required minimum time.
	7 – RECOVERY_SPEED3	Recovery.Speed – Request PHY change speed and wait for PHY to finish changing speed.
	8 – RECOVERY_EQ_PH0	Recovery.Equalization – Phase 0
	9 – RECOVERY_EQ_PH1	Recovery.Equalization – Phase 1
	10 – RECOVERY_EQ_PH2	Recovery.Equalization – Phase 2
	11 – RECOVERY_EQ_PH3	Recovery.Equalization – Phase 3
5 – Disable	0 – DISABLE_INACTIVE	The sub-state is <i>DISABLE_INACTIVE</i> whenever the LTSSM Major state is not <i>Disable</i> .
	1 – DISABLE0	Disable – Transmit 16 to 32 TS1 Ordered Sets with Disable Link bit asserted.
	2 – DISABLE1	Disable – Transition to Electrical Idle.
	3 – DISABLE2	Disable – Wait to receive an Electrical Idle Ordered Set and min time of TX_IDLE_MIN afterwards.
	4 – DISABLE3	Disable – Wait until a Disable exit condition occurs.
6 – Loopback	0 – LOOPBACK_INACTIVE	The sub-state is <i>LOOPBACK_INACTIVE</i> whenever the LTSSM Major state is not <i>Loopback</i> .
	1 – LOOPBACK_ENTRY	Loopback.Entry – Loopback entry state – Loopback Leader may be required to Tx Loopback TS OS before continuing or speed may need to be changed before beginning loopback.
	2 – LOOPBACK_ENTRY_EXIT	Loopback.Entry – Prepare to enter Loopback.Active
	3 – LOOPBACK_EIOS	Loopback.Entry – Transmit Electrical Idle Ordered Sets to notify the link partner that the link is idle. (to change speed).
	4 – LOOPBACK_EIOS_ACK	Loopback.Entry – Wait for the Electrical Idle Ordered Sets transmitted in LOOPBACK_EIOS to exit the core.
	5 – LOOPBACK_IDLE	Loopback.Entry – Stay in Electrical Idle for required minimum time.
	6 – LOOPBACK_ACTIVE	Loopback.Active
	7 – LOOPBACK_EXIT0	Loopback.Exit – Tx Electrical Idle
	8 – LOOPBACK_EXIT1	Loopback.Exit – Stay in Electrical Idle for required minimum time.

LTSSM Major State	LTSSM Sub-state	Description
7 – Hot Reset	0 – HOT_RESET_INACTIVE	The sub-state is <i>HOT_RESET_INACTIVE</i> whenever the LTSSM Major state is not <i>Hot Reset</i> .
	1 – HOT_RESET_HOT_RESET	Hot Reset – as Follower
	2 – HOT_RESET_LEADER_UP	Hot Reset – as Leader with Link Up
	3 – HOT_RESET_LEADER_DOWN	Hot Reset – as Leader with Link Down
8 – TX L0s	0 – TX_LOS_INACTIVE	The sub-state is <i>TX_LOS_INACTIVE</i> whenever the LTSSM Major state is not <i>TX L0s</i> .
	1 – TX_LOS_IDLE	<i>Tx_L0s.Idle</i> – Idle
	2 – TX_LOS_TO_L0	<i>Tx_L0s.Idle</i> – Exiting TX L0s; wait for PHY to indicate exit from L0s complete
	3 – TX_LOS_FTS0	<i>Tx_L0s.FTS</i> – Transmit requested NFTS.
	4 – TX_LOS_FTS1	<i>Tx_L0s.FTS</i> – Transmit additional FTS required by Cfg Register Extended Sync.
9 – L1	0 – L1_INACTIVE	The sub-state is <i>L1_INACTIVE</i> whenever the LTSSM Major state is not <i>L1</i> .
	1 – L1_IDLE	<i>L1.Idle</i>
	2 – L1_SUBSTATE	L1.1 or L1.2 depending upon higher level Power Management State Machine control.
	3 – L1_TO_L0	<i>L1.Idle</i> – Exiting L1; wait for PHY to indicate exit from L1 complete.
10 – L2	0 – L2_INACTIVE	The sub-state is <i>L2_INACTIVE</i> whenever the LTSSM Major State is not <i>L2</i> .
	1 – L2_IDLE	<i>L2.Idle</i> – Idle
	2 – L2_TX_WAKE0	<i>L2.TransmitWake</i> – Transmit a Beacon until remote device exits electrical idle.
	3 – L2_TX_WAKE1	<i>L2.TransmitWake</i> – Assert Tx Electrical Idle before changing power state to P1.
	4 – L2_EXIT	<i>L2.Idle</i> – L2 exit; wait until PHY finishes power change out of L2.
	5 – L2_SPEED	<i>L2.Idle</i> – Change speed if required before going to L2.

2.4.3.2. RX L0s State Machine

The Rx_L0s State Machine follows the L0s state of the receiver. The Rx_L0s State Machine operates independently of the main LTSSM, which controls the state of the transmitter.

Table 2.8. RX L0s State Description

LTSSM Sub-state	Description
0 – RX_LOS_L0	The sub-state is “RX_LOS_L0” whenever the receiver is in L0 (that is not en route to or in Rx L0s).
1 – RX_LOS_ENTRY	<i>Rx_L0s.Entry</i>
2 – RX_LOS_IDLE	<i>Rx_L0s.Idle</i>
3 – RX_LOS_FTS	<i>Rx_L0s.FTS</i>
4 – RX_LOS_REC	<i>Rx_L0s.FTS</i> – Wait until LTSSM Major State == Recovery due to Rx L0s exit error

2.5. PHY Equalization (8 GT/s)

Operating at 8 GT/s data rate requires an equalization process to be completed before data can be reliably transferred. The Lattice PCIe x4 IP Core supports both the autonomous equalization and software-controlled equalization methods.

When equalization is initiated either through the autonomous or software mechanism, the core Link Training and Status State Machine (LTSSM) enters recovery to perform equalization. Equalization is done for both directions of the link. The Equalization process consists of requesting several sets of transmit coefficients for the remote device to use, evaluating the quality of each set of coefficients, and then choosing the best coefficient set for operation.

The Lattice PCIe x4 IP Core supports PHY using the Figure of Merit and Up/Down Equalization feedback methods established by the PIPE Specification, as well as an option for direct firmware control/status. The Lattice PCIe x4 IP Core implements several equalization algorithms that enable users to select the method that works best for the project.

2.5.1. Equalization Process

Equalization is done for both directions of the data flow:

- Remote Transmitter to Local Receiver
 - Equalization is controlled by the local device using the mechanisms described in this section.
- Local Transmitter to Remote Receiver
 - Equalization is controlled by the remote device with the assistance of the local core's LTSSM. While the Local Transmitter to Remote Receiver link is undergoing equalization, the *pipe_tx_deemph* port is periodically updated by the core based upon received requests from the remote device. Other than the PHY updating its transmitter to the new *pipe_tx_deemph* settings, no external action is required.

2.5.2. Equalization Time Limit

The equalization state machine follows the PCI Express timeout of 24 ms. You must ensure that the selected method is able to complete equalization within 24 ms, or the process is aborted and considered unsuccessful.

100 μ s (0.1 ms) should be reserved for each equalization attempt for the LTSSM to communicate the new settings to the remote device and to receive acknowledgement of those settings.

If a PHY takes 2 ms to evaluate each setting and 0.1 ms is reserved per setting for LTSSM, only 11 settings may be evaluated during equalization ($2.1 \text{ ms} \times 11 = 23.1 \text{ ms}$). Since a final evaluation (with the best of the trial settings) is typically required to finalize the process, a maximum of 10 different trial settings may be evaluated in this case.

The PHY vendor must specify the required time to complete an equalization evaluation. If the PHY vendor does not specify a limit, the worst case of 2 ms must be assumed and a maximum of 10 different settings may be attempted. The smaller the amount of time the PHY takes to evaluate a setting, the more settings can be attempted.

2.5.3. Equalization Methods

The Lattice PCIe x4 IP Core implements a flexible Equalization process that enables users to exercise control over the choice of equalization coefficients requested of the remote device.

Each method requires expressing Pre-Cursor and Post-Cursor Coefficients. Coefficients are expressed as a positive integer ratio $c: c[5:0]/64$. For example, $c[5:0] = 8$ yields a ratio 8/64 or 0.125.

The remote PCI Express device advertises its PHY's Full Scale (FS) and Low Frequency (LF) values. The FS and LF values and the desired coefficients are used to compute the required coefficient format that is expressed to the remote device. The Lattice PCIe x4 IP Core does not violate the following PCI Express Coefficient rules. If violated, it limits the coefficient to its maximum allowed value:

- $|C-1| \leq \text{Floor}(FS/4)$
- $C0 - |C-1| - |C+1| \geq LF$
- $|C-1| + C0 + |C+1| = FS$

The Core applies the three rules above in the order illustrated. The Pre-Cursor and Post-Cursor coefficient absolute values are used in computations. The Pre-Cursor ($C-1$) is limited to $\text{Floor}(FS/4)$. Then the Post-Cursor ($C+1$) is limited to $((FS-LF)/2) - C-1$ (solving the latter two equations for $C+1$). Then the Cursor ($C0$) is computed to be $FS - C-1 - C+1$. The Lattice PCIe x4 IP Core supports both Figure of Merit and Up/Down PIPE PHY Equalization Methods.

The available Equalization algorithms are described in the following sections.

2.5.3.1. Figure of Merit – Preset Method

TX Preset (as defined by PCIe Specification) is sweep from Presets from Preset[0] to Preset [preset_method_control_addr_limit] and Figure of Merit for each preset is determined. The PCIe Specifications defines presets 0x0 through 0xA. Although, 0xA preset is intended as a diagnostic preset and generally should not be included.

```
for (i = 0; i ≤ eq_preset_method_control_addr_limit; i = i + 1) {
    pre_preset_coef = pre-cursor coef for Preset[i] // See Preset to Coefficient Conversion
    post_preset_coef = post-cursor coef for Preset[i] // See Preset to Coefficient Conversion
    pre = (pre_preset_coef * RemoteFS) / 64
    post = (post_preset_coef * RemoteFS) / 64
    // Core requests link partner PHY Tx use {post, pre} coefficients and then core performs a
Rx EQ Evaluation
    try {post, pre}
}
```

After all (*eq_preset_method_control_addr_limit+1*) trials are completed, an additional Rx EQ evaluation is executed using the post and pre coefficients from the trial which achieved the highest Figure of Merit. This final evaluation is skipped if the current coefficients being used are the best coefficients. If the final Figure of Merit meets or exceeds the threshold configured in *eq_fmerit_control_req_feedback*, the Rx Equalization is considered successful; otherwise, it is unsuccessful.

The preset method is optionally configured to communicate the desired preset for the remote device to select appropriate coefficients and matching presets or by calculating the coefficients equivalent to the preset number and communicating the coefficients to the remote device. For more details on the preset to coefficient conversion table, refer to the SerDes Equalization section in [CertusPro-NX SerDes/PCS User Guide \(FPGA-TN-02245\)](#).

The preset method works well with PHY, which take the maximum of 2 ms to evaluate equalization settings since only the 10 presets from Preset[0] through Preset[9] are evaluated. The available channels in the PCIe Specification is expected to correspond to one of the preset method that works well with PHY, which takes the maximum of 2 ms to evaluate equalization settings since only the 10 Presets from Preset[0] through Preset[9] are evaluated. The preset method is defined by the PCIe Specification to take the maximum of 2 ms to evaluate equalization settings since only the 10 Presets from Preset[0] through Preset[9] would be evaluated. Also, all available channels in the PCIe Specification are expected to correspond to one of the PCIe preset. Therefore, this method is recommended if users are unsure which method to use to evaluate Preset[0] to Preset[9].

2.5.3.2. Figure of Merit – Algorithm Method

This method sweeps through the possible coefficient values. The Algorithm Method enables complete coefficient range coverage at the expense of longer run time. Coefficient coverage ranges from coarse to fine depending upon how many iterations can be tried before the 24 ms Equalization time out.

```
pre_cursor_limit = eq_alg_method_control_pre_cursor_limit
post_cursor_limit = eq_alg_method_control_post_cursor_limit
pre_cursor_step_size = eq_alg_method_control_pre_cursor_step_size
post_cursor_step_size = eq_alg_method_control_post_cursor_step_size
for (pre_coef = 0; pre_coef ≤ pre_cursor_limit; pre_coef = pre_coef + pre_cursor_step_size) {
    for (post_coef = 0; post_coef ≤ post_cursor_limit; post_coef = post_coef +
post_cursor_step_size) {
        pre = (pre_coef × RemoteFS) / 64
        post = (post_coef × RemoteFS) / 64
        // Core requests link partner PHY Tx use {post, pre} coefficients and then core
performs a Rx EQ Evaluation
        try {post, pre}
    }
}
```

After all trials are completed, one additional Rx EQ Evaluation is executed using the {post, pre} coefficients from the trial which achieved the highest Figure of Merit. If the final Figure of Merit meets or exceeds the threshold configured in `eq_fmerit_control_req_feedback`, the Rx Equalization is considered successful otherwise unsuccessful. This final evaluation is skipped if the current coefficients being used are the best coefficients.

Notes:

- Pre-Cursor coefficients (pre) from 0 to 16 (0 to 0.25) are possible.
- Post-Cursor coefficients (post) from 0 to 32 (0 to 0.5) are possible.

Stepping through all 17 (0-16) Pre-Cursor values and all 33 (0-32) Post-Cursor values takes 561 iterations. Step size is increased to walk through the values more quickly (and coarsely). Limits are lowered to exclude larger values that are less likely to produce the desired results.

Example:

- Steps of 4 for Pre-Cursor and 8 for Post Cursor with Limits == 16 and 32 respectively requires 25 iterations.
- Steps of 8 for Pre-Cursor and 16 for Post Cursor with Limits == 16 and 32 respectively requires 9 iterations.

Caution: Be careful when assigning `eq_table_method_control_addr_limit` not to exceed the Equalization time limit. Refer to [Equalization Time Limit](#) section for more details.

The Algorithm Method works best with PHY, which take significantly less than the maximum of 2 ms to evaluate equalization settings so that the fine step sizes can be used.

2.5.3.3. Figure of Merit – Table Method

This method selects and sweeps the preset or coefficients configured in the table.

```
for (i = 0; i ≤ eq_table_method_control_addr_limit; i = i + 1) {
    // Read the current table entry
    table_pre      = eq_table_method_table_array[(i×16)+5:(i×16)+0]
    table_post     = eq_table_method_table_array[(i×16)+11:(i×16)+6]
    table_interpret = eq_table_method_table_array[(i×16)+13:(i×16)+12]
    table_best      = eq_table_method_table_array[(i×16)+14]           // unused in
this method
    // Interpret the table entry
    if (table_interpret == 0) { // Current table entry specifies a preset
        pre_preset_coef = pre-cursor coef for Preset[table_pre[3:0]] // See Preset Method for
coefficients used
        post_preset_coef = post-cursor coef for Preset[table_pre[3:0]] // See Preset Method for
coefficients used
        pre = (pre_preset_coef × RemoteFS) / 64
        post = (post_preset_coef × RemoteFS) / 64
    } else { // Current table entry specifies coefficients
        pre = (table_pre[5:0] × RemoteFS) / 64
        post = (table_post[5:0] × RemoteFS) / 64
    }
    // Core requests link partner PHY Tx use {post, pre} coefficients and then core performs a
Rx EQ Evaluation
    try {post, pre}
}
```

After all (`eq_table_method_control_addr_limit+1`) trials are completed, one additional Rx EQ Evaluation is executed using the {post, pre} coefficients from the trial which achieved the highest Figure of Merit. This final evaluation is skipped if the current coefficients being used are the best coefficients. If the final Figure of Merit meets or exceeds, the threshold configured in `eq_fmerit_control_req_feedback` then Rx Equalization is considered successful otherwise unsuccessful.

Notes:

- Pre-Cursor coefficients (pre) from 0 to 16 (0 to 0.25) are possible.
- Post-Cursor coefficients (post) from 0 to 32 (0 to 0.5) are possible.

In this method, you specify up to 24 Preset/coefficients to try and may select the preset/coefficients that are most likely to work for the given PHY.

The Table Method works well for users that know the range of coefficients, which typically works well for the PHY since the table values can be concentrated on coefficient ranges that are more likely to work well. The Table Method also provides a lot of flexibility and can be configured easily.

Caution: Be careful when assigning *eq_table_method_control_addr_limit* not to exceed the Equalization time limit. Refer to [Equalization Time Limit](#) section for more details.

2.5.3.4. Figure of Merit – Adaptive Table Method

This method sweeps through the user-provided table with adaptive coefficient selection. The Adaptive Table Method is similar to the Table Method and uses the same user-configured table. Although, the Adaptive Table Method may be configured to select latter coefficients dynamically from the results of earlier equalization evaluations.

```
// Initialize the current Up/Down best coefficient pair {best_post, best_pre} to {0,0}
best_pre = 0; best_post = 0; best_fom = 0;
// Initialize the current Relative best coefficient pair {rel_best_post, rel_best_pre} to {0,0}
rel_best_pre = 0; rel_best_post = 0;
for (i = 0; i ≤ eq_table_method_control_addr_limit; i = i + 1) {
    // Read the current table entry
    table_pre      = eq_table_method_table_array[(i×16)+5:(i×16)+0];
    table_post      = eq_table_method_table_array[(i×16)+11:(i×16)+6];
    table_interpret = eq_table_method_table_array[(i×16)+13:(i×16)+12];
    table_best      = eq_table_method_table_array[(i×16)+14];
    // Interpret the current table entry
    if (table_interpret == 0) { // Current table entry specifies a preset
        pre_preset_coef = pre-cursor coef for Preset[table_pre[3:0]]; // See Preset Method for
coefficients used
        post_preset_coef = post-cursor coef for Preset[table_pre[3:0]]; // See Preset Method
for coefficients used
        pre = (pre_preset_coef × RemoteFS) / 64;
        post = (post_preset_coef × RemoteFS) / 64;
    } else if (table_interpret == 1) { // Current table entry specifies coefficients
        pre = (table_pre[5:0] × RemoteFS) / 64;
        post = (table_post[5:0] × RemoteFS) / 64;
    } else if (table_interpret == 2) { // Table entry contains relative coefficient offsets
        pre = table_pre[5] ? (rel_best_pre - table_pre[1:0]) : (rel_best_pre + table_pre[1:0]);
        post = table_post[5] ? (rel_best_post - table_post[1:0]) : (rel_best_post +
table_post[1:0]);
    } else { // Use the prior evaluation's PHY Up/Down Feedback instead of table_pre,
table_post
        if (prior trial used (table_interpret == 3)) { // Use prior trial feedback when
continuing (table_interpret==3)
            case (Prior trial's predir)
                10      : pre = best_pre - 1;
                01      : pre = best_pre + 1;
                default : pre = best_pre;
            endcase
            case (Prior trial's postdir)
                10      : post = best_post - 1;
                01      : post = best_post + 1;
                default : post = best_post;
            endcase
        } else { // Begin (table_interpret == 3) trials from the current best coefficient pair
            pre = best_pre; post = best_post;
        }
    }
}
```

```
    }
    // Core requests link partner PHY Tx use {post, pre} coefficients and then core performs a
Rx EQ Evaluation
    {fom, postdir, predir} = try {post, pre} // fom == Figure of Merit feedback; post/predir ==
directional feedback
    // Better result or, when using Up/Down feedback, the most recent trial is always
considered the best
    if ((fom ≥ best_fom) | (table_interpret == 3)) {
        best_fom = fom
        best_pre = pre
        best_post = post
    }
    if (table_best == 1) {
        rel_best_pre = best_pre
        rel_best_post = best_post
    }
    if ((table_interpret == 3) and ({postdir, predir} == {0, 0}) and core configured to end on
hold) // {Hold, Hold}
        exit for i loop
}
```

After all (*eq_table_method_control_addr_limit*+1) trials are completed, one additional Rx EQ evaluation is executed using the {post, pre} coefficients from the trial, which achieved the highest Figure of Merit. If the final Figure of Merit meets or exceeds, the threshold configured in *eq_fmerit_control_req_feedback* then Rx Equalization is considered successful otherwise unsuccessful. This final evaluation is skipped if the algorithm ends using table_interpret == 3 (Up/Down Feedback) or the best coefficients are already in use.

Notes:

- Pre-Cursor values (pre) from 0 to 16 (0 to 0.25) are possible.
- Post-Cursor values (post) from 0 to 32 (0 to 0.5) are possible.

The Adaptive Table includes 24 table entries.

While performing the algorithm, coefficient subtractions are limited to 0, coefficient additions are limited to 63 and coefficients are limited (as in all cases), when necessary, to comply with the PCIe Specification coefficient rules.

The Adaptive Table Method can perform a coarse search to quickly identify the region with the best Figure of Merit and to select the best specific coefficients in that region with a fine-grained search. The Adaptive Table Method works well for a broad range of conditions. Although, it works best when 10 to 20 iterations are possible so that it has time to select the best coefficients.

The Adaptive Table Method is very flexible and supports many different use models. The following use models are suggested:

- Coarse Figure of Merit search followed by fine PHY-directed Up/Down search.
- Fill the first N table entries with presets or coefficients that are widely dispersed setting interpret == 0 (absolute Preset) or 1 (absolute coefficients) as desired. Choosing Presets/coefficients that coarsely cover the coefficient space is recommended. Set best == 1 on all N table entries. This results in the following Up/Down feedback evaluations starting from the preset/coefficients that received the highest Figure of Merit in the first N trials.
- Fill the next M table entries with pre == 0 (unused), post == 0 (unused), interpret == 3 (use the prior evaluation's PHY Up/Down Feedback), and best=0. This results in M trials where the PHY controls the next coefficients through its Up/Down/Hold feedback.
- The algorithm finishes the M trials and then exits Equalization. However, an early exit occurs if *eq_table_method_control_end_on_hold*==1 and all lanes provided a {Hold, Hold} response.
- Coarse Figure of Merit search followed by fine Figure of Merit search.
- Fill the first N table entries with presets or coefficients that are widely dispersed, setting interpret == 0 (absolute Preset) or 1 (absolute coefficients) as desired. Choosing Presets/coefficients that coarsely cover the coefficient space is recommended. Set best == 1 on all N table entries. This results in the following relative offset evaluations starting from the Preset/coefficients that received the highest Figure of Merit in the first N trials.
- Repeat the following sequence as many times as desired and the Equalization time limit allows.

- Fill the next four table entries with relative offsets moving up, down, right, and left by 1 and setting best==1 on only the fourth table entry:
 - pre == 01 (+1), post == 00 (+0), interpret == 2 (relative), best=0
 - pre == 20 (-1), post == 00 (+0), interpret == 2 (relative), best=0
 - pre == 00 (+0), post == 01 (+1), interpret == 2 (relative), best=0
 - pre == 00 (+0), post == 20 (-1), interpret == 2 (relative), best=1
- After each four table entry iteration, the coefficient may move up to 1 pre or 1 post from the prior best coefficient pair and the new best coefficient pair is selected as the new relative starting location for subsequent iterations. After three iterations of four table entries each, it is possible for the algorithm to move pre or post up to +/- 3 from the starting best coefficient pair established by the first N trials.
- This algorithm can be modified to move in initially larger relative steps (for example, +2 instead of +1), to use different combinations of relative step directions, or to use more offsets in each trial. Additionally, other offset shapes can be utilized. For example, using a combination of X shape ({+1,+1}, {+1,-1}, {-1,-1}, {-1,+1} relative movements and + shape ({+1,0}, {-1, 0}, {0,+1}, {0,-1} relative movements enables the coefficient space to be covered more or less quickly and more or less completely.

The Adaptive Table Method is flexible enough to reproduce the other Equalization Methods. However, the other methods have been kept due to the simplicity to which they can be enabled and configured.

Caution: Be careful when assigning `eq_table_method_control_addr_limit` not to exceed the Equalization time limit. Refer to [Equalization Time Limit](#) section for more details.

2.5.3.5. Up/Down – Up/Down Convergence Method

The Up/Down convergence method supports PHYs that provide Up/Down feedback response. The Up/Down Convergence Method is described as follows:

- Request the remote device to use an initial set of coefficients. These coefficients can be programmed uniquely for each lane or alternatively, the first coefficients can be provided as a preset.
- After the remote device begins transmitting with the new coefficients, the PHY is told to evaluate the receive waveform (RxEval). The PHY then provides the up/down response for the pre-cursor and post-cursor coefficients.
- The state machine adjusts the pre-cursor and post-cursor coefficients based on the feedback from the PHY. It starts with larger adjustments (initialized with `eq_updn_pre_step` and `eq_updn_post_step`). Each time the feedback changes up/dn direction, the step size is halved until it is equal to 1. When the step size is 1 and a direction change occurs in the feedback, then the coefficient is considered converged.
- If any coefficient changes value, the alternate coefficient is allowed to continue to change, even if previously converged since the two coefficients work together.
- If a hold result is received from the PHY, then the coefficient is considered converged. In some PHYs, two hold results in a row must be seen to be considered a hold since only one coefficient is evaluated with each request (the other having a null hold status). In this case, the configuration bit `eq_updn_numhold` must be set to 1 so the state machine knows to look for two holds.
- Once both coefficients on all active lanes reach convergence, the equalization is complete.

2.5.3.6. Up/Down – Firmware Controlled Method

The Firmware Controlled Method is described as follows:

- The Lattice PCIe x4 IP Core is configured for Firmware to receive an interrupt at the beginning of Rx Equalization (Phase 2 entry for US port and Phase 3 entry for DS port). When an Interrupt is received by Firmware, the Firmware begins a time-critical processing loop to perform Rx Equalization in a minimum amount of time as there is a PCIe Specification-mandated 24 ms time limit to complete Rx Equalization.
- Firmware receives interrupt and begins Rx Equalization evaluation.

```
// Firmware keeps performing Equalization trials until Rx Equalization is complete
done = 0
while (done == 0) {
    Firmware calculates a coefficient pair to try
    Firmware writes the trial coefficients into the core's registers and sets advance=1 to
    begin an evaluation
```

```
    Firmware enters a polling loop to wait for the core to complete the requested
    evaluation {
        Core negotiates with the link partner to change to the desired coefficients
        Core performs an Rx Equalization evaluation
        Core updates Equalization status registers with the results of the evaluation
        Core sets Equalization status register complete == 1 to inform firmware that the
        evaluation is done
        Firmware reads complete == 1 while polling and exits the polling loop
    }
    Firmware reads Equalization status registers to obtain Rx Equalization status
    if Firmware is satisfied with the Equalization status {
        Firmware sets the core's complete==1 register to exit Rx Equalization
        done = 1
    }
}
```

- Firmware may configure the core to output interrupts instead of Firmware polling for Equalization completion. Firmware may configure the core receive an interrupt each time that the core is ready to receive a new set of coefficients. Whichever method is selected, Equalization must complete in < 24 ms to avoid the PCIe Specification-required LTSSM timeout, so it is critical that the Firmware algorithm be designed to be able to complete within the period. Refer to [Equalization Time Limit](#) section for more details.

2.5.4. Equalization Quality

The Figure of Merit Equalization processes rely on the PHY to perform Receiver Equalization using the current remote transmitter settings and produce a quality result (pipe_eq_rx_eval_feedback_fom) that can be used to gauge the quality of the link. Quality is defined by the PHY. For the Figure of Merit method, the core contains a field in Management Interface to determine what PHY quality level corresponds to the necessary 10-12 Bit Error Rate (BER). For the Figure of Merit method, higher quality numbers represent better link quality (lower BER).

When using the Up/Down Convergence method, the acceptable link quality is assumed when the PHY converges on a set of coefficients or exits its algorithm due to reaching the programmed maximum iteration count.

2.6. Multi-Function Support

The Lattice PCIe x4 IP Core supports 1 to 4 functions. The Multi-Function support can only be enabled for endpoints (functions implementing Type 0 Configuration Space). See the function register 0x8 for the register configuration.

When Multiple Function support is present, each function is assigned a static function number, starting at function number 0 and incrementing upwards. For ports that communicate function-specific information, port[0] applies to Function[0], port[1] applies to Function[1]. If a function is disabled, it does not affect the function number of the other enabled functions. Function [0] is always present and cannot be disabled.

2.7. Power Management

2.7.1. Power Management Supported by PCIe IP Core

The Lattice PCIe x4 IP Core supports L0, ASPM L0s, ASPM L1, L1 PM Substates, L1, and L3 link states. L0 (fully-operational state) and L3 (off) support is always enabled. The remaining link states may be enabled/disabled through the Core Configuration ports. If ASPM L0s, ASPM L1, and L1 PM Substates, or L1 support is enabled, then the user design must configure the power management capabilities of the core and for some link states, take additional action when link states are entered or exited. This section describes the recommended actions user logic should take to control and react to power management states ASPM L0s, ASPM L1, and L1.

The PCI Express Specification defines the following link states:

- L0 – Active
 - Powered
 - Clock and PLLs active; core clock active
 - All PCI Express Transactions and operations are enabled
- ASPM L0s – Low resume latency, energy saving *standby* state (support is disabled until hardware testing is completed)
 - Powered
 - Clock and PLLs active; core clock active
 - PHY transmitter in electrical idle
 - Remote PHY receiver must re-establish symbol lock during L0s exit
 - When L0s is enabled by power management software, the core autonomously enters L0s when the transmit side of the link is idle and exits L0s when there is pending information to transmit. The link management DLLPs are required to be transmitted periodically so when a link is otherwise idle, it still enters and exits L0s with regularity to transmit link management DLLPs.
- ASPM L1 – Low resume latency, energy saving *standby* state (support is disabled until hardware testing is completed)
 - Powered
 - Clock and PLLs active; core clock active
 - Significant portion of PHY powered down
 - PHY transmitter in electrical idle
 - PHY receiver in electrical idle
 - Deeper power savings but longer resume time than ASPM L0s
 - Remote and local PHY must re-establish symbol lock during L1 exit
 - When ASPM L1 is enabled by power management software, the core autonomously negotiates L1 entry with the link partner after an extended period of link inactivity. The link autonomously returns to L0 when either device in the link has TLPs to transmit.
- L1 – Higher latency, lower power *standby* state
 - Powered
 - Clock and PLLs active; core clock active
 - Significant portion of PHY powered down
 - PHY transmitter in electrical idle
 - PHY receiver in electrical idle
 - Remote and local PHY must re-establish symbol lock during L1 exit
 - The L1 state is entered both under control of power management software
- L3 – Off
 - Main power off; auxiliary power off
 - In this state, all power is removed and the core, PHY, and user logic are all non-operational
 - All state information is lost

2.7.2. Configuring Core to Support Power Management

The Lattice PCIe IP x4 Core allows user logic to implement a wide variety of power management functionality. The design power management capabilities are primarily advertised and controlled using the core configuration ports.

2.7.3. ASPM L0s

Note: Support disabled until hardware testing is completed.

The Lattice PCIe x4 IP Core supports Active State Power Management (ASPM) L0s. When L0s support is enabled, ASPM L0s TX Entry Time, the desired amount of time for TLP and DLLP transmissions to be idle before L0s TX is entered, is determined by `mgmt_ptl_pm_aspm_l0s_entry_time`. The Number of NFTS sets required by the local PHY to recover symbol lock when exiting L0s is determined by `mgmt_tlb_ltssm_nfts_nfts`. NFTS Timeout Extend, `mgmt_tlb_ltssm_nfts_to_extend` (see [Table 5.13](#)), controls how long the core waits after the expected L0s exit time before directing the link to Recovery to recover from a failed L0s exit. Due to high latencies between a PHY's Rx Electrical Idle output and the associated Rx Data it is normally necessary to choose a relatively high NFTS and NFTS Timeout Extend. See `mgmt_tlb_ltssm_nfts_to_extend` description for details.

- Configuration Register Fields
 - The PCI Express Device Capabilities configuration register has the following L0s fields:
 - Bits [8:6] – Endpoint L0s Acceptable Latency – From PCI Express Base Specification, Rev 2.1 section 7.8.3 – Acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. It is essentially an indirect measure of the Endpoint’s internal buffering. Power management software uses the reported L0s Acceptable Latency number to compare against the L0s exit latencies reported by all components comprising the data path from this Endpoint to the Root Complex/Root Port to determine whether ASPM L0s entry can be used with no loss of performance. Note that the amount of buffering does not refer to the Lattice PCIe x4 IP Core buffering, but rather to user application buffering. You must set this field in accordance with how long a delay is acceptable for the application.
 - 000 – Maximum of 64 ns
 - 001 – Maximum of 128 ns
 - 010 – Maximum of 256 ns
 - 011 – Maximum of 512 ns
 - 100 – Maximum of 1 μ s
 - 101 – Maximum of 2 μ s
 - 110 – Maximum of 4 μ s
 - 111 – No limit
 - Non-Endpoints must hard wire this field to 000
 - The PCI Express Link Capabilities configuration register has the following L0s fields:
 - Bits[14:12] – L0s Exit Latency – Length of time required to complete transition from L0s to L0:
 - 000 – Less than 64 ns
 - 001 – 64 ns to less than 128 ns
 - 010 – 128 ns to less than 256 ns
 - 011 – 256 ns to less than 512 ns
 - 100 – 512 ns to less than 1 μ s
 - 101 – 1 μ s to less than 2 μ s
 - 110 – 2 μ s-4 μ s
 - 111 – More than 4 μ s
 - Exit latencies may be significantly increased if the PCI Express reference clocks used by the two devices in the link are common or separate.
 - Bits[11:10] – Active State Power Management (ASPM) Support should be set to 01 or 11 if L0s support is enabled or 00 otherwise.

2.7.4. ASPM L1s

Note: Support disabled until hardware testing is completed.

The Lattice PCIe x4 IP Core supports both software controller L1 entry (through the Power State Configuration Register) and hardware autonomous L1 entry (Active State Power Management (ASPM) L1).

- Software-controlled L1 flow for Upstream Ports (Endpoint) is as follows:
 - Software initiates changing a link to L1 by writing the core’s Power Management Capability: Power State Configuration Register to a value other than 00 == D0. Note that the component’s Device driver participates in this process and must ensure that all traffic is idle before permitting the system to power down to L1.
 - When the core detects a change of Power State to a non-D0 value, the core’s power management state machine, which is responsible for the higher-level power management protocol, follows the following sequence:
 - Block further TLP transmissions
 - Wait for all in process TLPs to complete transmission
 - Wait for the Replay Buffer to empty (all transmitted TLPs acknowledged)
 - Core transmits PM_ENTER_L1 DLLPs until receiving a PM_REQ_ACK DLLP from remote device
 - Core directs LTSSM state machine to L1
 - When a TLP is pending or the LTSSM state machine indicates L1 state has been exited due to link partner activity, the core returns to L0.
- Configuration Register Fields:

- The PCI Express Device Capabilities configuration register has the following L1 fields:
 - Bits [11:9] – Endpoint L1 Acceptable Latency – From PCI Express Base Specification, Rev 2.1 section 7.8.3 – This field indicates the acceptable latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. It is essentially an indirect measure of the Endpoint's internal buffering. Power management software uses the reported L1 Acceptable Latency number to compare against the L1 Exit Latencies reported (see below) by all components comprising the data path from this Endpoint to the Root Complex/Root Port to determine whether ASPM L1 entry can be used with no loss of performance. Note that the amount of buffering does not refer to Lattice PCIe x4 IP Core buffering, but rather to user application buffering. You must set this field in accordance with how long a delay is acceptable for the application.
 - 000 – Maximum of 1 μ s
 - 001 – Maximum of 2 μ s
 - 010 – Maximum of 4 μ s
 - 011 – Maximum of 8 μ s
 - 100 – Maximum of 16 μ s
 - 101 – Maximum of 32 μ s
 - 110 – Maximum of 64 μ s
 - 111 – No limit
 - Non-Endpoints must hard wire this field to 000.
 - PCI Express Link Capabilities configuration register has the following L1 fields:
 - Bits[17:15] – L1 Exit Latency – Length of time required to complete transition from L1 to L0:
 - 000 – Less than 1 μ s
 - 001 – 1 μ s to less than 2 μ s
 - 010 – 2 μ s to less than 4 μ s
 - 011 – 4 μ s to less than 8 μ s
 - 100 – 8 μ s to less than 16 μ s
 - 101 – 16 μ s to less than 32 μ s
 - 110 – 32 μ s-64 μ s
 - 111 – More than 64 μ s
 - Exit latencies may be significantly increased if the PCI Express reference clocks used by the two devices in the link are common or separate.
 - Bits[11:10] – Active State Power Management (ASPM) Support should be set to 10 or 11 if L1 support is enabled or 00 otherwise.
 - Hardware-autonomous L1 (ASPM L1) entry is initiated only by Upstream Ports (Endpoint). The core ASPM L1 functionality must be enabled and advertised in PCIe Link Capabilities and software must enable ASPM L1 support for the hardware-autonomous L1 to be negotiated. When ASPM L1 support is present and enabled for an Upstream Port, the core requests the link to be directed to L1 using the ASPM L1 protocol, when the link is idle. The link idle refers to the no TLPs or ACK/NAL DLLPs being transmitted.

2.8. DMA Support

The Direct Memory Access (DMA) support is an option provided by soft IP to enable a more efficient data transfer when the device acts as initiator.

2.8.1. DMA Overview

The Direct Memory Access is an efficient way of transferring data. In this, a DMA engine handles the data transaction process on behalf of the processor. Once the processor (PCIe Root port) forms descriptors in host memory and programs DMA registers through memory write, the DMA engine handles the bus protocol and address sequencing on its own.

After the IP has its registers written with the total number of descriptor and the address of the first descriptor, it fetches the descriptors from host memory through the Memory Read TLP. When Completion(s) is received, the IP starts the transaction based on descriptor data.

Once a transaction with Interrupt bit is set in its descriptor is completed, the DMA IP transmits MSI as an interrupt to the host.

The IP supports data transfer for both Host-to-FPGA (H2F) and FPGA-to-Host (F2H). Each direction has a dedicated set of registers. Refer to [DMA Overview](#) for DMA registers.

2.8.2. DMA Descriptor

The descriptors are packets of data which contain information such as source address, destination address, length of DMA transfer, and other attributes such as the number of contiguous descriptors and interrupt. The descriptor data is stored in the host memory and to be fetched by the IP through Memory Read. The start address of the descriptor queue in the host memory and the total contiguous descriptor are given from *H2F Descriptor Fetching (0x0200)* and *F2H Descriptor Fetching (0x0300)* registers. Based on the start address of descriptor queue, the IP does the bulk fetching from the host memory.

Table 2.9. Descriptor Format

Offset	Fields								
0x00	RSVD[17:0]	CONT_DESC[5:0]	RSVD[5:0]	INT	EOP				
0x04	RSVD[7:0]	LENGTH[23:0]							
0x08	NEXT_DESC_ADDR_LO[31:0]								
0x0C	NEXT_DESC_ADDR_HI[31:0]								
0x10	SRC_ADDR_LO[31:0]								
0x14	SRC_ADDR_HI[31:0]								
0x18	DEST_ADDR_LO[31:0]								
0x1C	DEST_ADDR_HI[31:0]								

Table 2.10. DESC_CTRL (0x00)

Field	Name	Width	Description
31:14	RSVD	18	Reserved
13:8	CONT_DESC	6	The number of contiguous Descriptor from the Descriptor address in NEXT_DESC_ADDR_LO and NEXT_DESC_ADDR_HI. All 0s mean 64 contiguous descriptors. This field is only valid when EOP at the last descriptor of a descriptor chunk is 0. In all other cases, this field is ignored.
2:7	RSVD	6	Reserved
1	INT	1	Interrupt trigger. Once the data transfer described by this descriptor is done, the interrupt is triggered by DMA engine to the Host. Interrupt type and vector mapping are configurable in DMA register.
0	EOP	1	Stop fetching the next descriptor. This bit can be 1 only at the last descriptor of a Descriptor Chunk. This field is ignored by the IP if it is not the last descriptor of a Descriptor Chunk.

Table 2.11. DMA_LEN (0x04)

Field	Name	Width	Description
31:24	RSVD	8	Reserved
23:0	LENGTH	24	DMA transfer length in Byte. 23'd1: 1 Byte transfer 23'd2: 2 Byte transfer and so on. All 0 means 8 Mega Byte transfer.

Table 2.12. NEXT_DESC_ADDR_LO (0x08)

Field	Name	Width	Description
31:0	NEXT_DESC_ADDR_LO	32	Lower 32 bit of the next Descriptor Address. This field is only valid when EOP at the last descriptor of a descriptor chunk is 0. In all other cases, this field is ignored.

Table 2.13. NEXT_DESC_ADDR_HI (0x0C)

Field	Name	Width	Description
31:0	NEXT_DESC_ADDR_HI	32	Upper 32 bit of the next Descriptor Address. This field is only valid when EOP at the last descriptor of a descriptor chunk is 0. In all other cases, this field is ignored.

Table 2.14. SRC_ADDR_LO (0x10)

Field	Name	Width	Description
31:0	SRC_ADDR_LO	32	Lower 32 bit of Source Address

Table 2.15. SRC_ADDR_HI (0x14)

Field	Name	Width	Description
31:0	SRC_ADDR_HI	32	Upper 32 bit of Source Address

Table 2.16. DEST_ADDR_LO (0x18)

Field	Name	Width	Description
31:0	DEST_ADDR_LO	32	Lower 32 bit of Destination Address

Table 2.17. DEST_ADDR_HI (0x1C)

Field	Name	Width	Description
31:0	DEST_ADDR_HI	32	Upper 32 bit of Destination Address

2.8.2.1. Descriptor Rules

The following shows the descriptor rules:

- NEXT_DESC_ADDR must be 8DW-aligned (bit[4:0] = 5'b00000) so that descriptors can end at RCB boundary.
- SRC_ADDR[63:0] and DEST_ADDR[63:0] must be 8DW-aligned (bit[4:0] = 5'b00000). There is no address translation for source address and destination address to the address in AXI-MM interface. The driver must have awareness of the exact physical addresses.
- EOP bit is only observed by the IP at the last descriptor of a descriptor chunk.

Note: Fail to comply to the descriptor rules may result in undefined behaviours.

2.8.2.2. Descriptor Example

In this example, the first descriptor chunk (starting address and number of contiguous descriptors are configured DMA register) has three contiguous descriptors.

The second descriptor chunk (starting address and number of contiguous descriptors from the last descriptor of the first chunk) has two contiguous descriptors.

The third descriptor chunk (starting address and number of contiguous descriptors from the last descriptor of the second chunk) has only one descriptor.

Table 2.18. First Descriptor Chunk Fetching through MRd TLP

Offset	Fields				
0x00	RSVD[17:0]	CONT_DESC[5:0] (Don't care)	RSVD[5:0]	INT	EOP (Don't care)
0x04	RSVD[7:0]	LENGTH[23:0]			
0x08	NEXT_DESC_ADDR_LO[31:0] (Don't care)				
0x0C	NEXT_DESC_ADDR_HI[31:0] (Don't care)				
0x10	SRC_ADDR_LO[31:0]				
0x14	SRC_ADDR_HI[31:0]				
0x18	DEST_ADDR_LO[31:0]				
0x1C	DEST_ADDR_HI[31:0]				
0x20	RSVD[17:0]	CONT_DESC[5:0] (Don't care)	RSVD[5:0]	INT	EOP (Don't care)
0x24	RSVD[7:0]	LENGTH[23:0]			
0x28	NEXT_DESC_ADDR_LO[31:0] (Don't care)				
0x2C	NEXT_DESC_ADDR_HI[31:0] (Don't care)				
0x30	SRC_ADDR_LO[31:0]				
0x34	SRC_ADDR_HI[31:0]				
0x38	DEST_ADDR_LO[31:0]				
0x3C	DEST_ADDR_HI[31:0]				
0x40	RSVD[17:0]	CONT_DESC[5:0] = 2	RSVD[5:0]	INT	EOP = 0
0x44	RSVD[7:0]	LENGTH[23:0]			
0x48	NEXT_DESC_ADDR_LO[31:0] = 'hA0				
0x4C	NEXT_DESC_ADDR_HI[31:0] = 'h0				
0x50	SRC_ADDR_LO[31:0]				
0x54	SRC_ADDR_HI[31:0]				
0x58	DEST_ADDR_LO[31:0]				
0x5C	DEST_ADDR_HI[31:0]				

Table 2.19. Second Descriptor Chunk Fetching through MRd TLP:

Offset	Fields				
0xA0	RSVD[17:0]	CONT_DESC[5:0] (Don't care)	RSVD[5:0]	INT	EOP (Don't care)
0xA4	RSVD[7:0]	LENGTH[23:0]			
0xA8	NEXT_DESC_ADDR_LO[31:0] (Don't care)				
0xAC	NEXT_DESC_ADDR_HI[31:0] (Don't care)				
0xB0	SRC_ADDR_LO[31:0]				
0xB4	SRC_ADDR_HI[31:0]				
0xB8	DEST_ADDR_LO[31:0]				
0xBC	DEST_ADDR_HI[31:0]				

Offset	Fields								
0xC0	RSVD[17:0]	CONT_DESC[5:0] = 1	RSVD[5:0]	INT	EOP= 0				
0xC4	RSVD[7:0]	LENGTH[23:0]							
0xC8	NEXT_DESC_ADDR_LO[31:0] = 'h1B0								
0xCC	NEXT_DESC_ADDR_HI[31:0] = 'h0								
0xD0	SRC_ADDR_LO[31:0]								
0xD4	SRC_ADDR_HI[31:0]								
0xD8	DEST_ADDR_LO[31:0]								
0xDC	DEST_ADDR_HI[31:0]								

Table 2.20. Third Descriptor Chunk Fetching through MRd TLP

Offset	Fields								
0x1B0	RSVD[17:0]	CONT_DESC[5:0] (Don't care)	RSVD[5:0]	INT	EOP= 1				
0x1B4	RSVD[7:0]	LENGTH[23:0]							
0x1B8	NEXT_DESC_ADDR_LO[31:0] (Don't care)								
0x1BC	NEXT_DESC_ADDR_HI[31:0] (Don't care)								
0x1C0	SRC_ADDR_LO[31:0]								
0x1C4	SRC_ADDR_HI[31:0]								
0x1C8	DEST_ADDR_LO[31:0]								
0x1CC	DEST_ADDR_HI[31:0]								

2.8.3. DMA Registers

PCIe DMA registers are accessible by the Host when received MWr or MRd TLP has BAR 0 hit. Register read size is limited to maximum 1 DW per MRd TLP.

The Access Types of each register are defined in [Table 2.21](#).

Table 2.21. Access Types

Access Type	Behavior on Read Access	Behavior on Write Access
RO	Returns register value	Ignores write access
WO	Returns 0	Updates register value
RW	Returns register value	Updates register value
RW1C	Returns register value	Writing 1'b1 on register bit clears the bit to 1'b0. Writing 1'b0 on register bit is ignored.
RW1S	Returns register value	Writing 1'b1 on register bit sets the bit to 1'b1. Writing 1'b0 on register bit is ignored.
RC	Returns register value Clear the register to 0 after read.	Ignores write access
RSVD	Returns 0	Ignores write access

Table 2.22. PCIe DMA Register Group

Register Base Offset	Register Group Name
0x0000	H2F DMA Control and Status
0x0100	F2H DMA Control and Status
0x0200	H2F Descriptor Fetching
0x0300	F2H Descriptor Fetching
0x0400	Interrupt Control and Status
Others	RSVD

2.8.3.1. H2F DMA Control and Status (0x0000)

Table 2.23. H2F_DMA_CTRL (0x0000)

Field	Name	Access	Width	Default	Description
31:1	RSVD	RO	31	0	Reserved
0	REQUEST	RW1S	1	0	Request to start DMA operation. Once this bit is 1, writing a 0 to clear it does not take effect. Once the field in "H2F Descriptor Fetching" is consumed by DMA Engine to trigger descriptor fetching, this bit is cleared to 0 by HW.

Table 2.24. H2F_DMA_STS (0x000C)

Field	Name	Access	Width	Default	Description
31:14	RSVD	RO	18	0	Reserved
13	RSVD	RO	1	0	Reserved
12	RSVD	RO	1	0	Reserved
11	DMA_LEN_ERR	RC	1	0	DMA Length Error 1: DMA Length is not DW-aligned. 0: No error
10	H2F_DESTADDR_ERR	RC	1	0	H2F Destination Address Error 1: H2F Destination Address is not 8DW-aligned. 0: No error
9	H2F_SRCADDR_ERR	RC	1	0	H2F Source Address Error 1: H2F Source Address is not 8DW-aligned. 0: No error
8	DESC_ADDR_ERR	RC	1	0	Descriptor Address Error 1: Desc Address is not 8DW-aligned. 0: No error
7	AXI_WRITE_ERR	RC	1	0	AXI Write Error 1: AXI Write Response is not OKAY (2'b00). 0: No error
6	H2F_CPLTO_ERR	RC	1	0	H2F Completion Timeout Error 1: Completion timeout at H2F DMA transfer. 0: No error
5	H2F_CPL_ERR	RC	1	0	H2F Completion Error 1: Completion Status is not Successful Completion. 0: No error
4	DESC_CPLTO_ERR	RC	1	0	Descriptor Completion Timeout Error 1: Completion timeout at H2F Descriptor fetching. 0: No error

Field	Name	Access	Width	Default	Description
3	DESC_CPL_ERR	RC	1	0	Descriptor Completion Error 1: Completion Status is not Successful Completion. 0: No error
2	DMA_INT_DONE	RC	1	0	DMA Interrupt Done 1: DMA transfer is done for descriptor with INT bit = 1. 0: No DMA Interrupt Done event.
1	DMA_EOP_DONE	RC	1	0	DMA EOP Done 1: DMA transfer is done for descriptor with EOP bit = 1. 0: No DMA EOP Done event.
0	BUSY	RO	1	0	DMA Engine busy 1 : DMA is busy. 0 : DMA in IDLE state, no operation pending.

Table 2.25. H2F_DMA_INT_MASK (0x0010)

Field	Name	Access	Width	Default	Description
31:12	RSVD	RO	20	0	Reserved
11	DMA_LEN_ERR_INTMASK	RW	1	0	DMA Length Error Interrupt Masking 1: Mask off interrupt generation caused by DMA_LEN_ERR. 0: No interrupt masking for DMA_LEN_ERR.
10	H2F_DESTADDR_ERR_INTMASK	RW	1	0	H2F Destination Address Error Interrupt Masking 1: Mask off interrupt generation caused by H2F_DESTADDR_ERR. 0: No interrupt masking for H2F_DESTADDR_ERR.
9	H2F_SRCADDR_ERR_INTMASK	RW	1	0	H2F Source Address Error Interrupt Masking 1: Mask off interrupt generation caused by H2F_SRCADDR_ERR. 0: No interrupt masking for H2F_SRCADDR_ERR.
8	DESC_ADDR_ERR_INTMASK	RW	1	0	Descriptor Address Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_ADDR_ERR. 0: No interrupt masking for DESC_ADDR_ERR.
7	AXI_WRITE_ERR_INTMASK	RW	1	0	AXI Write Error Interrupt Masking 1: Mask off interrupt generation caused by AXI_WRITE_ERR. 0: No interrupt masking for AXI_WRITE_ERR.
6	H2F_CPLTO_ERR_INTMASK	RW	1	0	H2F Completion Timeout Error Interrupt Masking 1: Mask off interrupt generation caused by H2F_CPLTO_ERR. 0: No interrupt masking for H2F_CPLTO_ERR.
5	H2F_CPL_ERR_INTMASK	RW	1	0	H2F Completion Error Interrupt Masking 1: Mask off interrupt generation caused by H2F_CPL_ERR. 0: No interrupt masking for H2F_CPL_ERR.
4	DESC_CPLTO_ERR_INTMASK	RW	1	0	Descriptor Completion Timeout Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_CPLTO_ERR. 0: No interrupt masking for DESC_CPLTO_ERR.

Field	Name	Access	Width	Default	Description
3	DESC_CPL_ERR_INTMASK	RW	1	0	Descriptor Completion Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_CPL_ERR. 0: No interrupt masking for DESC_CPL_ERR.
2	DMA_INT_DONE_INTMASK	RW	1	0	DMA Interrupt Done Interrupt Masking 1: Mask off interrupt generation caused by DMA_INT_DONE. 0: No interrupt masking for DMA_INT_DONE.
1	DMA_EOP_DONE_INTMASK	RW	1	0	DMA EOP Done Interrupt Masking 1: Mask off interrupt generation caused by DMA_EOP_DONE. 0: No interrupt masking for DMA_EOP_DONE.
0	RSVD	RO	20	0	Reserved

Table 2.26. H2F_CPLT_DESC_COUNT (0x0018)

Field	Name	Access	Width	Default	Description
31:0	CPLT_DESC_CNT	RO	32	0	The number of completed descriptors since the last rising edge of REQUEST bit. Reset to 0 at the subsequent rising edge of REQUEST bit.

2.8.3.2. F2H DMA Control and Status (0x0100)

Table 2.27. F2H_DMA_CTRL (0x0100)

Field	Name	Access	Width	Default	Description
31:1	RSVD	RO	31	0	Reserved
0	REQUEST	RW1S	1	0	Request to start DMA operation. 1: Request to start DMA operation Once the field in “F2H Descriptor Fetching” is consumed by DMA Engine to trigger descriptor fetching, this bit is cleared to 0 by HW.

Table 2.28. F2H_DMA_STS (0x010C)

Field	Name	Access	Width	Default	Description
31:14	RSVD	RO	18	0	Reserved
13	AXIST_DATA_L_ERR	RC	1	0	AXI-Stream Data Long Error 1: The received AXI-Stream data is longer than Descriptor length. 0: No error
12	AXIST_DATA_S_ERR	RC	1	0	AXI-Stream Data Short Error 1: The received AXI-Stream data is shorter than Descriptor length. 0: No error
11	DMA_LEN_ERR	RC	1	0	DMA Length Error 1: DMA Length is not DW-aligned. 0: No error
10	F2H_DESTADDR_ERR	RC	1	0	F2H Destination Address Error 1: F2H Destination Address is not 8DW-aligned. 0: No error

Field	Name	Access	Width	Default	Description
9	F2H_SRCADDR_ERR	RC	1	0	F2H Source Address Error 1: F2H Source Address is not 8DW-aligned. 0: No error
8	DESC_ADDR_ERR	RC	1	0	Descriptor Address Error 1: Desc Address is not 8DW-aligned. 0: No error
7	AXI_READ_ERR	RC	1	0	AXI Read Error 1: AXI Read Response is not OKAY (2'b00). 0: No error
6:5	RSVD	RO	2	0	Reserved
4	DESC_CPLTO_ERR	RC	1	0	Descriptor Completion Timeout Error 1: Completion timeout at F2H Descriptor fetching. 0: No error
3	DESC_CPL_ERR	RC	1	0	Descriptor Completion Error 1: Completion Status is not Successful Completion. 0: No error
2	DMA_INT_DONE	RC	1	0	DMA Interrupt Done 1: DMA transfer is done for descriptor with INT bit = 1. 0: No DMA Interrupt Done event.
1	DMA_EOP_DONE	RC	1	0	DMA EOP Done 1: DMA transfer is done for descriptor with EOP bit = 1. 0: No DMA EOP Done event.
0	BUSY	RO	1	0	DMA Engine busy 1: DMA is busy. 0: DMA in IDLE state, no operation pending.

Table 2.29. F2H_DMA_INT_MASK (0x0110)

Field	Name	Access	Width	Default	Description
31:14	RSVD	RO	19	0	Reserved
13	AXIST_DATA_L_ERR_INTMASK	RW	1	0	AXI-Stream Data Long Error Interrupt Masking 1: Mask off interrupt generation caused by AXIST_DATA_L_ERR. 0: No interrupt masking for AXIST_DATA_L_ERR.
12	AXIST_DATA_S_ERR_INTMASK	RW	1	0	AXI-Stream Data Short Error Interrupt Masking 1: Mask off interrupt generation caused by AXIST_DATA_S_ERR. 0: No interrupt masking for AXIST_DATA_S_ERR.
11	DMA_LEN_ERR_INTMASK	RW	1	0	DMA Length Error Interrupt Masking 1: Mask off interrupt generation caused by DMA_LEN_ERR. 0: No interrupt masking for DMA_LEN_ERR.
10	F2H_DESTADDR_ERR_INTMASK	RW	1	0	F2H Destination Address Error Interrupt Masking 1: Mask off interrupt generation caused by F2H_DESTADDR_ERR. 0: No interrupt masking for F2H_DESTADDR_ERR.

Field	Name	Access	Width	Default	Description
9	F2H_SRCADDR_ERR_INTMASK	RW	1	0	F2H Source Address Error Interrupt Masking 1: Mask off interrupt generation caused by F2H_SRCADDR_ERR. 0: No interrupt masking for F2H_SRCADDR_ERR.
8	DESC_ADDR_ERR_INTMASK	RW	1	0	Descriptor Address Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_ADDR_ERR. 0: No interrupt masking for DESC_ADDR_ERR.
7	AXI_READ_ERR_INTMASK	RW	1	0	AXI Read Error Interrupt Masking 1: Mask off interrupt generation caused by AXI_READ_ERR. 0: No interrupt masking for AXI_READ_ERR.
6:5	RSVD	RO	2	0	Reserved
4	DESC_CPLTO_ERR_INTMASK	RW	1	0	Descriptor Completion Timeout Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_CPLTO_ERR. 0: No interrupt masking for DESC_CPLTO_ERR.
3	DESC_CPL_ERR_INTMASK	RW	1	0	Descriptor Completion Error Interrupt Masking 1: Mask off interrupt generation caused by DESC_CPL_ERR. 0: No interrupt masking for DESC_CPL_ERR.
2	DMA_INT_DONE_INTMASK	RW	1	0	DMA Interrupt Done Interrupt Masking 1: Mask off interrupt generation caused by DMA_INT_DONE. 0: No interrupt masking for DMA_INT_DONE.
1	DMA_EOP_DONE_INTMASK	RW	1	0	DMA EOP Done Interrupt Masking 1: Mask off interrupt generation caused by DMA_EOP_DONE. 0: No interrupt masking for DMA_EOP_DONE.
0	RSVD	RO	20	0	Reserved

Table 2.30. F2H_CPLT_DESC_COUNT (0x0118)

Field	Name	Access	Width	Default	Description
31:0	CPLT_DESC_CNT	RO	32	0	The number of completed descriptors since the last rising edge of REQUEST bit. Reset to 0 at the subsequent rising edge of REQUEST bit.

2.8.3.3. H2F Descriptor Fetching (0x0200)

Table 2.31. H2F_DESC_ADDR_LOW (0x0200)

Field	Name	Access	Width	Default	Description
31:0	DESC_ADDR_LOW	RW	32	0	Lower 32-bit address of descriptor

Table 2.32. H2F_DESC_ADDR_HIGH (0x0204)

Field	Name	Access	Width	Default	Description
31:0	DESC_ADDR_HIGH	RW	32	0	Upper 32-bit address of descriptor

Table 2.33. H2F_CONT_REMAIN (0x0208)

Field	Name	Access	Width	Default	Description
31:6	RSVD	RO	26	0	Reserved
5:0	CONT_DESC	RW	6	0	The number of contiguous Descriptor from the Descriptor address in 0x00 and 0x04. All 0s mean 64 contiguous descriptors.

2.8.3.4. F2H Descriptor Fetching (0x0300)

Table 2.34. F2H_DESC_ADDR_LOW (0x0300)

Field	Name	Access	Width	Default	Description
31:0	DESC_ADDR_LOW	RW	32	0	Lower 32-bit address of descriptor

Table 2.35. F2H_DESC_ADDR_HIGH (0x0304)

Field	Name	Access	Width	Default	Description
31:0	DESC_ADDR_HIGH	RW	32	0	Upper 32-bit address of descriptor

2.8.3.6. F2H_CONT_REMAIN (0x0308)

Field	Name	Access	Width	Default	Description
31:6	RSVD	RO	26	0	Reserved
5:0	CONT_DESC	RW	6	0	The number of contiguous Descriptor from the Descriptor address in 0x00 and 0x04. All 0s mean 64 contiguous descriptors.

2.8.3.5. Interrupt Control and Status (0x0400)

Table 2.37. INT_MODE (0x0400)

Field	Name	Access	Width	Default	Description
31:2	RSVD	RO	30	0	Reserved
1:0	INT_MODE_ENABLE	RO	2	0	Interrupt Mode Enable. 2'b00: Wire interrupt 2'b01: INTx 2'b10: MSI 2'b11: MSI-X Others: Reserved In the current release, only MSI is supported.

Table 2.38. H2F_MSI_VEC (0x0404)

Field	Name	Access	Width	Default	Description
31:5	RSVD	RO	27	0	Reserved
4:0	CHAN0_MSI_INT_VEC	RW	5	0	Channel 0 H2F MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

Table 2.39. F2H_MSI_VEC (0x0408)

Field	Name	Access	Width	Default	Description
31:5	RSVD	RO	27	0	Reserved
4:0	CHAN0_F2H_MSI_VEC	RW	5	0	Channel 0 F2H MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

Table 2.40. USR_MSI_VEC_P1 (0x040C)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR3_MSI_VEC	RW	5	0	User 3 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
23:21	RSVD	RO	3	0	Reserved
20:16	USR2_MSI_VEC	RW	5	0	User 2 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
15:13	RSVD	RO	3	0	Reserved
12:8	USR1_MSI_VEC	RW	5	0	User 1 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
7:5	RSVD	RO	3	0	Reserved
4:0	USR0_MSI_VEC	RW	5	0	User 0 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

Table 2.41. USR_MSI_VEC_P2 (0x0410)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR7_MSI_VEC	RW	5	0	User 7 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
23:21	RSVD	RO	3	0	Reserved

Field	Name	Access	Width	Default	Description
20:16	USR6_MSI_VEC	RW	5	0	User 6 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
15:13	RSVD	RO	3	0	Reserved
12:8	USR5_MSI_VEC	RW	5	0	User 5 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
7:5	RSVD	RO	3	0	Reserved
4:0	USR4_MSI_VEC	RW	5	0	User 4 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

Table 2.42. USR_MSI_VEC_P3 (0x0414)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR11_MSI_VEC	RW	5	0	User 11 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
23:21	RSVD	RO	3	0	Reserved
20:16	USR10_MSI_VEC	RW	5	0	User 10 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
15:13	RSVD	RO	3	0	Reserved
12:8	USR9_MSI_VEC	RW	5	0	User 9 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
7:5	RSVD	RO	3	0	Reserved
4:0	USR8_MSI_VEC	RW	5	0	User 8 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

Table 2.43. USR_MSI_VEC_P4 (0x0418)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR15_MSI_VEC	RW	5	0	User 15 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
23:21	RSVD	RO	3	0	Reserved
20:16	USR4_MSI_VEC	RW	5	0	User 14 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
15:13	RSVD	RO	3	0	Reserved
12:8	USR13_MSI_VEC	RW	5	0	User 13 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.
7:5	RSVD	RO	3	0	Reserved
4:0	USR12_MSI_VEC	RW	5	0	User 12 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.

2.8.3.6. General Status (0x0500)

Table 2.44. GENERAL_STS (0x0500)

Field	Name	Access	Width	Default	Description
31:6	RSVD	RO	26	0	Reserved
5:3	DMA_SUPPORT	RO	3	0	DMA Support 3'b000: Support F2H and H2F 3'b001: Support F2H Only 3'b010: Support H2F Only 3'b011: Do not support F2H and H2F Others: Reserved
2:0	DMA_TYPE	RO	3	0	DMA Type 3'b000: AXI-MM DMA 3'b001: AXI-ST DMA Others: Reserved

2.8.4. DMA Transaction (AXI-MM)

The data transfer with the DMA support is illustrated in the following figures. Additional registers required by DMA are implemented as well as status registers and interrupt signals, which are discussed in the subsections below.

2.8.4.1. FPGA-to-Host (F2H) Transaction

In F2H transaction, the core reads the data from memory through AXI-MM Address Read and Read Data Channels and one or more Memory Write TLPs are generated and transmitted to the host through PCIe link until the transfer is completed.

Figure 2.7 shows the block diagram that shows an overall F2H Data Transfer.

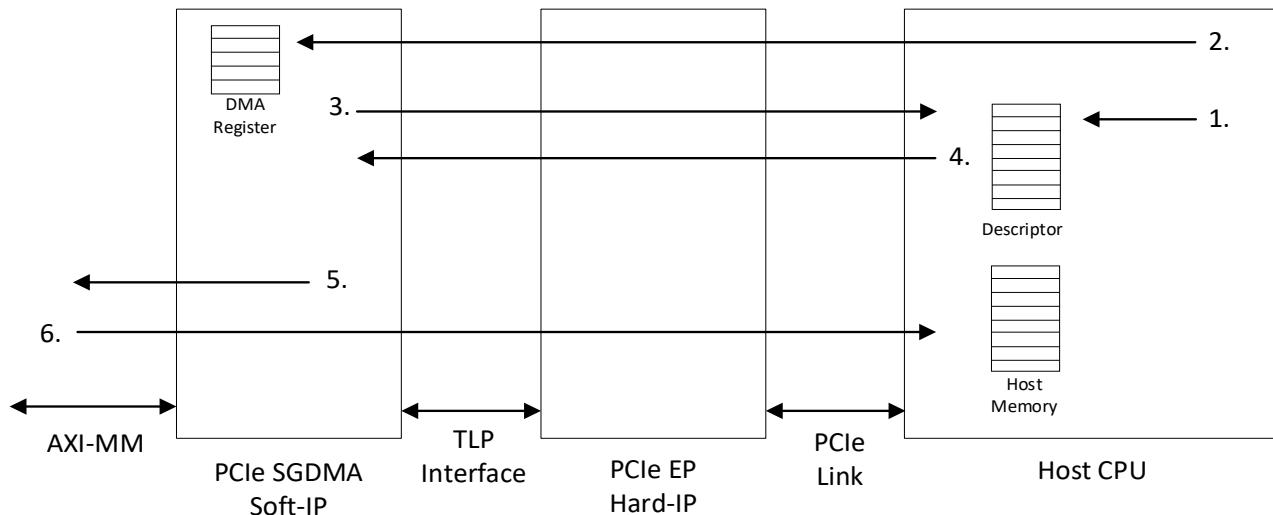
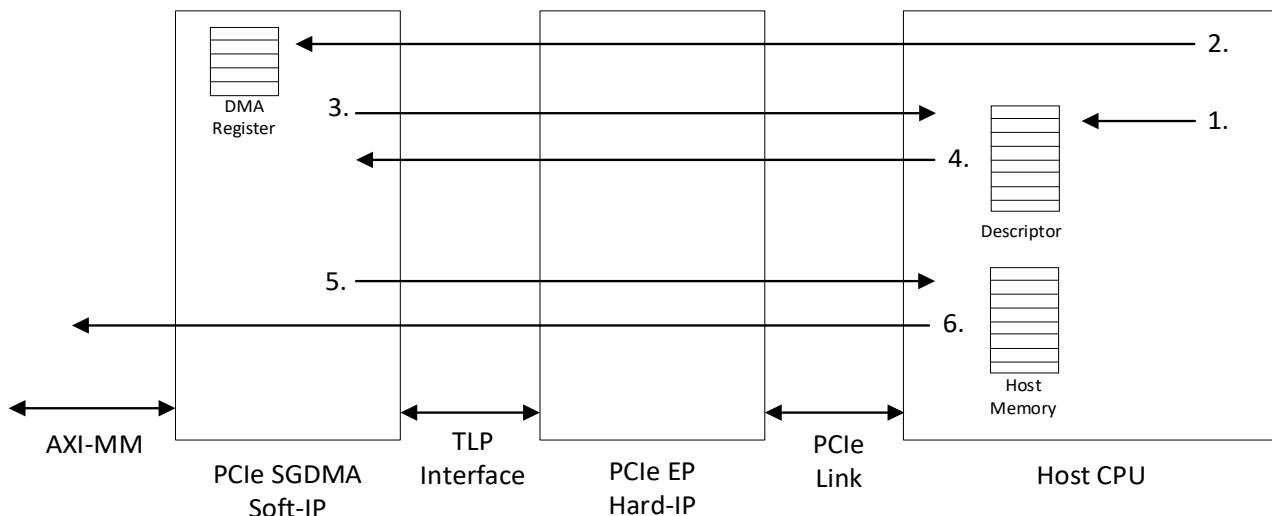


Figure 2.7. F2H Data Transfer


The numbers below are the sequence of F2H flow which corresponds to the numbers in Figure 2.7.

1. Driver forms Descriptors in the Host Memory. The format of Descriptor is available in the [DMA Descriptor](#) section.
2. Driver programs DMA registers through Memory Write TLP. It programs F2H Descriptor Fetching (0x0300) field followed by the Request bit in F2H_DMA_CTRL (0x0100) to kick start F2H data transfer.
3. When the Request bit is set, DMA Engine forms Memory Read TLP and transmits it to the Host targeting the address in F2H_DMA_CTRL registers for Descriptor fetching. Block Descriptor fetching can happen if CONT_DESC register is not 0. If CONT_DESC register shows the contiguous Descriptor is beyond MRRS or crossing 4 kB boundary, the descriptor fetching is split into multiple Memory Read TLPs.
4. Host returns Descriptor to the DMA Engine through Completion with Data TLP.
5. When the last received Descriptor has EOP bit = 0, Descriptor fetching through Memory Read moves on to the next Descriptor address.
6. DMA Engine decodes the received Completion with Data TLP to obtain Source Address, Destination Address, and Length information. It triggers memory read through AXI-MM Read Channel to the Source Address. The size of the read data does not cross the 4K boundary. Therefore, the memory read may be split to several AXI-MM Read.
7. FPGA application returns the data corresponding to the AXI-MM Read through AXI-MM Read Data Channel. Upon receiving the Read data, DMA Engine forms Memory Write TLP and transmits it to the Host targeting Destination Address. The IP guarantees the transmitted Memory Write TLP does not cross 4K boundary.

2.8.4.2. Host-to-FPGA (H2F) Transaction

In H2F transaction, the core transmits Memory Read TLP to the host. Incoming completions are matched with the read request entries and transferred to the specified destination through AXI4-MM Address Write and Write Data channels.

Figure 2.8 shows an overall H2F Data Transfer.

Figure 2.8. H2F Data Transfer

The numbers below are the sequence of H2F flow which is corresponding to the numbers in [Figure 2.8](#).

1. Driver forms Descriptors in the Host Memory. The format of Descriptor is available in the [DMA Descriptor](#) section.
2. Driver programs DMA registers through Memory Write TLP. It programs H2F Descriptor Fetching (0x020) field followed by the Request bit in H2F_DMA_CTRL (0x0000) to kick start H2F data transfer.
3. When the Request bit is set, DMA Engine forms Memory Read TLP and transmits it to the Host targeting the address in H2F_DMA_CTRL registers for Descriptor fetching. Block Descriptor fetching can happen if CONT_DESC register is not 0. If CONT_DESC register shows contiguous Descriptor is beyond MRRS or crossing 4 kB boundary, the descriptor fetching is split into multiple Memory Read TLPs.
4. Host returns Descriptor to the DMA Engine through Completion with Data TLP.
5. When the last received Descriptor has EOP bit = 0, the descriptor fetching through Memory Read moves on to the next Descriptor address.
6. DMA Engine decodes the received Completion with Data TLP to obtain Source Address, Destination Address, and Length information. It generates Memory Read TLP and transmits it to the Host targeting the Source Address. If the Length exceeds MRRS or crossing 4 kB boundary, the memory read will be split into several Memory Read TLPs.
7. Host returns read data as Completion with Data TLP. It may split the read data into several Completion with Data TLPs depending on MPS and RCB. Upon receiving the TLPs, the DMA Engine writes it to the Destination Address through AXI-MM's Write Address Channel and Write Data Channel.

Note: The IP requires WLAST-to-BVALID latency to be within 40 clock cycles to prevent unexpected behaviour in terms of Memory Read TLPs' Tag number.

2.8.4.3. DMA Interrupt

The IP supports wire interrupts, INTx, MSI, and MSI-X. The selection between the interrupt type is controlled by Radian user interface. In 2024.2 release, only MSI is supported.

Interrupt can be triggered when a DMA data transfer is completed, or an error occurs.

For DMA data transfer, interrupt is triggered when the last byte of data is transferred corresponding to a descriptor chunk (EOP = 1) or any descriptor with INT bit set to 1 (refer to 2.8.2 DMA Descriptor). Interrupt can also be triggered by erroneous cases (refer to DMA registers).

2.8.5. DMA Transaction (AXI-Stream)

2.8.5.1. FPGA-to-Host (F2H) Transaction

The F2H transaction for AXI-Stream DMA is like AXI-MM (see [Descriptor Rules](#) section) except for data is not read through AXI-MM Read channel. Instead, data is received through the AXI-Stream RX interface.

Additional rules:

- tlast of AXI-Stream must be aligned with the end of a descriptor, otherwise the IP logs error and trigger interrupt.
- tready from the IP only de-asserts when at least one descriptor is available in the IP's descriptor FIFO.

2.8.5.2. Host-to-FPGA (H2F) Transaction

The H2F transaction for AXI-Stream DMA is not supported in the current release.

2.8.5.3. DMA Interrupt

DMA interrupt for AXI-Stream DMA is similar to AXI-MM (refer to [DMA Interrupt](#)).

2.8.6. DMA Performance (AXI-MM)

The performance of the PCIe AXI-MM DMA is tabulated in the table below.

Performance is measured from DMA start to MSI received by host.

The data below are based on simulation using multiple descriptors of the same size.

Bigger descriptors can achieve better efficiency as there are less descriptors and data transfer overhead.

2.8.6.1. FPGA-to-Host (F2H) Sim Transfer

Table 2.45. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer

Descriptor Size	Efficiency	Throughput
1 kB	14.81%	0.592 GB/s
64 kB	82.05%	3.282 GB/s
256 kB	87.80%	3.512 GB/s
512 kB	88.67%	3.547 GB/s
1 MB	89.11%	3.564 GB/s

2.8.6.2. Host-to-FPGA (H2F) Sim Transfer

Table 2.46. Simulation Data Throughput Using Different Descriptor Size for Host-to-FPGA (H2F) Transfer

Descriptor Size	Efficiency	Throughput
1 kB	14.88%	0.595 GB/s
64 kB	76.99%	3.080 GB/s
256 kB	81.06%	3.242 GB/s
512 kB	81.80%	3.272 GB/s
1 MB	82.15%	3.286 GB/s

The hardware performance is listed in [Table 2.47](#) and [Table 2.48](#). Burst Mode is similar to simulation where performance is measured from DMA start to MSI received by host.

Steady State mode is where DMA is put into circular buffer mode, and its throughput is measured at run time without taking into consideration the latency of DMA starts and MSI received by host.

2.8.6.3. FPGA-to-Host (F2H) Hardware Transfer

Table 2.47. Hardware Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer

Descriptor Size	Efficiency	Throughput
128 kB	82.50% (Burst Mode)	3.300 GB/s
128 kB	89.30% (Steady State)	3.570 GB/s

2.8.6.4. Host-to-FPGA (H2F) Hardware Transfer

Table 2.48. Hardware Data Throughput Using Different Descriptor Size for Host-to-FPGA (H2F) Transfer

Descriptor Size	Efficiency	Throughput
128 kB	74.50% (Burst Mode)	2.980 GB/s
128 kB	78.80% (Steady State)	3.150 GB/s

2.8.7. DMA Performance (AXI-Stream)

The performance of the PCIe AXI-S DMA is tabulated in the table below. The performance is measured from the DMA start to the MSI received by host. The data below are based on the simulation using the multiple descriptors of the same size. Bigger descriptors can achieve better efficiency as there are less descriptors and data transfer overhead.

2.8.7.1. FPGA-to-Host (F2H) Sim Transfer

Table 2.49. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer

Descriptor Size	Efficiency	Throughput
1 kB	6.82%	0.273 GB/s
16 kB	51.93%	2.077 GB/s
32 kB	66.96%	2.678 GB/s
64 kB	78.16%	3.126 GB/s
128 kB	85.13%	3.405 GB/s
256 kB	89.12%	3.565 GB/s
512 kB	91.34%	3.654 GB/s
1 MB	92.45%	3.698 GB/s

The hardware performance is listed in **Table 2.50**. Burst Mode is similar to simulation where performance is measured from DMA start to MSI received by host.

2.8.7.2. Host-to-FPGA (H2F) Sim Transfer

Note: This is supported in future IP release.

2.8.7.3. FPGA-to-Host (F2H) Hardware Transfer

Table 2.50. Simulation Data Throughput Using Different Descriptor Size for FPGA-to-Host (F2H) Transfer

Descriptor Size	Efficiency	Throughput
512 kB	90.00%	3.600 GB/s

In the Example Design, image data is streamed from Example Design logic to IP's AXI-S interface where is data is an included file which the content is hardcoded.

2.8.7.4. Host-to-FPGA (H2F) Hardware Transfer

This is supported in future IP release.

2.8.8. DMA With Bridge Mode

DMA with Bridge Mode has an addition AXI (MM or Lite) interface which allows the received MWr and MRd TLP to be converted to AXI-MM/AXI-Lite Manager Interface.

In the Lattice Radiant user interface, when DMA with Bridge Mode is selected in Configuration Mode, you can configure the BAR number that is associated to Bridge Mode. You can also configure the BAR size through the Radiant user interface.

When a received MWr/MRd TLP targets Bridge Mode BAR, the PCIe DMA IP converts the TLP to AXI-Lite Manager Interface.

For read access, Read Data Channel from AXI-Lite is converted to CpID TLP by the IP and transmitted to the Host.

In the current version, only 1 DW MWr/MRd TLP is supported by Bridge Mode. In addition, the IP supports DW-aligned address only. The read/write address must end with 0x0, 0x4, 0x8, or 0xC.

2.8.9. DMA User Interrupts

PCIe DMA IP supports up to 16 user interrupts. The number of user interrupts is configurable through the Radiant user interface.

Each user interrupt has a pair of request and acknowledgement signals at the IP interface, such as `usr_intr_req_i` and `usr_intr_ack_o`, respectively. When user logic asserts any `usr_intr_req_i`, the PCIe IP transmits MSI TLP to PCIe link partner. If more than one `usr_intr_req_i` are asserted, the IP arbitrates these requests with the round-robin arbitration scheme. The interrupt vector (MSI vector) associated with a user interrupt is configured through the `USR_INT_VEC` registers.

The following are the requirements of `usr_intr_req_i` and `usr_intr_ack_o`:

- `usr_intr_req_i` and `usr_intr_ack_o` come in a pair. Bit 0 of `usr_intr_ack_o` is associated with bit 0 of `usr_intr_req_i`, and so on.
- User application logic must assert `usr_intr_req_i` when it requires PCIe DMA IP to send interrupt (MSI) to the host.
- `usr_intr_req_i` and `usr_intr_ack_o` must comply to full handshake relationship.

Figure 2.9. User Interrupt Request and User Interrupt ACK Relationship

When multiple user interrupt requests are asserted, the PCIe DMA IP services it in round robin manner starting with Bit 0. The waveform above shows three user interrupt requests. User interrupt Bit2 is asserted, followed by the user interrupt Bit1 and user interrupt Bit0. As the PCIe DMA IP service the interrupt, it ack by asserting Bit2 followed by Bit1 and then Bit0. As the ack is received, interrupt request can be de-asserted.

2.9. Non-DMA Support

2.9.1. Non-DMA Overview

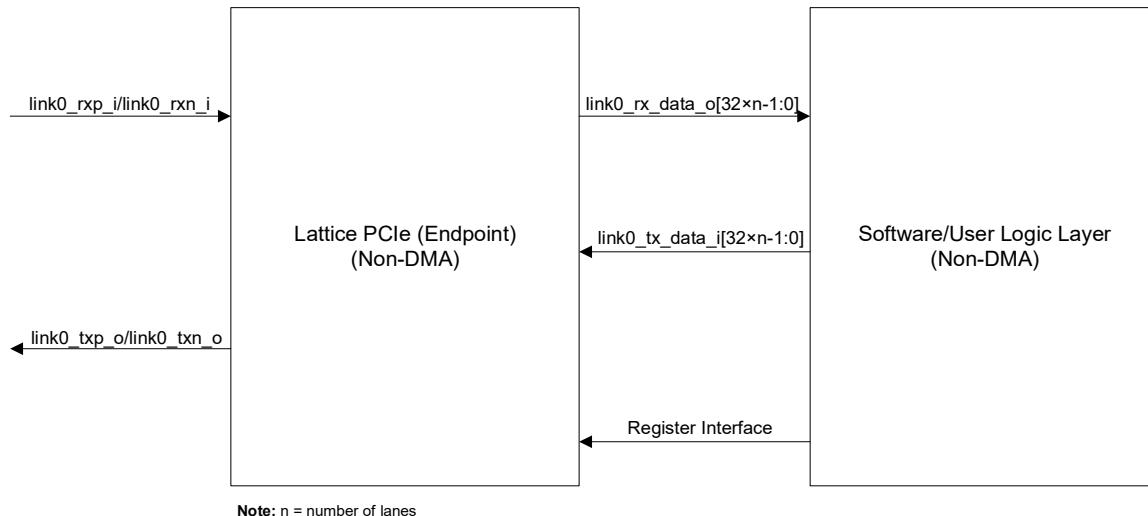


Figure 2.10. Non-DMA Application Data Flow – TLP Interface

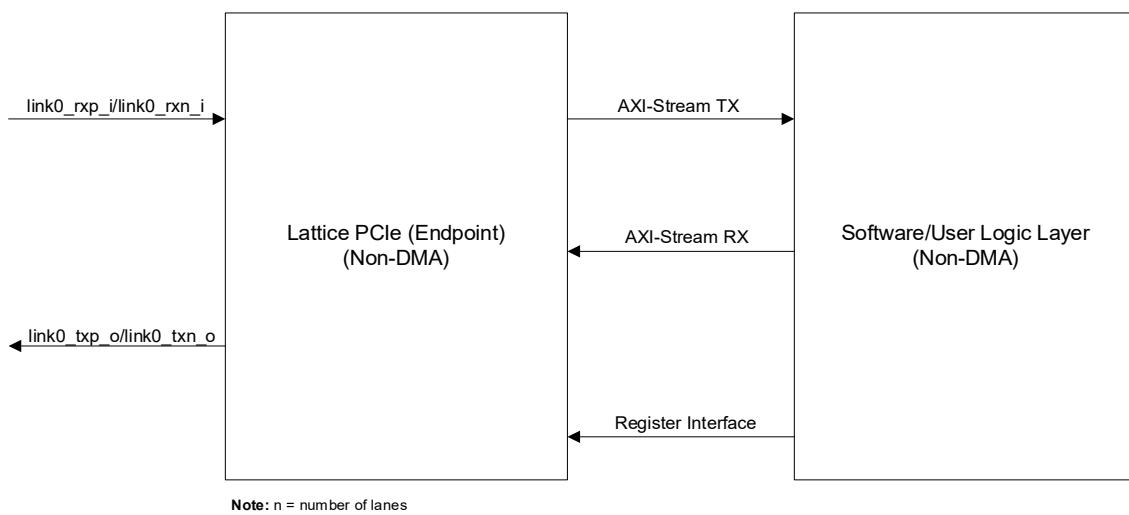



Figure 2.11. Non-DMA Application Data Flow – AXI-Stream Interface

Figure 2.12. Non-DMA Application Data Flow – AXI-MM Interface (Bridge Mode)

Figure 2.13. Non-DMA Application Data Flow – AXI-Lite Interface (Bridge Mode)

For the non-DMA design, the PCIe EP receives the data through the *link0_rxp_i/link0_rxn_i* serial lines from the Root Complex. The PCIe EP converts the serial data in the form of TLP packets. The TLP packets are sent to the non-DMA application layer through the *link0_rx_data_o* signal. The TLP header info is decoded and the operation is decided whether the data is written or read. For the write operation, the data is written to the RAM present in the application layer. For the read operation, the data is read from the RAM and sends the encoded data to the PCIe EP in the form of TLP packets through the *link0_tx_data_i* signal.

The register interface is enhanced as per the data interface selected in the user interface.

Table 2.51. Register Access for Different Data Interfaces

Data Interface	Register Interface
TLP	LMMI
AXI-Stream (Non-DMA)	APB
AXI-Stream (DMA)	LMMI
AXI-MM	LMMI
AXI-Lite	LMMI

2.9.2. Non-DMA Write

The PCIe EP sends the header data to the non-DMA application layer through the *link0_rx_data_o* signal. The application layer initially verifies the operation by decoding the header information. Once the write operation is detected, the user data is received along with the valid signal from the PCIe IP. The valid data is stored in the RAM present in the application layer.

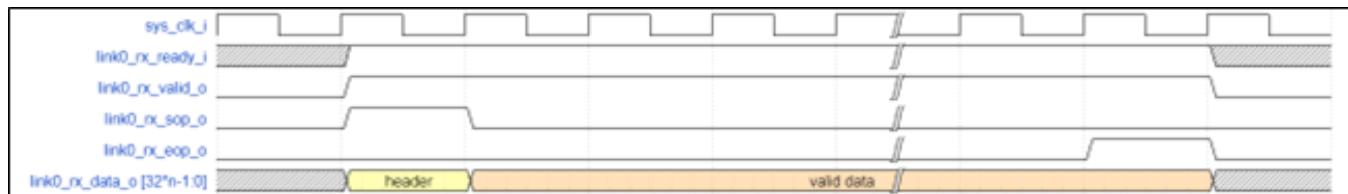


Figure 2.14. Non-DMA Write Operation (TLP Data Interface)

2.9.3. Non-DMA Read

The PCIe EP sends the header data to Non-DMA Application layer through the *link0_rx_data_o* signal. The application layer initially verifies the operation by decoding the header information. Once the operation is detected as read, the application layer waits for the ready signal sent by the PCIe EP. Based on the ready signal and header address, the user data along with the valid signal is send to PCIe EP by the RAM present in the application layer through the *link0_tx_data_i* signal.

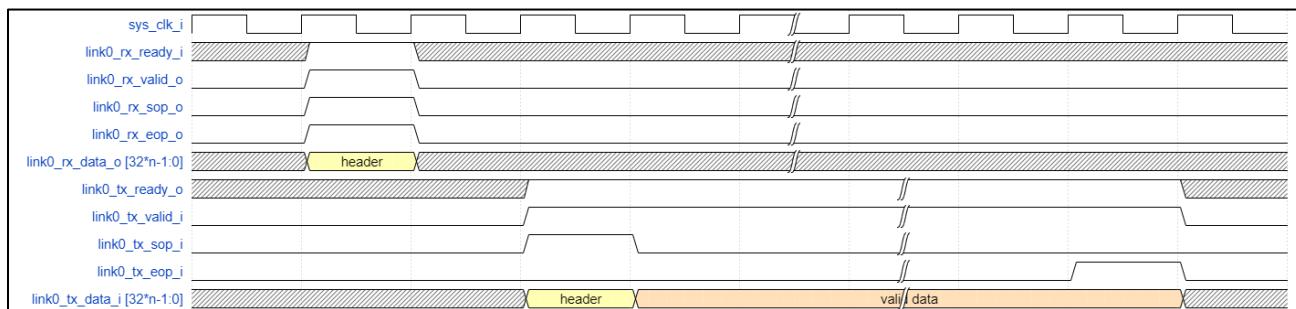


Figure 2.15. Non-DMA Read Operation (TLP Data Interface)

For more details on the TLP write and read data transaction, refer to the [Register Interface Conversion](#) section.

2.10. Interrupts

2.10.1. Generation of the Interrupts

The Lattice PCIe Core IP supports the Legacy Interrupts, Messaged Signaled Interrupts (MSI), and MSI-X interrupts.

For each function in the PCIe IP core, the system software configures the function to use MSI-X, MSI, or Legacy Interrupt mode as part of the PCI enumeration process.

The Legacy Interrupt is supported by the PCIe Core to support the backward compatibility by enabling the INTx pins.

To minimize the pin count, the function can generate the inband interrupt message packet to indicate the assertion and de-assertion of an interrupt pin. These are the MSI and MSI-X interrupts. This interrupt mechanism is used to conserve the pins because it does not use separate wires for interrupts.

In this mechanism a single Dword provides the information about the interrupt messages MSI-X/MSI interrupts are signaled using MSI-X/MSI Message TLPs, which you can generate and transmit in the Transmit Interface.

The MSI Interrupt is a posted memory write, which is distinguished from the other memory writes by the addresses they target, which are typically reserved by the system for interrupt delivery. The MSI Capability structure is stored in the Configuration Space and is programmed using Configuration Space accesses.

The MSI-X interrupt is the extended version for the MSI interrupts, supporting a greater number of MSI Vectors and the MSI-X capability structure points to an MSI-X table structure and an MSI-X Pending Bit Array (PBA) structure, which are stored in memory.

Enabling and Disabling of interrupts can be done through PCIe IP Core user interface or through Hard IP core configuration status registers.

Table 2.52. describes the register bits to enable and disable each of the interrupts.

Table 2.52. Base Address to Enable Interrupt

Base Address	Offset Address	Register Bits	Description
0x4000 (Function 0) 0x5000 (Function 1) 0x6000 (Function 2) 0x7000 (Function 3)	0x50	[0]	Support for Legacy Interrupts • 0 – Enable • 1 – Disable
	0xE8	[0]	Support for MSI Interrupts • 0 – Enable • 1 – Disable
	0xF0	[0]	Support for MSI-X Interrupts • 0 – Enable • 1 – Disable

2.10.2. Legacy Interrupt

When the legacy interrupts are enabled, the PCIe IP core emulates the INTx Interrupts using virtual wire. The term INTx refers to the four legacy interrupts: INTA, INTB, INTC, and INTD.

The link[LINK]_legacy_interrupt_i signal is used to generate Legacy interrupts on the PCI Express link. The link[LINK]_legacy_interrupt_i has one input for each base (physical) function. When Legacy Interrupt Mode is enabled, link[LINK]_legacy_interrupt_i implements one level-sensitive interrupt (INTA, INTB, INTC, or INTD) for each Base Function. Each functions interrupt sources must be logically ORed together and input as link[LINK]_legacy_interrupt_i [i] for a given function. Each interrupt source must continue to drive a 1 until it has been serviced and cleared by software at which time it must switch to driving 0. The core ORs together INTA/B/C/D from all functions to create an aggregated INTA/INTB/INTC/INTD. The core monitors high and low transitions on the aggregated INTA/B/C/D and sends an Interrupt assert message on each 0 to 1 transition and an Interrupt de-assert message on each 1 to 0 transition of the aggregated INTA/B/C/D. Transitions, which occur too close together to be independently transmitted, are merged.

The core asserts the link[LINK]_legacy_interrupt_o signal, which is an active high level-based interrupt signal. This interrupt is asserted by the core, whenever an interrupt is generated by the core implemented PCI Express Capability and Advanced Error Reporting Capability. The link[LINK]_legacy_interrupt_o should be merged with the link[LINK]_legacy_interrupt_i signal to produce the any user interrupt signal.

When a function has MSI-X or MSI Interrupt Mode enabled, link[LINK]_legacy_interrupt_i is not used for that function.

The selection among the four interrupts can be done through the PCIe IP core user interface or through register interface as described in [Table 2.53](#).

Table 2.53. Legacy Interrupt Register

Base Address	Offset Address	Register Bits	Description
0x4000 (Function 0) 0x5000 (Function 1) 0x6000 (Function 2) 0x7000 (Function 3)	0x50	[9:8]	Selects which Legacy Interrupt to be used: • 0 – INTA • 1 – INTB • 2 – INTC • 3 – INTD

2.10.3. MSI Interrupt

The Lattice PCIe IP core supports 32 MSI interrupts with a feature of enabling and disabling the vector masking. The MSI request can be either 32-bit addressable Memory Write TLP or a 64-bit addressable Memory Write TLP. There are other two registers called as Mask Bits Register and Pending Bits Register. Since there is a support for 32 interrupts, the mask bit and pending register are 32-bit length, each bit represents the masking or pending status for each interrupt. The MSI-X capability structure values are programmed through the PCI Express configuration space register.

The address is taken from the Message Address and Message Upper Address fields of the MSI Capability Structure, while the payload is taken from the Message Data field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value of the Upper Address field in the MSI capability structure. By default, the MSI messages are sent as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable Memory Write TLPs only if the system software programs a non-zero value into the Upper Address register.

The message control register in the MSI capability Structure, disables and enables the various support in the MSI Interrupt.

Figure 2.16 and Figure 2.17 shows the MSI Capability Structure variant.

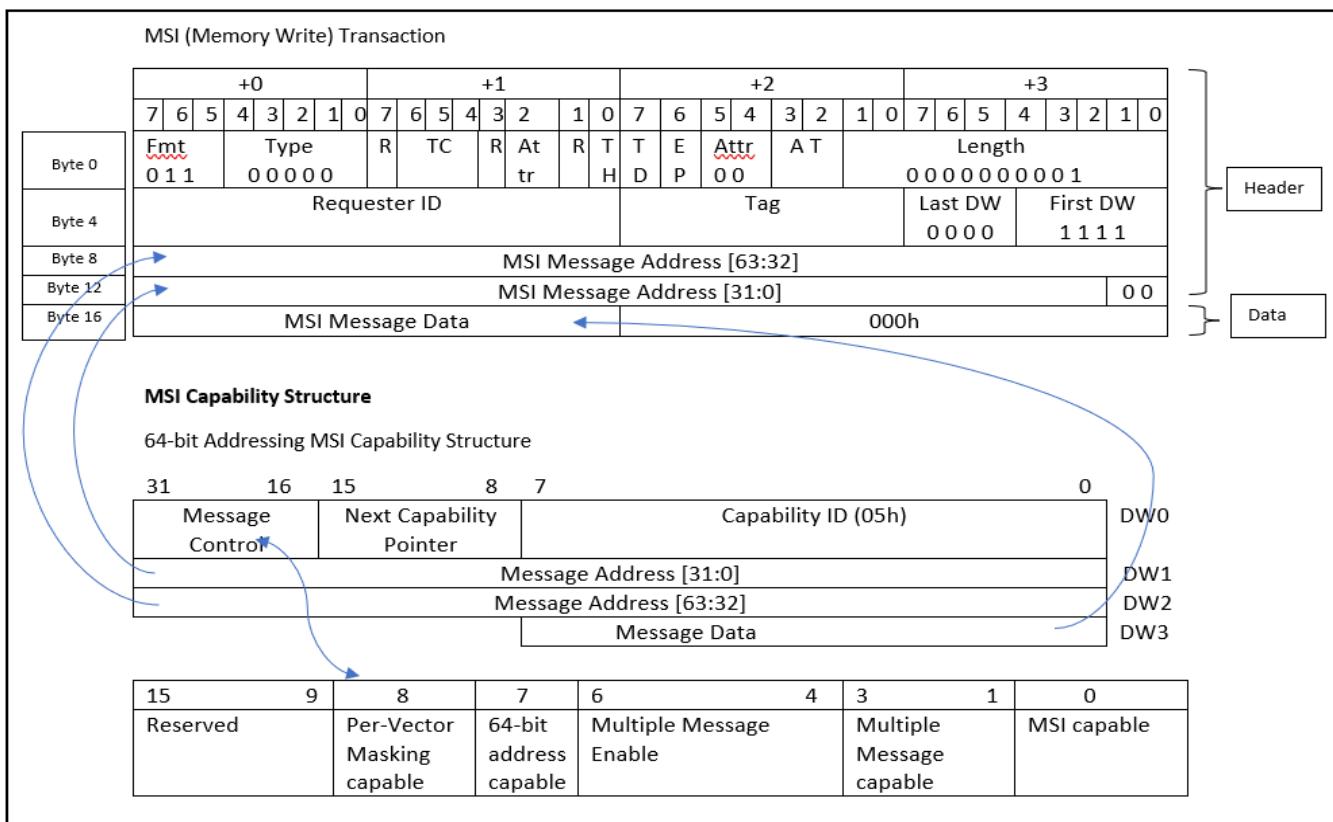


Figure 2.16. MSI Capability Structure Variant

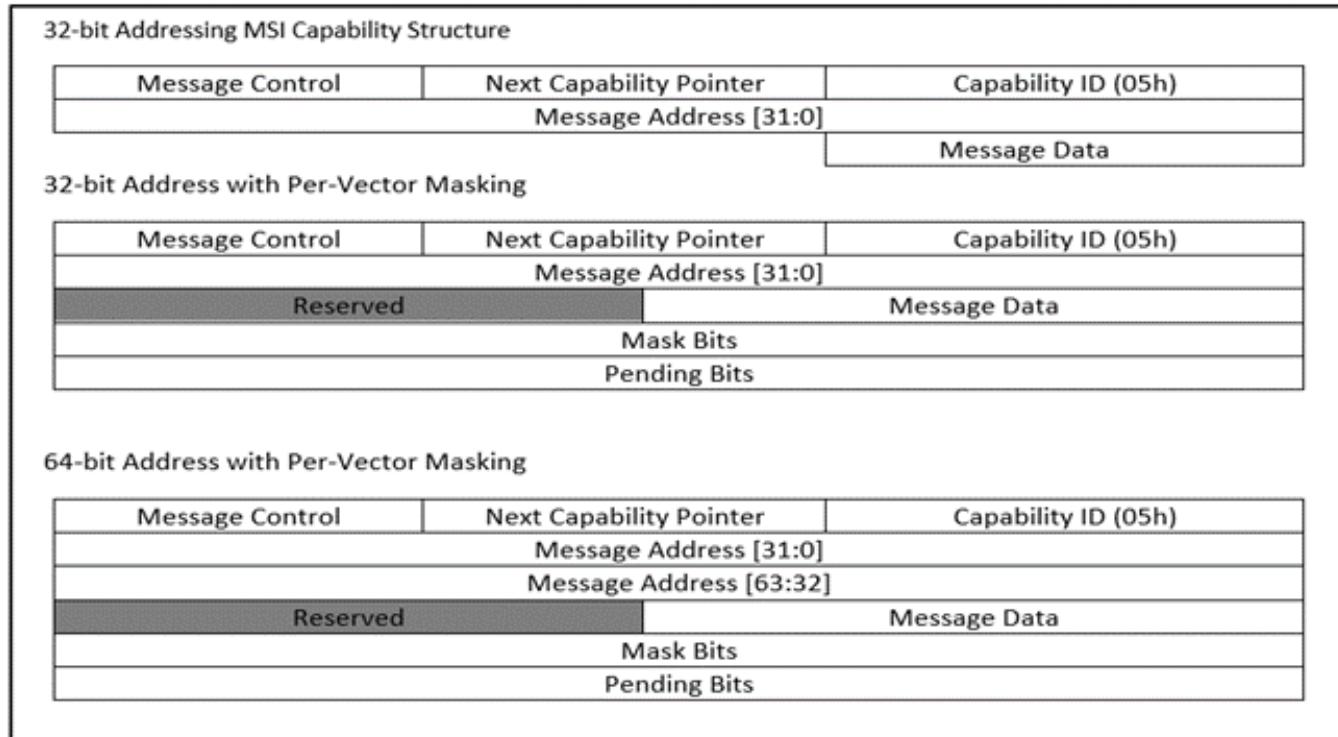


Figure 2.17. MSI Capability Structure Variant

2.10.3.1. MSI Pending Register

The MSI Pending register is used to report MSI Interrupts that are appended in the user design. MSI Pending is a PCIe Configuration Register in the MSI Capability Structure that software uses to obtain status on pending MSI Interrupt vectors.

The MSI Pending register must be written whenever a MSI Interrupt Vector's pending status changes. A 1 must be written to the associated interrupt vector bit when an interrupt becomes pending and a 0 must be written to indicate that the interrupt is no longer pending.

The MSI Pending register must be updated whenever the status of your pending MSI interrupts changes. If MSI interrupts are not used, writing to the MSI Pending Register is not needed.

2.10.4. MSI-X Interrupt

2.10.4.1. MSI-X Capability Structure variant

MSI-X allows the support of large number of vectors with independent message data and address for each vector compared to the MSI Interrupts. It can support up-to 2048 vectors per function. The MSI-X Capability Structure points to an MSI-X table structure and an MSI-X Pending Bit Array (PBA) structure, which are stored in memory. In MSI-X interrupt the vector information is present in the memory location pointed by the Table Base address Indicator Register (BIR).

Figure 2.18 shows the MSI-X capability structure. The MSI-X interrupt configuration is done by the PCIe Configuration Space Registers.

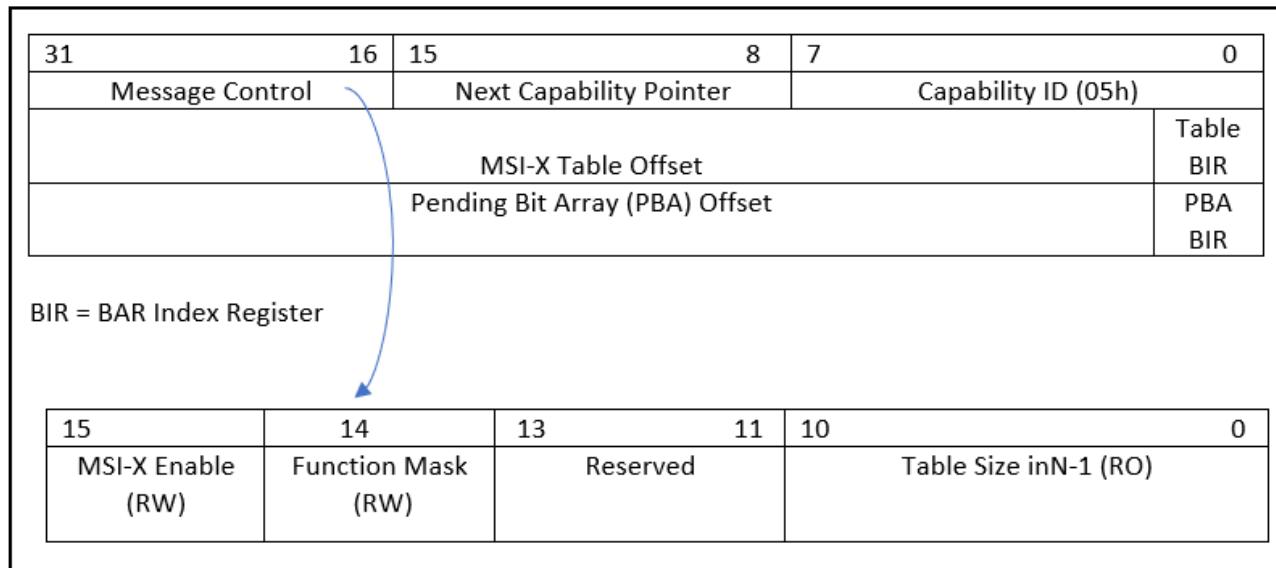


Figure 2.18. MSI-X Capability Structure Variant

The description of each bit in the Message controlled are explained in the section of the PCIe Configuration Space Register configuration for MSI-X Capability Structure. The MSI-X Capability Structure variant contains information about the MSI-X Table and the PBA structure, information such as pointers to the bases of the MSI-X Table and the PBA structure. The Table BIR in the MSI-X Capability Structure includes information about the BAR location that contains the MSI-X table.

2.10.4.2. MSI-X Table

The MSI-X table has an array of vectors and addresses. The MSI-X Table contains four Dwords. Each entry in the MSI-X table represents one vector. The DW0 and DW1 supply a unique 64-bit address for that vector and DW2 is the 32-bit data pattern for it. The DW3 is the mask bit for the vector and contains only 1 bit at present.

DW3	DW2	DW1	DW0	
Vector Control	Message Data	Upper Address	Lower Address	Entry 0
Vector Control	Message Data	Upper Address	Lower Address	Entry 1
Vector Control	Message Data	Upper Address	Lower Address	Entry 2
....	
....	
Vector Control	Message Data	Upper Address	Lower Address	Entry N-1

Figure 2.19. MSI-X Table Entries

2.10.4.3. Pending Bit Array

The Pending Bit Array (PBA) is located within the memory address. This can use the same MSI-X Table BIR value (that is the same BAR or a different BAR). The PBA can use either qword (64-bit) or Dword (32-bit) accesses. The PBA table contains the pending bit information for each interrupt used. Same as MSI interrupts, if the event that the interrupt triggers and if its mask bit is set, the MSI-X transaction is not sent and the corresponding pending bit is set. If the interrupt vector is unmasked and if the pending bit is still set, that interrupt is generated.

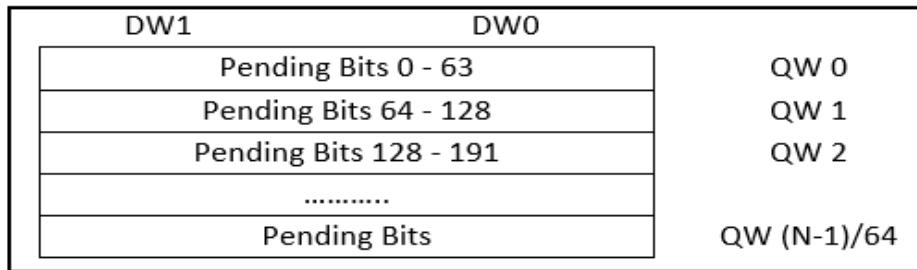


Figure 2.20. Pending Bit Array

2.10.4.4. MSI-X Interrupts Operation

- When the MSI-X interrupts are supported, you need to mention the size and location of the MSI-X Table and Pending Bit Array (PBA) through the PCIe CSR and the MSI-X table and the PBA structure must be implemented at the application layer.
- When the MSI-X Interrupts are generated, it uses the contents of the MSI-X Table (Address and Data) and generate a Memory Write through the TLP interface.
- The Host reads the message control register to determine the MSI-X Table size. The maximum entry in the table is 2048 entries. The BAR mentioned in the table BIR can access the MSI-X table.
- The host sets up the MSI-X table by programming the address, data, and the mask bits for each entry in the table.
- When the application generates the interrupt, it reads the MSI-X table information and generates a MWR TLP data and the corresponding bits in the PBA is set
- The generated TLP is sent to the corresponding address along with the data.
- When the MSI-X interrupt is sent, the application can clear the associated PBA bits.

2.11. PCIe Endpoint Core Buffers

The Lattice PCIe x4 IP Core contains three large RAM buffers:

- Transmit Buffer for transmitting TLPs.
- Receive Buffer for receiving TLPs.
- Replay Buffer for holding TLPs that were transmitted until positive acknowledgement of receipt is received.

The size of the Transmit Buffer, Receive Buffer, and Replay Buffer and the size of the corresponding buffers in the remote PCI Express Device have a fundamental impact on the throughput performance of the PCI Express link.

To achieve the highest throughputs, the buffers for both devices in the PCI Express link must be large enough that they can still accept more data while the oldest data begins to be freed from the buffer. If a buffer is too small, then the link stalls until the buffer has enough space to continue. The buffers must be large enough to overcome the expected latencies or the throughput is affected.

2.11.1. PCI Express Credits

The Flow Control DLLPs communicate the available buffer space in units of Header and Data Credits as defined in the PCI Express Specification. The amount of space required by a Header is 12-20 bytes or (3-5 DWORDs with 1 DWORD == 4 bytes). Each Header Credit represents the capability to store a maximum size packet header, which includes all the transaction control information (address, byte enables, and requester ID) and an optional End to End CRC (ECRC). Each Data Credit represents 16 bytes (4 DWORDs) of data payload. A transaction cannot be transmitted unless there is at least 1 header credit and enough data credits for the packet payload available in the remote device's Receive Buffer.

Credits are further divided into three categories for each of the main types of traffic:

- Posted (memory write requests and messages)
- Non-Posted (all reads, Configuration and I/O writes)
- Completion (responses to Non-Posted Requests) credit categories.

Each type of traffic must obey the PCI Express transaction ordering rules and is stored in its own buffer area. The Credit categories are annotated as:

- PH – Posted Request Header Credits

- PD – Posted Request Data Payload Credits
- NH – Non-Posted Request Header Credits
- ND – Non-Posted Request Data Payload Credits
- CH – Completion Header Credits
- CD – Completion Data Payload Credits

The PCI Express is inherently high-latency due to the serial nature of the protocol (clock rate matching and lane-lane de-skewing) and due to the latency induced by requiring packets to be fully received and robustly checked for errors before forwarding them for higher-level processing.

To achieve the best throughputs, both the Lattice PCIe x4 IP Core and the remote PCI Express device must be designed with a suitable number of credits and the capability to overlap transactions to bury the transaction latency.

The Lattice PCIe x4 IP Core Transmit, Receive, and Replay buffers are delivered with sufficient size to overcome the latencies of typical open system components.

2.11.2. Max Payload Size

The maximum payload size of any given packet is limited by the Max Payload Size field of the Device Control Configuration Register. The PCI Express Specification defines 128, 256, 512, 1024, 2048, and 4096-byte payload sizes. The maximum payload size that a device can support is limited by the size of its posted and completion TLP buffers. The Transmit Buffer and Receive Buffer Posted and Completion TLP storage and the Replay Buffer TLP storage needs to be able to hold at least four Max Payload Size TLPs to be reasonably efficient. Each device advertises the maximum payload size that it can support, and the OS/BIOS configures the devices in a link to use the lowest common maximum payload size. Thus, it is not advantageous to support a greater maximum payload size than the devices with which one is communicating.

The higher the TLP payload size, the lower the TLP header and framing overhead is compared to the data. Above 512-byte Max Payload Size the incremental throughput benefit of higher payload sizes is small and the design area and latency for using these larger payloads is expensive. Thus, it is generally recommended to design for \leq 512 Max Payload Size.

The Lattice PCIe x4 IP Core supports up to 512 Bytes Max Payload Size and the internal buffers can hold about 3x of the max payload size. However, given that typical PCIe devices currently available to communicate with support 256-byte maximum payloads, supporting greater than this amount is not likely to result in better performance and consumes more memory/logic resources.

2.12. Hard IP Interface

2.12.1. PHY Interface

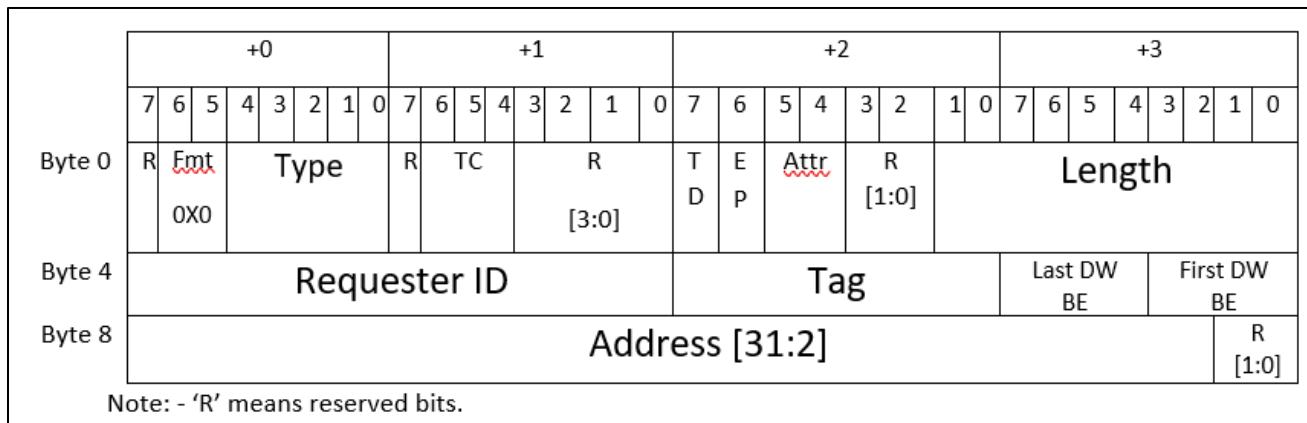
The Link Layer is used in conjunction with a PCI Express PHY to implement a complete Lattice PCIe x4 IP Core PCI Express implementation. The PHY implements the high-speed serial and analog functions required to support PCI Express while the Link Layer implements most of the digital logic as well as the higher levels of the PCI Express protocol.

The PIPE PHY Interface that connects the Link Layer and PHY is not shown since the interface is only internal and is not visible to you.

The physical interface includes the differential receive and transmit signals along with the differential reference clock to the PCIe.

2.12.2. TLP TX/RX Interface

The Lattice PCIe core implements a complete PCI Express implementation including Physical, Data Link, and Transaction Layer functionality.


You transmit the PCI Express TLPs on the PCI Express link through the transmit interface. Also, you receive the PCI Express TLPs from the PCI Express link through the receive interface.

The PCIe core uses the Transaction Layer Interface as data interface to transmit/receive the data in the form of TLP Packets. Each TLP packet is a collection of a group of TLP frames, and each frame consists of 4DW (4X32 bit) data. A minimum of 4DW data is sent through a TLP. The Lattice PCIe core lane can access 32-bit (4 bytes) of data at a time. To transmit a single TLP frame, x1, x2, and x4 configuration takes a duration of 4, 2, and 1 clock cycles respectively.

All TLPs on the Transaction Layer Receive and Transmit Interfaces, which are processed through link[LINK]_rx_data_o/ link[LINK]_tx_data_i port(s), and must be transmitted in the TLP format. The link[LINK]_rx_sel_o and link[LINK]_rx_cmd_data_o ports provide useful information about the TLP through receive interface to enable you to determine the destination of the packet (BAR and tag), traffic class, and whether it is a write or a read without having to read and parse the TLP. This allows you to optimize the code to reduce latency and relieves necessity for you to decode the TLP header to determine the packet's destination.

2.12.2.1. TLP Header Description

The Lattice PCIe uses 3DW or 4DW header for memory transactions to transfer the data in the form of TLP packets per the PCIe standard. [Figure 2.21](#) shows the 3DW Memory TLP Header format.

Figure 2.21. TLP Memory Request Header

[Table 2.54](#) lists the description of each field.

Table 2.54. TLP Header Field

Field Name (with Size)	Header Byte/Bit	Function
Fmt [1:0] (Format)	Byte 0 Bit 6:5	Packet Formats: 00b = Memory Read 10b = Memory Write
Type [4:0]	Byte 0 Bit 4:0	TLP packet Type field: 00000b = Memory Read or Write 00001b = Memory Read Locked
TC [2:0] (Traffic Class)	Byte 1 Bit 6:4	These bits encode the traffic class to be applied to a Request and to any associated completion. 000b = Traffic Class 0 (Default)
TD (TLP Digest)	Byte 2 Bit 7	If 1, the optional TLP Digest field is included with this TLP.
EP (Poisoned Data)	Byte 2 Bit 6	If 1, the data accompanying this packet is considered to have an error although the transaction is allowed to complete normally.
Attr [1:0] (Attribute)	Byte 2 Bit5:4	Bit 5 = Relaxed ordering. When set = 1, PCI-X relaxed ordering is enabled for this TLP. Otherwise, strict PCI ordering is used. Bit 4 = No Snoop. If 1, system hardware is not required to cause processor cache snoop for coherency for this TLP. Otherwise, cache snooping is required.
Length [9:0]	Byte 2 Bit 1:0 Byte 3 Bit 7:0	TLP data payload transfer size, in DW. Maximum size is 1024 DW (4 kB).

Field Name (with Size)	Header Byte/Bit	Function
Requester ID [15:0]	Byte 4 Bit 7:0 Byte 5 Bit 7:0	Identifies a requester's return address for a completion: Byte 4, 7:0 = Bus Number Byte 5, 7:3 = Device Number Byte 5, 2:0 = Function Number
Tag [7:0]	Byte 6 Bit 7:0	These identify each outstanding request issued by the Requester. By default, only bit 4:0 is used, allowing up to 32 requests to be in progress at a time. If the Extended Tag bit in the Control Register is set, then all 8 bits may be used (256 tags).
Last DW BE [3:0] (Last DW Byte Enables)	Byte 7 Bit 7:4	These qualify bytes within the last DW of data transferred.
First DW BE [3:0] (First DW Byte Enables)	Byte 7 Bit 3:0	These qualify bytes within the first DW of the data payload.
Address [31:2]	Byte 8 Bit 7:0 Byte 9 Bit 7:0 Byte 10 Bit 7:0 Byte 11 Bit 7:2	The 32 bits start address for the memory transfer are used. The lower two bits of the address are reserved, forcing a DW-aligned start address.

2.12.2.2. TLP Transmit Interface

The Transmit Interface is the mechanism with which you transmit PCI Express TLPs over the PCI Express bus. You send a complete TLP comprised of 3DW packet header, data payload, and optionally a TLP Digest. The core Data Link Layer adds the necessary framing (STP/END/EDB), sequence number, Link CRC (LCRC), and optionally computes and appends the ECRC (TLP Digest) when ECRC is not already present in the TLP.

You transmit TLPs as completion packets in response to non-posted transaction packets sent by the Lattice PCIe IP core. If the remote device does not have sufficient space in the receive buffer for transmit TLPs, the Lattice PCIe IP core pauses the TLP transmission until space becomes available.

The Transmit Interface includes the option to nullify TLPs (instruct the Receiver to discard the TLP) to support you to cancel TLP transmissions when errors are detected after the TLP transmission has started. Nullified TLPs that target internal core resources (Root Port Configuration Registers and Power Management Messages) are discarded without affecting the internal core resources. Nullified TLPs that do not hit internal resources are discarded.

Transmit Credit Interface

The Transmit Credit Interface provides the means for flow control of non-posted transmit transactions between you and the core transmit buffer. This is important for allowing Posted and Completion TLPs to continue to make progress when non-posted TLPs are blocked (which can be necessary in some cases to avoid potential deadlock conditions). The amount of non-posted TLP storage in the core transmit buffer is communicated on the transmit credit Interface. You are expected to use this interface to limit simultaneously outstanding TLP transmission of non-posted TLPs, to the amount of non-posted TLPs that the core can absorb into the non-posted transmit buffer.

When the core Transaction Layer for Link[i] is ready to accept TLP transmissions, the core asserts link[LINK]_tx_credit_init_o == 1 for one clock cycle and indicates the non-posted TLP Header storage capacity (NH) of the transmit buffer on link[LINK]_tx_credit_nh_o[11:0] on the same cycle. You are expected to keep and initialize the non-posted TLP Header capacity (NH) available transmit credit counters on link[LINK]_tx_credit_init_o==1.

When a non-posted TLP is pending for transmission, you must check the currently available NH credit count for the associated link and hold the transmission until enough NH credits are available to transmit the TLP. Once the TLP is committed for transmit, the amount of NH credits required by the TLP are decremented from the NH credit count. The core forwards transmitted TLPs from the transmit buffer and thus makes room for new TLPs, the core asserts link[LINK]_tx_credit_return_o==1 for one clock cycle and places the number of NH credits being returned on link[LINK]_tx_credit_nh_o[11:0].

In this manner, you can manage sending only enough non-posted TLPs that the core can hold in its Transmit Buffer. This allows you to know when non-posted TLPs are blocked and thus sends posted and/or completed TLPs instead. This is important for avoiding deadlocks and keeps non-posted TLP blockage from reducing posted and completion throughput. When the core receives more non-posted TLPs than the core can store in its non-posted TLP transmit storage, the core pauses the TLP transmission rather than allow an overflow to occur. Thus, if you do not wish to use the Transmit Credit Interface, you may ignore this interface provided you are willing to permit blocked non-posted TLPs from also blocking following posted and completion TLPs.

Note that core/link partner transmit TLP flow control is not managed through this interface, the core manages transmit flow control between the core and the PCIe link partner Receive Buffer without user intervention.

Transmit Interface Example Transactions

As mentioned, the TLP data interface option is made available when non-DMA support is enabled through PCIe user interface. The following are the examples of the memory read transactions that you need to send in completion to the read requests.

In case of memory read transactions, the Lattice PCIe IP core sends the header packet, which contains information about the address and size of data that you need to send in completion to the received packet. You need to send the completion packet with the header followed by the data when the link0_tx_ready_o signal from the PCIe is high as the data you sent is validated only when PCIe is ready. Based on the number of lanes used, the packet header and data are transmitted accordingly as shown in the below figures for four lanes, two lanes, and one lane respectively.

Note that the header packet has an unknown(trash) value in MSB, because the TLP header is of 3DW (12 bytes) whereas the TLP frame is of 4DW (32 bytes) size. To send the complete TLP, some garbage data in Dword is appended with header data, which can be ignored.

The following are the notations used in the figures:

- N – size of the data packet in Dwords
- $data$ – 1 Dword of unknown data attached in case of 3DW TLP Header
- H0, H1, and H2 – Header information
- D0, D1,...,D(N-1),D(N) – User data

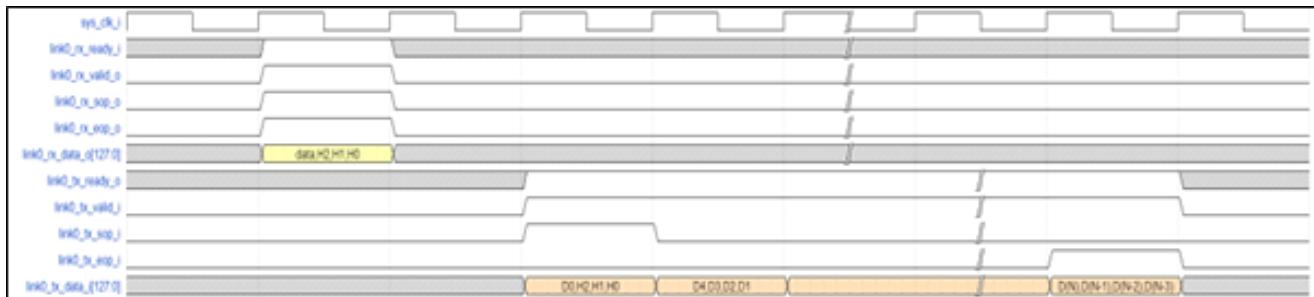


Figure 2.22. TLP Memory Read Operation for Link0 (x4 Lane)

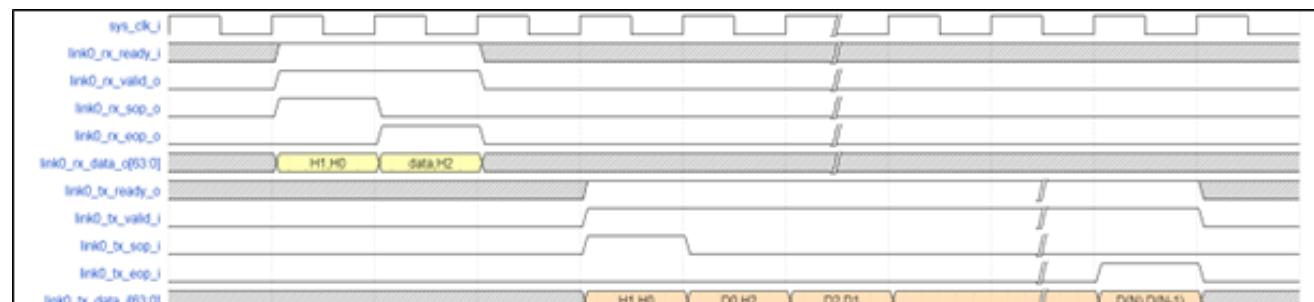


Figure 2.23. TLP Memory Read Operation for Link0 (x2 Lane)

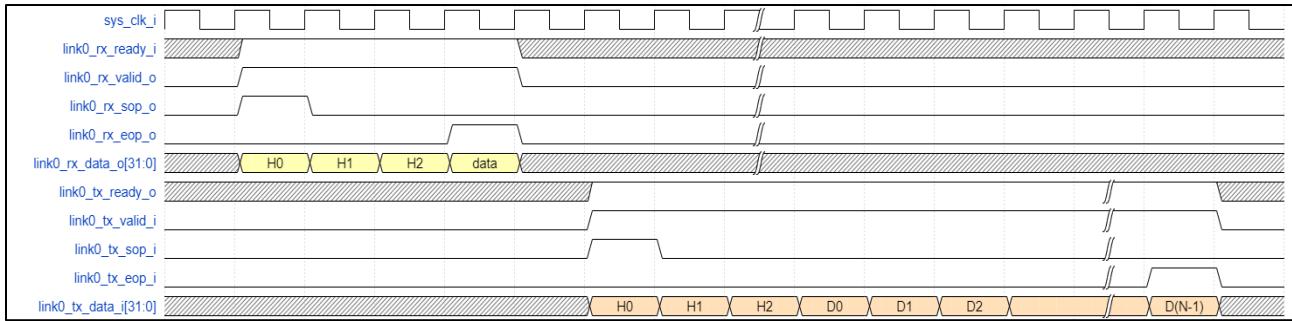


Figure 2.24. TLP Memory Read Operation for Link0 (x1 Lane)

For Link 1, the TLP read data transaction is shown in Figure 2.25.

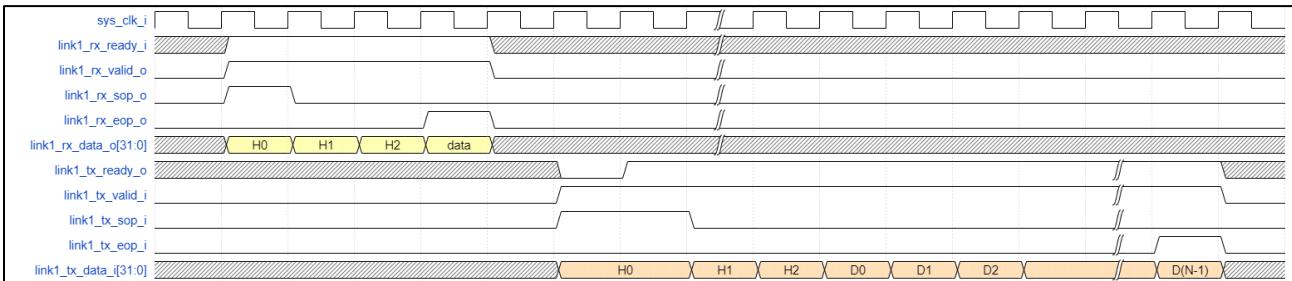


Figure 2.25. TLP Memory Read Operation for Link1 (x1 Lane)

Figure 2.26 and Figure 2.27 show the TLP transaction according to the tx_ready_o behaviour based on the minimum timing of link[LINK]_tx_ready_o:

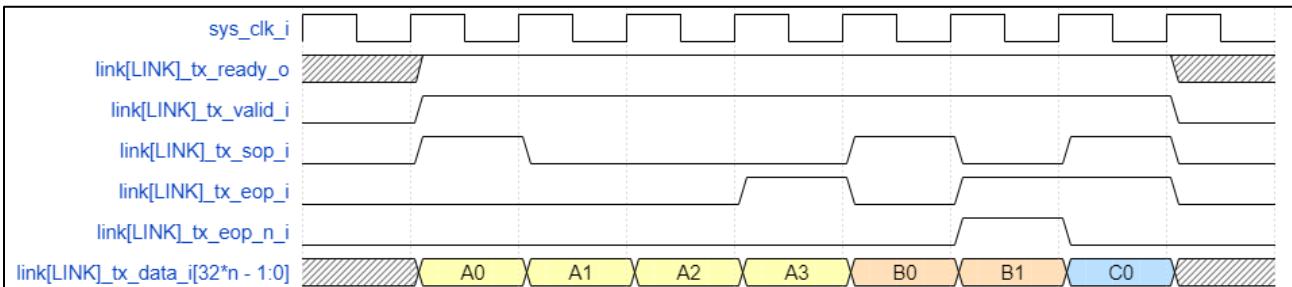


Figure 2.26. Minimum link[LINK]_tx_ready_o Timing Diagram

Transaction A begins on cycle 2 with the assertion of link[LINK]_tx_sop_i and ends on cycle 5 with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers with minimum timing with link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1 on cycles 2-5.

Transaction B begins immediately after Transaction A on cycle 6 with the assertion of link[LINK]_tx_sop_i and ends on cycle 7 with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers with minimum timing with link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1 on cycles 6 to 7. Transaction B is nullified (dropped) during packet forwarding on cycle 7 because of the following conditions: link[LINK]_tx_eop_i_n==1 happens when link[LINK]_tx_eop_i==1.

Transaction C begins immediately after Transaction B on cycle 8 with the assertion of link[LINK]_tx_sop_i and ends on the same cycle with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers with minimum timing with link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1 on cycle 8 considering the wait state timing of link[LINK]_tx_ready_o:

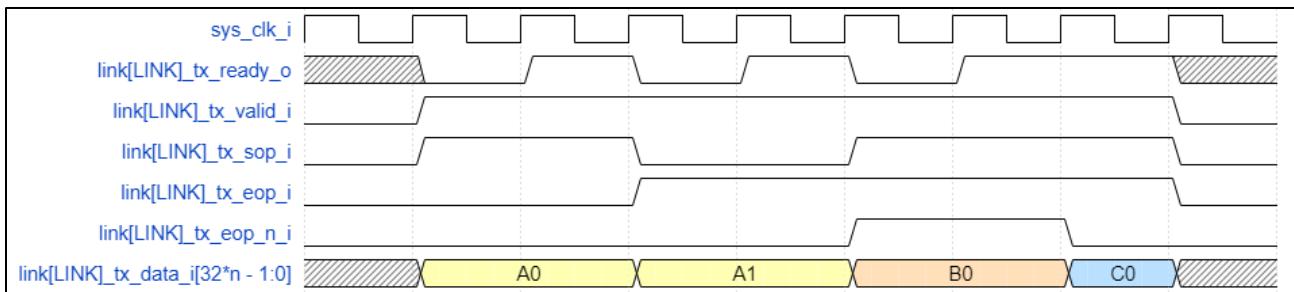


Figure 2.27. Wait State of link[LINK]_tx_ready_o Timing Diagram

Transaction A begins on cycle 2 with the assertion of link[LINK]_tx_sop_i and ends on cycle 5 with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers only on cycles 3 and 5 when link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1.

Transaction B begins immediately after Transaction A on cycle 6 with the assertion of link[LINK]_tx_sop_i and ends on cycle 7 with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers only on cycle 7 when link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. Transaction B is nullified (dropped) during packet forwarding on cycle 7 because of the following conditions: link[LINK]_tx_eop_i_n==1 happens when link[LINK]_tx_eop_i==1.

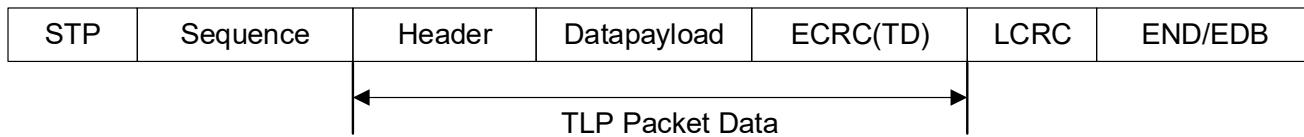
Transaction C begins immediately after Transaction B on cycle 8 with the assertion of link[LINK]_tx_sop_i and ends on the same cycle with the assertion of link[LINK]_tx_eop_i==link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1. The packet transfers with minimum timing (no wait states) with link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1 on cycle 8.

Transmit Interface Considerations

The following considerations are provided to simplify logic using the Transmit Interface and to address common problems, which must be avoided:

- For each TLP that you transmit, the core adds a minimum of 2-bytes of STP/END/EDB framing, a 2-byte Sequence Number, and a 4-byte Link CRC for a total of 8 bytes (64-bits). These additional 8 bytes, which the core transmits but do not appear on link[LINK]_tx_data_i, allows you the flexibility of not using every clock cycle on the Transmit Interface. This flexibility can be useful to simplify user logic and improve design timing closure.
- Completions, which are transmitted in response to a previously received non-posted request, must reflect the Traffic Class, Requester ID, Tag, and Attributes of the original request. While most of these are obvious, it may not be obvious to reflect the attributes, and this is known to cause problems on some systems.
- When the link trains at less than full width or speed, link[LINK]_tx_ready_o is gaped in relation to the number of lanes being used and the number of lanes available in the core. You must remember to include a simulation case which forces the link into lower than full-width and/or speed to test that the logic properly handles the gaping of link[LINK]_tx_ready_o and the corresponding lower data transfer rate in this case.
- While TLPs are transmitted over PCI Express, these are placed into a replay buffer in case the TLPs need to be replayed due to transmission errors. The core negotiates the replay process in conjunction with the remote PCI Express Device and does not require any user intervention. You can monitor the frequency of replays, if desired, by monitoring the appropriate error status registers.
- The Lattice PCIe core interface is designed to support high throughput applications. Small interruptions in transmissions occur, however, as the core periodically needs to transmit link management DLLPs and SKP Ordered Sets and may also need to transmit error messages, configuration write/read completions, and interrupt TLPs.
- The Lattice PCIe core handles all Data Link Layer functionality for you and handles most of the error cases for you as well. To accomplish these functions, the core occasionally delays your Local Transmit Interface requests while it completes its own TLP transmissions for these purposes. All the core's TLP transmissions are short, so it delays your request for only a few clock cycles. The core transmits DLLPs used for link maintenance, TLP messages to communicate errors, interrupt TLPs, and completions to notify the system of malformed or un-routable TLP requests.

If the user TLP transmit requests are delayed for extended periods of time, this may be due to insufficient link partner receive buffer space or local replay buffer space or due to the link having to wake from a lower power state or recover from an error before transmission can occur.


2.12.2.3. TLP Receive Interface

The Receive Interface is the mechanism with which receives the PCI Express TLPs from the PCI Express link partner. You receive complete Transaction Layer Packets (TLPs) comprised of a three DWORD TLP header, data payload (if present), and TLP Digest (ECRC, if present).

The TLPs, which were received without errors and were not nullified, are presented on the receive interface. Therefore, the user logic only needs to handle valid received TLPs.

The PCIe core transmits the TLPs only after considering the following checks:

- The core checks received TLPs for transmission errors (Sequence Number or LCRC error) and negotiates replay of TLPs with the link partner as required.
- The core discards TLPs which are nullified by the link partner during transmission (TLP is received without transmission errors and with EDB instead of END framing).
- The core checks received TLPs which were received without transmission errors and without being nullified for Malformed TLP due to length and content errors.
 - If the core determines that a received TLP is malformed due to length (TLP length calculated from the received TLP Header Format and Type, Length, and TLP Digest does not match the received TLP length), the core discards the TLP and report the error.
 - If the TLP fails to hit an enabled resource or is malformed due to its content (invalid Traffic Class, invalid Format and Type, and invalid Byte Enables), the core discards the TLP and reports the error.

Figure 2.28. TLP Packet formation by the Lattice PCIe IP core

If the TLP passes all the above checks, it is considered a valid TLP and is forwarded to the receive interface for the user's logic to consume. The core strips the Physical Layer framing (STP/END/EDB) and Data Link Layer Sequence Number and Link CRC (LCRC) before presenting the TLPs to you on the Receive Interface. The core does not strip the received TLP ECRC (if present) as some user designs require forwarding the ECRC either to transmit the TLP out another PCIe port. The ECRC value is also checked at a later point in the user's data path to continue the ECRC error detection protection for a larger portion of the receive data path. If an ECRC is present in the TLP, the core checks the validity of the received ECRC and reports detected ECRC errors on the receive interface.

The core also decodes received TLPs against its Configuration Registers and provides the transaction decode information on the Receive Interface such that the TLP can be directed to the appropriate destination without the need for you to parse the TLP until its destination. For example, if the received TLP is an I/O or Memory write or read request, the Base Address Register (BAR) resource that is hit is indicated and if the TLP is a completion, the TLP's tag field is provided. The core also provides additional useful transaction attributes.

Receive Credit Interface

The Receive Credit Interface provides the means for flow control of non-posted receive transactions between the core receive buffer and user receive TLP logic. This is important for allowing Posted and Completion TLPs to continue to make progress when non-posted TLPs are blocked (which is necessary in some cases to avoid potential deadlock conditions). The amount of non-posted TLP storage in the user's design is communicated on the Receive Credit Interface. The core uses this interface to limit the simultaneously outstanding receive non-posted TLPs to the amount of non-posted TLPs that the user design advertises that it can absorb into the non-posted receive buffer.

When you are ready to accept non-posted TLP reception, assert the `link[LINK]_rx_credit init_i == 1` (where `LINK=0 or 1`) for one clock cycle and the non-posted TLP header storage capacity of the user design is indicated through `link[LINK]_rx_credit_nh_i[11:0]` on the same clock cycle. Holding off credit initialization for an extended period can cause received non-posted TLP transactions to timeout in the source component which may cause to serious errors.

The core limits simultaneous outstanding non-posted receive TLPs on the receive interface to ensure no more than the initialized NH credits are simultaneously outstanding to user receive TLP logic.

Once the received non-posted TLPs are processed/forwarded such that more room is available to receive new non-posted TLPs, assert the link[LINK]_rx_credit_return_i==1 for one clock cycle and place the number of NH credits being returned on link[LINK]_rx_credit_nh_i[11:0]. In this manner, you can limit the outstanding core receive TLPs to the user design. This permits the core to know when non-posted TLPs are blocked and thus send posted and/or completion TLPs to the user design instead. This is important for avoiding deadlocks and keeps non-posted TLP blockage from reducing posted and completion throughput.

Note that the link partner/core receive TLP flow control is not managed through this interface; the core manages receive buffer flow control between itself and the PCIe link partner transmit gating function without user intervention.

Receive Interface Example Transactions

The Lattice PCIe core sends the data in the form of TLP packets when non-DMA option is enabled. The receive interface presents the TLP data through link0_rx_data_o signal. The data is validated only when link0_rx_valid_o signal is high and you are ready (for example, link0_rx_ready_i must be high to access the data sent by the core). As the Lattice PCIe core transmits TLP packet, which consists of 3DW header along with data (in TLP frames), the last DW of TLP packet is sent as trash value(X) to ensure the complete TLP is transmitted.

The timing diagrams below show the receive interface behavior when the PCIe core receives a Memory Write TLP.

The following are the notations used in the figures:

- N – size of the data packet in Dwords
- $data - 1$ Dword of unknown data attached in case of completion of TLP packet
- H0,H1, and H2 – Header information
- D0,D1,...,D(N-1) – Write data

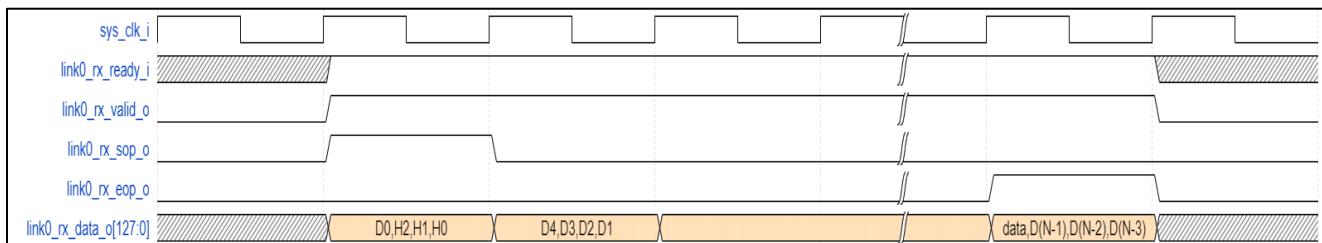


Figure 2.29. TLP Memory Write Operation for Link0 (x4 Lane)

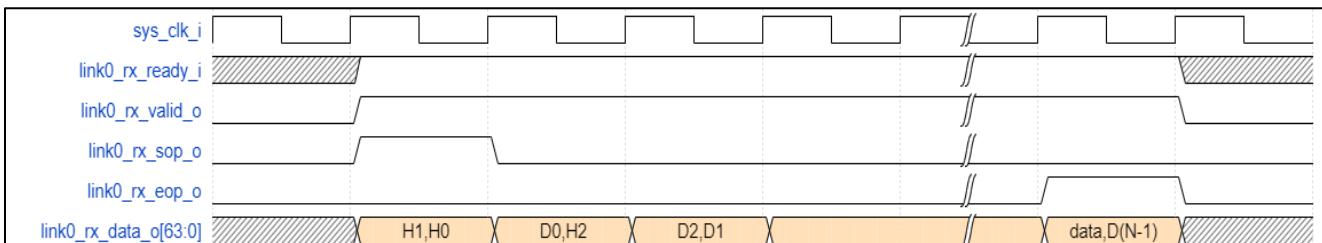


Figure 2.30. TLP Memory Write Operation for Link0 (x2 Lane)

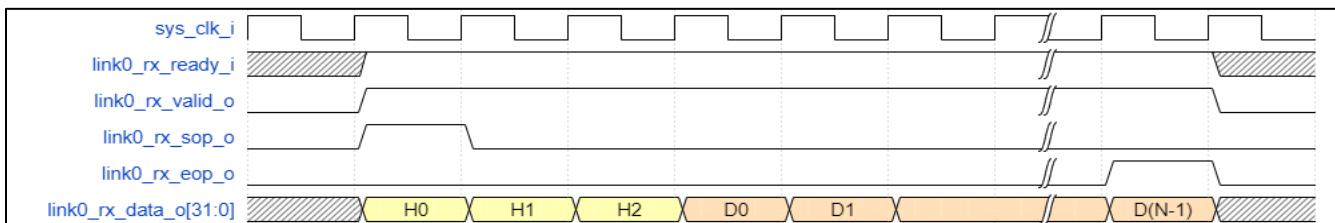


Figure 2.31. TLP Memory Write Operation for Link0 (x1 Lane)

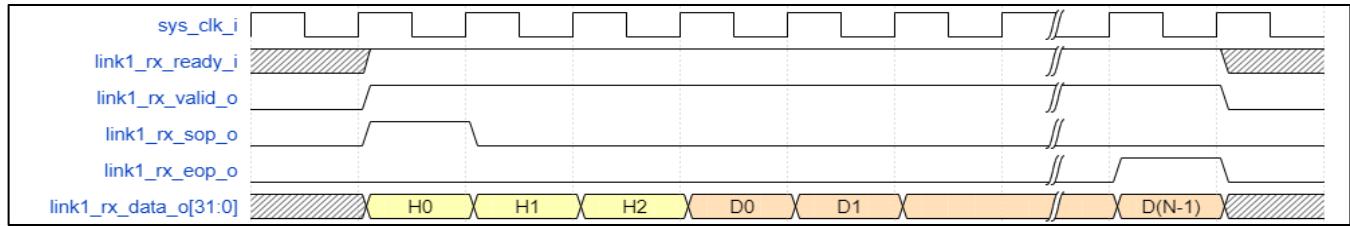


Figure 2.32. TLP Memory Write Operation for Link1 (x1 Lane)

Figure 2.33 and Figure 2.34 shows the TLP transaction according to the rx_ready_i behavior based on the minimum timing of link[LINK]_rx_ready_i:

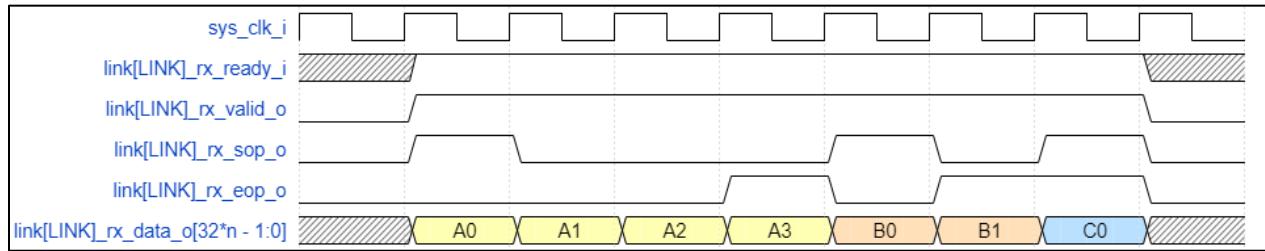


Figure 2.33. Minimum link[LINK]_rx_ready_i Timing Diagram

Transaction A begins on cycle 2 with the assertion of link[LINK]_rx_sop_o==link[LINK]_rx_valid_o==1 and ends on cycle 5 with the assertion of link[LINK]_rx_eop_o==link[LINK]_rx_valid_o==link[LINK]_rx_ready_i==1. The packet transfers with minimum timing since link[LINK]_rx_valid_o == link[LINK]_rx_ready_i == 1 on cycles 2-5. Data transfers on cycles 2-5.

Transaction B begins immediately after Transaction A on cycle 6 with the assertion of link[LINK]_rx_sop_o==link[LINK]_rx_valid_o==1 and ends on cycle 7 with the assertion of link[LINK]_rx_eop_o==link[LINK]_rx_valid_o==link[LINK]_rx_ready_i==1. Data transfers on cycles 6-7.

Transaction C begins immediately after Transaction B on cycle 8 with the assertion of link[LINK]_rx_sop_o==link[LINK]_rx_valid_o==1 and ends on the same cycle since link[LINK]_rx_eop_o==link[LINK]_rx_ready_i==1 are also asserted. Data transfers on cycle 8 considering the wait state timing of link[LINK]_rx_ready_i:

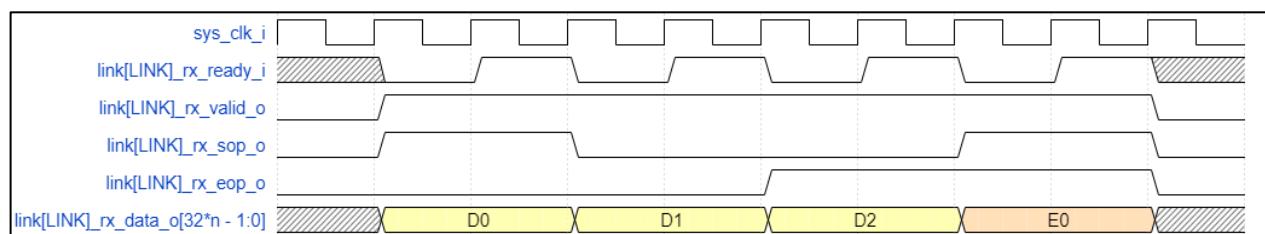


Figure 2.34. Wait State of link[LINK]_rx_ready_i Timing Diagram

Transaction D begins on cycle 2 with the assertion of link[LINK]_rx_sop_o==link[LINK]_rx_valid_o==1 and ends on cycle 7 with the assertion of link[LINK]_rx_eop_o==link[LINK]_rx_valid_o==link[LINK]_rx_ready_i==1. The packet transfer wait states due to link[LINK]_rx_ready_i==0 on cycles 2, 4, and 6. Data transfers on cycles 3, 5, and 7.

Transaction E begins on cycle 8 with the assertion of link[LINK]_rx_sop_o==link[LINK]_rx_valid_o==1 but is wait stated due to link[LINK]_rx_ready_i==1 on cycle 8. On cycle 9 the transaction completes with link[LINK]_rx_sop_o==link[LINK]_rx_eop_o==link[LINK]_rx_valid_o==link[LINK]_rx_ready_i==1.

Receive Interface Considerations

The following considerations are provided to simplify logic using the receive interface and to address common problems, which must be avoided:

- For each TLP that you receive, the core strips a minimum 2-bytes of STP/END/EDB framing, a 2-bytes of Sequence Number, and a 4-bytes of Link CRC, for a total of 8 bytes (64-bits). These additional 8 bytes, which the core receives but which do not appear on link[LINK]_rx_data_o, allows you the flexibility of not using every clock cycle on the receive interface. This flexibility can be useful to simplify user logic and improve design timing closure.
- TLPs that appear on the receive interface have passed the Physical Layer and Link Layer error detection and correction logic and can be assumed to be free of transmission errors. When the core receives a TLP with a STP/END/EDB framing, Sequence Number, or Link CRC error, the core coordinates re-transmission of the TLP with the remote PCI Express device and only forwards packets that pass transmission error checks onto to the receive interface.
- TLPs that are received from PCI Express are decoded for validity against the core's configuration registers and are only forwarded to the receive interface if they hit an enabled resource. Therefore, you only need to handle valid TLPs which target the user resources. TLPs, which do not hit user resources, are terminated by the core and the appropriate error message and response is handled by the core on the user's behalf.
- The Lattice PCIe core handles all Data Link Layer functionality for you and handles most of the Transaction Layer error cases as well. The core consumes Configuration Transactions, Messages, and TLPs which do not map to user resources and transmits the appropriate response. TLPs which are handled by the core do not appear on the Receive Interface.
- User logic that manages read requests (for DMA) and assigns a tag to each read request that is transmitted. The core provides the tag of each received completion on link[LINK]_rx_cmd_data_o to allow user logic to route completions from different sources to the destination without having to parse the TLP for tag information. The core does not track the outstanding tags that are in use by the user. If a completion is received with a tag that does not correspond to an outstanding user read request, then you must report the error.

Data Byte Order

The core transmits the TLP data in the following byte order:

- link[LINK]_tx_data_i[7:0], link[LINK]_tx_data_i[15:8], link[LINK]_tx_data_i[23:16],...

The core receives the TLP data in the following byte order:

- link[LINK]_rx_data_o[7:0], link[LINK]_rx_data_o[15:8], link[LINK]_rx_data_o[23:16],...

For example, you transmit, or the core receives a 32-bit Memory Read Transaction Layer Packet in the following byte order as shown in [Table 2.55](#).

Table 2.55. Data Byte Order

link[LINK]_tx_data_i/ link[LINK]_rx_data_o	First Data Word	Second Data Word	Third Data Word
[7:0]	{R, Fmt[1:0], Type[4:0]}	RequesterID[15:8]	Addr[31:24]
[15:8]	{R, TC[2:0], R[3:0]}	RequesterID[7:0]	Addr[23:16]
[23:16]	{TD, EP, Attr[1:0], Length[9:8]}	Tag[7:0]	Addr[15:8]
[31:24]	Length[7:0]	{LastDWBE[3:0], 1stDWBE[3:0]}	{Addr[7:2], R[1:0]}

2.12.2.4. Transaction Layer Interface Error Detection and Correction

The Lattice PCIe IP Core has built in error detection and correction mechanisms for both Transaction Layer Packets (TLPs) which are transferred between PCI Express and Transaction Layer Interface and Data Link Layer Packets (DLLPs) which are used by the core internally for link management.

The Lattice PCIe IP core adds the required Physical Layer framing (STP/END/EDB) and Data Link Layer error detection and correction information (Sequence Number/Link CRC) to the TLP packets transmitted on the Transmit Interface. Likewise, when TLP packets are received from PCI Express, the core validates that the packet is received correctly by checking the Physical Layer framing (STP/END/EDB) and Data Link Layer error detection and correction information (Sequence Number/Link CRC). Packets that are forwarded to you on the receive interface are sent after stripping the Physical Layer framing (STP/END/EDB) and Data Link Layer error detection and correction information (Sequence Number/Link CRC).

If transmission errors are detected in packet transmission or reception, the core coordinates with the remote PCI Express device to retry the transaction and recover from the error. This process occurs without any user intervention. The Lattice PCIe core logs both corrected and uncorrected errors. This error status information is made available through the status registers and is accessed by system software through the Configuration Registers. The core generates and transmits error Message TLPs to the remote PCI Express device in response to different types of errors detected.

ECRC (TLP Digest) generation and checking is a core option. When ECRC generation support is enabled by the software (AER Capability: ECRC Generation Enable == 1), the core generates and adds ECRC to all transmitted TLPs (except those that already contain an ECRC with TD bit set to 1). When ECRC checking support is enabled by software (AER Capability: ECRC Check Enable == 1), the ECRC fields present in received TLPs are checked for validity, and any errors are noted on the Receive Interface and are reported in the AER Capability. The core does not modify the ECRC or TD (TLP Digest == ECRC indicator) fields on received TLPs and passes these fields onto the receive interface as received.

The Lattice PCIe core also handles TLPs that are Type 0 Configuration transaction requests, messages requests for link management, TLPs that don't hit an enabled resource and any requests that the core determines are malformed.

If the core found TLP having transmission errors, then that TLP is consumed by the core (and not forwarded) and then transmits any required completion packet(s), generates required error messages, and logs any required errors.

The core has been designed in such a way that it is feasible for you to only consume and generate the TLPs and can make use of these TLPs for transferring data and control information between your application and the remote PCI Express devices.

2.12.3. LMMI Interface

When you select the TLP as data interface option in the PCIe IP user interface, the IP by default configures LMMI as register interface. The Core Configuration and Status Registers (CSR) are made accessible to the user design through the Lattice Memory Mapped interface (LMMI).

An example of the register configuration through the LMMI is shown below in the LMMI write and read timing diagrams.

The data transaction, through the LMMI, only starts when `usr_lmmi_request_i==usr_lmmi_ready_o==1`. Consecutive request must be done with at least one clock period wait cycle (for example, `usr_lmmi_request_i` should de-assert first after a successful transaction before making another request).

When `usr_lmmi_request_i==usr_lmmi_ready_o==1`, `usr_lmmi_wr_rdn_i`, and `usr_lmmi_offset_i` must be valid and describe the transaction to execute; if the transaction is a write as indicated by `usr_lmmi_wr_rdn_i==1`, `usr_lmmi_wdata_i` must also be valid.

Note: Only one request should be active at a given time.

2.12.3.1. LMMI Write Operations

You can write the data to PCIe core registers only when the ready signal is received from PCIe IP. For example, the `usr_lmmi_ready_o` signal must be 03(x1)/07(x2)/1f(x4). The data is written to PCIe registers only when PCIe IP gets a request from you; that is, `usr_lmmi_request_i` is configured as 01 and the `usr_lmmi_wr_rdn_i` signal must be high when `usr_lmmi_ready_o` signal is asserted as 03(x1)/07(x2)/1f(x4).

For example, you need to write 0X01 data into 0X0A register and then 0X02 data into 0X0B register. The 0X01 data is written into 0X0A register in one transaction only as ready signal is high when request is asserted. But to write 0X02 data into 0X0B register took two transactions because ready signal is low when request is asserted in first transaction. Therefore, the data is written to the register in the second transaction only when ready signal is high as shown in [Figure 2.35](#).

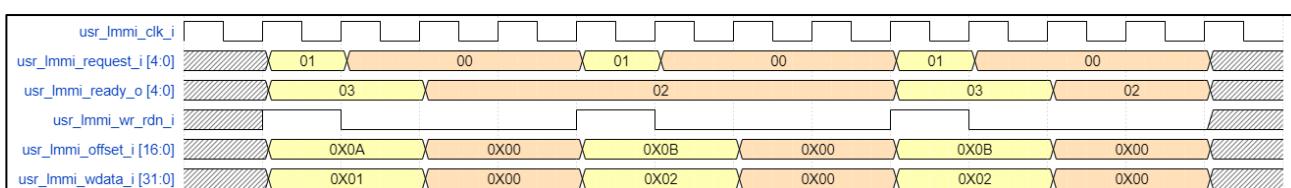
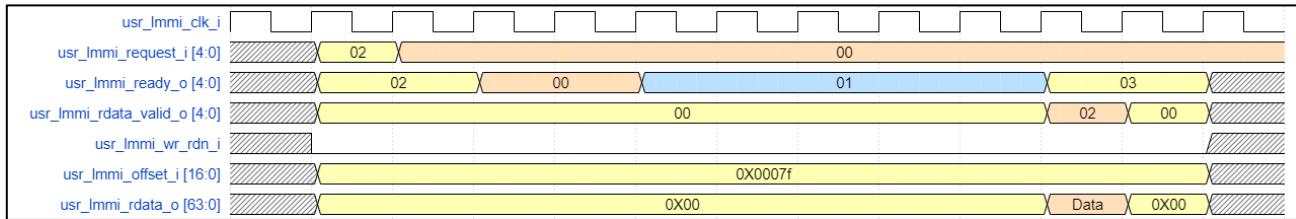



Figure 2.35. LMMI Write Operation

2.12.3.2. LMMI Read Operation

You can read the data from PCIe core registers only when the ready and read valid signals are received from PCIe IP. For example, the `usr_lmmi_ready_o` signal must be 03 and the `usr_lmmi_rdata_valid_o` signal must be 02. The data is read from PCIe registers only when PCIe IP gets a request from the user. For example, `usr_lmmi_request_i` is configured as 02 and the `usr_lmmi_wr_rdn_i` signal must be low when the `usr_lmmi_ready_o` signal is asserted as 03 and `usr_lmmi_rdata_valid_o` is asserted as 02.

For example, you want to read the data [0X0000001d00000000] from lane 0 PMA Status register offset 0x7F. The transaction follows the steps as shown in [Figure 2.36](#).

Figure 2.36. LMMI Read Operation

The following are the registers to be configured through the LMMI:

- Register Address – 0Xf004 [Base address: 0x0F000, Offset address: 0X4]
This register is used to assert the PCIe core reset.
- Simulation Registers
 - Register address – 0x2000
This register is used to reduce the `ltssm_ts_1` and timeouts to fasten the simulation when asserted as 1.
 - Register address – 0x3000
This register is used to reduce the Power Management State Machine timeouts to fasten the simulation when asserted as 1.
 - Register address – 0x4000
This register is used to reduce the timeouts to fasten the simulation when asserted as 1.
- Lane (PLL status) register address – 0X0007f
This register is used to read PLL status of each lane.

After configuring all the registers, configure the 0Xf004 register again to make the PCIe core out of reset mode.

2.12.4. UCFG Interface

The UCFG Interface is provided for users to read the current values of the Lattice PCIe x4 IP Core's PCIe Configuration Registers and to also obtain the status of the Lattice PCIe x4 IP Core that may be needed to implement the user's design.

2.12.4.1. UCFG Operation

In the Lattice PCIe IP Core, the UCFG Interface is provided for users to read the current values of the PCIe IP configuration. The UCFG Interface is a simple SRAM-like interface that accepts write/read transactions. The UCFG Interface supports multiple outstanding transaction requests to enable higher throughput on the interface. This interface is referenced to `sys_clk_i` clock domain. Writes and reads are executed out in the same order that they are accepted on the interface.

2.12.4.2. UCFG Transaction

The UCFG Interface is primarily intended to obtain the current values of the Lattice PCIe IP core configuration registers, that are needed by the user. The UCFG interface support both reading and writing, but the PCIe configuration registers should not be written by the user exception for the MSI and the Error Reporting functions. The PCIe Configuration registers are written by the Host OS/BIOS during the PCIe enumeration and writing them through this interface risks creating incompatibilities with the OS/BIOS that may cause serious errors.

PCIe Configuration Registers may change at any time as the Host OS/BIOS updates them with writes. Some registers also contain current PCIe Endpoint Core status which changes in response to link events such as speed changes, recovery cycles,

width changes, and power state changes. The UCFG Interface thus should be used to poll the values needed for a user's design as frequently as possible to maintain up-to-date values.

UCFG Write Transaction

The following are the write access registers of the UCFG Interface:

- Address 0x2D MSI Pending
- Address 0x3f0-3F3 Error Report Header
- Address 0x3F8 Error Report

Writes to these registers are not part of the core's PCIe Configuration Registers but instead enables you to implement the MSI Pending register and report errors detected in the user design to the core's AER Capability.

UCFG Read Transaction

The UCFG read operation can be started after the `link0_tl_link_up` signal is asserted. The transaction is started only when the `ucfg_valid` i and `ucfg_ready` o signals are asserted. For reading the data the `ucfg_wr_rd_n` signal is driven low.

For example, if you want to read the data from the register 0x5F, then the `ucfg_rd_data` signal provides the read data as shown in [Figure 2.37](#).

The offset 0x5F read access through the UCFG interface provides the following data from the Type 0 Configuration Write packets that the PCIe Endpoint Core received. This information is typically used as Requester ID for Memory TLPs, or Completer ID for Completion TLPs.

- bits-[15:8] – Bus Number
- bits-[7:3] – Device Number
- bits-[2:0] is always 0 when reading from this register

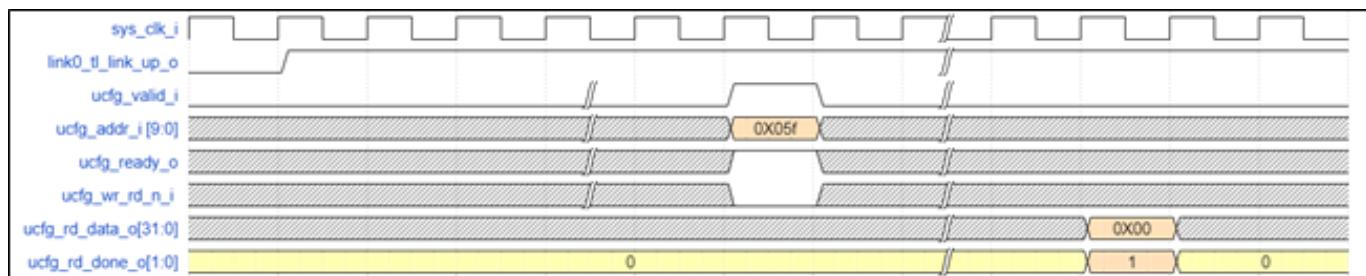


Figure 2.37. UCFG Read Transaction Timing Diagram

2.12.4.3. UCFG Address Space

The UCFG Interface may be used to access all the Lattice PCIe x4 IP Core's PCIe Configuration Registers.

In addition, the UCFG Interface implements a small number of registers to provide useful status that is not available in the PCIe Configuration Registers.

The PCIe Configuration Registers are accessed by `ucfg_addr[i][11:2]`, which is a DWORD (32-bit) aligned address.

Table 2.56. UCFG Address Space

Capability/Data	usfg_addr_i[11:2]	Description
Configuration Header	0x00-0x0F	PCI Configuration Header The following fields are likely needed: Address 0x01 <ul style="list-style-type: none"> • Bit 0 – I/O Space Enable • Bit 1 – Memory Space Enable • Bit 2 – Bus Leader Enable • Bit 10 – Interrupt Disable
PCI Express Capability	0x10-0x1E	PCI Express Capability Structure The following fields are likely needed: Address 0x10 <ul style="list-style-type: none"> • Bits 29:25 – Interrupt Message Number

Capability/Data	usfg_addr_i[11:2]	Description
		<p>Address 0x12</p> <ul style="list-style-type: none"> • Bit 4 – Enable Relaxed Ordering • Bits 7:5 – Maximum Payload Size • Bit 8 – Extended Tag Enable • Bit 11 – Enable No Snoop • Bits 14:12 – Maximum Read Request Size <p>Address 0x14</p> <ul style="list-style-type: none"> • Bit 19:16 – Link Speed • Bits 25:20 – Negotiated Link Width <p>Address 0x17</p> <ul style="list-style-type: none"> • Bit 4 – CRS Software Visibility Enable <p>Address 0x1A</p> <ul style="list-style-type: none"> • Bits 3:0 – Completion Timeout Value • Bit 4 – Completion Timeout Disable • Bit 6 – Atomic Op Requester Enable • Bit 8 – IDO Request Enable • Bit 9 – IDO Completion Enable • Bit 10 – LTR Mechanism Enable
Power Management Capability	0x20-0x21	<p>Power Management Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x21</p> <ul style="list-style-type: none"> • Bits 1:0 – PM Power State
MSIX Capability	0x24-0x27	<p>MSIX Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x24</p> <ul style="list-style-type: none"> • Bit 30 – MSIX Function Mask • Bit 31 – MSIX Enable <p>Address 0x25</p> <ul style="list-style-type: none"> • Bits 31:3 – MSIX Table Offset <p>Address 0x26</p> <ul style="list-style-type: none"> • Bits 31:3 – MSIX PBA Offset
MSI Capability	0x28-0x2D	<p>MSI Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x28</p> <ul style="list-style-type: none"> • Bit 16 – MSI Enable • Bits 22:20 – MSI Multiple Message Enable • Bit 24 – MSI Per-Vector Mask Capable <p>Address 0x29</p> <ul style="list-style-type: none"> • Bits 31:0 – MSI Address [31:0] <p>Address 0x2A</p> <ul style="list-style-type: none"> • Bits 31:0 – MSI Address [63:32] <p>Address 0x2B</p> <ul style="list-style-type: none"> • Bits 15:0 – MSI Data <p>Address 0x2C</p> <ul style="list-style-type: none"> • Bits 31:0 – MSI Mask Bits <p>Address 0x2D</p> <ul style="list-style-type: none"> • Bits 31:0 – MSI Pending Bits (writable)
AER Capability	0x40-0x51	<p>AER Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x46</p> <ul style="list-style-type: none"> • Bit 6 – ECRC Generation Enable • Bit 8 – ECRC Check Enable

Capability/Data	usfg_addr_i[11:2]	Description
Vendor Specific Capability	0x54-0x5F	<p>Vendor Specific Capability Structure</p> <p>These addresses contain important PCIe Endpoint Core status that is available through the UCFG Interface.</p> <p>Address 0x5D</p> <ul style="list-style-type: none"> • Bits 15:0 – Number of CH Credits implemented by the Receive Buffer. • Bits 31:16 – Number of CD Credits implemented by the Receive Buffer. <p>Address 0x5E</p> <ul style="list-style-type: none"> • Bits 3:0 – Current LTSSM Major State • Bits 7:4 – Current LTSSM Minor State • Bits 10:8 – Current RX L0s State • Bits 15:12 – Current Lane Reverse Status • Bits 20:16 – Current PM State • Bits 31:24 – Current Function Enable Status <p>Address 0x5F</p> <ul style="list-style-type: none"> • Bits 15:0 – Current Configuration ID • Bit 16 – Current Port Type • 1 = Downstream Port • 0 = Upstream Port • Bit 17 – Current PCIe Cfg Register Type • 1 = Reserved • 0 = Type 0 (Endpoint)
ATS Capability	0x80-0x81	<p>ATS Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x81</p> <ul style="list-style-type: none"> • Bits 20:16 – ATS Smallest Transaction Unit (STU) • Bit 31 – ATS Enable
LTR Capability	0xF8-0xF9	<p>LTR Capability Structure</p> <p>The following fields are likely needed:</p> <p>Address 0x9F</p> <ul style="list-style-type: none"> • Bits 12:0 – LTR Max Snoop Latency • Bits 28:16 – LTR Max No-Snoop Latency
Error Report Header	0x3F0-0x3F3	<p>Address Range used to Report TLP Error Headers</p> <p>Address 0x3F0</p> <ul style="list-style-type: none"> • Bits 31:0 – TLP Header [31:0] <p>Address 0x3F1</p> <ul style="list-style-type: none"> • Bits 31:0 – TLP Header [63:32] <p>Address 0x3F2</p> <ul style="list-style-type: none"> • Bits 31:0 – TLP Header [95:64] <p>Address 0x3F3</p> <ul style="list-style-type: none"> • Bits 31:0 – TLP Header [127:96]
Error Report	0x3F8	<p>This address is used to report errors to the AER capability.</p> <ul style="list-style-type: none"> • Bits 7:0 – Error function Number • Bits 13:8 – Error flags • Bit 8 – Poisoned TLP received • Bit 9 – Completion Timeout • Bit 10 – Completer Abort • Bit 11 – Unexpected Completion • Bit 12 – Unsupported Request

Capability/Data	usfg_addr_i[11:2]	Description
		<ul style="list-style-type: none"> • Bit 13 – Uncorrectable Internal Error • Bits 21:16 – Advisory Flags • Bit 16 – Poisoned TLP received • Bit 17 – Completion Timeout • Bit 18 – Completer Abort • Bit 19 – Unexpected Completion • Bit 20 – Unsupported Request • Bit 21 – Uncorrectable Internal Error

2.12.4.4. User Error Reporting

The UCFG Interface enables you to log errors that they detect into the core AER Capability for reporting to software.

The process for reporting an error is as follows:

1. Write the Header of the TLP with the error into the four addresses for Error Report Header. If the error is not generated by a specific TLP, write zeros into Error Report Header.
2. Write the function number and error flags to Error Report to trigger the Core to record the error in the appropriate registers in Configuration Space. One write is needed for each function that should receive the error report. In a single function core, the function number is always 0.

To report an error, the following points must be followed:

- First, write the Error Report Header registers with the associated TLP Header of the TLP with the error, write 0s if the error is not associated with a specific TLP.
- Write Error Report register with the error type. Indicate the function number that should log the error on bits [7:0].
- If the error is not associated with a specific function, then write 0 to assign the error to Function [0].
- Indicate the error type by setting only one bit of bits [13:8] flag.
- If the error is the *advisory* type as defined by the PCIe Specification, set the corresponding bit in bits [21:16] of the error bit set in bits [13:8].
- Advisory errors are downgraded to correctable error status, so the host generally continues the operation unimpeded after an advisory error is reported. If a non-advisory error is reported, the host OS typically faults (blue screen for windows) as these are serious errors that the host OS must either handle through the software or halt operation of the OS.
- The error is only logged when the Error Report register is written with one of bits [13:8] non-zero.
- The TLP Header associated with the error must already have been written and is taken from the Error Report Header registers.

2.13. Soft IP Interface

2.13.1. Data Interface Conversion

2.13.1.1. AXI-Stream Interface

This interface is available if the data interface type selected in the IP generation user interface is *AXI4_STREAM*. The data width of the transaction varies based on the lane support.

- Lane x4: 256 data width
- Lane x2: 128 data width
- Lane x1: 64 data width

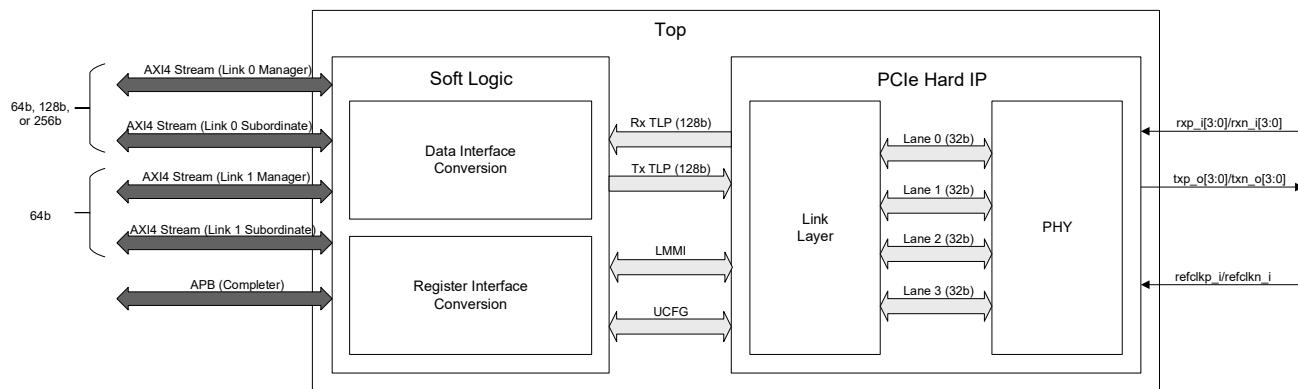


Figure 2.38. AXI-Stream Data Interface, APB Register Interface

PCIe to AXI-Stream Transfer

For the PCIe to AXI-Stream transfer, the PCIe sends the data to the user's application. The transaction has the header of size three double-word. After the header transaction, the actual data is transferred as shown in Figure 2.39 to Figure 2.41.

Note: The DATA in the transactions below are random data sent by the PCIe IP to compensate the data width.

Figure 2.39. PCIe to AXI-Stream Transaction for x1

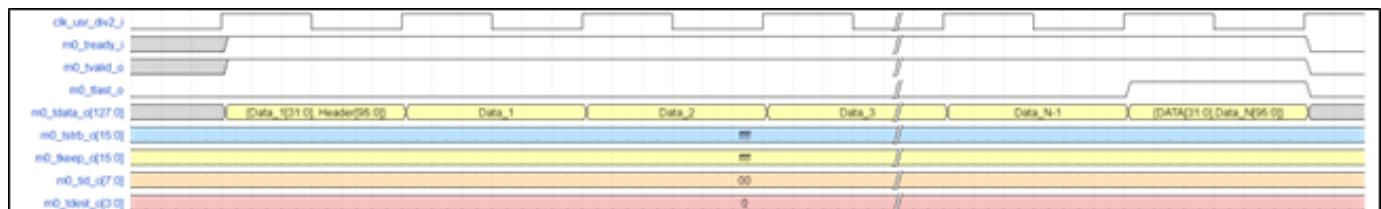


Figure 2.40. PCIe to AXI-Stream Transaction for x2

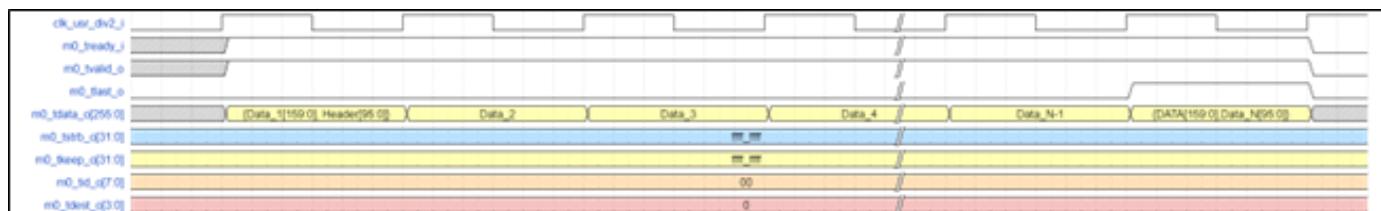


Figure 2.41. PCIe to AXI-Stream Transaction for x4

AXI-Stream to PCIe

For the AXI-Stream to PCIe transaction, the user's application sends the data to the PCIe Endpoint IP. Similar to the PCIe to AXI-Stream transfer, there is a header data of size three double word, which is transferred first followed by the actual data as shown in Figure 2.42 to Figure 2.44.

Note: The DATA in the transactions below are random data sent by the PCIe IP to compensate the data width.

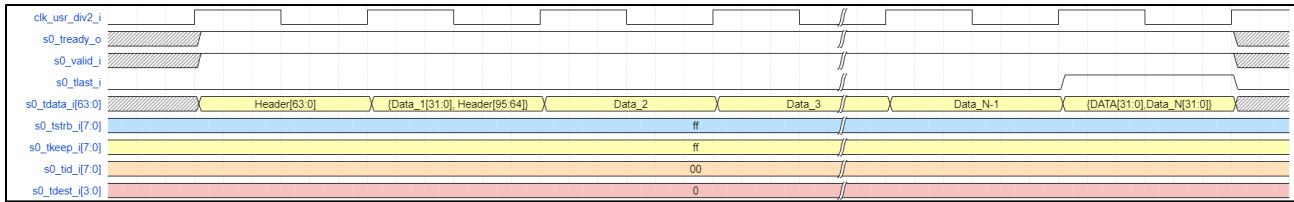


Figure 2.42. AXI-Stream to PCIe Transaction for x1

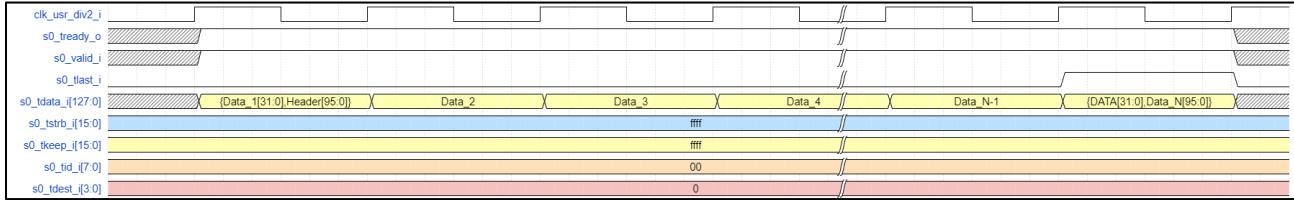


Figure 2.43. AXI-Stream to PCIe Transaction for x2

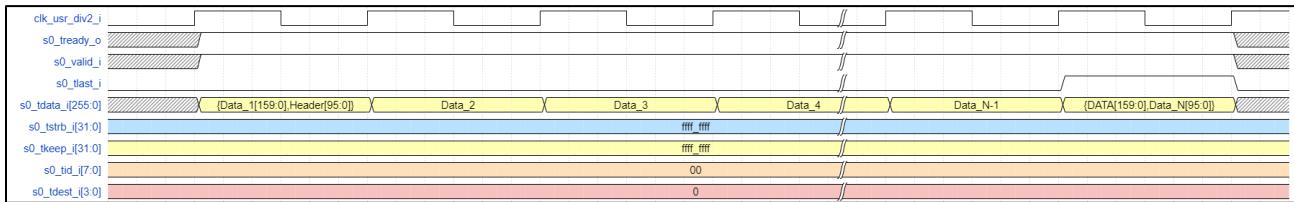


Figure 2.44. AXI-Stream to PCIe Transaction for x4

2.13.1.2. Bridge Mode

Bridge Mode is a non-DMA mode which allows the received MWr and MRd TLP to be converted to AXI-MM or AXI-Lite Manager Interface. Subordinate interface is not supported.

In the Radiant user interface, you can configure Bridge Mode interface type (AXI-MM or AXI-L), BAR number that is associated to DMA Bypass, and BAR size.

When a received MWr/MRd TLP targets Bridge Mode BAR, the IP converts the TLP to AXI-MM or AXI-Lite Manager Interface. The BAR value is masked off to 0 when presented at AXI Read/Write Address.

For MRd TLP, the read data at AXI-MM/AXI-Lite Read Data Channel is converted to CplD TLP and be transmitted to PCIe link partner.

The following are the limitations of Bridge Mode:

- Only 1-DW MWr/MRd TLP is supported. If AXI-MM interface is selected, it supports only 32-bit data width without burst mode (AWLEN and ARLEN are always 0).
- Only DW-aligned address is supported. The 4-bit LSB of read/write address must be 0x0, 0x4, 0x8, or 0xC.
- Only 32-bit addressing BAR is supported.

In addition, when Bridge Mode is selected by the Radiant user interface, user interrupt pins can be enabled. Refer to the [User Interrupts](#) section for more details.

Figure 2.45 and Figure 2.46 show the Bridge Mode Radiant user interface settings.

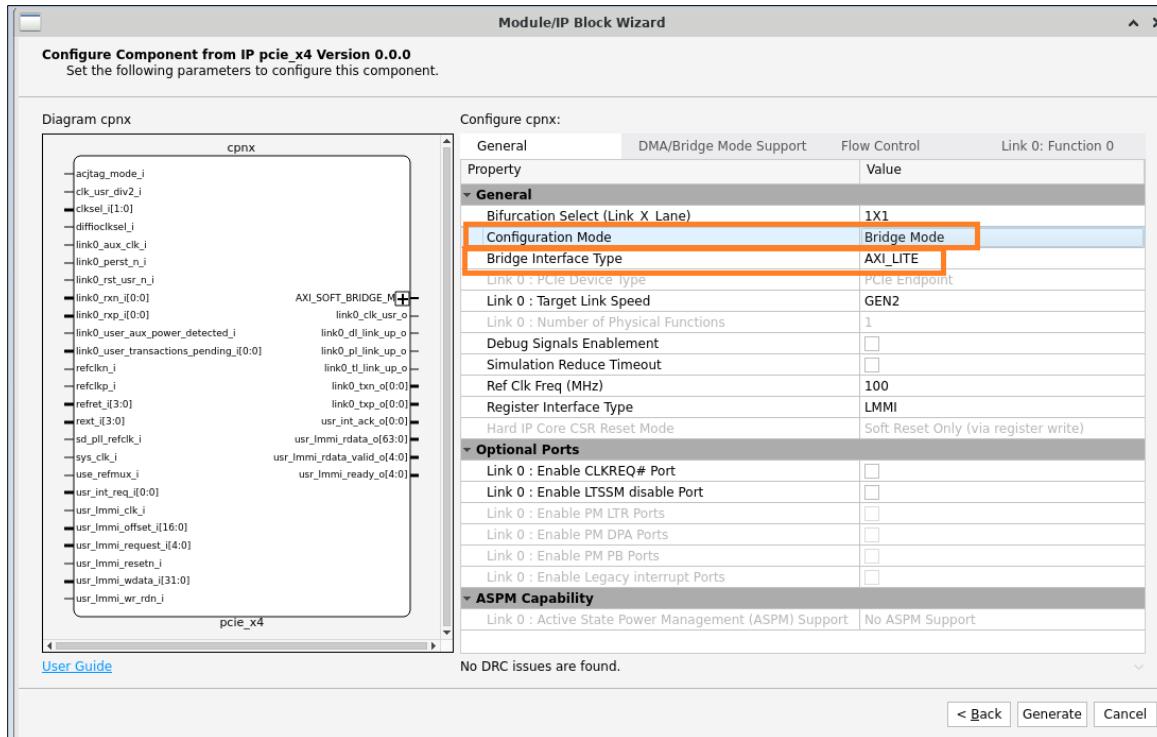


Figure 2.45. Bridge Mode Enablement (General Tab)

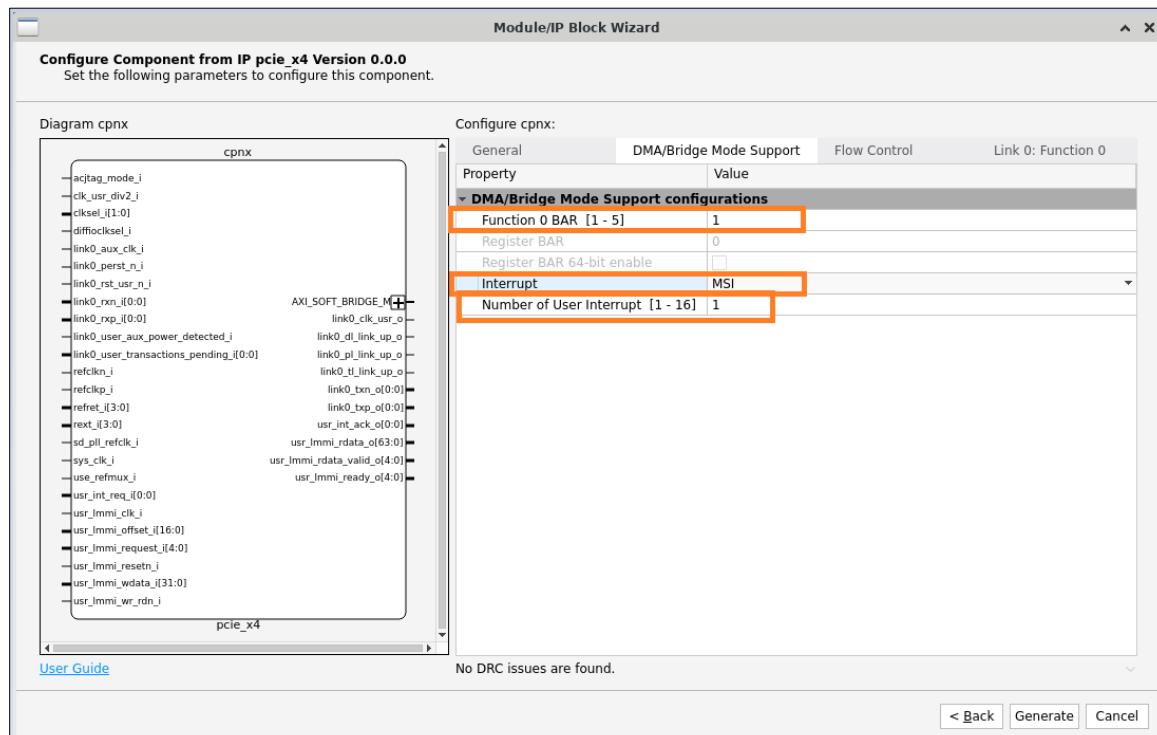


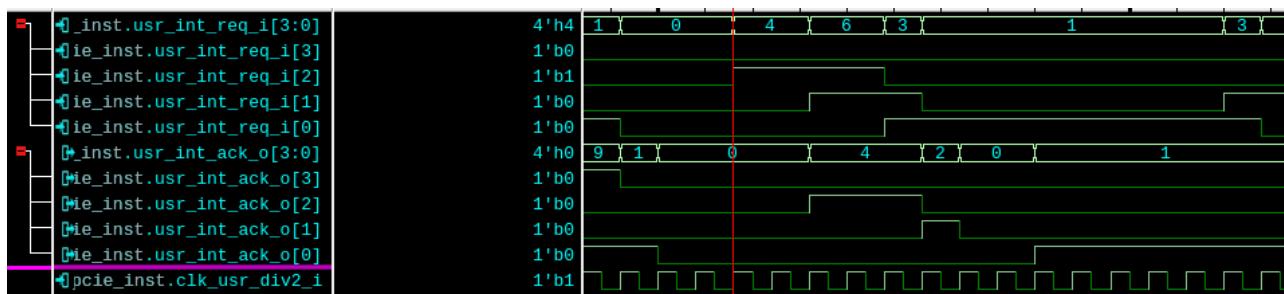
Figure 2.46. Bridge Mode Enablement (DMA/Bridge Mode Support Tab)

In the Radiant user interface, the Bridge Mode is enabled when *Bridge Mode* is selected in *Configuration Mode* drop-down menu in *General* tab (see [Figure 2.45](#)). Bridge Mode interface type (AXI-MM or AXI-Lite) is configured by *Bridge Interface Type* in *General* tab (see [Figure 2.45](#)).

The Bridge Mode BAR number is configured by *Function 0 BAR* in the *DMA/Bridge Mode Support* tab (see [Figure 2.46](#)). The available options are BAR1 to BAR5. BAR0 is reserved for Bridge Mode registers (refer to the [Bridge Mode Register](#) section). The Bridge Mode BAR size is configured in *Link 0: Function 0* tab. DMA interrupt can be MSI or MSI-X, configurable in *DMA/Bridge Mode Support* tab.

With MSI, the IP supports up to 16 user interrupts. With MSI-X, the IP supports up to 64 user interrupts. The total number of user interrupts is configured by *Number of User Interrupt* in the *DMA/Bridge Mode Support* tab (see [Figure 2.46](#)). Refer to the [Bridge Mode Register](#) section for more details.

User Interrupts


The PCIe IP supports up to 16 user interrupts and 64 user interrupts for MSI and MSI-X, respectively. The number of user interrupts is configured by the Radiant user interface.

Each user interrupt has a pair of request and acknowledgement pins at the IP interface, such as `usr_intr_req_i` and `usr_intr_ack_o`, respectively. When user logic asserts any `usr_intr_req_i`, The PCIe IP transmits MSI/MSI-X TLP to PCIe link partner. If more than one `usr_intr_req_i` are asserted, an arbiter in the IP arbitrates these requests with round-robin arbitration scheme. The interrupt vector (MSI vector) associated with a user interrupt is configured via `USR_INT_VEC_P*` registers. Refer to the [Bridge Mode Register](#) for more details.

The following are the requirements of `usr_intr_req_i[NUM-1:0]` and `usr_intr_ack_o[NUM-1:0]`:

1. Each user interrupt has their corresponding `usr_intr_req_i[]` and `usr_intr_ack_o[]` pins at the IP interface. The bit number of these signals refers to the user number.
2. User application logic must assert `usr_intr_req_i[]` when it requires PCIe IP to send interrupt (MSI or MSI-X) to the host.
3. `usr_intr_req_i[]` and `usr_intr_ack_o[]` must comply to full handshake relationship.
 - `usr_intr_req_i[]` can only assert when `usr_intr_ack_o[]` is 0.
 - `usr_intr_req_i[]` can only de-assert when `usr_intr_ack_o[]` is 1.
 - `usr_intr_ack_o[] = 1` means the corresponding user request (via `usr_intr_req_i[]` assertion) is translated to MSI/MSI-X transmission.

The violation of the rule between `usr_intr_req_i[]` and `usr_intr_ack_o[]` may cause undefined behavior. [Figure 2.47](#) shows the example waveform:

Figure 2.47. User Interrupt Pins Example Waveform

The requests from user logic are translated to MSI or MSI-X TLP. Refer to [MSI Bridge Mode](#) and [MSI-X Bridge Mode](#) sections for details.

MSI Bridge Mode

MSI (Message Signaled Interrupts) is supported by PCIe IP as an approach to interrupt Host when user logic asserts specific pins to the IP (see [User Interrupts](#) section).

A full 32 vectors are advertised, but only up to 16 interrupt requesters (the number of requesters is configurable) are supported. You can configure user-interrupt-pin-to-MSI-vector mapping through writing to `USR_INT_VEC_P*` registers. Refer to [Bridge Mode Register](#) section for detail. Per-Vector Masking and Extended Message Data are not supported.

MSI Advertised Capabilities

This section specifies MSI-related capabilities and the advertised values. These values are not configurable.

Table 2.57. MSI Advertised Capabilities

Registers	Advertised Value	Remark
Multiple Message Capable	3'b101	32 vectors are advertised despite there are only 16 user interrupt pins.
64-bit address capable	1'b1	64-bit addressing is supported.
Per-Vector Masking Capable	1'b0	Per-Vector Masking is not supported.
Extended Message Data Capable	1'b0	Extended Message Data is not supported.

MSI-X Bridge Mode

Similar to MSI, MSI-X (Message Signaled Interrupts - Extended) is supported by PCIe IP as an approach to interrupt Host when user logic asserts designated pins to the IP (see [User Interrupts](#) section).

Up to 64 interrupt requesters (the number of requesters is configurable) are supported. Each requester has a corresponding MSI-X table entry specified by PCIe specification, which means a total of 64 table entries are supported by the IP.

The MSI-X Table entry associated with user interrupts is listed in [Table 2.58](#).

Table 2.58. MSI-X Table Offsets

Offset	MSI-X Table Entries
0x8000	User0 Msg Address
0x8004	User0 Msg Upper Address
0x8008	User0 Msg Data
0x800C	User0 Vector Control
0x8010	User1 Msg Address
0x8014	User1 Msg Upper Address
0x8018	User1 Msg Data
0x801C	User1 Vector Control
...	...
0x83F0	User63 Msg Address
0x83F4	User63 Msg Upper Address
0x83F8	User63 Msg Data
0x83FC	User63 Vector Control

[Table 2.59](#) shows the PBA (Pending Bit Array) table entry associated with user interrupts.

Table 2.59. MSI-X PBA Offsets

Offset	PBA Table Entries
0xC000	user_int_pb[63:0]

The MSI-X table and PBA table are residing in IP registers at BAR0 (memory space). The offsets in the table above refer to BAR0 offset.

Per PCIe specification requirement, MSI-X must support Function Masking and Per-Vector Masking (PVM).

When the Function Mask bit in the PCIe Capability register is set to 1, if the IP is to send the MSI-X TLP (due to user interrupt request), this TLP is not sent and instead the IP asserts the corresponding pending bit at offset 0xC000.

Once the Function Mask bit is cleared to 0, the IP screens through the pending bits, for the bit(s) that is 1, and its corresponding per-vector mask bit is 0, the IP generates and transmits MSI-X TLP to the host. Afterwards, the IP clears the corresponding Pending Bit(s) to 0. It is possible to have multiple MSI-X TLPs transmitted by the IP after Function Mask bit is cleared by the SW.

When per-vector Mask bit register in Vector Control register is set to 1, if the IP was to send an MSI-X TLP (due to user interrupts) of this vector, this TLP is not sent, and instead the IP asserts the corresponding Pending Bit at offset 0xC000.

Once the mask bit is cleared to 0 (and Function Mask bit is also 0), the IP refers to the corresponding vector's pending bits. If the pending bit is 1, the IP generates and transmits MSI-X TLP to the host. Afterwards, the IP clears the corresponding pending bit to 0.

Steering Tag (optional per PCIe specification) is not supported, therefore all other bits in the vector control register (other than bit 0) are reserved.

MSI-X Advertised Capabilities

This section specifies MSI-X-related capabilities and the advertised values. These values are not configurable.

Table 2.60. MSI-X Advertised Capabilities

Registers	Advertised Value	Remark
Table Size	10'h0 – 10'h63	The advertised number of table entries depends on the number of user interrupts.
Table BIR	3'b000	BAR 0
Table Offset	29'b1000_0000_0000_0	MSI-X Table is from BAR 0 Offset 0x8000
PBA BIR	3'b000	BAR 0
PBA Offset	29'b1100_0000_0000_0	PBA Table is from BAR 0 Offset 0xC000

Bridge Mode Register

The Bridge Mode registers are accessible by the Host when the received MWr or MRd TLP targets BAR 0. The register access size is limited to maximum 1 DW per TLP.

The Access Types of each register are defined in [Table 2.61](#).

Table 2.61. Access Types

Access Type	Behavior on Read Access	Behavior on Write Access
RO	Returns register value	Ignores write access
WO	Returns 0	Updates register value
RW	Returns register value	Updates register value
RW1C	Returns register value	Writing 1'b1 on register bit clears the bit to 1'b0. Writing 1'b0 on register bit is ignored.
WHC	Returns register value	Only Write to 1'b1 when the register is 1'b0 takes effect.
RC	Returns register value Clear the register to 0 after read.	Ignores write access
RSVD	Returns 0	Ignores write access

Table 2.62. USR_MSI_VEC_P1 (0x040C)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR3_MSI_VEC	RW	5	0	User 3 MSIVector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1

Field	Name	Access	Width	Default	Description
					<p>And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 4.</p>
23:21	RSVD	RO	3	0	Reserved
20:16	USR2_MSI_VEC	RW	5	0	<p>User 2 MSI Vector</p> <p>When MSI is selected:</p> <p>5'd0: MSI Vector 0</p> <p>5'd1: MSI Vector 1</p> <p>And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 3.</p>
15:13	RSVD	RO	3	0	Reserved
12:8	USR1_MSI_VEC	RW	5	0	<p>User 1 MSI Vector</p> <p>When MSI is selected:</p> <p>5'd0: MSI Vector 0</p> <p>5'd1: MSI Vector 1</p> <p>And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 2.</p>
7:5	RSVD	RO	3	0	Reserved
4:0	USR0_MSI_VEC	RW	5	0	<p>User 0 MSI Vector</p> <p>When MSI is selected:</p> <p>5'd0: MSI Vector 0</p> <p>5'd1: MSI Vector 1</p> <p>And so on.</p>

Table 2.63. USR_MSI_VEC_P2 (0x0410)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR7_MSI_VEC	RW	5	0	<p>User 7 MSI Vector</p> <p>When MSI is selected:</p> <p>5'd0: MSI Vector 0</p> <p>5'd1: MSI Vector 1</p> <p>And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 8.</p>
23:21	RSVD	RO	3	0	Reserved
20:16	USR6_MSI_VEC	RW	5	0	<p>User 6 MSI Vector</p> <p>When MSI is selected:</p> <p>5'd0: MSI Vector 0</p> <p>5'd1: MSI Vector 1</p> <p>And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 7.</p>

Field	Name	Access	Width	Default	Description
15:13	RSVD	RO	3	0	Reserved
12:8	USR5_MSI_VEC	RW	5	0	<p>User 5 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 6.</p>
7:5	RSVD	RO	3	0	Reserved
4:0	USR4_MSI_VEC	RW	5	0	<p>User 4 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 5.</p>

Table 2.64. USR_MSI_VEC_P3 (0x0414)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR11_MSI_VEC	RW	5	0	<p>User 11 MSI Vector When MSI is selected: 5'd0: MSIVector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 12.</p>
23:21	RSVD	RO	3	0	Reserved
20:16	USR10_MSI_VEC	RW	5	0	<p>User 10 MSI Vector When MSI is selected: 5'd0: MSIVector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 11.</p>
15:13	RSVD	RO	3	0	Reserved
12:8	USR9_MSI_VEC	RW	5	0	<p>User 9 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 10.</p>

Field	Name	Access	Width	Default	Description
7:5	RSVD	RO	3	0	Reserved
4:0	USR8_MSI_VEC	RW	5	0	<p>User 8 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 9.</p>

Table 2.65. USR_MSI_VEC_P4 (0x0418)

Field	Name	Access	Width	Default	Description
31:29	RSVD	RO	3	0	Reserved
28:24	USR15_MSI_VEC	RW	5	0	<p>User 15 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 16.</p>
23:21	RSVD	RO	3	0	Reserved
20:16	USR4_MSI_VEC	RW	5	0	<p>User 14 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 15.</p>
15:13	RSVD	RO	3	0	Reserved
12:8	USR13_MSI_VEC	RW	5	0	<p>User 13 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 14.</p>
7:5	RSVD	RO	3	0	Reserved
4:0	USR12_MSI_VEC	RW	5	0	<p>User 12 MSI Vector When MSI is selected: 5'd0: MSI Vector 0 5'd1: MSI Vector 1 And so on.</p> <p>This register is RO if the number of user interrupt is set to less than 13.</p>

Table 2.66. USR0_MSIX_TABLE (0x8000)

Field	Name	Access	Width	Default	Description
127:97	RSVD	RW	31	0	<p>Reserved. By default, the value of these bits must be 0.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
96	USR0_MASK_BIT	RW	1	1	<p>User 0 Mask Bit</p> <p>When this bit is Set, the Function is prohibited from sending a message using this MSI-X Table entry for user interrupt 0. However, any other MSI-X Table entries programmed with the same vector will still be capable of sending an equivalent message unless they are also masked.</p> <p>Default value of this bit is 1b (entry is masked)</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
95:64	USR0_MSG_DATA	RW	32	0	<p>User 0 Message Data Message Data of MSI-X caused by User Interrupt 0.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
63:32	USR0_MSG_UPPER_ADDR	RW	32	0	<p>User 0 Message Upper Address Upper 32-bit address of MSI-X caused by User Interrupt 0.</p> <p>If this field is zero, 32-bit address messages are used. If this field is non-zero, 64-bit address messages are used.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
31:0	USR0_MSG_ADDR	RW	32	0	<p>User 0 Message Address Lower 32-bit address of MSI-X caused by User Interrupt 0.</p> <p>For proper DWORD alignment, software must always write zeroes to LSB two bits; otherwise the result is undefined.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>

Table 2.67. USR1_MSIX_TABLE (0x8010)

Field	Name	Access	Width	Default	Description
127:97	RSVD	RW	31	0	<p>Reserved. By default, the value of these bits must be 0.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
96	USR1_MASK_BIT	RW	1	1	User 1 Mask Bit

Field	Name	Access	Width	Default	Description
					<p>When this bit is Set, the Function is prohibited from sending a message using this MSI-X Table entry for user interrupt 1. However, any other MSI-X Table entries programmed with the same vector is still capable of sending an equivalent message unless they are also masked.</p> <p>Default value of this bit is 1b (entry is masked)</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
95:64	USR1_MSG_DATA	RW	32	0	<p>User 1 Message Data</p> <p>Message Data of MSI-X caused by User Interrupt 1.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
63:32	USR1_MSG_UPPER_ADDR	RW	32	0	<p>User 1 Message Upper Address</p> <p>Upper 32-bit address of MSI-X caused by User Interrupt 1.</p> <p>If this field is zero, 32-bit address messages are used. If this field is non-zero, 64-bit address messages are used.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>
31:0	USR1_MSG_ADDR	RW	32	0	<p>User 1 Message Address</p> <p>Lower 32-bit address of MSI-X caused by User Interrupt 1.</p> <p>For proper DWORD alignment, software must always write zeroes to LSB two bits; otherwise the result is undefined.</p> <p>RO when MSI-X is disabled or when User Interrupt is disabled.</p>

All Other User Interrupt MSI-X Table (0x8020 to 0x83FF)

For User Interrupt 2 to 63, the register definition is similar to USR0_MSIX_TABLE and USR1_MSIX_TABLE, with only user interrupt number differences. Offset wise, they are packed in incremental order after USR1_MSIX_TABLE, as each of them are 4DW size, same with USR0_MSIX_TABLE and USR1_MSIX_TABLE.

Table 2.68. PBA_TABLE (0xC000)

Field	Name	Access	Width	Default	Description
63:0	USR_INT_PB	RO	64	0	<p>User Interrupt Pending Bit</p> <p>Each bit is associated to User Interrupt Pending Bits, where LSB refer to User Interrupt 0, in incremental order, up to User Interrupt 63.</p> <p>For each Pending Bit that is Set, the Function has a pending message for the associated MSI-X Table entry, which is suppressed by Function Mask bit and/or the corresponding Mask bit in Vector Control field in MSI-X Table.</p>

2.13.2. Register Interface Conversion

2.13.2.1. APB Interface

This interface is available if the register interface type selected in the IP generation user interface is *APB*. You must provide a 512 kB aligned base address that is used when accessing the Core CSRs and PCIe Configuration Space registers.

Note: Due to a known bug in the APB user interface, it is recommended not using this configuration to prevent unexpected behavior.

The APB interface is used for configuring the PCIe registers when AXI4-Stream or AHB-Lite (only supported in IP versions older than 3.0.0) interface is enabled.

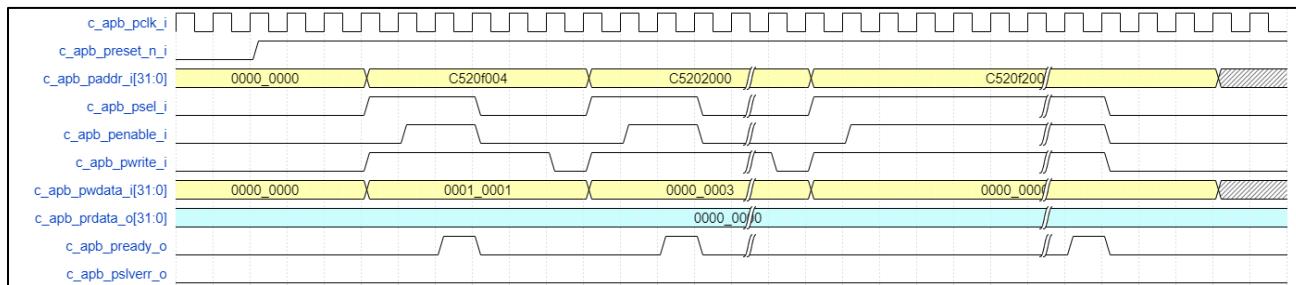
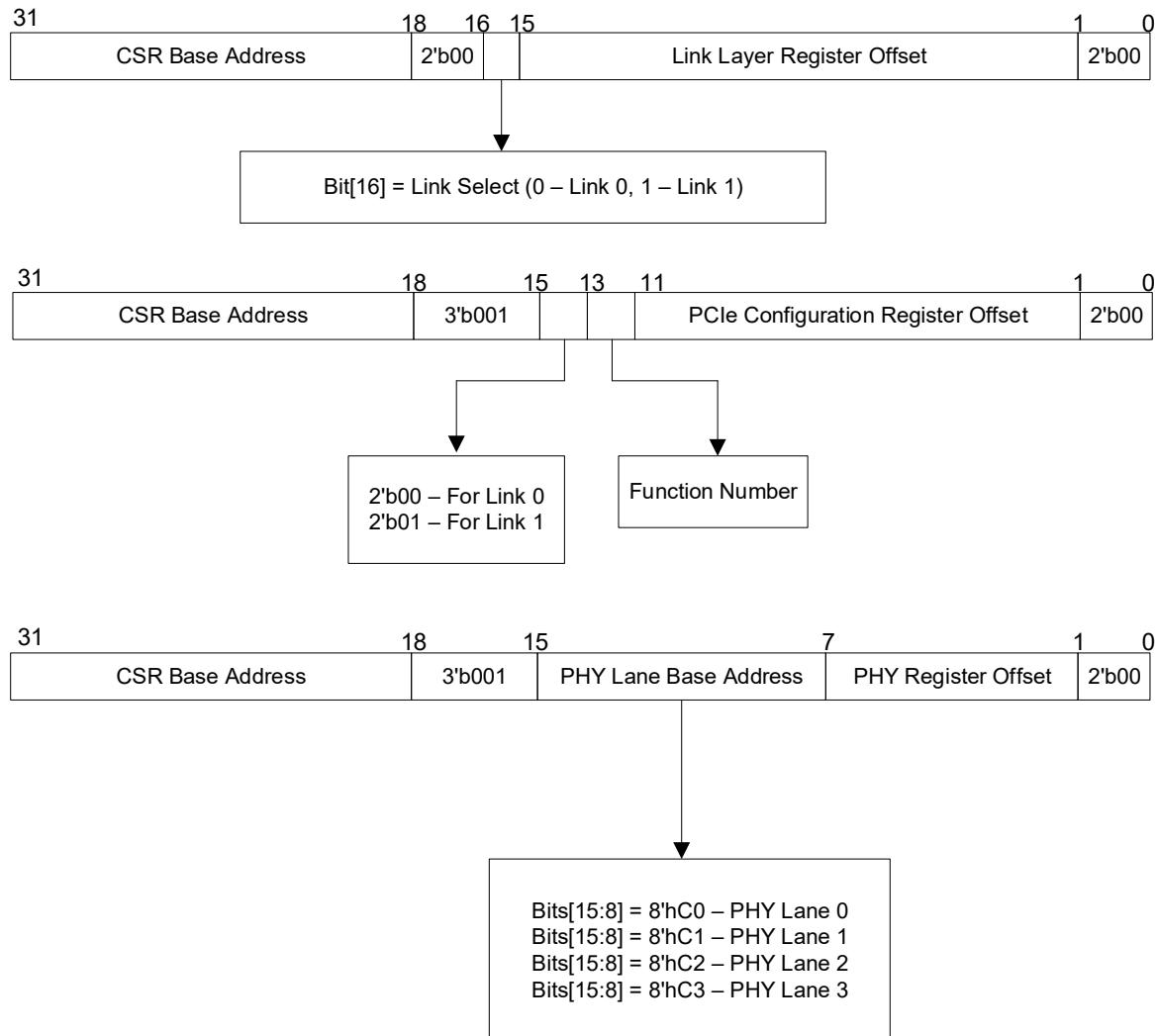



Figure 2.48. AHB-L DMA APB Configuration

Figure 2.49 shows an example of the APB address bit signal configuration.

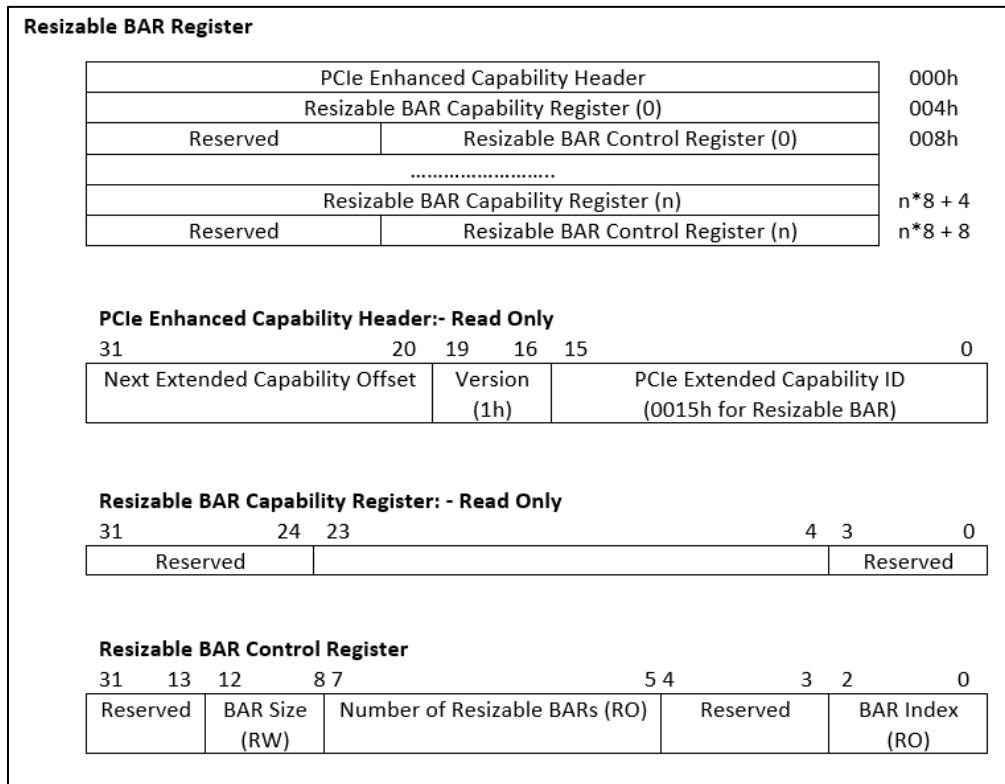
The APB Bus Address bits are mapped as follows:

- Bits[31:19] = CSR Base Address. The initial value is configurable in the PCIe IP user interface: *PCIe CSR Base Address*
- For Link Layer Register access (see registers in [Hard IP Core Configuration and Status Registers](#))
 - Bits[18:17] == 2'b00
 - Bit[16] = Link Select (0 – Link 0, 1 – Link 1)
 - Bits[15:2] = Link Layer Register offset
 - Bits[1:0] must be tied to 2'b00.
- For PCIe Configuration Space Register access (see registers in the [PCI Express Configuration Space Registers](#) section):
 - Bits[18:16] == 3'b010
 - Bits[15:14] == 2'b00 – For Link 0
 - Bits[15:14] == 2'b01 – For Link 1
 - Bits[13:12] = Function number
 - Bits[11:2] = PCIe Configuration Register offset
 - Bits[1:0] must be tied to 2'b00.
- For Soft IP Configuration Register access (see registers in the [PCI Express Configuration Space Registers](#) section):
 - Bits[18:0]: base address 0x28000 + offset register
- For PHY register access (see Appendix A in [CertusPro-NX SerDes/PCS User Guide \(FPGA-TN-02245\)](#)):
 - Bits[18:16] == 3'b010
 - Bits[15:9] = 7'h60 – PHY Lane 0
 - Bits[15:9] = 7'h61 – PHY Lane 1
 - Bits[15:9] = 7'h62 – PHY Lane 2
 - Bits[15:9] = 7'h63 – PHY Lane 3
 - Bits[8] = 0 – PMA register, 1 – MPCS register
 - Bits[7:0] = PHY Register offset

Figure 2.49. PCIe APB Register Set Address Bit Configuration

When AHB-L DMA (only supported in IP versions older than 3.0.0) is selected, the configuration is performed through APB. The Core Configuration and Status Registers (CSR) are made accessible to the user design through the APB. The registers that are configured through APB are as follows:

- Register address – 0Xf004 [Base address:-0x0F000, Offset address:-0X4]
This register is used to assert the PCIe core reset.
- Simulation registers:
 - Register address – 0X2000
This register is used to reduce the Itssm ts_1 and timeouts to fasten the simulation when asserted as 1.
 - Register address – 0X3000
This register is used to reduce the Power Management State Machine timeouts to fasten the simulation when asserted as 1.
 - Register address – 0X4000
This register is used to reduce the timeouts to fasten the simulation when asserted as 1.
- PHY Register address – 0X7F
This register is used to read PLL status of each lane.


After configuring all registers, the *0Xf004* register is configured to get the PCIe core out of reset.

2.14. Resizable BAR Capability

The Resizable BAR capability is introduced to improve performance by negotiating the BAR size to optimize system resources. With this capability, the amount of address space consumed by the device can change.

2.14.1. Resizable BAR Registers Configuration

The configuration of the Resizable BAR Capability is done through the PCIe Configuration space register, as shown in [Figure 2.50](#). The extended configuration space register set gives information about the address space size for that function.

Figure 2.50. Resizable BAR Register Capability Structure

The Resizable BAR Capability and a Control register is implemented for each BAR that is resizable. Since a maximum of six BARs may be implemented by any Function, the Resizable BAR Capability structure can range from 12 bytes long (for a single BAR) to 52 bytes long (for all six BARs).

The Resizable BAR Capability Register gives information about the BAR sizes for the selected function. It is a Read Only register and the bits 4 to 23 is used to determine the BAR size, which is calculated using the following formula:

Consider 'n' indicates the bits between 4 to 23, so for nth bit the BAR size is,

BAR Size = 2^{n+16} bytes,

Bit [4] = 1 MB BAR size and Bit [23] = 512 GB BAR size

The Resizable BAR Control register gives information about the selection of the BAR (BAR 0 to BAR 5), the number of the Resizable field, which is only for Control Register zero to know how many of the six possible BAR's have adjustable size and the desired BAR size is programmed by the software for the BAR indicated by the BAR Index field.

Assuming m indicates the value of the BAR size field, (example Bits 12 to 8 is set to value m) then,

BAR size = 2^{m+20} bytes

If the field BAR Size is set to 3, then BAR size = $2^{3+20} = 8$ MB and the maximum value is when m = 19,

BAR size = 2^{19+20} bytes = 512 GB

The enable and disable of the Resizable Register, the default and supported BAR size and the BAR index are programmed through the software by accessing the registers present in the PCIe Hard IP Core CSR.

For different functions, the following are the offset addresses for the resizable BAR capability configuration.

Table 2.69. Offset Address for Resizable Bar Capability Configurations

Offset Address	Description
0x1A0	Enable and Disable of Resizable BAR Capability
0x1A4	Resizable BAR Capability for BAR Configuration 0
0x1A8	Resizable BAR Capability for BAR Configuration 1
0x1AC	Resizable BAR Capability for BAR Configuration 2
0x1B0	Resizable BAR Capability for BAR Configuration 3
0x1B4	Resizable BAR Capability for BAR Configuration 4
0x1B8	Resizable BAR Capability for BAR Configuration 5

For more details on each bit in the register set for the Hard IP CSR and PCIe CSR, refer to the [Register Description](#) section.

2.15. Multi-Protocol Support

The CertusPro-NX/MachXO5-NX PCIe supports x1 and x2 with SGMII or 1000BASE-X as shown in [Table 2.70](#). One of the key requirements for two or more protocols sharing the same SERDES/PCS quad is that these protocols must have the same reference clock frequency.

Table 2.70. Supported Combo within Quad

PCIE_BIFUR_SEL	Combo	Ch0	Ch1	Ch2	Ch3
2'	PCIe x1 + x1(other)	PCIe x1	—	8B10B	8B10B
1'	PCIe x2 + x1(other)	PCIe x2	PCIe x2	8B10B	8B10B
5	PCIe x4	PCIe x4	PCIe x4	PCIe x4	PCIe x4
1	PCIe x2	PCIe x2	PCIe x2	—	—
2	PCIe x1	PCIe x1	—	—	—
3	PCIe x2+x1	PCIe x2	PCIe x2	—	PCIe x1
4	PCIe x1+x1	PCIe x1	—	—	PCIe x1

2.16. Merging Between IPs

Merging of multiple IPs into 1 Quad is available. At top-level, you are required to connect the following input ports from separate IPs together. For example, acjtag_mode_i from pcie to acjtag_mode_i from SerDes. Refer to the [Lattice MPCS Module User Guide \(FPGA-IPUG-02118\)](#) for more details.

Table 2.71. Merging Input Ports

Port Name	I/O	Width	Description
JTAG Interface			
acjtag_mode_i	In	1	When asserted, this signal activates the ACJTAG controller of the PMA control logic, which now controls the PMA hard macro. The PMA hard macro is thus disconnected from the PMA control logic. This signal is used for two purposes: <ul style="list-style-type: none"> • Select the multiplexer between ACJTAG controller and functional logic at the PMA interface directly. • Put out of reset the ACJTAG Controller. This signal is used as reset input for the embedded ACJTAG controller of the PMA.
Reference Clock Ports			
sd_ext_0_refclk_i	In	1	Reference clock from SD_EXT0_REFCLKP, SD_EXT0_REFCLKN.
sd_ext_1_refclk_i	In	1	Reference clock from SD_EXT1_REFCLKP, SD_EXT1_REFCLKN.

Port Name	I/O	Width	Description
sd_pll_refclk_i	In	1	Reference clock from FPGA PCLK, only for test purpose.
use_refmux_i	In	1	Dynamic clock source selection: <ul style="list-style-type: none"> • 1'b1 – clock from PCSREFMUX output. • 1'b0 – clock from per quad source (sdq_refclkp_i, sdq_refclkn_i).
Clock Selection			
diffioclkSEL_i	In	1	<ul style="list-style-type: none"> • 1'b0 – sd_ext_0_refclk • 1'b1 – sd_ext_1_refclk Sticks to 0 by default
clkSEL_i	In	2	<ul style="list-style-type: none"> • 2'b00 – pll_0_refclk_i • 2'b01 – pll_1_refclk_i • 2'b10 – output from DIFFCLKIO_CORE • 2'b11 – sd_pll_refclk_i Sticks to 0 by default

3. IP Parameter Description

The PCIe Endpoint Core attributes are configurable through the IP Catalog's Module/IP wizard of the Lattice Radiant Software. Refer to [Table 3.1](#) for the description of each attribute.

3.1. General

General		Flow Control	Link 0: Function 0
Property	Value		
General			
Bifurcation Select (Link_X_Lane)	1X4		
Multi-Link Enabled	<input type="checkbox"/>		
Configuration Mode	TLP Mode		
Data Interface Type	TLP		
Link 0 : PCIe Device Type	PCIe Endpoint		
Link 0 : Target Link Speed	GEN3		
Link 0 : Number of Physical Functions	1		
Simulation Reduce Timeout	<input type="checkbox"/>		
Ref Clk Freq (MHz)	100		
Register Interface Type	LMMI		
PCIe CSR Base Address (512 KiB aligned)	C5200000		
Hard IP Core CSR Reset Mode	Soft Reset Only (via register write)		
Optional Ports			
Link 0 : Enable CLKREQ# Port	<input type="checkbox"/>		
Link 0 : Enable LTSSM disable Port	<input type="checkbox"/>		
Link 0 : Enable PM LTR Ports	<input type="checkbox"/>		
Link 0 : Enable PM DPA Ports	<input type="checkbox"/>		
Link 0 : Enable PM PB Ports	<input type="checkbox"/>		
Link 0 : Enable Legacy interrupt Ports	<input type="checkbox"/>		
ASPM Capability			
Link 0 : Active State Power Management (ASPM) Support	No ASPM Support		

Figure 3.1. Attributes in the General Tab

Table 3.1. General Tab Attributes Description

Attribute	Selectable Values	Description	Parameter
Bifurcation Select	1X2 1X1 1X4	Configures the number of Links and Lanes.	PCIE_BIFUR_SEL 1=1x2, 2=1x1, 5=1x4
Multi-Link Enabled	Checked Unchecked	Display only	—
Configuration Mode	“TLP Mode” “DMA Only Mode” “Bridge Mode” “DMA with Bridge Mode”	To select configuration mode. Available modes are TLP Mode, DMA Only, Bridge Mode, and DMA with Bridge Mode.	

Attribute	Selectable Values	Description	Parameter
Data Interface Type	“TLP” “AXI_STREAM” “AXI_MM” “AXI_LITE”	Available option per mode: <ul style="list-style-type: none">“TLP Mode”: “TLP” and “AXI_STREAM”“DMA Only Mode”: “AXI_STREAM”¹ and “AXI_MM”.“Bridge Mode”: “AXI_MM” and “AXI_LITE”.“DMA with Bridge Mode”: “AXI_STREAM”¹ and “AXI_MM”.	
Bridge Interface Type	“AXI_MM” “AXI_LITE”	Only selectable in DMA with Bridge Mode. It configures Bridge Mode interface type.	
Link 0 PCIe Device Type	PCIe Endpoint	PCIe IP core supports only PCIe Endpoints	LINK0_DEVICE_TYPE = “PCIe Endpoint”
Link 0 Target Link Speed	GEN1 GEN2 GEN3	<ul style="list-style-type: none">Initial value of Target Link Speed Configuration Register.Determines the maximum initial link speed which can be reached during initial training.Must be set to the lesser of the maximum speed supported by the core and the maximum speed at which you desire the core to operate.	LINK0_FTL_INITIAL_TARGET_LINK_SPEED = {0,1,2}
Link 0 Number of Physical Functions	1–4	Only selectable in TLP Mode. Set the number of enabled functions.	LINK0_NUM_FUNCTIONS = {1,2,3,4}
Simulation Reduce Timeout	Checked Unchecked	<ul style="list-style-type: none">Must be checked for simulation run.Otherwise, leave it unchecked.	
Ref Clk Freq (MHz)	100 MHz, 125 MHz	<ul style="list-style-type: none">These are set to 5 (default) for 100 MHz and 4 for 125 MHz.125 MHz refclk are used for multi-protocol support.	TX_RX_F_A(5) TX_RX_F_B(5) TX_RX_F_C(5)
Register Interface Type	APB LMMI	<ul style="list-style-type: none">APB is only available in TLP Mode with AXI-Stream data interface type.If APB is selected, APB replaces the native Lattice Memory Mapped Interface (LMMI) of the hard IP by adding a soft logic bridge.	USR_CFG_IF_TYPE = {"LMMI", "APB"}
PCIe CSR Base Address	(Hex, 512 kB aligned) 0000_0000 – FFF8_0000	<ul style="list-style-type: none">Only available if AXI-Stream in TLP Mode is selected.This is a 512 kB aligned base address used to access both Hard IP and Soft IP registers as well as PCIe Configuration Space Registers.	PCIE_CSR_BASEADR = {13'h0000 – 13'h1FFF}

Note:

1. This is only supported in Gen3x4.

3.2. Optional Port

▼ Optional Ports	
Link 0 : Enable CLKREQ# Port	<input type="checkbox"/>
Link 0 : Enable LTSSM disable Port	<input type="checkbox"/>
Link 0 : Enable PM LTR Ports	<input type="checkbox"/>
Link 0 : Enable PM DPA Ports	<input type="checkbox"/>
Link 0 : Enable PM PB Ports	<input type="checkbox"/>
Link 0 : Enable Legacy interrupt Ports	<input type="checkbox"/>

Figure 3.2. Attributes in the Optional Port Tab

Table 3.2. Optional Port Attributes

Link [k] (k == 0 - 1) Optional Ports			
Attribute	Selectable Values	Description	Parameter
Link [k] Enable CLKREQ# Port	Checked Unchecked	Set to add the link[LINK]_clkreq_n_io port.	LINK[k]_USE_CLKREQ_SIGNAL = {0,1}
Link [k] Enable LTSSM disable Port	Checked Unchecked	Set to add the port to stop the LTSSM training. This port can be used to delay start of LTSSM training.	link[LINK]_ltssm_disable_i port.
Link [k] Enable PM LTR Ports	Checked Unchecked	<ul style="list-style-type: none"> Available if LTR capability is enabled. Set to add the Latency Tolerance Reporting ports. 	—
Link [k] Enable PM DPA Ports	Checked Unchecked	<ul style="list-style-type: none"> Available if DPA capability is enabled. Set to add the Dynamic Power Allocation ports. 	—
Link [k] Enable PM PB Ports	Checked Unchecked	<ul style="list-style-type: none"> Available if PB capability is enabled. Set to add the Power Budgeting Ports. 	—
Link [k] Enable Legacy Interrupt Ports	Checked Unchecked	<ul style="list-style-type: none"> Available if legacy interrupt is enabled. Set to add the Legacy interrupt ports. 	LINK[k]_MAIN_CTRL_4_EN_PORT_MGMT_INTERRUPT_LEG = {0,1}

3.3. ASPM Capability

▼ ASPM Capability	
Link 0 : Active State Power Management (ASPM) Support	No ASPM Support

Figure 3.3. Attributes in the ASPM Capability Tab

ASPM is not supported in the current version.

3.4. DMA/Bridge Mode Support

Configure IP

General	DMA/Bridge Mode Support	Flow Control	Link 0: Function
Property	Value		
DMA/Bridge Mode Support configurations			
Number of H2F Channel	1		
Number of F2H Channel	1		
DMA AXI-MM ID Width	3		
Function 0 BAR [1 - 5]	1		
Register BAR	0		
Register BAR 64-bit enable	<input type="checkbox"/>		
Interrupt	MSI		
Number of User Interrupt [1 - 16]	16		

Figure 3.4. Attributes in the DMA/Bridge Mode Support Tab

Table 3.3. DMA/Bridge Mode Support Attributes

Attribute	Selectable Values	Description	Parameter
Number of H2F Channel	0–1	<ul style="list-style-type: none"> Number of H2F channel. Maximum 1 channel is supported in the current release. • 	NUM_H2F_CHAN = 1
Number of F2H Channel	0–1	<ul style="list-style-type: none"> Number of F2H channel. Maximum 1 channel is supported in the current release. 	NUM_F2H_CHAN = 1
DMA AXI-MM ID Width	Integer	<ul style="list-style-type: none"> Data width for AXI-MM interface's AWID, BID, ARID, and RID. Should use a value not greater than 8. 	DMA_AXI_ID_WIDTH = 3
Function 0 BAR	1–5	<ul style="list-style-type: none"> PCIe Endpoint BAR that is allocated for Bridge Mode. 	
Register BAR	0	<ul style="list-style-type: none"> BAR mapping for DMA/ Bridge register. Only 0 is supported in the current release. 	—
Register BAR 64-bit enable	Checked, Unchecked	<ul style="list-style-type: none"> To select if DMA/ Bridge register BAR is 32 bits or 64 bits. Only unchecked (32-bit) is supported in the current release. 	—
Interrupt	MSI, MSI-X	<ul style="list-style-type: none"> DMA/ Bridge Interrupt mode. With DMA: Only MSI is supported in the current release. 	—

Attribute	Selectable Values	Description	Parameter
		<ul style="list-style-type: none"> Bridge only: MSI or MSI-X. 	
Number of User Interrupt	MSI: 1–16 MSI-X: 1–64	Refer to the User Interrupts section for more details.	—

3.5. Flow Control Update

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property		Value				
Flow Control Update						
Link 0 : Disable FC Update Timer		<input type="checkbox"/>				
Link 0 : FC Update Timer Divider			Use PCIe Spec recommended values			
Link 0 : Completion Credit (CH,CD) Advertisement			Advertise [Infinite for Endpoint], [Actual values for Root Port]			
Link 1 : Disable FC Update Timer		<input type="checkbox"/>				
Link 1 : FC Update Timer Divider			Use PCIe Spec recommended values			
Link 1 : Completion Credit (CH,CD) Advertisement			Advertise [Infinite for Endpoint], [Actual values for Root Port]			

Figure 3.5. Attributes in the Flow Control Update Tab

Table 3.4. Flow Control Attributes

Link [k] (k == 0 - 1) Flow Control Update			
Attribute	Selectable Values	Description	Parameter
Link [k] Disable FC Update Timer	Checked Unchecked	<ul style="list-style-type: none"> Set to disable FC Update Timer (that is, schedule a FC Update on Every Consumed RX TLP) Otherwise, schedule FC Updates in accordance with PCIe Specification recommended values) 	LINK[k]_PTL_RX_CTRL_FC_UPDATE_TIMER_DISABLE = {0,1}
Link [k] FC Update Timer Divider	Use PCIe Spec recommended values, Divide by 2, Divide by 4, Divide by 8	Select the FC Update frequency of the Receive Buffer when FC update timer is enabled.	LINK[k]_PTL_RX_CTRL_FC_UPDATE_TIMER_DIV = {0,1,2,3}
Link [k] Completion Credit Advertisement	Advertise Infinite for Endpoint and Actual for Root Port, Advertise Actual, Advertise Infinite	Select the completion credit advertisement behavior.	LINK[k]_PTL_RX_CTRL_ADV_CH_CD_SEL = {0,1,2}

3.6. Receive Buffer Allocation

Receive Buffer Allocation	
Link 0 : Posted Header Credits (20 bytes/credit) [1 - 16]	16
Link 0 : Posted Data Credits (16 bytes/credit) [8 - 108]	108
Link 0 : Non-Posted Header Credits (20 bytes/credit) [1 - 8]	8
Link 0 : Non-Posted Data Credits (16 bytes/credit) [2 - 6]	6
Link 0 : Completion Header Credits (20 bytes/credit) [1 - 32]	32
Link 0 : Completion Data Credits (16 bytes/credit) [8 - 96]	96

Figure 3.6. Attributes in Receive Buffer Allocation Tab

Table 3.5. Receive Buffer Tab Attributes

Link [k] (k == 0 - 1) Receive Buffer Allocation			
Attribute	Selectable Values	Description	Parameter
Link [k] Posted Header Credits	(20 bytes per credit) 1-16	<ul style="list-style-type: none"> Set the amount of buffer credits for Posted TLP header. The number of bytes required to allocate the requested PH and PD credits must not exceed the P RAM storage space (2 kB). 	LINK[k]_PTL_RX_ALLOC_P_H = {1 - 16}
Link [k] Posted Data Credits	(16 bytes per credit) 16-108	<ul style="list-style-type: none"> Set the amount of buffer credits for Posted TLP data. The number of bytes required to allocate the requested PH and PD credits must not exceed the P RAM storage space (2 kB). 	LINK[k]_PTL_RX_ALLOC_P_D = {16 - 108}
Link [k] Non-Posted Header Credits	(20 bytes per credit) 1-8	<ul style="list-style-type: none"> Set the amount of buffer credits for Non-Posted TLP header. The number of bytes required to allocate the requested NH and ND credits must not exceed the N RAM storage space (256 Bytes). 	LINK[k]_PTL_RX_ALLOC_N_H = {1 - 8}
Link [k] Non-Posted Data Credits	(16 bytes per credit) 2-6	<ul style="list-style-type: none"> Set the amount of buffer credits for Non-Posted TLP data. The number of bytes required to allocate the requested NH and ND credits must not exceed the N RAM storage space (256 Bytes). 	LINK[k]_PTL_RX_ALLOC_N_D = {2 - 6}

Link [k] (k == 0 - 1) Receive Buffer Allocation			
Attribute	Selectable Values	Description	Parameter
Link [k] Completion Header Credits	(16 bytes per credit) 1–32	<ul style="list-style-type: none"> Set the amount of buffer credits for Completion TLP header. The number of bytes required to allocate the requested CH and CD credits must not exceed the C RAM storage space (2 kB). 	LINK[k]_PTL_RX_ALLOC_C_H = {1 - 32}
Link [k] Completion Data Credits	(16 bytes per credit) 16–96	<ul style="list-style-type: none"> Set the amount of buffer credits for Completion TLP data. The number of bytes required to allocate the requested CH and CD credits must not exceed the C RAM storage space (2 kB). 	LINK[k]_PTL_RX_ALLOC_C_D = {16 - 96}

3.7. Transmit Buffer Allocation

Transmit Buffer Allocation	
Link 0 : Posted Header Credits (20 bytes/credit) [1 - 16]	16
Link 0 : Posted Data Credits (16 bytes/credit) [8 - 108]	108
Link 0 : Non-Posted Header Credits (20 bytes/credit) [1 - 8]	8
Link 0 : Non-Posted Data Credits (16 bytes/credit) [2 - 6]	6
Link 0 : Completion Header Credits (20 bytes/credit) [1 - 32]	32
Link 0 : Completion Data Credits (16 bytes/credit) [8 - 96]	96

Figure 3.7. Attributes in Transmit Buffer Allocation Tab

Table 3.6. Receive Buffer Tab Attributes

Transmit Buffer Allocation			
Attribute	Selectable Values	Description	Parameter
Link [k] Posted Header Credits	(20 bytes per credit) 1–16	<ul style="list-style-type: none"> Set the amount of buffer credits for Posted TLP header. The number of bytes required to allocate the requested PH and PD credits must not exceed the P RAM storage space (2 kB). 	LINK[k]_PTL_TX_ALLOC_P_H = {1 - 16}
Link [k] Posted Data Credits	(16 bytes per credit) 16–108	<ul style="list-style-type: none"> Set the amount of buffer credits for Posted TLP data. The number of bytes required to allocate the requested PH and PD credits must not exceed the P RAM storage space (2 kB). 	LINK[k]_PTL_TX_ALLOC_P_D = {16 - 108}
Link [k] Non-Posted Header Credits	(20 bytes per credit) 1–8	<ul style="list-style-type: none"> Set the amount of buffer credits for Non-Posted TLP header. The number of bytes required to allocate the requested NH and ND credits must not exceed the N RAM storage space (256 Bytes). 	LINK[k]_PTL_TX_ALLOC_N_H = {1 - 8}
Link [k] Non-Posted Data Credits	(16 bytes per credit) 2–6	<ul style="list-style-type: none"> Set the amount of buffer credits for Non-Posted TLP data. The number of bytes required to allocate the requested NH and ND credits must not exceed the N RAM storage space (256 Bytes). 	LINK[k]_PTL_TX_ALLOC_N_D = {2 - 6}
Link [k] Completion Header Credits	(16 bytes per credit) 1–32	<ul style="list-style-type: none"> Set the amount of buffer credits for Completion TLP header. The number of bytes required to allocate the requested CH and CD credits must not exceed the C RAM storage space (2 kB). 	LINK[k]_PTL_TX_ALLOC_C_H = {1 - 32}
Link [k] Completion Data Credits	(16 bytes per credit) 16–96	<ul style="list-style-type: none"> Set the amount of buffer credits for Completion TLP data. The number of bytes required to allocate the requested CH and CD credits must not exceed the C RAM storage space (2 kB). 	LINK[k]_PTL_TX_ALLOC_C_D = {16 - 96}

3.8. Function

3.8.1. Configuration

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0	⋮
Property		Value					
Configuration							
Link 0 : Disable Function 0		<input type="checkbox"/>					
Link 0 : Device ID (16'h)			E004				
Link 0 : Vendor ID (16'h)			19AA				
Link 0 : Subsystem ID (16'h)			E004				
Link 0 : Subsystem Vendor ID (16'h)			19AA				
Link 0 : Class Code (24'h)			118000				
Link 0 : Revision ID (8'h)			04				
Link 0 : Root Port ID (16'h)			0000				

Figure 3.8. Attributes in Function Configuration Tab

Table 3.7. Function Configuration Tab Attributes

Configuration			
Attribute	Selectable Values	Description	Parameter
Disable Function	Unchecked	<ul style="list-style-type: none"> Cannot disable function 0. Display only. 	—
Link [k] Device ID	(Hex) 0000 – FFFF	Value returned when the Device ID Configuration Register is read.	LINK[k]_FTL_ID1_DEVICE_ID = {16'h0000 – 16'hFFFF}
Link [k] Vendor ID	(Hex) 0000 – FFFF	Value returned when the Vendor ID Configuration Register is read.	LINK[k]_FTL_ID1_VENDOR_ID = {16'h0000 – 16'hFFFF}
Link [k] Subsystem ID	(Hex) 0000 – FFFF	Value returned when the Subsystem ID Configuration Register is read.	LINK[k]_FTL_ID2_SUBSYSTEM_ID = {16'h0000 – 16'hFFFF}
Link [k] Subsystem Vendor ID	(Hex) 00000 – FFFFF	Value returned when the Subsystem Vendor ID Configuration Register is read.	LINK[k]_FTL_ID2_SUBSYSTEM_VENDOR_ID = {16'h0000 – 16'hFFFF}
Link [k] Class Code	(Hex) 00000 – FFFFF	Value returned when the Class Code Configuration Register is read.	LINK[k]_FTL_ID3_CLASS_CODE = {16'h0000 – 16'hFFFF}
Link [k] Revision ID	(Hex) 00 – FF	Value returned when the Revision ID Configuration Register is read.	LINK[k]_FTL_ID3_REVISION_ID = {8'h00 – 8'hFF}

3.8.2. Resizable Bar Capability

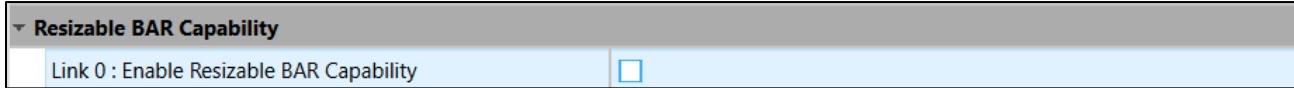


Figure 3.9. Attributes in Resizable Bar Capability Tab

Table 3.8. Resizable Bar Capability Attributes

Link [k] (k == 0 - 1) Resizable BAR Capability			Parameters
Attributes	Value	Description	Parameters
Link [k] Enable Resizable BAR Capability	Checked Unchecked	Set to enable the Resizable BAR Capability.	LINK0_FTL_RBAR_CAP_ENABLE = {0,1}

3.8.3. Base Address Register (BAR) [0 to 5]

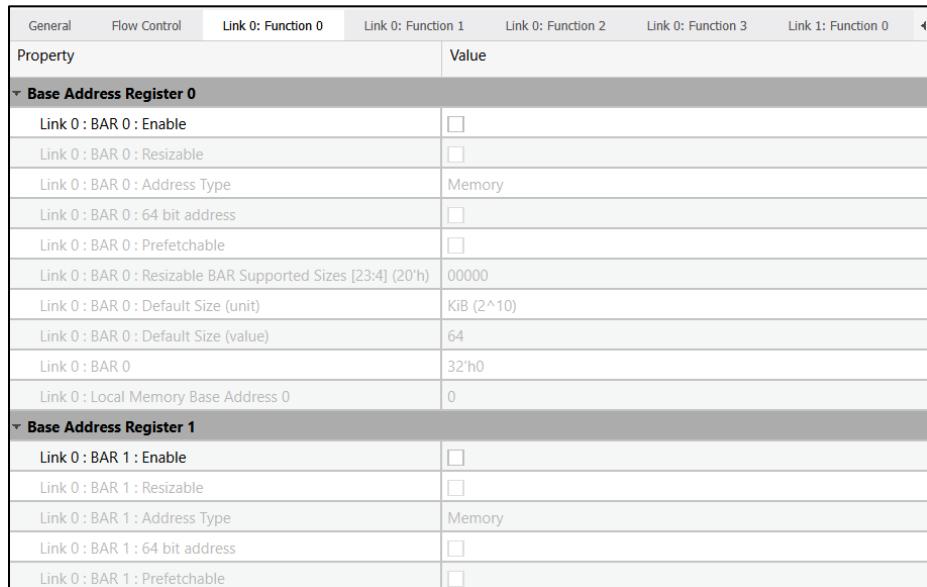


Figure 3.10. Attributes in BAR Tab

Table 3.9. BAR Tab Attributes

Link [k] (k == 0 - 1) Base Address Register n (n == 0 - 5)			
Attribute	Selectable Values	Description	Parameter
Link [k] BAR n – Enable	Checked Unchecked	Set to enable the BAR.	—
Link [k] BAR n – Resizable	Checked Unchecked	Set to make this BAR resizable.	—
Link [k] BAR n – Address Type	Memory, I/O	Select if the BAR is for Memory or I/O space.	—
Link [k] BAR n – 64-bit Address	Checked Unchecked	<ul style="list-style-type: none"> Applicable for memory space only. Set to use 64-bit address. Note that BAR n and BAR n+1 are used for the 64-bit address. 	—
Link [k] BAR n – Prefetchable	Checked Unchecked	<ul style="list-style-type: none"> Applicable for memory space only. Set to identify the memory address as prefetchable. 	—
Link [k] BAR n – Resizable BAR Supported Sizes [23:4]	(Hex) 00000 – FFFFF	Each bit indicates a supported size which is $2^{(i+16)}$ bytes, where i is the index from [23:4]. For example, if bit[4] == 1, then $2^{(4+16)}$ Bytes = 1 MB	—
Link [k] BAR n – Default Size (unit)	Bytes, kB (210), MB (220), GB (230), TB (240), PB (250), EB (260),	Select the size of Memory space. ¹	—
Link [k] BAR n – Default Size (value)	(Power of 2) 32 bits Memory Space: 16 bytes – 2 GB 64 bits Memory Space: 64 bits: 4 GB – 8 EB 32 bits I/O Space: 2 Bytes – 256 Bytes	Select the size of Memory or I/O space. ¹	—
Link [k] BAR n	32 bits: FFFF_FFF0 - 1000_0000 64 bits: FFFF_FFFF_0000_0000 - 1000_0000_0000_0000	Display Only	Function 0: LINK[k]_FTL_BAR0_CFG LINK[k]_FTL_BAR5_CFG Function m: LINK[k]_FTL_MF1_BAR0_CFG LINK[k]_FTL_MF[m]_BAR[n]_CFG

Link [k] (k == 0 - 1) Base Address Register n (n == 0 - 5)			
Attribute	Selectable Values	Description	Parameter
Local Memory Base Address n	(Hex, Aligned to BAR size) FFFF_FFF0 – 0000_0000	<ul style="list-style-type: none"> Applicable for memory space only. This is the base address of the local system memory that maps to the configured PCIe BAR. Must be aligned to the specified BAR size. Received Memory requests that hits the BAR are forwarded to this address. 	Function 0: FOBAR0_TO_LOCADR FOBAR5_TO_LOCADR Function m: F1BAR0_TO_LOCADR F[m]BAR[n]_TO_LOCAD

Note:

1. For Resizable BAR, this is the default size.

3.8.4. Legacy Interrupt

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property		Value				
Legacy Interrupt						
Link 0 : Disable Legacy Interrupt		<input type="checkbox"/>				
Link 0 : Interrupt Pin			INTA			

Figure 3.11. Attributes in Legacy Interrupt

Table 3.10. Legacy Interrupt Attribute Descriptions

Link [k] (k == 0 - 1) Legacy Interrupt			
Attributes	Value	Description	Parameters
Link [k] Disable Legacy Interrupt	Checked Unchecked	<ul style="list-style-type: none"> RTL always supports legacy interrupt. The current attribute only uses for port activation. 	LINK[k]_FTL_INTERRUPT_DISABLE = {0,1}
Link [k] Interrupt Pin	INT A, INT B, INT C, INT D	Select which legacy interrupt pin is used.	LINK[k]_FTL_INTERRUPT_PIN = {0,1,2,3}

3.8.5. MSI Capability

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property		Value				
MSI Capability						
Link 0 : Disable MSI Capability		<input type="checkbox"/>				
Link 0 : Number of MSI vectors		8				
Link 0 : Enable Vector Masking		<input checked="" type="checkbox"/>				

Figure 3.12. Attributes in MSI Capability

Table 3.11. MSI Capability Attributes

Link [k] (k == 0 - 1) MSI Capability			
Attributes	Value	Description	Parameters
Link [k] Disable MSI Capability	Checked Unchecked	Set to disable the MSI Capability.	LINK[k]_FTL_MSI_CAP_DISABLE = {0,1}
Link [k] Number of MSI vectors	1 – 32	Set the number of requested MSI vectors.	LINK[k]_FTL_MSI_CAP_MULT_MESSAGE_CAPABLE = {0,1,2,3,4,5}
Link [k] Enable Vector Masking	Checked Unchecked	Set to enable vector masking capability.	LINK[k]_FTL_MSI_CAP_VEC_MASK_CAPABLE = {0,1}

3.8.6. MSI-X Capability

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property		Value				
▼ MSI-X Capability						
Link 0 : Disable MSI-X Capability			<input type="checkbox"/>			
Link 0 : MSI-X Table Size [1 - 2048]			8			
Link 0 : MSI-X Table BAR indicator			BAR 0			
Link 0 : MSI-X Table Address Offset (8bytes aligned)			6000			
Link 0 : MSI-X PBA BAR indicator			BAR 0			
Link 0 : MSI-X PBA Address Offset (8bytes aligned)			7000			

Figure 3.13. Attributes in MSI-X Capability

Table 3.12. MSI-X Capability Attributes

Link [k] (k == 0 - 1) MSI-X Capability			
Attributes	Value	Description	Parameters
Link [k] Disable MSI-X Capability	Checked Unchecked	Set to disable the MSI-X Capability.	LINK[k]_FTL_MSIX_CAP_DISABLE = {0,1}
Link [k] MSI-X Table Size	1 – 2048	Set the number of requested MSI-X vectors.	LINK[k]_FTL_MSIX_CAP_TABLE_SIZE = {0 – 2047}
Link [k] MSI-X Table BAR indicator	BAR 0, BAR 1, BAR 2, BAR 3, BAR 4, BAR 5	<ul style="list-style-type: none"> Select which Base Address register. Located beginning at 10h in Configuration Space, is used to map the MSI-X Table into Memory Space. 	LINK[k]_FTL_MSIX_TABLE_BIR = {0,1,2,3,4,5}
Link [k] MSI-X Table Address Offset	(Hex, 8 bytes aligned) 0000_0000 – FFFF_FFF8	Set the byte address offset (8 bytes aligned), within the BAR selected by MSI-X Table BAR indicator, at which the MSI-X Table begins.	LINK[k]_FTL_MSIX_TABLE_OFFSET = {29'h00000000 – 29'h1FFFFFF}
Link [k] MSI-X PBA BAR indicator	BAR 0, BAR 1, BAR 2, BAR 3, BAR 4, BAR 5	Select which Base Address register, located beginning at 10h in Configuration Space, is used to map the MSI-X PBA into Memory Space.	LINK[k]_FTL_MSIX_PBA_BIR = {0,1,2,3,4,5}
Link [k] MSI-X PBA Address Offset	(Hex, 8 bytes aligned) 0000_0000 – FFFF_FFF8	Set the byte address offset (8 bytes aligned), within the BAR selected by MSI-X PBA BAR indicator, at which the MSI-X PBA begins.	LINK[k]_FTL_MSIX_PBA_OFFSET = {29'h00000000 – 29'h1FFFFFF}

3.8.7. Device Serial Number Capability

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property	Value					
Device Serial Number Capability						
Link 0 : Enable DSN Capability		<input type="checkbox"/>				
Link 0 : Serial Number		0				

Figure 3.14. Attributes in Device Serial Number Capability

Table 3.13. Device Serial Number Capability Attributes

Link [k] (k == 0 - 1) Device Serial Number Capability			
Attributes	Value	Description	Parameters
Link [k] Enable DSN Capability	Checked Unchecked	Set to enable the Device Serial Number capability.	LINK[k]_FTL_DSN_CAP_ENABLE = {0,1}
Link [k] Serial Number	(Hex) 0000_0000_0000_0000 – FFFF_FFFF_FFFF_FFFF	Set the device serial number.	LINK[k]_FTL_DSN_SERIAL_NUMBER

3.8.8. PCIe Capability

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0	⋮
Property		Value					
PCI Express Capability							
Link 0 : Maximum Payload Size Supported		128_BYTES					
Link 0 : Disable Function Level Reset (FLR)		<input checked="" type="checkbox"/>					
Link 0 : Enable Extended Tag Field		<input checked="" type="checkbox"/>					
Link 0 : Root Port RCB		64 byte					

Figure 3.15. Attributes in PCIe Capability

Table 3.14. PCIe Capability Attributes

Link [k] (k == 0 - 1) PCIe Device Capability			
Attributes	Value	Description	Parameters
Link [k] Maximum Payload Size Supported	128 Bytes, 256 Bytes, 512 Bytes	Select the maximum payload size supported.	LINK[k]_FTL_PCIE_DEV_CAP_MAX_PAYLOAD_SIZE_SUPPORTED = {0,1,2}
Link [k] Disable Function Level Reset(FLR)	Checked Unchecked	Set to disable Function Level Reset capability.	LINK[k]_FTL_PCIE_DEV_CAP_DISABLE_FLR_CAPABILITY = {0,1}
Link [k] Enable Extended Tag Field	Checked Unchecked	Set to enable Extended Tag Field (8-bit tag field).	LINK[k]_FTL_PCIE_DEV_CAP_EXTENDED_TAG_FIELD_SUPPORTED = {0,1}

3.8.9. Advance Error Reporting Capability

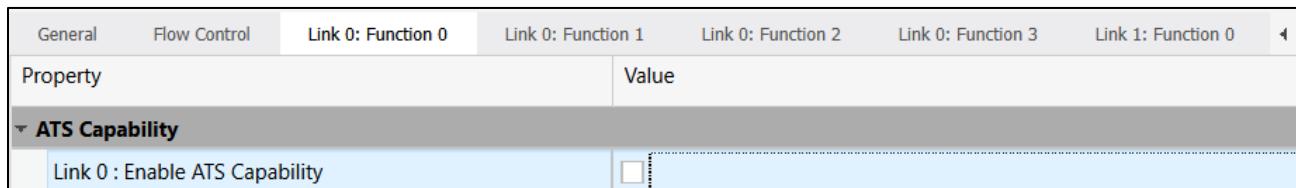

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0	⋮
Property		Value					
Advance Error Reporting Capability							
Link 0 : Enable ECRC Generation and Checking		<input checked="" type="checkbox"/>					
Link 0 : Enable Reporting : Correctable Internal Error		<input type="checkbox"/>					
Link 0 : Enable Reporting : Surprise Down Error		<input type="checkbox"/>					
Link 0 : Enable Reporting : Completion Timeout Error		<input checked="" type="checkbox"/>					
Link 0 : Enable Reporting : Completer Abort Error		<input type="checkbox"/>					
Link 0 : Enable Reporting : Uncorrectable Internal Error		<input type="checkbox"/>					

Figure 3.16. Attributes in Advance Error Reporting Capability

Table 3.15. Advance Error Reporting Capability Attributes

Link [k] (k == 0 - 1) Advance Error Reporting Capability			
Attributes	Value	Description	Parameters
Link [k] Enable ECRC Generation and Checking	Checked Unchecked	Set to enable ECRC generation and checking.	LINK[k]_FTL_AER_CAP_ECRC_GEN_CHK_CAPABLE = {0,1}
Link [k] Enable Reporting: Correctable Internal Error	Checked Unchecked	Set to enable reporting of correctable internal error.	LINK[k]_FTL_AER_CAP_EN_CORR_INTERNAL_ERROR = {0,1}
Link [k] Enable Reporting: Surprise Down Error	Checked Unchecked	Set to enable reporting of surprise down error.	LINK[k]_FTL_AER_CAP_EN_SURPRISE_DOWN_ERROR = {0,1}
Link [k] Enable Reporting: Completion Timeout Error	Checked Unchecked	Set to enable reporting of completion timeout error.	LINK[k]_FTL_AER_CAP_EN_COMPLETION_TIMEOUT = {0,1}
Link [k] Enable Reporting: Completer Abort Error	Checked Unchecked	Set to enable reporting of completer abort error.	LINK[k]_FTL_AER_CAP_EN_COMPLETER_ABORT = {0,1}
Link [k] Enable Reporting: Uncorrectable Internal Error	Checked Unchecked	Set to enable reporting of uncorrectable internal error.	LINK[k]_FTL_AER_CAP_EN_UCORR_INTERNAL_ERROR = {0,1}

3.8.10. ATS Capability

Figure 3.17. Attributes in ATS Capability

Table 3.16. ATS Capability Attribute Description

Link [k] (k == 0 - 1) ATS Capability			
Attributes	Value	Description	Parameters
Link [k] Enable ATS Capability	Checked Unchecked	Set to enable the ATS Capability.	LINK[k]_FTL_ATS_CAP_ENABLE = {0,1}

3.8.11. Atomic OP Capability

General	Flow Control	Link 0: Function 0	Link 0: Function 1	Link 0: Function 2	Link 0: Function 3	Link 1: Function 0
Property		Value				
Atomic OP Capability						
Link 0 : Enable Atomic Op Capability		<input type="checkbox"/>				
Link 0 : Enable Root as Atomic Op Completer		<input type="checkbox"/>				
Link 0 : Enable Atomic Op Completer 128b Operand		<input checked="" type="checkbox"/>				
Link 0 : Enable Atomic Op Completer 64b Operand		<input checked="" type="checkbox"/>				
Link 0 : Enable Atomic Op Completer 32b Operand		<input checked="" type="checkbox"/>				
Link 0 : Enable Atomic Op Routing		<input type="checkbox"/>				

Figure 3.18. Attributes in Atomic OP Capability

Table 3.17. Atomic OP capability Attributes

Link [k] (k == 0 - 1) Atomic OP Capability			
Attributes	Value	Description	Parameters
Link [k] Enable Atomic Op Capability	Checked Unchecked	Set to enable Atomic Operations Capability.	LINK[k]_FTL_ATOMIC_OP_CAP_ENABLE = {0,1}
Link [k] Enable Root as Atomic Op Completer	Checked Unchecked	Set to enable Root as Atomic OP Completer.	LINK[k]_FTL_ATOMIC_OP_CAP_RP_COMPLETER_ENABLE = {0,1}
Link [k] Enable Atomic Op Completer 128b Operand	Checked Unchecked	Set to support Atomic Op 128b operand.	LINK[k]_FTL_ATOMIC_OP_CAP_COMPLETER_128_SUPPORTED = {0,1}
Link [k] Enable Atomic Op Completer 64b Operand	Checked Unchecked	Set to support Atomic Op 64b operand	LINK[k]_FTL_ATOMIC_OP_CAP_COMPLETER_64_SUPPORTED = {0,1}
Link [k] Enable Atomic Op Completer 32b Operand	Checked Unchecked	Set to support Atomic Op 32b operand.	LINK[k]_FTL_ATOMIC_OP_CAP_COMPLETER_32_SUPPORTED = {0,1}
Link [k] Enable Atomic Op Completer Routing	Checked Unchecked	Set to support Atomic Op routing.	LINK[k]_FTL_ATOMIC_OP_CAP_ROUTING_SUPPORTED = {0,1}

3.8.12. Latency Tolerance Reporting Capability

Latency Tolerance Reporting Capability	
Link 0 : Enable LTR Capability	<input type="checkbox"/>

Figure 3.19. Attributes in Latency Tolerance Reporting Capability

Table 3.18. Latency Tolerance Reporting Capability Attributes

Link [k] (k == 0 - 1) Latency Tolerance Reporting Capability			
Attributes	Value	Description	Parameters
Link [k] Enable LTR Capability	Checked Unchecked	Set to enable the Latency Tolerance Reporting capability.	LINK[k]_FTL_LTR_CAP_ENABLE = {0,1}

3.8.13. Power Budgeting Capability

Power Budgeting Capability	
Link 0 : Enable PB Capability	<input type="checkbox"/>

Figure 3.20. Attributes in Power Budgeting Capability

Table 3.19. Power Budgeting Capability Attributes

Link [k] (k == 0 - 1) Power Budgeting Capability			
Attributes	Value	Description	Parameters
Link [k] Enable PB Capability	<input checked="" type="checkbox"/> Checked <input type="checkbox"/> Unchecked	Set to enable the Power Budgeting capability.	LINK[k]_FTL_PWR_BUDGET_CAP_ENABLE = {0,1}

3.8.14. Dynamic Power Allocation Capability

Figure 3.21. Attributes in Dynamic Allocation Capability

Table 3.20. Dynamic Allocation capability Attributes

Link [k] (k == 0 - 1) Dynamic Power Allocation Capability			
Attributes	Value	Description	Parameters
Link [k] Enable DPA Capability	Checked Unchecked	Set to enable the Dynamic Power Allocation capability.	LINK[k]_FTL_DPA_CAP_ENABLE = {0,1}
Link [k] Max Substate Number	0 – 31	<ul style="list-style-type: none"> Specifies the maximum substate number. Substates from [substate_max:0] are supported. For example, substate_max==0 indicates support for 1 substate. 	LINK[k]_FTL_DPA_CAP_SUBSTATE_MAX = {0 - 31}
Link [k] Transition Latency Unit	1 ms, 10 ms, 100 ms	Specifies Transition Latency Unit.	LINK[k]_FTL_DPA_CAP_TLUNIT = {0 - 2}
Link [k] Power Allocation Scale	10.0x, 1.0x, 0.1x, 0.01x	Specifies Power Allocation Scale.	LINK[k]_FTL_DPA_CAP_PAS = {0 - 3}
Link [k] Transition Latency Value 0	0 – 255	Specifies Transition Latency Value 0.	LINK[k]_FTL_DPA_CAP_XLCY0 = {0 - 3}
Link [k] Transition Latency Value 1	0 – 255	Specifies Transition Latency Value 1.	LINK[k]_FTL_DPA_CAP_XLCY1 = {0 - 3}
Link [k] Transition Latency Indicator 32x1b	(Hex) 00000000 – FFFFFFFFFF	<ul style="list-style-type: none"> Specifies which Transition Latency Value applies to each substate. Each bit corresponds to a substate. 	LINK[k]_FTL_DPA_XLCY_INDICATOR = {32'h00000000 – 32'hFFFFFF}
Link [k] Power Allocation Array 32x8b	(Hex) {32{00}} – {32{FF}}	<ul style="list-style-type: none"> Substate Power Allocation Array. Each entry is 8b value. 	LINK[k]_FTL_DPA_ALLOC_ARRAY = {32{8'h00}} – {32{8'hFF}} }

Table 3.21. Function 1-3 Tab

Link [k] (k == 0 - 1) Function n (n == 1 – 3)			
Configuration			
Disable Function	Checked Unchecked	Available if the number of physical functions enabled is set to greater than 1. Set to disable the function. Parameter: LINK[k]_FTL_MF1_FUNCTION_DISABLE = {0,1} LINK[k]_FTL_MF2_FUNCTION_DISABLE = {0,1} LINK[k]_FTL_MF3_FUNCTION_DISABLE = {0,1}	Parameter: LINK[k]_FTL_MF1_FUNCTION_DISABLE = {0,1} LINK[k]_FTL_MF2_FUNCTION_DISABLE = {0,1} LINK[k]_FTL_MF3_FUNCTION_DISABLE = {0,1}
Device ID	Refer to Function section.		—
Vendor ID			
Subsystem ID			
Subsystem Vendor ID			
Class Code			
Revision ID			

Link [k] (k == 0 - 1) Function n (n == 1 – 3)	
Base Address Register (see the Lattice PCIe x4 Core Configuration user interface in Function section)	—
Legacy Interrupt (see the Lattice PCIe x4 Core Configuration user interface in Function section)	—
MSI Capability (see the Lattice PCIe x4 Core Configuration user interface in Function section)	—
MSI-X Capability (see the Lattice PCIe x4 Core Configuration user interface in Function section)	—
Device Serial Number Capability (see the Lattice PCIe x4 Core Configuration user interface in Function section)	—

4. Signal Description

The Lattice PCIe x4 IP Core Ports for Link 0 and Link 1 are defined in the following sub sections. Note that Link 1 ports/signals are available only if the bifurcation option selected is 1x2+1x1 or 2x1.

4.1. Clock Interface

Table 4.1. Clock Ports

Port	Type	Description
sys_clk_i (clk_usr_i)	Input	<ul style="list-style-type: none"> This signal is the User Clock Domain Input Clock It is recommended to use the following minimum clock frequency to achieve the maximum throughput with respect to link data rate: <ul style="list-style-type: none"> 8.0G–250 MHz 5.0G–125 MHz 2.5G–62.5 MHz This clock is shared by both LINK0 and LINK1, so it is recommended to set the frequency relative to the link with higher data rate. <p>Note: The u_clk_period_in_ps register (0xF00C) must be updated with the actual value of the clock period used in sys_clk_i.</p>
clk_usr_div2_i	input	<ul style="list-style-type: none"> This signal is the User Clock Domain div2 Input clock. This can be generated by PLL with simple division by two at half of the sys_clk_i frequency. No phase difference between sys_clk_i and this clock. This clock is needed for DMA (Gen3 only) and AXI-Stream Non-DMA.
link[LINK]_clk_usr_o	Output	<ul style="list-style-type: none"> This signal is the User Clock Domain Output Clock. Bit [0] – Link 0/Lane 0 Bit [1] – Link 1/Lane 3. This is the pclk output that comes from the PHY. By default, the link[LINK]_clk_usr_o uses the divide-by-2 version (125 MHz) of the pclk from PHY. The output frequency can be changed to 250 MHz by setting the sel_pclk_div2 register (0xF000) to 0. For TLP interface, you have the option to use this clock as input to sys_clk_i. For non-DMA AXI-Stream interfaces, you must not use this clock as input to sys_clk_i – a separate clock source or PLL is needed for sys_clk_i. <p>Note: link[LINK]_clk_usr_o is inactive (stays low) when PHY is on reset (link[LINK]_perst_n_i is asserted or the register pipe_rst (0x0F004) is asserted).</p>
refclkp_i	Input	Differential Reference Clock, CLK+ (default 100 MHz, 125 MHz available)
refclkn_i	Input	Differential Reference Clock, CLK- (default 100 MHz, 125 MHz available)

Port	Type	Description
link[LINK]_aux_clk_i	Input	<ul style="list-style-type: none"> • This signal is the Low speed Auxilliary Clock (16 MHz minimum). (Per Link) • This clock is required when L1 Substate is enabled. • During low power mode when the Core enters L1 substate (L1.1 or L1.2), the PHY turns off most of the power consuming blocks including PLLs, thus turning off the Link Layer clock. • The link[LINK]_aux_clk_i serves as an always on clock that is used by the Link Layer to wake up and exit from L1 substate. <p>Note: The aux_clk_period_in_ps register (0xF010) should be updated with the actual value of the clock period used in link[LINK]_aux_clk_i.</p>
link[LINK]_clkreq_n_io	Inout	<ul style="list-style-type: none"> • This signal is the CLKREQ# bidirectional open-drain pin. • The CLKREQ# signal is an open drain, active low signal that is driven low by the add-in card to request that the PCI Express reference clock be available (active clock state) to allow the PCI Express interface to send/receive data. • Operation of the CLKREQ# signal is determined by the state of the Enable Clock Power Management bit in the Link Control Register (offset 010h). • When disabled, the CLKREQ# signal shall be asserted (link[LINK]_clkreq_n_io = 1'b0) at all times whenever power is applied to the card, with the exception that it may be de-asserted during L1 PM Substates. • When enabled, the CLKREQ# signal may be de-asserted (link[LINK]_clkreq_n_io = 1'b1) during an L1 Link state. • The CLKREQ# signal is also used by the L1 PM Substates mechanism. In this case, CLKREQ# can be asserted by either the system or add-in card to initiate an L1 exit. • See the PCI Express Base Specification for details on the functional requirements for the CLKREQ# signal when implementing L1 PM Substates. • Whenever dynamic clock management is enabled and when a card stops driving CLKREQ# low, it indicates that the device is ready for the reference clock to transition from the active clock state to a parked (not available) clock state. Reference clocks are not guaranteed to be parked by the host system when CLKREQ# gets de-asserted and module designs shall be tolerant of an active reference clock even when CLKREQ# is de-asserted by the module. <p>Note: This signal must be tied to low if CLKREQ# is not used.</p>
rext_i	Input	External Resistance
refret_i	Input	Analog reference return for PMA PLL
clksel_i[1:0] ¹	Input	Set to 2'b10 when the reference clock used is 125 MHz clock
sd_ext_0_refclk_i ¹	Input	PMA PLL refclk from external I/O pad0, connect to 125 MHz if used.
sd_ext_1_refclk_i ¹	Input	PMA PLL refclk from external I/O pad1, connect to 125 MHz if used.
pll_0_refclk_i ¹	Input	—
pll_1_refclk_i ¹	Input	—
sd_pll_refclk_i ¹	Input	—
diffioksel_i ¹	Input	—

Note:

1. These ports are available for 125 MHz refclk usage only and can be tied to 0 if default 100 MHz refclk is used.

4.2. Reset Interface

Table 4.2. Reset Ports

Port	Clock Domain	Type	Description
link[LINK]_perst_n_i	Asynchronous	Input	<ul style="list-style-type: none"> This signal is the PCI Express Fundamental Reset. Active-low asynchronous assert, synchronous de-assert reset to the Link Layer, PHY, and Soft Logic blocks. On link [LINK]_perst_n_i and link [LINK]_rst_usr_n_i de-assertion the core starts in the Detect.Quiet Link Training and Status State Machine (LTSSM) state with the Physical Layer down and Data Link Layer down. link[LINK]_perst_n_i must remain asserted while the PHY registers are being configured.
link[LINK]_rst_usr_n_i	Asynchronous	Input	<ul style="list-style-type: none"> User Clock Domain Link Layer Reset (Link Layer Reset). Asynchronous assert, synchronous de-assert reset to the User clock domain, Link Layer and Soft Logic blocks. On link [LINK]_perst_n_i and link[LINK]_rst_usr_n_i de-assertion the core starts in the Detect.Quiet Link Training and Status State Machine (LTSSM) state with the Physical Layer down and Data Link Layer down. It is recommended that link [LINK]_rst_usr_n_i remain asserted while the Link Layer core registers are being configured.
link[LINK]_flr_o [NUM_FUNCTIONS-1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Per function Function Level Reset (FLR) indicator link[LINK]_flr_o [i] == 1 indicates FLR is active for function[i] link[LINK]_flr_o [i] == 0 indicates FLR is not active for function[i] FLR is a function-specific soft reset that occurs when software writes the FLR register in a function's configuration space to 1. When FLR is active, the function's Configuration Space registers are reset to the default values (except Sticky registers as specified by PCIe Specification). A function's FLR Configuration Space register remains set until link [LINK]_flr_ack_i[i] for the associated function[i] is set to 1 for one clock to indicate that you completed resetting the application logic associated with that function.
link[LINK]_flr_ack_i [NUM_FUNCTIONS-1:0]	sys_clk_i	Input	<ul style="list-style-type: none"> Per function Function Level Reset (FLR) acknowledge. Set link[LINK]_flr_ack_i [i] == 1 for one clock to indicate that you completed processing an active link[LINK]_flr_o[i] for function[i] and is ready to exit FLR for the function. FLR is only enabled for Endpoints. FLR support may be disabled through the mgmt_ftl_pcie_dev_cap_disable_flr_capability register, except per PCIe Specification.

4.3. PHY Interface

Table 4.3. PHY Interface Descriptions

Port	Clock Domain	Type	Description
For Link 0: link0_rxp_i[NUM_LANES-1:0] For Link 1: link1_rxp_i	refclkp_i/refclkn_i	Input	<ul style="list-style-type: none"> Differential Receive Serial signal, Rx+ Link 1 is fixed to Lane 3 of the PHY Link 0 varies depending on the bifurcation option selected.
For Link 0: link0_rxn_i[NUM_LANES-1:0] For Link 1: link1_rxn_i	refclkp_i/refclkn_i	Input	<ul style="list-style-type: none"> Differential Receive Serial signal, Rx- Link 1 is fixed to Lane 3 of the PHY Link 0 varies depending on the bifurcation option selected.
For Link 0: link0_txp_o[NUM_LANES-1:0] For Link 1: link1_txp_o	refclkp_i/refclkn_i	Output	<ul style="list-style-type: none"> Differential Transmit Serial signal, Tx+ Link 1 is fixed to Lane 3 of the PHY Link 0 varies depending on the bifurcation option selected.
For Link 0: link0_txn_o[NUM_LANES-1:0] For Link 1: link1_txn_o	refclkp_i/refclkn_i	Output	<ul style="list-style-type: none"> Differential Transmit Serial signal, Tx- Link 1 is fixed to Lane 3 of the PHY while Link 0 varies depending on the bifurcation option selected.
link[LINK]_pl_link_up_o	sys_clk_i	Output	<ul style="list-style-type: none"> Physical Layer Link Up Status 1 – Link is UP 0 – Link is Down link[LINK]_pl_link_up_o is used as an active-low, synchronous reset for the core's Data Link Layer You are not expected to use this port except for status since the RTL does not interface directly with the Data Link Layer.
link[LINK]_dl_link_up_o	sys_clk_i	Output	<ul style="list-style-type: none"> Data Link Layer Link Up Status 1 – Link is UP 0 – Link is Down link[LINK]_dl_link_up_o is used as an active-low, synchronous reset for the Transaction Layer and also indicates when TLPs can be successfully transmitted across the link. For Endpoint-only applications, users must use link[LINK]_dl_link_up_o as a synchronous reset for the RTL interfacing to the core's Transaction Layer interfaces.
link[LINK]_tl_link_up_o	sys_clk_i	Output	<ul style="list-style-type: none"> Transaction Layer Link Up Status. 1 – Link is UP 0 – Link is Down link[LINK]_tl_link_up_o is an active-low, synchronous reset to the core's upper transaction layer.

Port	Clock Domain	Type	Description
link[LINK]_ltssm_disable_i	asynchronous	Input	<ul style="list-style-type: none"> The LTSSM does not transition from Detect.Quiet to Detect.Active to begin LTSSM training while link[LINK]_ltssm_disable_i==1. link[LINK]_ltssm_disable_i may be thus be used to delay the start of LTSSM training which otherwise begins as soon as link[LINK]_perst_n_i and link[LINK]_rst_usr_n_i are deasserted. link[LINK]_ltssm_disable_i must be set to 1 relatively soon (within a few ms) after link[LINK]_perst_n_i and link[LINK]_rst_usr_n_i are released as the system allocates a finite amount of time for devices to initialize before it begins to scan for devices. If link[LINK]_ltssm_disable_i is held for too long, software may scan for the device before it becomes operational and assume that no device is present.

Note:

1. NUM_LANES – range (1,4); LINK – values (0,1)

4.4. Transaction Layer Interface

4.4.1. TLP Transmit Interface

Refer the [TLP Transmit Interface](#) section for more information and timing diagrams.

4.4.1.1. TLP Transmit Interface Port Description

Table 4.4. TLP Transmit Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_tx_valid_i	sys_clk_i	Input	Source valid. (1==Valid, 0==Not valid)
link[LINK]_tx_ready_o	sys_clk_i	Output	<ul style="list-style-type: none"> Destination ready. (1==Ready, 0==Not ready) A transfer occurs on the transmit interface only when link[LINK]_tx_valid_i==link[LINK]_tx_ready_o==1.
link[LINK]_tx_sop_i	sys_clk_i	Input	Start of packet indicator. Set == 1 coincident with the first link[LINK]_tx_data_i word in each TLP.
link[LINK]_tx_eop_i	sys_clk_i	Input	End of packet indicator Set == 1 coincident with the last link[LINK]_tx_data_i word in each TLP.
link[LINK]_tx_eop_n_i	sys_clk_i	Input	<ul style="list-style-type: none"> Nullify packet indicator. Set == 1 coincident with link[LINK]_tx_eop_i == 1 to instruct the core to nullify the current TLP (invert LCRC and use EDB framing) instead of transmitting the TLP normally.
link0_tx_data_i [NUM_LANES*32:1:0] link1_tx_data_i[31:0]	sys_clk_i	Input	<ul style="list-style-type: none"> TLP data to transfer. For Link 0, data width depends on bifurcation option selected. <ul style="list-style-type: none"> 1x4 → 128b 1x2 or 1x2+1x1 → 64b 1x1 or 2x1 → 32b
link0_tx_data_p_i [NUM_LANES*4:1:0] link1_tx_data_p_i[3:0]	sys_clk_i	Input	Parity of associated link[LINK]_tx_data_i and evaluated as: link[LINK]_tx_data_p_i[i] == ^(link[LINK]_tx_data_i[((i+1)*8)-1:(i*8)]). For Link 0, parity width changes as per data width (one parity bit per 8 bits of data is generated).

Note:

1. LINK – values (0,1); NUM_LANES – range (1,4)

4.4.1.2. TLP Transmit Credit Interface Port Description

Table 4.5. TLP Transmit Credit Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_tx_credit_init_o	sys_clk_i	Output	Transmit layer credit initialization.
link[LINK]_tx_credit_return_o	sys_clk_i	Output	As the core forwards transmitted TLPs from the Transmit Buffer and thus makes room for new TLPs, the core asserts link[LINK]_tx_credit_return_o==1 for one clock cycle and places the number of NH credits being returned on link[LINK]_tx_credit_nh_o[11:0].
link[LINK]_tx_credit_nh_o[11:0]	sys_clk_i	Output	Number of NH credits to return through Transmit Interface.

Note:

1. LINK – values (0,1)

4.4.2. TLP Receive Interface

Refer the [TLP Receive Interface](#) section for more information and timing diagrams.

4.4.2.1. TLP Receive Interface Port Descriptions

Table 4.6. TLP Receive Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_rx_valid_o	sys_clk_i	Output	<ul style="list-style-type: none"> The valid signal corresponds to the data sent through link0_rx_data_o . When link[LINK]_rx_valid_o ==1 , the link0_rx_data_o data is valid; 0 -> otherwise.
link[LINK]_rx_ready_i	sys_clk_i	Input	<ul style="list-style-type: none"> You set link[LINK]_rx_ready_i == 1 whenever the user logic is ready to accept received TLP data. A data transfers occur when link[LINK]_rx_valid_o == 1 and link[LINK]_rx_ready_i == 1.
link[LINK]_rx_sel_o[1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Receive TLP type indicator: <ul style="list-style-type: none"> 0 == Posted Request (write request) 1 == Non-Posted Request (request requiring completion) 2 == Completion (completion to a previous request) 3 == Reserved link[LINK]_rx_sel_o is valid for the entire TLP (from link[LINK]_rx_sop_o == 1 to link[LINK]_rx_eop_o == 1).

Port	Clock Domain	Direction	Description
link[LINK]_rx_cmd_data_o[12:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Received TLP Type Indicator. link[LINK]_rx_cmd_data_o[12:0] contains following information: <ul style="list-style-type: none"> Bits[12:10] – Traffic Class[2:0] of the TLP. Bit[9] – Completion/Base Address Region indicator. 1 – Indicates the TLP is a Completion or Message routed by ID. 0 – Indicates the TLP is a read or write request or a message routed by address that hit an enabled Base Address Region. Bit[8] – When (1), the packet is a “write” transaction; when (0), the packet is a “read” transaction. Bit[7] – When (1), the packet requires one or more completion transactions as a response; (0) otherwise. Bit[6] – (1) the TLP hit the Expansion ROM else (0). Bit[5] – (1) the TLP hit Base Address Region 5 else (0). Bit[4] – (1) the TLP hit Base Address Region 4 else (0). Bit[3] – (1) the TLP hit Base Address Region 3 else (0). Bit[2] – (1) the TLP hit Base Address Region 2 else (0). Bit[1] – (1) the TLP hit Base Address Region 1 else (0). Bit[0] – (1) the TLP hit Base Address Region 0 else (0). link[LINK]_rx_cmd_data_o is valid for the entire TLP (from link[LINK]_rx_sop_o == 1 to link[LINK]_rx_eop_o == 1).
link[LINK]_rx_f_o[1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Function hit by the Received TLP link[LINK]_rx_f_o indicates which PCIe function received the TLP and response is given as follows: <ul style="list-style-type: none"> link[LINK]_rx_f_o == 0 indicates Function #0. link[LINK]_rx_f_o == 1 indicates Function #1, ...
link[LINK]_rx_sop_o	sys_clk_i	Output	<p>Start of TLP indicator</p> <p>link[LINK]_rx_sop_o == 1 coincident with the first link[LINK]_rx_data_o word in each TLP ; 0-> otherwise.</p>
link[LINK]_rx_eop_o	sys_clk_i	Output	<p>End of TLP indicator</p> <p>link[LINK]_rx_eop_o == 1 coincident with the last link[LINK]_rx_data_o word in each TLP ; otherwise, 0.</p>
link[LINK]_rx_err_ecrc_o	sys_clk_i	Output	<p>Received TLP ECRC Error Indicator</p> <p>link[LINK]_rx_err_ecrc_o == 1 inclusive for received TLPs which contain a detected ECRC error ; otherwise, 0.</p> <p>link[LINK]_rx_err_ecrc_o only reports ECRC errors when ECRC checking is enabled. ECRC checking is enabled by software through the AER Capability.</p>
link0_rx_data_o [NUM_LANES*32-1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Received TLP Data For Link 0, data width depends on bifurcation option selected. <ul style="list-style-type: none"> 1x4 -> 128b 1x2 or 1x2+1x1 -> 64b 1x1 or 2x1 -> 32b
link1_rx_data_o[31:0]	sys_clk_i	Output	
link[LINK]_rx_data_p_o [NUM_LANES*4-1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Received TLP Data Parity Even parity of associated link[LINK]_rx_data_o: <ul style="list-style-type: none"> link[LINK]_rx_data_p_o[i] == ^link[LINK]_rx_data_o[((i+1)*8)-1:(i*8)]. For Link 0, parity width changes as data width (one parity bit per 8 bits of data is generated).
link1_rx_data_p_o[3:0]	sys_clk_i	Output	

Note:

- LINK – values (0,1); NUM_LANES – range (1,4)

4.4.2.2. TLP Receive Credit Interface Port Description

Table 4.7. TLP Receive Credit Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_rx_credit_init_i	sys_clk_i	Input	<p>When the user transaction layer logic is ready to accept non-posted TLP reception, assert the link[LINK]_rx_credit_init_i == 1 for one clock cycle and on the same cycle indicates the non-posted TLP header storage capacity of the user design in link[LINK]_rx_credit_nh_i[11:0]. You must initialize link[LINK]_rx_credit_init_i shortly (within 10s of clocks) after u_tl_link_up for Root Port and shortly after u_dl_link_up for Endpoint. Holding off credit initialization for an extended period can cause received non-posted TLP transactions to timeout in the source component which may be serious errors.</p> <p>The core limits simultaneous outstanding non-posted receive TLPs on the receive interface to ensure no more than the initialized NH credits are simultaneously outstanding to user receive TLP logic.</p> <p>Once the received non-posted TLPs are processed/forwarded such that more room is available to receive new non-posted TLPs, assert link[LINK]_rx_credit_return_i==1 for one clock cycle and places the number of NH credits being returned on link[LINK]_rx_credit_nh_i[11:0]. In this manner, you can limit the outstanding core receive TLPs to the user design. This permits the core to know when non-posted TLPs would be blocked and thus send posted and/or completion TLPs to the user design instead. This is important for avoiding deadlocks and keeps non-posted TLP blockage from reducing posted and completion throughput.</p> <p>If you do not wish to implement flow control of NH credits through this interface, link[LINK]_rx_credit_init==1 and link[LINK]_rx_credit_nh_inf_i is set to 1 to advertise infinite NH credits. The NH credit flow control is not implemented for links that advertised infinite NH credits.</p>
link[LINK]_rx_credit_return_i	sys_clk_i	Input	Once the received non-posted TLPs are processed/forwarded such that more room is available to receive new non-posted TLPs, assert link[LINK]_rx_credit_return_i==1 for one clock cycle and places the number of NH credits being returned on link[LINK]_rx_credit_nh_i[11:0].
link[LINK]_rx_credit_nh_i[11:0]	sys_clk_i	Input	Number of NH credits to return through receive interface.
link[LINK]_rx_credit_nh_inf_i	sys_clk_i	Input	<ul style="list-style-type: none"> • Infinite NH Credits • link[LINK]_rx_credit_nh_inf_i: <ul style="list-style-type: none"> 1==Do not limit TLP reception due to NH credits. 0==Limit simultaneously outstanding NH credits to the value of link[LINK]_rx_credit_nh_i[11:0] when link[LINK]_rx_credit_init is 1.

Note:

1. LINK – values (0,1)

4.5. Lattice Memory Mapped Interface (LMMI)

The Lattice PCIe x4 IP Core implements a bus for configuring core options and obtaining core status. The Core Configuration and Status Registers (CSR) are made accessible to the user design through the Lattice Memory Mapped interface (LMMI).

Table 4.8. Lattice Memory Mapped Interface Ports

Port	Clock Domain	Direction	Description
usr_Immi_clk_i	usr_Immi_clk_i	Input	LMMI Clock. You must provide a clock to this port as the PHY relies on this clock during initialization.
usr_Immi_resetn_i	usr_Immi_clk_i	Input	Active low, asynchronous assert, synchronous de-assert reset
usr_Immi_offset_i [16:0]	usr_Immi_clk_i	Input	Register offset Link Layer registers: usr_Immi_offset_i [16] – Link Select (0 – Link 0, 1 – Link 1) usr_Immi_offset_i [15:2] – word aligned offset usr_Immi_offset_i [1:0] – reserved (tie to 0) PHY registers: usr_Immi_offset_i [7:0] – byte aligned offset usr_Immi_offset_i [16:8] – reserved (tie to 0)
usr_Immi_request_i[4:0]	usr_Immi_clk_i	Input	The request you sent to PCIe to start the transaction (1==Active; 0==Otherwise). Bit[0] – Link Layer Register access Bit[4:1] – PHY Register access (Per Lane)
usr_Immi_wr_rdn_i	usr_Immi_clk_i	Input	Direction (1==Write, 0==Read)
usr_Immi_wdata_i [31:0]	usr_Immi_clk_i	Input	Write data Note: For PHY register access, only bit[7:0] is valid and bit[31:8] should be tied to 0.
usr_Immi_ready_o[4:0]	usr_Immi_clk_i	Output	This signal gives the status whether Target is ready to start a new transaction (1==Ready; 0==Not ready) Bit[0] – Link Layer Register access Bit[4:1] – PHY Register access (Per Lane)
usr_Immi_rdata_valid_o[4:0]	usr_Immi_clk_i	Output	The valid signal refers to usr_Immi_rdata_o contains valid data (1==Valid; 0==Otherwise) Bit[0] – Link Layer Register access Bit[4:1] – PHY Register access (Per Lane)
usr_Immi_rdata_o [63:0]	usr_Immi_clk_i	Output	Read data. Bit[31:0] – Link Layer access read data Bit[39:32] – PHY Lane 0 access read data Bit[47:40] – PHY Lane 1 access read data Bit[55:48] – PHY Lane 2 access read data Bit[63:56] – PHY Lane 3 access read data

4.6. Legacy Interrupt Interface

The Legacy Interrupt Interface enables you to generate interrupts. Refer to the [Legacy Interrupt](#) section for more details and timing diagrams.

Table 4.9. Legacy Interrupt Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_legacy_interrupt_i [NUM_FUNCTIONS-1:0]	Asynchronous	Input	link[LINK]_legacy_interrupt_i is used to generate Legacy interrupts on the PCI Express link. link[LINK]_legacy_interrupt_i has one input for each Base (Physical) Function.
link[LINK]_legacy_interrupt_o	sys_clk_i	Output	This signal is to implement the PCI Express Capability and Advanced Error Reporting Capability contain mechanisms to interrupt system software when events occur.

Note:

1. NUM_FUNCTIONS – range (1,4); LINK – values (0,1)

4.7. Power Management Interface

The Lattice PCIe x4 IP Core supports optional capabilities such as Dynamic Power Allocation, Latency Tolerance Reporting and Power Budgeting.

Note: This is available in future release.

Table 4.10. Power Management Interface Ports

Port	Clock Domain	Direction	Description
link[LINK]_pm_dpa_control_en_o	sys_clk_i	Output	<ul style="list-style-type: none"> • Dynamic Power Allocation Enable. • If set to 1, the link[LINK]_pm_dpa_control_o should be monitored for change requests in the D0 power substate. • If set to 0, link[LINK]_pm_dpa_control_o should be ignored.
link[LINK]_pm_dpa_control_o[4:0]	sys_clk_i	Output	<ul style="list-style-type: none"> • Dynamic Power Allocation Control. • This output specified the desired D0 power substate. • If link[LINK]_pm_dpa_control_en_o is set to 1, any change on this output should be used to indicate that the D0 power substate should be changed, and the process should begin to change the power substate. • On completion of the substate transition, this output should be compared again with the current power substate. • If they don't match, and link[LINK]_pm_dpa_control_en_o is set to 1, then a new power transition should begin.
link[LINK]_pm_dpa_status_i[4:0]	sys_clk_i	Input	<ul style="list-style-type: none"> • Dynamic Power Allocation Status. This input should be changed to match the link[LINK]_pm_dpa_control_o D0 power substate. • If the change on link[LINK]_pm_dpa_control_o is to a higher power substate, the link[LINK]_pm_dpa_status_i should be updated as soon as the change on link[LINK]_pm_dpa_control_o is detected. • If the change on link[LINK]_pm_dpa_control_o is to a lower power state, the power state change should complete first, and then link[LINK]_pm_dpa_status_i should be updated to the lower power state. • These rules assure that the device never operates at a power level exceeding the power level reported on link[LINK]_pm_dpa_status_i.

Port	Clock Domain	Direction	Description
link[LINK]_pm_ltr_msg_send_i	sys_clk_i	Input	<ul style="list-style-type: none"> When operating as an upstream port, set to 1 for one clock to cause an LTR message to be transmitted and 0 otherwise. link[LINK]_pm_ltr_snoop_i[12:0], link[LINK]_pm_ltr_nosnoop_i[12:0], link[LINK]_pm_ltr_snoop_req_i, and link[LINK]_pm_ltr_nosnoop_req_i Specify the contents of the message. The LTR capability registers can be access through the UCFG interface. See Configuration Space Register Interface (UCFG) for details. Unused for downstream ports.
link[LINK]_pm_ltr_snoop_i[12:0]	sys_clk_i	Input	See link[LINK]_pm_ltr_msg_send_i.
link[LINK]_pm_ltr_nosnoop_i[12:0]	sys_clk_i	Input	See link[LINK]_pm_ltr_msg_send_i.
link[LINK]_pm_ltr_snoop_req_i	sys_clk_i	Input	See link[LINK]_pm_ltr_msg_send_i.
link[LINK]_pm_ltr_nosnoop_req_i	sys_clk_i	Input	See link[LINK]_pm_ltr_msg_send_i.
link[LINK]_pm_pb_data_sel_o[7:0]		Output	<ul style="list-style-type: none"> Power Budgeting Data Select. Specifies an index into a table of Power Budgeting Status by power rail and operating conditions.
link[LINK]_pm_pb_data_reg_rd_i [31:0]		Input	<ul style="list-style-type: none"> Power Budgeting Data Register. This input should be updated with the Power Budgeting Data looked up by the index value on link[LINK]_pm_pb_data_sel_o [7:0]. A minimum of 2 Status Conditions are needed for each power rail for which the device requires power. The last entry in the table should be identified by having all 32 bits being set to 0. The bit encoding is: <ul style="list-style-type: none"> [31:21] reserved (0) [20:18] pb_rail [17:15] pb_op_type [14:13] pb_pm_state [12:10] pb_pm_substate [9:8] pb_data_scale [7:0] pb_base_power
link[LINK]_user_aux_power_detected_i	sys_clk_i	Input	<ul style="list-style-type: none"> Set to 1 if the user design implements Aux Power and Aux Power is detected as present else set to 0. The value of this port is reflected in the PCIe Configuration Register: PCIe Status – AUX Power Detected.
link[LINK]_user_transactions_pending_i [NUM_FUNCTIONS-1:0]	sys_clk_i	Input	<ul style="list-style-type: none"> Set to 1 when you have an outstanding (not yet completed) non-posted requests else set to 0. The value of this port is reflected in the PCIe Configuration Register: PCIe Status – Transactions Pending.

Note:

1. NUM_FUNCTIONS – range (1,4); LINK – values (0,1)

4.8. Configuration Space Register Interface (UCFG)

Table 4.11. Configuration Space Register Interface Ports

Port	Clock Domain	Direction	Description
ucfg_valid_i	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Valid A transaction is started when ucfg_valid_i==ucfg_ready_o==1. Multiple transactions can be outstanding simultaneously and are executed in the order received. When ucfg_valid_i==ucfg_ready_o==1, ucfg_f_i, ucfg_wr_rd_n_i, and ucfg_addr_i must be valid and describe the transaction to execute; if the transaction is a write as indicated by ucfg_wr_rd_n_i==1, ucfg_wr_be_i and ucfg_wr_data_i must also be valid.
ucfg_ready_o	sys_clk_i	Output	Transaction Request Ready
ucfg_f_i [2:0]	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Function Number Selects which function in a multi-function core is to be accessed. This port is only present for cores that are delivered supporting multiple functions.
ucfg_link_i	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Link Number. Select which link is to be accessed. <ul style="list-style-type: none"> 0 = Link 0 1 = Link 1
ucfg_wr_rd_n_i	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Type Selects the type of transaction: <ul style="list-style-type: none"> 1 = Write 0 = Read
ucfg_addr_i [11:2]	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Address Selects the DWORD (32-bit) address of the register accessed by the transaction.
ucfg_wr_be_i[3:0]	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Write Byte Enables Selects which bytes to write during a write transaction. For each ucfg_wr_be_i[i]: <ul style="list-style-type: none"> 1 = Write byte 0 = Do not write byte ucfg_wr_be_i[i] is associated with ucfg_wr_data_i[(i*8)+7:(i*8)].
ucfg_wr_data_i[31:0]	sys_clk_i	Input	<ul style="list-style-type: none"> Transaction Request Write Data Selects data to write during a write transaction. ucfg_wr_data_i [7:0] is the least significant byte (byte address offset 2'b00) and ucfg_wr_data_i [31:0] is the most significant byte (byte address offset 2'b11).
ucfg_rd_done_o[1:0]	sys_clk_i	Output	<ul style="list-style-type: none"> Read Transaction Done. Bit[0] – Link 0, Bit[1] – Link 1. Indicates that a prior read transaction request has been completed and the resulting data on ucfg_rd_data_o is valid. <ul style="list-style-type: none"> 1 = Read done 0 = Otherwise Read transactions complete in the same order that the transaction requests were accepted.

Port	Clock Domain	Direction	Description
ucfg_rd_data_o [31:0]	sys_clk_i	Output	<ul style="list-style-type: none"> • Read Transaction Data. • Provides the read data for a UCFG read transaction. • ucfg_rd_data_o [7:0] is the least significant byte (byte address offset 2'b00) and ucfg_rd_data_o [31:24] is the most significant byte (byte address offset 2'b11).

4.9. APB Configuration Interface

This interface is available if the register interface type selected in the IP generation user interface is *APB*.

Table 4.12. APB Configuration Interface Ports

Port	Clock Domain	Direction	Description
c_apb_pclk_i	c_apb_pclk_i	Input	Clock
c_apb_preset_n_i	c_apb_pclk_i	Input	Active-low asynchronous assert, synchronous de-assert reset.
c_apb_paddr_i [31:0]	c_apb_pclk_i	Input	Bus Address (Refer the APB Interface section in Chapter 2)
c_apb_psel_i	c_apb_pclk_i	Input	Completer select.
c_apb_penable_i	c_apb_pclk_i	Input	Enable. This signal indicates the second and subsequent cycles of an APB transfer.
c_apb_pwrite_i	c_apb_pclk_i	Input	Indicates write or read access. 0 – Read 1 – Write
c_apb_pwdata_i [31:0]	c_apb_pclk_i	Input	Write Data. For PHY register access, only bit[7:0] is valid and bit[31:8] should be tied to 0.
c_apb_prdata_o [31:0]	c_apb_pclk_i	Output	Read Data. For PHY register access, only bit[7:0] is valid and bit[31:8] should be ignored.
c_apb_pready_o	c_apb_pclk_i	Output	Ready. The Completer uses this signal to extend an APB transfer.
c_apb_pslverr_o	c_apb_pclk_i	Output	Completer error. 0 – Otherwise 1 – Error

4.10. AXI-Stream (Non-DMA) Data Interface

This interface is available if the data interface type selected in the IP generation user interface is *AXI_STREAM* when *Configuration Mode* is *TLP_MODE*.

4.10.1. AXI-Stream Transmitter Interface Port Descriptions

Table 4.13. AXI-Stream Transmitter Interface Ports

Port	Clock Domain	Direction	Description
m[LINK]_tready_i	clk_usr_div2_i	Input	Destination ready. 1==Ready, 0==Not ready. A transfer occurs when m_tvalid_o==m_tready_i==1.
m[LINK]_tvalid_o	clk_usr_div2_i	Output	Source valid 1==Valid 0==Not valid.

Port	Clock Domain	Direction	Description
m0_tdata_o [NUM_LANES*64-1:0] m1_tdata_o [63:0]	clk_usr_div2_i	Output	For Link 0, data width depends on bifurcation option selected. 1x4 – 256b 1x2 or 1x2+1x1 – 128b 1x1 or 2x1 – 64b
m0_tstrb_o [NUM_LANES*8-1:0] m1_tstrb_o [7:0]	clk_usr_div2_i	Output	Byte qualifier that indicates whether the content of the associated byte of m_tdata_o is processed as a data byte or a position byte. This is always 4'hF for Link 1. For Link 0, tstrb width depends on bifurcation option selected. <ul style="list-style-type: none">1x4 – 256b. The value is 32'hFFFFFF.1x2 or 1x2+1x1 – 128b. The value is 16'hFFF.1x1 or 2x1 – 64b. The value is 8'hFF.
m0_tkeep_o [NUM_LANES*8-1:0] m1_tkeep_o [7:0]	clk_usr_div2_i	Output	<ul style="list-style-type: none">Byte qualifier that indicates whether the content of the associated byte of m_tdata_o is processed as part of the data stream.Associated bytes that have the m_tkeep_o byte qualifier deasserted are null bytes and can be removed from the data stream.This is always 4'hF for Link 1.For Link 0, tkeep width depends on bifurcation option selected. 1x4 – 256b. The value is 32'hFFFFFF. 1x2 or 1x2+1x1 – 128b. The value is 16'hFFF. 1x1 or 2x1 – 64b. The value is 8'hFF.
m[LINK]_tlast_o	clk_usr_div2_i	Output	End of TLP indicator. m_tlast_o == 1 coincident with the last m_tdata_o word in each TLP. Otherwise, 0.
m[LINK]_tid_o [7:0]	clk_usr_div2_i	Output	Data stream identifier that indicates different streams of data. m[LINK]_tid_o[2:0] has the BAR number information when rx_cmd_data[9] = 0. Otherwise, 0 when rx_cmd_data[9] = 1(completion) m[LINK]_tid_o[3] = link[LINK]_rx_err_par m[LINK]_tid_o[6:4] = link[LINK]_rx_cmd_data[12:10] m[LINK]_tid_o[7] = link[LINK]_rx_err_ecrc
m[LINK]_tdest_o [3:0]	clk_usr_div2_i	Output	m_tdest_o provides routing information for the data stream. Bits [3:2] – Function Hit by the Received TLP Bits [1:0] – Receive TLP type indicator: <ul style="list-style-type: none">0 == Posted Request (write request)1 == Non-Posted Request (request requiring a completion)2 == Completion (completion to a previous request)

Note:

- LINK – values (0,1); NUM_LANES – range (1,4)

4.10.2. AXI-Stream Receiver Interface Port Descriptions

Table 4.14. AXI-Stream Receiver Interface Ports

Port	Clock Domain	Direction	Description
s[LINK]_tvalid_i	clk_usr_div2_i	Input	Source valid 1==Valid 0==Not valid.
s0_tdata_i [NUM_LANES*64-1:0] s1_tdata_i [63:0]	clk_usr_div2_i	Input	TLP data to transfer For Link 0, data width depends on bifurcation option selected. 1x4 – 256b 1x2 or 1x2+1x1 – 128b 1x1 or 2x1 – 64b

Port	Clock Domain	Direction	Description
s0_tstrb_i [NUM_LANES*8-1:0] s1_tstrb_i [7:0]	clk_usr_div2_i	Input	<ul style="list-style-type: none"> Byte qualifier that indicates whether the content of the associated byte of m_tdata_o is processed as a data byte or a position byte. This is always 4'hF for Link 1. For Link 0, tstrb width depends on bifurcation option selected. 1x4 – 256b. The value is 32'hFFFFFFF. 1x2 or 1x2+1x1 – 128b. The value is 16'hFFFF. 1x1 or 2x1 – 64b. The value is 8'hFF.
s0_tkeep_i [NUM_LANES*8-1:0] s1_tkeep_i [7:0]	clk_usr_div2_i	Input	<ul style="list-style-type: none"> Byte qualifier that indicates whether the content of the associated byte of m_tdata_o is processed as part of the data stream. Associated bytes that have the m_tkeep_o byte qualifier deasserted are null bytes and can be removed from the data stream. This is always 4'hF for Link 1. For Link 0, tkeep width depends on bifurcation option selected. 1x4 – 256b. The value is 32'hFFFFFFF. 1x2 or 1x2+1x1 – 128b. The value is 16'hFFFF. 1x1 or 2x1 – 64b. The value is 8'hFF.
s[LINK]_tlast_i	clk_usr_div2_i	Input	End of packet indicator. Set == 1 coincident with the last s[LINK]_tdata_i word in each TLP.
s[LINK]_tid_i [7:0]	clk_usr_div2_i	Input	Unused. Set to 8'h00.
s[LINK]_tdest_i [3:0]	clk_usr_div2_i	Input	Unused. Set to 4'h0.
s[LINK]_tready_o	clk_usr_div2_i	Output	Destination ready. 1==Ready 0==Not ready A transfer occurs when s_tvalid_i==s_tready_o==1.

Note:

- LINK – values (0,1); NUM_LANES – range (1,4)

4.11. AXI Data Interface (DMA)

Table 4.15. AXI-MM Manager Interface (DMA)

Port	Clock Domain	Direction	Description
m0_dma_axi_awid_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is the identification tag for the write address group of signals.
m0_dma_axi_awaddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The write address in a write transaction.
m0_dma_axi_awlen_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The burst length gives the exact number of transfers in a burst.
m0_dma_axi_awsize_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the size of each transfer.
m0_dma_axi_awburst_o [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Burst mode. Always 2'b01.
m0_dma_axi_awlock_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_awprot_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_awcache_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_awvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid write address and control information.

Port	Clock Domain	Direction	Description
m0_dma_axi_awready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_dma_axi_wdata_o [255:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Write data.
m0_dma_axi_wstrb_o [31:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
m0_dma_axi_wlast_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the last transfer in a write burst.
m0_dma_axi_wvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that valid write data and strobes are available.
m0_dma_axi_wready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate can accept the write data.
m0_dma_axi_bid_i [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal is the ID tag of the write response.
m0_dma_axi_bresp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the write transaction.
m0_dma_axi_bvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling a valid write response.
m0_dma_axi_bready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept a write response.
m0_dma_axi_arid_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is the identification tag for the read address group of signals.
m0_dma_axi_araddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The read address gives the address of the first transfer in a read burst transaction.
m0_dma_axi_arlen_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the exact number of transfers in a burst.
m0_dma_axi_arsize_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the size of each transfer.
m0_dma_axi_arburst_o [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Burst mode. Always 2'b01.
m0_dma_axi_arprot_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_arlock_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_arcache_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_arvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid read address and control information.
m0_dma_axi_arready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_dma_axi_arqos_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_aruser_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_dma_axi_rid_i [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal is the identification tag for the read data group of signals generated by the subordinate.
m0_dma_axi_rdata_i [255:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	Read data.
m0_dma_axi_rresp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the read transfer.
m0_dma_axi_rlast_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the last transfer in a read burst.

Port	Clock Domain	Direction	Description
m0_dma_axi_rvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling the required read data.
m0_dma_axi_rready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept the read data and response information.

Note:

1. Gen3 uses clk_usr_div2_i. Gen1 and Gen2 use sys_clk_i.

Table 4.16. AXI-Stream RX Interface (DMA)

Port	Clock Domain	Direction	Description
tx0_dma_axist_tready_o [255:0]	clk_usr_div2_i	Output	RX Tready in AXI-Stream Spec.
tx0_dma_axist_tvalid_i	clk_usr_div2_i	Input	RX Tvalid in AXI-Stream Spec.
tx0_dma_axist_tdata_i	clk_usr_div2_i	Input	RX Tdata in AXI-Stream Spec.
tx0_dma_axist_tlast_i	clk_usr_div2_i	Input	RX Tlast in AXI-Stream Spec.

4.12. AXI Data Interface (Bridge Mode)

Table 4.17. AXI-MM Manager Write Interface (Bridge Mode)

Port	Clock Domain	Direction	Description
m0_aximm_awid_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is the identification tag for the write address group of signals.
m0_aximm_awaddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The write address in a write transaction.
m0_aximm_awlen_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Burst mode is not supported. Always 8'h00.
m0_aximm_awsize_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the size of each transfer.
m0_aximm_awburst_o [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Burst mode is not supported. Always 2'b00.
m0_aximm_awlock_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_awprot_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_awcache_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_awvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid write address and control information.
m0_aximm_awready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_aximm_wdata_o [31:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Write data.
m0_aximm_wstrb_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
m0_aximm_wlast_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the last transfer in a write burst.
m0_aximm_wvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that valid write data and strobes are available.
m0_aximm_wready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate can accept the write data.
m0_aximm_bid_i [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal is the ID tag of the write response.

Port	Clock Domain	Direction	Description
m0_aximm_bresp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the write transaction.
m0_aximm_bvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling a valid write response.
m0_aximm_bready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept a write response.
m0_aximm_arid_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is the identification tag for the read address group of signals.
m0_aximm_araddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The read address gives the address of the first transfer in a read burst transaction.
m0_aximm_arlen_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the exact number of transfers in a burst.
m0_aximm_arsize_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates the size of each transfer.
m0_aximm_arburst_o [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Burst mode is not supported. Always 2'b00.
m0_aximm_arprot_o [2:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_arlock_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_arcache_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_arvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid read address and control information.
m0_aximm_arready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_aximm_arqos_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_aruser_o [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal is unused and always 0.
m0_aximm_rid_i [7:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal is the identification tag for the read data group of signals generated by the subordinate.
m0_aximm_rdata_i [31:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	Read data.
m0_aximm_resp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the read transfer.
m0_aximm_rlast_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the last transfer in a read burst.
m0_aximm_rvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling the required read data.
m0_aximm_rready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept the read data and response information.

Note:

1. Gen1 and Gen2 use sys_clk_i. Gen3 (only in DMA with Bridge Mode) uses clk_usr_div2_i.

Table 4.18. AXI-Lite Manager Interface (Bridge Mode)

Port	Clock Domain	Direction	Description
m0_axil_awaddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The write address in a write transaction.
m0_axil_awvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid write address and control information.
m0_axil_awready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_axil_wdata_o [31:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	Write data.
m0_axil_wstrb_o [3:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
m0_axil_wvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that valid write data and strobes are available.
m0_axil_wready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate can accept the write data.
m0_axil_bresp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the write transaction.
m0_axil_bvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling a valid write response.
m0_axil_bready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept a write response.
m0_axil_araddr_o [63:0]	clk_usr_div2_i/ sys_clk_i ¹	Output	The read address gives the address of the first transfer in a read burst transaction.
m0_axil_arvalid_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the channel is signaling valid read address and control information.
m0_axil_arready_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the subordinate is ready to accept an address and associated control signals.
m0_axil_rdata_i [31:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	Read data.
m0_axil_rresp_i [1:0]	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates the status of the read transfer.
m0_axil_rvalid_i	clk_usr_div2_i/ sys_clk_i ¹	Input	This signal indicates that the channel is signaling the required read data.
m0_axil_rready_o	clk_usr_div2_i/ sys_clk_i ¹	Output	This signal indicates that the manager can accept the read data and response information.

Note:

1. Gen1 and Gen2 use sys_clk_i. Gen3 (only in DMA with Bridge Mode) uses clk_usr_div2_i.

5. Register Description

Table 5.1. Register Access Abbreviations

Abbreviation	Meaning
RW	Read and Write access
RO	Read only
WO	Write only
RW1C	Read write 1 to clear

5.1. Hard IP Core Configuration and Status Registers

The Lattice PCIe x4 IP Core configuration registers have default values that are appropriate for most applications. Customers typically would only want to change a small number of values such as Vendor/Device ID and BAR configuration. Such changes can be made through LMMI writes prior to core reset release or through the IP generation user interface. The registers defined in the sections below are the same set for all links. The registers are configured through LMMI and APB interface.

Table 5.2 lists the offset address for the Hard IP Core Registers.

Table 5.2. Base Address for Hard IP Core Registers

Registers	Offset Address
mgmt_tlb	0x02000
mgmt_ptl	0x03000
mgmt_ftl	0x04000
mgmt_ftl_mf[1]	0x05000
mgmt_ftl_mf[2]	0x06000
mgmt_ftl_mf[3]	0x07000
pcie_ll_BASE	0x0F000

Table 5.3. Hard PCIe Core Register Mapping

Register Block	Start Byte Offset	End Byte Offset
PHY Register (Lane 0 PMA)	19'h2C000	19'h2C0FF
PHY Register (Lane 0 MPCS)	19'h2C100	19'h2C1FF
PHY Register (Lane 1 PMA)	19'h2C200	19'h2C2FF
PHY Register (Lane 1 MPCS)	19'h2C300	19'h2C3FF
PHY Register (Lane 2 PMA)	19'h2C400	19'h2C4FF
PHY Register (Lane 2 MPCS)	19'h2C500	19'h2C5FF
PHY Register (Lane 3 PMA)	19'h2C600	19'h2C6FF
PHY Register (Lane 3 MPCS)	19'h2C700	19'h2C7FF

5.1.1. EP Configuration Settings

The Lattice PCIe x4 IP Core supports Endpoint (EP) operation. The current mode of operation is determined by the core's CSR.

The following table illustrates the CSR values that are recommended for EP and RP applications.

Table 5.4. CSR Values Recommended for EP Applications

Register Field	Offset	EndPoint
mgmt_tlb_ltssm_port_type_ds_us_n	0x2040	1'b0
mgmt_ftl_cfg_type1_type0_n	0x4030	1'b0
mgmt_ftl_decode_ignore_poison	0x4010	1'b0
mgmt_ftl_decode_t1_rx_bypass_msg_dec	0x4014	1'b0
mgmt_ftl_pcie_cap_slot_implemented	0x4080	1'b0
mgmt_ftl_pcie_cap_device_port_type	0x4080	4'h0
mgmt_ftl_id3_class_code	0x4048	User Application Specific
mgmt_ftl_ari_cap_disable	0x40E0	1'b0
mgmt_ftl_msi_cap_disable	0x40E8	1'b0
mgmt_ftl_msi_cap_mult_message_capable	0x40E8	User Application Specific
mgmt_ftl_msix_cap_table_size	0x40F0	User Application Specific
mgmt_ftl_msix_cap_disable	0x40F0	1'b0 (Enabled)
mgmt_ftl_aer_cap_en_surprise_down_error	0x4100	1'b0

5.1.2. mgmt_tlb (0x02000)

The following are the register sets with the 0x2000 base address.

5.1.2.1. LTSSM Register Set

ltssm_simulation Register 0x0

This register set is used for LTSSM simulation speed reduction.

Table 5.5. ltssm_simulation Register 0x0

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	reduce_ts1	RW	1	0x0	Reduce the minimum number of TS1 transmitted in Polling.Active from 1024 to 16 to shorten simulation time. 0 – Disable 1 – Enable
[0]	reduce_timeouts	RW	1	0x0	Reduce LTSSM timeouts to shorten simulation time. When enabled, 1 ms-> 20 µs, 2 ms->40 µs, 12 ms->60 µs, 24 ms->80 µs, 32 ms->100 µs, and 48 ms->160 µs. 0 – Disable 1 – Enable

ltssm_cfg_lw_start Register 0x34

This register set is used for LTSSM CFG.LWSTART configuration.

Table 5.6. ltssm_cfg_lw_start Register 0x34

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1:0]	min_time	RW	2	0x0	Minimum time spent in Cfg.LW.Start before exit is permitted. 0 – 4 µs 1 – 16 µs 2 – 64 µs 3 – 256 µs

ltssm_latch_rx Register 0x38

This register set is used for LTSSM latch RX configuration.

Table 5.7. ltssm_latch_rx Register 0x38

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	30	0x0	—
[0]	link_lane	RW	1	0x1	<p>Enable latching each lane's received link and lane numbers and state exit condition during LTSSM Configuration link width negotiation.</p> <p>0 – Disable. The lane is included in the link if it is receiving the state exit criteria on the clock cycle that the link width and state exit transition is occurring. A received Physical Layer error occurring close to the clock cycle that the link width is being determined results in a reduction of link width even if the lane had previously recorded valid state exit criteria.</p> <p>1 – Enable. The lane is included in the link if it met the state exit criteria at any time during the state. This is the recommended setting since received Physical Layer errors are less likely to result in reduced link width.</p>

ltssm_cfg Register 0x3c

This register set is used for LTSSM configuration.

Table 5.8. ltssm_cfg Register 0x3c

Field	Name	Access	Width	Reset	Description
[31:28]	lw_start_updn_end_delay	RW	4	0x9	<p>LTSSM CFG_[US/DS]_LW_START normal CFG_[US/DS]_LW_START TS1 transmissions and parsing of received TS OS begins (lw_start_updn_end_delay * 64) symbols after the bp_ltssm_cfg_lw_start_updn 1 to 0 transition occurs at the end of PHY adaptation.</p> <p>This delay is intended to flush any corrupted PHY rx data due to the PHY adaptation through the Link Layer Core before the Core begins paying attention to received data again.</p>
[27:24]	lw_start_updn_start_delay	RW	4	0x8	LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn==1 assertion is delayed by (lw_start_updn_start_delay * 64) symbols from CFG_[US/DS]_LW_START state entry. The start delay is intended to avoid the PHY beginning adaptation, and thus corrupting the input data, before the link partner data stream has ended. When the Core reaches CFG_[US/DS]_LW_START before the link partner, the link partner may still be in Recovery.Idle with an active data stream. The start delay must be long enough to delay PHY adaptation until the receive data stream has ended or else SKP Data Parity Errors and Receiver Errors can be detected and recorded by the Core due to the PHY corrupting the receive data stream due to adaptation.
[23:12]	lw_start_updn_count	RW	12	0xfa	LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn==1 duration is set to (lw_start_updn_count * 1024) ns. 0==Disabled.
[11:8]	lw_start_updn_rate_en	RW	4	0xf	<p>LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn==1 rate enable/disable. Controls for which speeds the bp_ltssm_cfg_lw_start_updn feature is supported. One bit is provided to enable/disable each speed supported {16G, 8G, 5G, 2.5G}. Bit positions for speeds that are not supported by a given core delivery must be set to 0.</p> <p>0 – Disable feature when at the associated link speed.</p> <p>1 – Enable feature when at the associated link speed.</p>
[7:6]	reserved	RO	2	0x0	—

Field	Name	Access	Width	Reset	Description
[5]	lw_start_updn_eie_en	RW	1	0x0	<p><i>lw_start_updn_eie_en</i></p> <p>LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn==1 EIE Tx OS enable.</p> <p>0 – Disabled 1 – Enabled</p>
[4]	lw_start_updn_en_dir_ds	RW	1	0x0	<p>LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn==1 directed down-configure enable.</p> <p>0 – Do not assert bp_ltssm_cfg_lw_start_updn==1 when the CFG_[US/DS]_LW_START entry is due to locally directed downconfigure.</p> <p>1 – Assert bp_ltssm_cfg_lw_start_updn==1 when the CFG_[US/DS]_LW_START entry is due to locally directed down-configure.</p>
[3:2]	reserved	RO	2	0x0	—
[1]	lw_start_updn_timer_en	RW	1	0x0	<p>LTSSM CFG_[US/DS]_LW_START bp_ltssm_cfg_lw_start_updn Timer Enable. Register <i>lw_start_updn_timer_en</i> can be set to stay in adaptation for a fixed time period instead of relying on the PHY to have a port bp_ltssm_cfg_lw_start_updn_ack that is asserted at the end of adaptation. Only one of <i>lw_start_updn_timer_en</i> and <i>lw_start_updn_ack_en</i> can be set to 1.</p> <p>0 – Disabled. 1 – Deassert bp_ltssm_cfg_lw_start_updn after (<i>lw_start_updn_count</i> * 1024) ns has expired.</p>
[0]	lw_start_updn_ack_en	RW	1	0x0	<p>LTSSM Configuration Link Width Start bp_ltssm_cfg_lw_start_updn Ack Enable</p> <p>0 – Disabled. Output port bp_ltssm_cfg_lw_start_updn is held == 0 and input port bp_ltssm_cfg_lw_start_updn_ack is ignored. When CFG_[DS/US]_LW_START is entered from Recovery, the transition from CFG_[DS/US]_LW_START to CFG_[DS/US]_LW_ACCEPT occurs after a minimum of 4 μs.</p> <p>1 – Enabled. If also enabled, through mgmt_tlb_ltssm_cfg_lw_start_updn_rate_en, at the current link speed, output port bp_ltssm_cfg_lw_start_updn is set upon CFG_[DS/US]_LW_START entry from Recovery and input port bp_ltssm_cfg_lw_start_updn_ack is used. The transition from CFG_[DS/US]_LW_START to CFG_[DS/US]_LW_ACCEPT occurs only after the PHY has asserted bp_ltssm_cfg_lw_start_updn_ack == 1 and additionally a minimum of 4 μs has elapsed.</p> <p>bp_ltssm_cfg_lw_start_updn_ack must not be withheld so long that the state timeout of 24 ms expires or the link exits to detect, and the link goes down, which is a serious error.</p>

ltssm_port_type Register 0x40

This register set is used for the LTSSM port type configuration.

Table 5.9. ltssm_port_type Register 0x40

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	ds_us_n	RW	1	0x0	Determines the PCI Express port type which affects many aspects of LTSSM training. 0 – Upstream Port 1 – Downstream Port

ltssm_ds_link Register 0x44

This register set is used for the LTSSM downstream link configuration.

Table 5.10. ltssm_ds_link Register 0x44

Field	Name	Access	Width	Reset	Description
[31:5]	reserved	RO	25	0x0	—
[4:0]	number	RW	5	0x0	For downstream ports only, unique Link Number assigned to the link and used in TS sets during LTSSM Configuration

ltssm_detect_quiet Register 0x48

This register set is used for the LTSSM Detect.Quiet configuration.

Table 5.11. ltssm_detect_quiet Register 0x48

Field	Name	Access	Width	Reset	Description
[31:5]	reserved	RO	25	0x0	—
[4:0]	number	RW	5	0x0	For downstream ports only, unique Link Number assigned to the link and used in TS sets during LTSSM Configuration

ltssm_rx_det Register 0x4c

This register set is used for the LTSSM receiver detection configuration.

Table 5.12. ltssm_rx_det Register 0x4c

Field	Name	Access	Width	Reset	Description
[31]	override	RW	1	0x0	Lane receiver detection mask enable. 0 – Disable 1 – Enable
[30:16]	reserved	RO	15	0x0	—
[15:0]	mask	RW	16	0x0	<i>mask</i> Lane receiver detection mask. When override==1, mask determines which lanes attempt receiver detection. For each lane[i]: 0 – Skip receiver detection and exclude the lane from the link. 1 – Perform receiver detection and use result to determine whether to include/exclude the lane from the link.

ltssm_nfts Register 0x50

This register set is used for the LTSSM NFTS configuration.

Table 5.13. ltssm_nfts Register 0x50

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15:8]	to_extend	RW	8	0x7f	Number of FTS set transfer times to wait in addition to the time required to transmit the requested NFTS sets before timing out to Recovery on Rx_L0s exit.
[7:0]	nfts	RW	8	0xff	Number of FTS sets to request link partner transmit when exiting L0s. NFTS value transmitted in TS1 and TS2 Ordered Sets during training.

ltssm_ds_initial_auto Register 0x54

This register set is used for the LTSSM initial link speed configuration.

Table 5.14. ltssm_ds_initial_auto Register 0x54

Field	Name	Access	Width	Reset	Description
[31]	rate_enable	RW	1	0x0	<p><i>rate_enable</i></p> <p>Determines whether link speed up is requested by the core after the first entry to L0 following state Detect. If neither port directs the link to a higher speed, the link remains at 2.5G unless software initiates a speed change. It is recommended to set <i>rate_enable</i>=1 and <i>rate</i>=maximum supported speed.</p> <p>0 – Let the link partner or software initiate initial speed changes.</p> <p>1 – Make 1 attempt to direct the link to the maximum speed specified by <i>rate</i>. The speed achieved is the maximum speed, less than or equal to <i>rate</i>, that both the core and link partner support.</p>
[30:2]	reserved	RO	29	0x0	Number of FTS set transfer times to wait in addition to the time required to transmit the requested NFTS sets before timing out to Recovery on Rx_L0s exit.
[1:0]	rate	RW	2	0x0	<p><i>rate</i></p> <p>When <i>rate_enable</i>=1, indicates the maximum rate that is attempted to negotiate on the initial link training from Detect. Only speeds supported by the core can be indicated.</p> <p>0 – 2.5G</p> <p>1 – 5G</p> <p>2 – 8G</p> <p>3 – 16G</p>

ltssm_select_deemphasis Register 0x58

This register set is used for the LTSSM 2.5/5G deemphasis configuration.

Table 5.15. ltssm_select_deemphasis Register 0x58

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	6db_3_5db_n	RW	1	0x1	<p>For 5G capable cores only: For upstream ports only, sets the default deemphasis for 5G operation during LTSSM State Detect.</p> <p>0 – -3.5dB</p> <p>1 – -6dB</p>

ltssm_beacon Register 0x5c

This register set is used for the LTSSM Beacon configuration.

Table 5.16. ltssm_beacon Register 0x5c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	l2_d3hot_enable	RW	1	0x0	<p><i>l2_d3hot_enable</i> L2 wake Beacon transmission control.</p> <p>0 – Disabled. The customer design must wake the link through WAKE# pin assertion. Set to 0 when using PHY which do not support Beacon transmission. Set to 0 if the core is not clocked (some PHY remove the core's clock in L2 while others supply a keep alive clock) or powered (some applications remove core power in L2 to maximize power savings) in L2, as the core is unable to initiate Beacon generation in these cases.</p> <p>1 – Transmit beacon when directed to wake the link from L2.</p>

ltssm_mod_cpl Register 0x60

This register set is used for the LTSSM Modified Compliance configuration.

Table 5.17. ltssm_mod_cpl Register 0x60

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	31	0x0	—
[1]	one_eeos	RW	1	0x1	<p>When entering Modified Compliance Pattern determines the number of EIEOS blocks to send.</p> <p>0 – Send 8 EIEOS blocks to ensure receiver lock</p> <p>1 – Send 1 EIEOS (as per Spec)</p>
[0]	exit_direct_to_detect	RW	1	0x0	<p><i>exit_direct_to_detect</i> When transmitting Modified Compliance Pattern and cfg_enter_compliance == 0, determines which of the two PCIe Specification optional behaviors is selected.</p> <p>0 – Do not exit to Detect for this reason.</p> <p>1 – Exit to Detect.</p>

ltssm_rx_elec_idle Register 0x64

This register set is used for the LTSSM Rx Electrical Idle configuration.

Table 5.18. ltssm_rx_elec_idle Register 0x64

Field	Name	Access	Width	Reset	Description
[31]	rec_spd_infer_rcvr_lock	RW	1	0x0	<p>Recovery Speed successful and unsuccessful inference expand to Recovery.RcvrLock enable.</p> <p>0 – Do not include time spent in Recovery.RcvrLock when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed.</p> <p>1 – Include time spent in Recovery.RcvrLock when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed.</p>

Field	Name	Access	Width	Reset	Description
[30]	rec_pd_infer_rcvr_cfg	RW	1	0x0	Recovery Speed successful and unsuccesful inference expand to Recovery.RcvrCfg enable. 0 – Do not include time spent in Recovery.RcvrCfg when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed. 1 – Include time spent in Recovery.RcvrCfg when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed.
[29]	rec_spd_infer_eq_ph0123	RW	1	0x0	Recovery Speed successful and unsuccesful inference expand to Recovery.EqPhase0123 enable. 0 – Do not include time spent in Recovery.EqPhase0123 when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed. 1 – Include time spent in Recovery.EqPhase0123 when calculating successful and unsuccessful speed change electrical idle inference in Recovery.Speed.
[28:4]	reserved	RO	25	0x0	—
[3:0]	filter	RW	4	0x1	After entering a LTSSM state that monitors, pipe_rx_elec_idle for exit, ignore pipe_rx_elec_idle for 128 * filter) nanoseconds to enable tolerance for pipe_rx_elec_idle not latency matched with the associaed pipe_rx_data.

ltssm_compliance_toggle Register 0x68

This register set is used for the LTSSM Compliance Toggle configuration.

Table 5.19. ltssm_compliance_toggle Register 0x68

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RO	28	0x0	—
[3:2]	max_speed	RW	2	0x3	Maximum speed of compliance patterns that should be generated 0 – 2.5G 1 – 5G 2 – 8G 3 – 16G
[1:0]	min_speed	RW	2	0x0	Minimum speed of compliance patterns that should be generated 0 – 2.5G 1 – 5G 2 – 8G 3 – 16G

ltssm_prevent_rx_ts_entry_to Register 0x6c

This register set is used for the LTSSM State Rx TS Transition Prevention configuration.

Table 5.20. ltssm_prevent_rx_ts_entry_to Register 0x6c

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RO	28	0x0	—
[3]	compliance	RW	1	0x0	LTSSM to Polling.Compliance Rx TS state transition disable. 0 – Enabled 1 – Disabled
[2]	loopback	RW	1	0x0	LTSSM to Loopback Follower Rx TS state transition disable. 0 – Enabled 1 – Disabled
[1]	hot_reset	RW	1	0x0	LTSSM to Hot Reset Rx TS state transition disable. 0 – Enabled 1 – Disabled
[0]	disable	RW	1	0x0	LTSSM to Disable Rx TS state transition disable. 0 – Enabled 1 – Disabled

ltssm_link Register 0x80

This register is used for the Current Link Status configuration.

Table 5.21. ltssm_link Register 0x80

Field	Name	Access	Width	Reset	Description
[31]	dl_link_up	RO	1	0x0	Data Link Layer link up status. 0 – Down 1 – Up
[30]	pl_link_up	RO	1	0x0	Physical Layer link up status. 0 – Down 1 – Up
[29:20]	Reserved	RO	10	0x0	—
[19:16]	lane_rev_status	RO	4	0x0	Indicates the current lane reversal status: lane_rev_status[0], 1 == Full Reverse is in effect else 0 lane_rev_status[1], 1 == x2 Reverse is in effect (\geq 4 lane only) else 0 lane_rev_status[2], 1 == x4 Reverse is in effect (\geq 8 lane only) else 0 lane_rev_status[3], 1 == x8 Reverse is in effect (\geq 16 lane only) else 0
[15]	idle_infer_rec_rcvr_cfg	RW1C	1	0x0	Electrical Idle inference status in Recovery.RcvrCfg. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[14]	idle_infer_loopback_slave	RW1C	1	0x0	Electrical Idle inference status in Loopback.Active as a Loopback Follower. 0 – Otherwise 1 – Event occurred. Write 1 to clear
[13]	idle_infer_rec_speed2_success	RW1C	1	0x0	Electrical Idle inference status in Recovery.Speed on a successful speed negotiation. 0 – Otherwise 1 – Event occurred. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[12]	idle_infer_rec_speed2_unsuccess	RW1C	1	0x0	Electrical Idle inference status in Recovery.Speed on an unsuccessful speed negotiation. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[11]	idle_infer_l0_to_rec_rcvr_lock	RW1C	1	0x0	Electrical Idle inference status in L0 – event causes entry into Recovery.RcvrLock. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[10:9]	Reserved	RO	2	0x0	—
[8]	speed_change_fail	RW1C	1	0x0	Speed Change Failure error indicator. 0 – Otherwise 1 – Speed change failure occurred. Write 1 to clear.
[7:2]	Reserved	RO	6	0x0	—
[1:0]	speed	RO	2	0x0	Current LTSSM Link Speed. Only link speeds supported by the core is be indicated. 0 – 2.5G 1 – 5G 2 – 8G 3 – 16G

Itssm_Itssm Register 0x84

This register set is used for LTSSM State Machine State configuration.

Table 5.22. Itssm_Itssm Register 0x84

Field	Name	Access	Width	Reset	Description
[31:20]	Reserved	RO	12	0x0	—
[19:16]	sub_state	RO	4	0x1	Current LTSSM Minor State. Encoding varies depending upon the Current LTSSM Major State. 0 – DETECT_INACTIVE 1 – DETECT QUIET 2 – DETECT_SPD_CHG0 3 – DETECT_SPD_CHG1 4 – DETECT_ACTIVE0 5 – DETECT_ACTIVE1 6 – DETECT_ACTIVE2 7 – DETECT_P1_TO_P0 8 – DETECT_P0_TO_P1_0 9 – DETECT_P0_TO_P1_1 10 – DETECT_P0_TO_P1_2 0 – POLLING_INACTIVE 1 – POLLING_ACTIVE_ENTRY 2 – POLLING_ACTIVE 3 – POLLING_CFG 4 – POLLING_COMP 5 – POLLING_COMP_ENTRY 6 – POLLING_COMP_EIOS 7 – POLLING_COMP_EIOS_ACK 8 – POLLING_COMP_IDLE 0 – CONFIGURATION_INACTIVE 1 – CONFIGURATION_US_LW_START 2 – CONFIGURATION_US_LW_ACCEPT

Field	Name	Access	Width	Reset	Description
					3 – CONFIGURATION_US_LN_WAIT 4 – CONFIGURATION_US_LN_ACCEPT 5 – CONFIGURATION_DS_LW_START 6 – CONFIGURATION_DS_LW_ACCEPT 7 – CONFIGURATION_DS_LN_WAIT 8 – CONFIGURATION_DS_LN_ACCEPT 9 – CONFIGURATION_COMPLETE 10 – CONFIGURATION_IDLE 0 – LO_INACTIVE 1 – LO_LO 2 – LO_TX_EL_IDLE 3 – LO_TX_IDLE_MIN 0 – RECOVERY_INACTIVE 1 – RECOVERY_RCVR_LOCK 2 – RECOVERY_RCVR_CFG 3 – RECOVERY_IDLE 4 – RECOVERY_SPEED0 5 – RECOVERY_SPEED1 6 – RECOVERY_SPEED2 7 – RECOVERY_SPEED3 8 – RECOVERY_EQ_PH0 9 – RECOVERY_EQ_PH1 10 – RECOVERY_EQ_PH2 11 – RECOVERY_EQ_PH3 0 – DISABLED_INACTIVE 1 – DISABLED_0 2 – DISABLED_1 3 – DISABLED_2 4 – DISABLED_3 0 – LOOPBACK_INACTIVE 1 – LOOPBACK_ENTRY 2 – LOOPBACK_ENTRY_EXIT 3 – LOOPBACK_EIOS 4 – LOOPBACK_EIOS_ACK 5 – LOOPBACK_IDLE 6 – LOOPBACK_ACTIVE 7 – LOOPBACK_EXIT0 8 – LOOPBACK_EXIT1 0 – HOT_RESET_INACTIVE 1 – HOT_RESET_HOT_RESET 2 – HOT_RESET_LEADER_UP 3 – HOT_RESET_LEADER_DOWN 0 – TX_LOS_INACTIVE 1 – TX_LOS_IDLE 2 – TX_LOS_TO_LO 3 – TX_LOS_FTS0 4 – TX_LOS_FTS1 0 – L1_INACTIVE 1 – L1_IDLE 2 – L1_SUBSTATE 3 – L1_TO_LO 0 – L2_INACTIVE 1 – L2_IDLE 2 – L2_TX_WAKE0

Field	Name	Access	Width	Reset	Description
					3 – L2_TX_WAKE1 4 – L2_EXIT 5 – L2_SPEED
[15:4]	Reserved	RO	12	0x0	—
[3:0]	state	RO	4	0x0	Current LTSSM Major State 0 – DETECT 1 – POLLING 2 – CONFIGURATION 3 – L0 4 – RECOVERY 5 – DISABLED 6 – LOOPBACK 7 – HOT_RESET 8 – TX_LOS 9 – L1 10 – L2

Itssm_rx_l0s Register 0x88

This register set is used for the Rx L0s State Machine State configuration.

Table 5.23. Itssm_rx_l0s Register 0x88

Field	Name	Access	Width	Reset	Description
[31:3]	Reserved	RO	29	0x0	—
[2:0]	state	RO	3	0x0	Current LTSSM RX L0s State. 0 – RX_LOS_L0 1 – RX_LOS_ENTRY 2 – RX_LOS_IDLE 3 – RX_LOS_FTS 4 – RX_LOS_REC

I0_to_rec Register 0x8c

This register set is used to report different events causing LO state to Recovery state transition.

Table 5.24. I0_to_rec Register 0x8c

Field	Name	Access	Width	Reset	Description
[31:15]	reserved	RO	17	0x0	—
[14]	direct_to_detect_fast	RW1C	1	0x0	Recovery is entered from LO due to assertion of mgmt_tlb_ltssm_direct_to_detect_fast. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[13]	direct_to_recovery_ch_bond	RW1C	1	0x0	Recovery is entered from LO due to more lane skew than the Channel Bond circuit can tolerate or is due to channel bond failing to occur within the expected timeout period. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[12]	direct_to_loopback_entry	RW1C	1	0x0	Recovery is entered from LO due to being directed into Leader Loopback. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[11]	directed_speed_change	RW1C	1	0x0	Recovery is entered from LO due to being directed to make a speed change. This includes the initial hardware-initiated speed change(s) which are made when first exiting Detect.Quiet to LO. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[10]	I0_to_rec_rcvr_lock_rx_ts12	RW1C	1	0x0	Recovery is entered from LO due to receiving TS1 or TS2 ordered sets. The link partner is directing Recovery entry. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[9]	I0_to_rec_rcvr_lock_rx_8g_eie	RW1C	1	0x0	Recovery is entered from LO due to receiving EIE ordered sets at \geq 8G. The link partner is directing Recovery entry. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[8]	I0_to_rec_rcvr_lock_rx_infer	RW1C	1	0x0	Recovery is entered from LO due to inferring Electrical Idle due to no SKP ordered set received in 128 μ s. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[7]	direct_to_recovery_phy	RW1C	1	0x0	Recovery is entered from LO due to receiving a burst of \sim 1024 clock cycles of data containing PHY errors at 2.5G or 5G. This normally occurs only when the PHY has lost lock on one or more lanes. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[6]	direct_to_recovery_frame	RW1C	1	0x0	Recovery is entered from LO due to receiving one or more framing errors at \geq 8G. This occurs due to Rx bit errors which are expected every few minutes at PCIe Specified BER of 10^{-12} . 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[5]	direct_to_recovery_replay	RW1C	1	0x0	Recovery is entered from LO due to the original and three replay TLP transmissions failing to receive ACK DLLP acknowledgment. 0 – Otherwise 1 – Event occurred. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[4]	direct_to_hot_reset	RW1C	1	0x0	Recovery is entered from L0 due to being directed into Hot Reset (Secondary Bus Reset Register). 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[3]	direct_to_disable	RW1C	1	0x0	Recovery is entered from L0 due to being directed into Disable (Link Disable Register). 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[2]	rx_l0s_direct_to_recovery	RW1C	1	0x0	Recovery is entered from L0 due to failing to receive the complete Rx_L0S FTS exit sequence within the PCIe Specification allowed timeout period. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[1]	autonomous_width_change	RW1C	1	0x0	Recovery is entered from L0 due to directed autonomous width change. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[0]	directed_retrain_link	RW1C	1	0x0	Recovery is entered from L0 due to directed retrain link (Retrain Link Register). 0 – Otherwise 1 – Event occurred. Write 1 to clear.

Itssm_rx_detect Register 0x90

This register set is used for the Receiver detection status.

Table 5.25. Itssm_rx_detect Register 0x90

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15:0]	lanes	RO	16	0x0	Per lane receiver detection status. For each lane: 0 – Unconnected 1 – Present

Itssm_configured Register 0x94

This register set is used for the Configured link status.

Table 5.26. Itssm_configured Register 0x94

Field	Name	Access	Width	Reset	Description
[31:25]	reserved	RO	7	0x0	—
[24:16]	link_num	RO	9	0x1ff	Link Number configured during LTSSM Training. link_num == 0x1FF on fundamental reset, changes to 0x1F7 (KPAD) when entering CFG_US_LW_START or CFG_DS_LW_START (the start of LTSSM Configuration) and then changes to the negotiated Link Number determined during LTSSM Configuration when the LTSSM changes from CFG_COMPLETE to CFG_IDLE. This field is provided for diagnostics.
[15:0]	lanes	RO	16	0x0	Per lane configured link status. Each lane status resets to 0. After Receiver Detection results are available, each lane status is updated to show which lanes detected receivers. After a link has been formed, each lane status is updated to show which lanes are part of the configured link. For each lane: 0 – Lane did not configure into the link. 1 – Lane configured into the link.

Itssm_direct_to_detect Register 0x98

This register set is used for the Rec Rcvr Lock to Detect controls.

Table 5.27. Itssm_direct_to_detect Register 0x98

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15]	fast	RW	9	0x0	A rising edge on this signal instructs the state machine to proceed from L0 or Recovery to Detect as quickly as possible.
[14:8]	Reserved	RO	7	0x0	—
[7:0]	timer	RW	8	0x0	This value determines the timeout delay for the state machine to proceed from Recovery Rcvr Lock to Detect when no TS sets are received. A value of 0 disables this timeout.

Itssm_equalization Register 0x9c

This register set is used for the for \geq 8G capable cores only: LTSSM equalization status.

Table 5.28. Itssm_equalization Register 0x9c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	fail	RO	1	0x0	Equalization Failure error indicator. 0 – Otherwise 1 – Equalization failure.

Itssm_crosslink Register 0xa0

This register set is used for the TSSM crosslink status.

Table 5.29. Itssm_crosslink Register 0xa0

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	ds_us_n	RO	1	0x0	Crosslink port type. When active==1, indicates which personality the port assumed during crosslink negotiation. 0 – Upstream 1 – Downstream
[0]	active	RO	1	0x0	Crosslink active indicator. 0 – Otherwise 1 – Link is operating in a crosslink configuration.

5.1.2.2. Physical Layer Status Register Set

Physical Layer Tx Underflow Error Status Register – 0xa4

Table 5.30. Physical Layer Tx Underflow Error Status Register – 0xa4

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	err_tx_pipe_underflow	RW1C	1	0x0	0 – Otherwise 1 – Physical Layer Tx data needed to be forwarded to the lanes for transmission and some, but not all lanes, were ready to accept data causing some lanes to under low. This bit stays asserted once set. Write 1 to clear.

Table 5.31 illustrates the Physical Lane RX Status Register set with its offset and register address.

Table 5.31. Physical Lane Rx Status Registers

Register Name	Offset Address	Description
pl_rx0 Register	0xa8	Lane Rx Status 0 register – TS2 and TS1 OS detection [0 to 15 bits]
pl_rx1 Register	0xac	Lane Rx Status 1 – Inverted TS2 and TS1 OS detection [0 to 15 bits]
pl_rx2 Register	0xb0	Lane Rx Status 2 – FTS and SKP OS detection
pl_rx3 Register	0xb4	Lane Rx Status 3 – EIOS detection and EIE detection
pl_rx4 Register	0xb8	Lane Rx Status 4 – Data Block is received and SDS ordered set detection

pl_rx0 Register 0xa8 – Lane Rx Status 0 Register

Table 5.32. pl_rx0 Register 0xa8 – Lane Rx Status 0 Register

Field	Name	Access	Width	Reset	Description
[31]	ts2_detect15	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[30]	ts2_detect14	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[29]	ts2_detect13	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear

Field	Name	Access	Width	Reset	Description
[28]	ts2_detect12	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[27]	ts2_detect11	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[26]	ts2_detect10	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[25]	ts2_detect9	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[24]	ts2_detect8	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[23]	ts2_detect7	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[22]	ts2_detect6	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[21]	ts2_detect5	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[20]	ts2_detect4	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[19]	ts2_detect3	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[18]	ts2_detect2	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[17]	ts2_detect1	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[16]	ts2_detect0	RW1C	1	0x0	ts2_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[15]	ts1_detect15	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[14]	ts1_detect14	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[13]	ts1_detect13	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[12]	ts1_detect12	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear

Field	Name	Access	Width	Reset	Description
[11]	ts1_detect11	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[10]	ts1_detect10	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[9]	ts1_detect9	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[8]	ts1_detect8	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[7]	ts1_detect7	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[6]	ts1_detect6	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[5]	ts1_detect5	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[4]	ts1_detect4	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[3]	ts1_detect3	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[2]	ts1_detect2	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[1]	ts1_detect1	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[0]	ts1_detect0	RW1C	1	0x0	ts1_detect[i] is set to 1 when a TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear

pl_rx1 Register Oxac – Lane Rx Status 1

Table 5.33. pl_rx1 Register Oxac – Lane Rx Status 1

Field	Name	Access	Width	Reset	Description
[31]	ts2i_detect15	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[30]	ts2i_detect14	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[29]	ts2i_detect13	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[28]	ts2i_detect12	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[27]	ts2i_detect11	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[26]	ts2i_detect10	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[25]	ts2i_detect9	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[24]	ts2i_detect8	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[23]	ts2i_detect7	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[22]	ts2i_detect6	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[21]	ts2i_detect5	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[20]	ts2i_detect4	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[19]	ts2i_detect3	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[18]	ts2i_detect2	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[17]	ts2i_detect1	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[16]	ts2i_detect0	RW1C	1	0x0	ts2i_detect[i] is set to: 1 when an inverted TS2 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[15]	ts1i_detect15	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[14]	ts1i_detect14	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[13]	ts1i_detect13	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[12]	ts1i_detect12	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[11]	ts1i_detect11	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[10]	ts1i_detect10	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[9]	ts1i_detect9	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[8]	ts1i_detect8	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[7]	ts1i_detect7	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[6]	ts1i_detect6	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[5]	ts1i_detect5	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[4]	ts1i_detect4	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[3]	ts1i_detect3	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[2]	ts1i_detect2	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[1]	ts1i_detect1	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[0]	ts1i_detect0	RW1C	1	0x0	ts1i_detect[i] is set to: 1 when an inverted TS1 ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

pl_rx2 Register 0xb0 – Lane Rx Status 2

Table 5.34. pl_rx2 Register 0xb0 – Lane Rx Status 2

Field	Name	Access	Width	Reset	Description
[31]	fts_detect15	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[30]	fts_detect14	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[29]	fts_detect13	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[28]	fts_detect12	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[27]	fts_detect11	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[26]	fts_detect10	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[25]	fts_detect9	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[24]	fts_detect8	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[23]	fts_detect7	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[22]	fts_detect6	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[21]	fts_detect5	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[20]	fts_detect4	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[19]	fts_detect3	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[18]	fts_detect2	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[17]	fts_detect1	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[16]	fts_detect0	RW1C	1	0x0	fts_detect[i] is set to: 1 when a FTS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[15]	skp_detect15	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[14]	skp_detect14	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[13]	skp_detect13	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[12]	skp_detect12	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[11]	skp_detect11	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear..
[10]	skp_detect10	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[9]	skp_detect9	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[8]	skp_detect8	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[7]	skp_detect7	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[6]	skp_detect6	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[5]	skp_detect5	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[4]	skp_detect4	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[3]	skp_detect3	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[2]	skp_detect2	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[1]	skp_detect1	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[0]	skp_detect0	RW1C	1	0x0	skp_detect[i] is set to: 1 when a SKP ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

pl_rx3 Register 0xb4 – Lane Rx Status 3

Table 5.35. pl_rx3 Register 0xb4 – Lane Rx Status 3

Field	Name	Access	Width	Reset	Description
[31]	eie_detect15	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[30]	eie_detect14	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[29]	eie_detect13	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[28]	eie_detect12	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[27]	eie_detect11	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[26]	eie_detect10	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[25]	eie_detect9	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[24]	eie_detect8	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[23]	eie_detect7	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[22]	eie_detect6	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[21]	eie_detect5	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[20]	eie_detect4	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear

Field	Name	Access	Width	Reset	Description
[19]	eie_detect3	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[18]	eie_detect2	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[17]	eie_detect1	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[16]	eie_detect0	RW1C	1	0x0	eie_detect[i] is set to: 1 when a EIE ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear
[15]	eios_detect15	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[14]	eios_detect14	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[13]	eios_detect13	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[12]	eios_detect12	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[11]	eios_detect11	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[10]	eios_detect10	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[9]	eios_detect9	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[8]	eios_detect8	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[7]	eios_detect7	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[6]	eios_detect6	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[5]	eios_detect5	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[4]	eios_detect4	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[3]	eios_detect3	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[2]	eios_detect2	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[1]	eios_detect1	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[0]	eios_detect0	RW1C	1	0x0	eios_detect[i] is set to: 1 when a EIOS ordered set is received on Lane[i]. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

pl_rx4 Register 0xb8 – Lane Rx Status 4

Table 5.36. pl_rx4 Register 0xb8 – Lane Rx Status 4

Field	Name	Access	Width	Reset	Description
[31]	data_detect15	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[30]	data_detect14	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[29]	data_detect13	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[28]	data_detect12	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[27]	data_detect11	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[26]	data_detect10	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[25]	data_detect9	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[24]	data_detect8	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[23]	data_detect7	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[22]	data_detect6	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[21]	data_detect5	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[20]	data_detect4	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[19]	data_detect3	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[18]	data_detect2	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[17]	data_detect1	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[16]	data_detect0	RW1C	1	0x0	data_detect[i] is set to: 1 when a Data Block is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[15]	sds_detect15	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[14]	sds_detect14	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[13]	sds_detect13	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[12]	sds_detect12	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[11]	sds_detect11	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[10]	sds_detect10	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[9]	sds_detect9	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[8]	sds_detect8	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[7]	sds_detect7	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[6]	sds_detect6	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[5]	sds_detect5	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[4]	sds_detect4	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[3]	sds_detect3	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[2]	sds_detect2	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[1]	sds_detect1	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.
[0]	sds_detect0	RW1C	1	0x0	sds_detect[i] is set to: 1 when a SDS ordered set is received on Lane[i] at 8G. 0 otherwise. This bit stays asserted once set. Write 1 to clear.

5.1.2.3. Debug Register Set

debugself_crosslink Register 0xc0

This register set is used for debug to allow Rx detection when Tx is externally looped back to Rx.

Table 5.37. debugself_crosslink Register 0xc0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	0 – Otherwise 1 – For debug use only, configure LTSSM so that it links with itself when core Tx is externally looped back to core Rx

debug_rx_det Register 0xc4

This register set is used for the LTSSM receiver detection bypass configuration.

Table 5.38. debug_rx_det Register 0xc4

Field	Name	Access	Width	Reset	Description
[31:17]	reserved	RO	15	0x0	—
[16]	inhibit	RW	1	0x0	Link receiver detection inhibit. 0 – Perform receiver detection and use result to determine whether to include/exclude lanes from the link. 1 – Skip receiver detection and assume receivers are not present on all lanes.
[15:1]	reserved	RO	15	0x0	—
[0]	bypass	RW	1	0x0	Link receiver detection bypass. If both bypass and inhibit are asserted, bypass takes precedence. 0 – Perform receiver detection and use result to determine whether to include/exclude lanes from the link. 1 – Skip receiver detection and assume receivers are present on all lanes.

debug_force_tx Register 0xc8

This register set is used for debug using TX PIPE signals.

Table 5.39. debug_force_tx Register 0xc8

Field	Name	Access	Width	Reset	Description
[31:10]	reserved	RO	22	0x0	—
[9]	deemph_5g_enable	RW	1	0x0	For 5G capable cores only: Force pipe_tx_deemph at 5G enable. 0 – Disable. 1 – Enable. Force phy_tx_deemph at 5G speed to the value specified by deemph_5g_6db_3_5db_n. The force is applied at 5G speed except during Polling.Compliance, where for compatibility with PCI SIG Workshop Electrical Testing, the force is not applied.
[8]	deemph_5g_3_5db_6db_n	RW	1	0x0	For 5G capable cores only: Force pipe_tx_deemph at 5G value. 0 – -6dB 1 – -3.5dB
[7:4]	reserved	RO	4	0x0	—
[3]	margin_enable	RW	1	0x0	Force pipe_tx_margin enable. 0 – Drive pipe_tx_margin per PCIe Specification. 1 – Drive pipe_tx_margin to value.
[2:0]	margin_value	RW	3	0x0	Force pipe_tx_margin Value.

debug_direct_scramble_off Register 0xcc

This register set is used for scrambling disable control for 2.5G and 5G data rate.

Table 5.40. debug_direct_scramble_off Register 0xcc

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	LTSSM direct scrambling disabled at 2.5G and 5G. 0 – Otherwise 1 – Direct to disable scrambling at 2.5G and 5G during Configuration.Complete.

debug_force_scramble_off_fast Register 0xd0

This register set is used for scrambling disable control for 8G data rate.

Table 5.41. debug_force_scramble_off_fast Register 0xd0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	LTSSM force scrambling disabled at \geq 8G. 0 – Otherwise 1 – Disable scrambling at \geq 8G. Only works for simulation when link partner is also disabling scrambling. Cannot be set for hardware because disabling scrambling at \geq 8G is not permitted per PCIe Specification.

balign Register 0xd4

This register set is used for pipe_block_align_control generation options for 8G data rate. It is not recommended to change the default values of this register.

Table 5.42. balign Register 0xd4

Field	Name	Access	Width	Reset	Description
[31]	state_data_n	RW	1	0x0	When generating pipe_block_align_control (which may be used by some PHY to aid in acquiring \geq 8G block alignment), select between the LTSSM State Algorithm and the Rx Data Observation Algorithm. 0 – Use Rx Data Observation Algorithm 1 – Use the LTSSM State Algorithm
[30:6]	reserved	RO	25	0x0	—
[5]	exclude_loopback_master	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the Loopback Leader state in driving pipe_block_align_control to 0. 0 – Include 1 – Exclude
[4]	exclude_cfg_complete	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the CFG_COMPLETE LTSSM state in driving pipe_block_align_control to 0. pipe_block_align_control is only driven to 0 during CFG_COMPLETE after receiving the required Rx exit criteria to state CFG_IDLE. Due to the v, the core may need to stay in CFG_COMPLETE for a while after receiving the Rx exit criteria in order to also meet the required Tx exit criteria. 0 – Include 1 – Exclude
[3]	exclude_cfg_idle	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the CFG_IDLE LTSSM state in driving pipe_block_align_control to 0. 0 – Include 1 – Exclude
[2]	exclude_rec_rcvr_cfg	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the REC_RCVR_CFG LTSSM state in driving pipe_block_align_control to 0. pipe_block_align_control is only driven to 0 during REC_RCVR_CFG after receiving the required Rx exit criteria to state REC_IDLE. Due to the PCIe Specification, the core may need to stay in REC_RCVR_CFG for a while after receiving the Rx exit criteria in order to also meet the required Tx exit criteria. 0 – Include 1 – Exclude
[1]	exclude_rec_idle	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the REC_IDLE LTSSM state in driving pipe_block_align_control to 0. 0 – Include 1 – Exclude
[0]	exclude_l0	RW	1	0x0	When generating pipe_block_align_control through the LTSSM State algorithm, exclude/include the L0 and TX_L0s LTSSM states in driving pipe_block_align_control to 0. 0 – Include 1 – Exclude

debug_pipe_rx Register 0xe0

This register set is used for the PIPE Interface Debug status.

Table 5.43. debug_pipe_rx Register 0xe0

Field	Name	Access	Width	Reset	Description
[31:16]	polarity	RO	16	0x0	PHY PIPE Interface pipe_rx_polarity current value. For each lane: 0 – Otherwise 1 – PHY lane has been instructed to invert its receiver polarity to compensate for serial rx_p and rx_n being swapped.
[15:0]	valid	RO	16	0x0	PHY PIPE Interface pipe_rx_valid current value. For each lane: 0 – Otherwise 1 – PHY lane is locked to data stream

debug_direct_to_loopback Register 0x100

This register set is used to enable LTSSM Leader loopback.

Table 5.44. debug_direct_to_loopback Register 0x100

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	LTSSM leader loopback enable. 0 – Otherwise. 1 – Direct LTSSM to Loopback.Leader. Before this field is set to 1, all relevant registers containing Leader Loopback control options must be set to the desired values. When mgmt_tlb_debug_direct_to_loopback == 1 no Leader Loopback control options may be changed.

debug_loopback_control Register 0x104

This register set is used enable different control features related to loopback for 2.5G and 5G data rates.

Table 5.45. debug_loopback_control Register 0x104

Field	Name	Access	Width	Reset	Description
[31:28]	inject_err_lane_select	RW	4	0x0	Lane selection to inject error in Loopback. Only lanes configured by the core may be programmed. 0 = Lane 0. 15 = Lane 15.
[27]	inject_rx_2bit_data_err	RW	1	0x0	When enabled during loopback, the rising edge of inject_rx_2bit_data_err bit injects a back-to-back error on the received loopback data. This simulates the PHY losing lock and increments the counter by one, and the Loopback Leader restarts the loopback pattern so that the PHY can recover symbol lock.
[26]	inject_rx_1bit_data_err	RW	1	0x0	When enabled during loopback, the rising edge of inject_rx_1bit_data_err bit injects a single clk error on the received loopback data. This causes the error count to increment by 1 for each received data byte.
[25]	inject_rx_valid_err	RW	1	0x0	When enabled during loopback, the rising edge of inject_rx_valid_err bit injects a single clk error on the received PIPE PHY interface phy_rx_valid signal. This simulates the PHY losing lock during Loopback Leader operation which causes the error count to increment by one, and the Loopback Leader restarts the loopback pattern so that the PHY can recover symbol lock.

Field	Name	Access	Width	Reset	Description
[24]	inject_rx_skp_err	RW	1	0x0	When enabled during loopback, the rising edge of inject_rx_skp_err bit injects a single clk error on the next received SKP Ordered Set. When a SKP Ordered Set is corrupted, the lane's RX descrambling LFSR goes out of sync with the transmitter lane's scrambling LFSR causing all the subsequent data checks to fail. This simulates the PHY losing lock and increments the counter by one, and the Loopback Leader restarts the loopback pattern so that the PHY can recover symbol lock.
[23:19]	reserved	RO	5	0x0	—
[18:16]	pattern	RW	3	0x0	Loopback data pattern. 0 – Unscrambled PRBS31 Polynomial Pattern using Galois implementation with non-inverted output. The polynomial representation is $G(x) = X^{31} + X^{28} + 1$.
[15:9]	reserved	RO	7	0x0	—
[8]	tx_comp_receive	RW	1	0x0	Loopback compliance receive behavior. 0 – Loopback Leader does not assert Compliance Receive (recommended default) 1 – Loopback Leader asserts Compliance Receive in TS sets transmitted during Loopback Entry
[7:2]	reserved	RO	6	0x0	—
[1:0]	speed	RW	2	0x0	Desired speed in loopback. Only speeds supported by the core may be programmed. A speed change is only implemented if Loopback is entered from Configuration; if entered from Recovery, the speed is not changed. 0 – 2.5G 1 – 5G 2 – 8G 3 – 16G

debug_loopback_master_5g Register 0x108

This register set is used to select Deemphasis values by loopback Leader for 2.5G and 5G data rates.

Table 5.46. debug_loopback_master_5g Register 0x108

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	deemph	RW	1	0x0	Select Deemphasis value used by Loopback Leader when Loopback.Active occurs at 5G data rate. 0 – -6.0dB 1 – -3.5dB

debug_loopback_slave_5g Register 0x10c

This register set is used to select Deemphasis value transmitted in TS sets during loopback for 2.5G and 5G data rates.

Table 5.47. debug_loopback_slave_5g Register 0x10c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	deemph	RW	1	0x0	Select Deemphasis value transmitted in TS sets for the Follower to use when Loopback.Active occurs at 5G data rate. 0 – -6.0dB 1 – -3.5dB

debug_loopback_master_8g_deemph Register 0x110

This register set is used to select TX Preset related coefficients for 8G data rate for loopback Leader

Table 5.48. debug_loopback_master_8g_deemph Register 0x110

Field	Name	Access	Width	Reset	Description
[31]	coef_en	RW	1	0x0	Leader coefficient enable. 0 – Otherwise 1 – Direct local transmitter to use coef == mgmt_tlb_debug_loopback_master_8g_deemph_coef when acting as a Loopback Leader in Loopback.Active.
[30:26]	reserved	RO	5	0x0	—
[25:8]	coef	RW	18	0x0	Coefficients to use when mgmt_tlb_debug_loopback_master_8g_deemph_coef_en==1. The coefficients must be a valid set of coefficients, taking into account leader's FS and LF values and PCI Express coefficient rules, or the results are undefined. Coefficient mapping: [17:12]==Post-Cursor, [11:6]==Cursor, [5:0]==Pre-Cursor.
[7]	preset_en	RW	1	0x0	Leader preset enable. 0 – Otherwise 1 – Direct local transmitter to use preset == mgmt_tlb_debug_loopback_master_8g_deemph_preset when acting as a Loopback Leader in Loopback.Active
[6:4]	reserved	RO	3	0x0	—
[3:0]	preset	RW	4	0x0	Preset to use when mgmt_tlb_debug_loopback_master_8g_deemph_preset_en==1. Must be a valid preset in range 0x0 to 0xa or the result is undefined.

debug_loopback_slave_8g_deemph Register 0x114

This register set is used to select TX Preset related coefficients for 8G data rate for loopback Follower.

Table 5.49. debug_loopback_slave_8g_deemph Register 0x114

Field	Name	Access	Width	Reset	Description
[31]	coef_en	RW	1	0x0	Follower coefficient enable. 0 – Otherwise 1 – Direct follower's transmitter to use coef == mgmt_tlb_debug_loopback_slave_8g_deemph_coef through TS sets transmitted while directing slave to Loopback.
[30:26]	reserved	RO	5	0x0	—
[25:8]	coef	RW	18	0x0	Coefficients to use when mgmt_tlb_debug_loopback_slave_8g_deemph_coef_en==1. The coefficients must be a valid set of coefficients, considering the follower's FS and LF values and PCI Express coefficient rules, or the follower rejects them. Coefficient mapping: [17:12]==Post-Cursor [11:6]==Cursor [5:0]==Pre-Cursor.
[7]	preset_en	RW	1	0x0	Follower preset enable. 0 – Otherwise 1 – Direct follower's transmitter to use preset == mgmt_tlb_debug_loopback_slave_8g_deemph_preset through TS sets transmitted while directing follower to Loopback.
[6:4]	hint	RW	3	0x0	Follower Rx Hint transmitted in EQ TS1 sets when mgmt_tlb_debug_loopback_slave_8g_deemph_preset_en == 1. PCIe Specification does not indicate what to transmit for RxHint when requesting a Preset through 2.5/5G EQTS1 sets, the follower likely ignores whatever is transmitted in this field.
[3:0]	preset	RW	4	0x0	Follower preset enable. 0 – Otherwise 1 – Direct follower's transmitter to use preset == mgmt_tlb_debug_loopback_slave_8g_deemph_preset through TS sets transmitted while directing follower to Loopback.

debug_direct_to_loopback_status Register 0x118

This register set is used for the Leader loopback status.

Table 5.50. debug_direct_to_loopback_status Register 0x118

Field	Name	Access	Width	Reset	Description
[31:16]	sync	RO	16	0x0	Loopback per lane sync to data pattern indicator. For each lane: 0 – Not locked to loopback pattern. 1 – Locked to loopback pattern.
[15:1]	reserved	RO	15	0x0	—
[0]	cfg_entry	RO	1	0x0	Loopback entered from Configuration or Recovery indicator. 0 – Loopback entry is from Recovery. 1 – Loopback entry is from Configuration.

debug_loopback_err_reset Register 0x11c

This register set is used for the Leader loopback error reset.

Table 5.51. debug_loopback_err_reset Register 0x11c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Loopback error counter reset. 0 – Leader Loopback error count increments as errors are detected during Leader Loopback – saturating at maximum value. 1 – Reset the leader loopback error count on all lanes to 0x0. The reset stays in force for as long as mgmt_tb_debug_loopback_err_reset_enable remains at 1.

debug_loopback_err Register 0x120

This register set is used for the Leader loopback error count.

Table 5.52. debug_loopback_err Register 0x120

Field	Name	Access	Width	Reset	Description
[255:0]	count	RO	256	0x0	Loopback per lane error count – 16 bits per lane. Errors are counted only after the lane is locked to the loopback pattern

5.1.2.4. Physical control Register Set

phy_control Register 0x140

This register set is used for LTSSM PIPE Interface configuration for 2.5G and 5G data rates.

Table 5.53. phy_control Register 0x140

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	pipe_tx_swing	RW	1	0x0	Directly controls the value of pipe_tx_swing which sets PHY 2.5G/5G Transmitter Amplitude. 0 – Full Swing Full Swing is required for most applications. 1 – Reduced Swing Reduced Swing is useful to support low power form factors which encourage or require reduced transmitter amplitudes.

phy_control_8g Register 0x144

This register set is used for LTSSM 8G PIPE Interface configuration for 8G data rate.

Table 5.54. phy_control_8g Register 0x144

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	no_tx_idle_delay	RW	1	0x0	Controls the deassertion of pipe_tx_elec_idle to the PHY when operating with 128b130b encoding. 0 – Deassert pipe_tx_elec_idle at the next data_valid gap. 1 – Deassert pipe_tx_elec_idle at the next ordered set boundary.

Field	Name	Access	Width	Reset	Description
[0]	double_tx_data_valid	RW	1	0x0	<p>Controls the number of consecutive 8G pipe_tx_data_valid deassertions used when compensating for 128b130b encoding differences.</p> <p>0 – Deassert pipe_tx_data_valid for 1 clock every 64 clocks – the required value for the majority of PHY.</p> <p>1 – Deassert pipe_tx_data_valid for 2 back-back clocks every 128 clocks, simplifies connecting 8G PHY which have double the per lane width of the controller.</p>

phy_eq_tx_override Register 0x148 F

This register set is used for local PHY transmitter FS/LF override for 8G data rate.

Table 5.55. phy_eq_tx_override Register 0x148 F

Field	Name	Access	Width	Reset	Description
[31:30]	reserved	RO	2	0x0	—
[29:24]	fs	RW	6	0x30	<p>Local PHY Transmitter: Full Scale Value.</p> <p>When 179gmt._tlb_phy_eq_tx_override_enable == 1, 179gmt._tlb_phy_eq_tx_override_fs is used for the local PHY Full Scale (FS) value, otherwise PIPE PHY interface port pipe_local_fs is used.</p>
[23:22]	reserved	RO	2	0x0	—
[21:16]	lf	RW	6	0x8	<p>Local PHY Transmitter: Low Frequency Value.</p> <p>When 179gmt._tlb_phy_eq_tx_override_enable == 1, 179gmt._tlb_phy_eq_tx_override_lf is used for the local PHY Low Frequency (LF) value, otherwise PIPE PHY interface port pipe_local_lf is used.</p>
[15:1]	reserved	RO	15	0x0	—
[0]	enable	RW	1	0x0	<p>Controls whether 179gmt._tlb_phy_eq_tx_override_fs and 179gmt._tlb_phy_eq_tx_override_lf or pipe_local_fs and pipe_local_lf are used to determine the FS and LF values of the local PHY.</p> <p>0 – Use pipe_local_fs and pipe_local_lf.</p> <p>1 – Use 179gmt._tlb_phy_eq_tx_override_fs and 179gmt._tlb_phy_eq_tx_override_lf.</p>

phy_eq_tx_max Register 0x14c

This register set is used to specify local PHY maximum allowed coefficient values for 8G data rate.

Table 5.56. phy_eq_tx_max Register 0x14c

Field	Name	Access	Width	Reset	Description
[31:30]	reserved	RO	2	0x0	—
[29:24]	pre	RW	6	0x0	<p>Local PHY transmitter maximum pre-cursor[5:0] coefficient value.</p> <p>If a coefficient request exceeds mgmt_tlb_phy_eq_tx_max_pre, the coefficient is limited to mgmt_tlb_phy_eq_tx_max_pre before being passed to the PHY.</p>
[23:22]	reserved	RO	2	0x0	—

Field	Name	Access	Width	Reset	Description
[21:16]	post	RW	6	0x0	Local PHY transmitter maximum post-cursor [5:0] coefficient value. If a coefficient request exceeds mgmt_tlb_phy_eq_tx_max_post, then the coefficient is limited to mgmt_tlb_phy_eq_tx_max_post before being passed to the PHY.
[15:0]	reserved	RO	16	0x0	—

phy_eq_tx_force Register 0x150

This register set is used to force PHY TX Deemphasis configuration for 8G data rate. This register forces the local PHY TX Deemphasis instead of allowing the link partner to determine the TX Deemphasis during Equalization.

Table 5.57. phy_eq_tx_force Register 0x150

Field	Name	Access	Width	Reset	Description
[31:26]	reserved	RO	6	0x0	—
[25:8]	coef	RW	18	0x0	Coefficients to use when coef_enable==1
[7:4]	preset	RW	4	0x0	Preset to use when preset_enable==1
[3:2]	reserved	RO	2	0x0	—
[1]	coef_enable	RW	1	0x0	Force local PHY pipe_tx_deemph Tx De-Emphasis port. 0 – Determine local PHY \geq 8G pipe_tx_deemph per PCIe Specification. 1 – Force all local PHY lanes' pipe_tx_deemph output port at \geq 8G to the coefficients specified by coef. This setting is not PCIe compliant and is intended for debug only.
[0]	preset_enable	RW	1	0x0	Force remote PHY transmitter Tx De-Emphasis to the specified Preset during Equalization Phase 2/3. 0 – Normal operation. 1 – For Figure of Merit Equalization, override the standard 8G Equalization coefficient selection methods and force the core to use the Preset Equalization method with only one Preset == preset. Two total Rx Eq Evaluations are performed, 1 Trial + 1 Final, both using Preset == preset. For Up/Down Equalization, force Equalization to start requesting the link partner change to Preset = preset.

phy_preset_to_coef_conv_control Register 0x15c

This register set is used for local PHY TX preset to coefficient conversion configuration for 8G data rate.

Table 5.58. phy_preset_to_coef_conv_control Register 0x15c

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1:0]	conv_method	RW	2	0x0	Local PHY Transmitter Preset Conversion Method. 0 – Compute using the coefficients from PCIe Specification. PCIe Preset Table 4.3.5.2.2. Tx Equalization Presets. 1 – Lookup table specified by mgmt_tlb_phy_preset_conv_tab_post and mgmt_tlb_phy_preset_conv_tab_pre. 2 – Lookup table obtained from the PIPE PHY using the pipe_local_get_* PIPE interface ports.

phy_preset_conv_tab_pre Register 0x160

This register set is used for pre-cursor coefficients configuration for 8G data rate.

Table 5.59. phy_preset_conv_tab_pre Register 0x160

Field	Name	Access	Width	Reset	Description
[127:66]	Reserved	RO	62	0x0	—
[65:0]	coef	RW	66	0xc20c2040000000	For ≥ 8G capable cores only: Pre-cursor table – 6-bit pre-cursor coefficients for each of the 11 possible preset to coefficient conversions packed back-back. A particular preset pre-cursor entry[i] is accessed as [(i*6)+5:(i*6)].

phy_preset_conv_tab_post Register 0x170

This register set is used for post-cursor coefficients configuration for 8G data rate.

Table 5.60. phy_preset_conv_tab_post Register 0x170

Field	Name	Access	Width	Reset	Description
[127:66]	reserved	RO	62	0x0	—
[65:0]	coef	RW	66	0xc20c2040000000	For ≥ 8G capable cores only: Post-cursor table – 6-bit post-cursor coefficients for each of the 11 possible preset to coefficient conversions packed back-back. A particular preset post-cursor entry[i] is accessed as [(i*6)+5:(i*6)].

5.1.2.5. Equalization Configuration Register Set

eq_control Register 0x180

This register set is used for upstream and downstream port preset configuration for 8G data rate.

Table 5.61. eq_control Register 0x180

Field	Name	Access	Width	Reset	Description
[31]	reserved	RO	1	0x0	—
[30:28]	us_port_rx_preset_hint	RW	3	0x2	Rx Preset Hint value that is requested for the Upstream Port to use during the initial stage of Equalization (value transmitted by Downstream Ports in EQ TS2 Ordered Sets) Upstream Ports (Endpoints) do not use this field.
[27:24]	us_port_tx_preset	RW	4	0x4	Tx Preset value that is requested for the Upstream Port to use during the initial stage of Equalization (value transmitted by Downstream Ports in EQ TS2 Ordered Sets) Upstream Ports (Endpoints) do not use this field.
[23]	reserved	RO	1	0x0	—
[22:20]	ds_port_rx_preset_hint	RW	3	0x1	Downstream Port Rx Preset Hint used during initial stage of Equalization. Upstream Ports (Endpoints) uses the value requested by the link partner. If no value is provided by the link partner, Upstream Ports (Endpoints) use this value.

Field	Name	Access	Width	Reset	Description
[19:16]	ds_port_tx_preset	RW	4	0x3	Downstream Port Tx Preset used during initial stage of Equalization. Upstream Ports (Endpoints) uses the value requested by the link partner. If the value requested by the link partner is illegal, or no value is requested by the link partner, Upstream Ports (Endpoints) use this value.
[15:2]	reserved	RO	14	0x0	—
[1]	reset_eieos_interval_count	RW	1	0x0	Reset_EIEOS_Interval_Count :- value transmitted for Reset EIEOS Interval Count in TS1/2 Ordered Set transmissions during appropriate Recovery.Equalization states.
[0]	downstream_eq_skip_phase_2_3	RW	1	0x0	Downstream_Eq_Skip_Phase_2_3 may be set in simulation for Root Port cores to speed simulation since the time-consuming portions of Equalization (Phase 2 and Phase 3) are skipped. 0 – Normal operation (perform all 4 equalization phases) 1 – Skip Equalization Phase 2 and Phase 3 (it is known that full equalization is unnecessary)

eq_ts_control Register 0x184

This register set is used for the Equalization reduced swing configuration for 8G data rate.

Table 5.62. eq_ts_control Register 0x184

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	8	0x0	—
[23:16]	rx_eq_resp_wait	RW	8	0x2	<p>This register determines the number of microseconds the core waits after making an equalization remote PHY Tx coefficient change request before timing out and giving up on getting a TS response from the link partner for that request.</p> <p>This timeout is only used if the link partner fails to acknowledge the request within the timeout window.</p> <p>A timeout may occur, for example, if the local PHY receiver is unable to recover the receive data stream after the link partner changes to the new remote Tx coefficients that were requested.</p> <p>The timeout value is set to $(1.024 * rx_eq_resp_wait)$ μs. 0 is a special value that selects $(1.024 * 8)$ μs. PHY use EIEOS Rx reception at $\geq 8G$ and COM symbol reception at $\leq 5G$ to lock to the data stream.</p> <p>For the PHY to have a good opportunity to recover the data stream, the timeout value chosen must be large enough to include at least several of the Rx OS that the PHY needs to lock to the data stream.</p> <p>At $\geq 8G$, 1 EIE OS is received every 32 TS OS so 1 EIE OS is received every 33 OS with OS size == 16 symbols.</p> <p>At $\leq 5G$ a COM symbol is received at the beginning of every OS. $rx_eq_resp_wait=8$ (8.192μs) is recommended for most PHY.</p> <p>At 16G, 8.192 μs allows for ~31 EIE OS (8.192 μs / 264 ns) to be received before the timeout occurs.</p> <p>At 8G, 8.192 μs allows for ~15.5 EIE OS (8.192 μs / 528 ns per 1EIE+32TS) to be received before the timeout occurs.</p> <p>At 5G, 8.192 μs allows for ~256 COM symbols (8.192 μs / 32 ns per TS OS) to be received before the timeout occurs.</p> <p>At 2.5G, 8.192 μs allows for ~128 COM symbols (8.192 μs / 64 ns per TS OS) to be received before the timeout occurs.</p>

Field	Name	Access	Width	Reset	Description
[15:8]	ts1_ack_delay	RW	8	0x1f	<p>Defines how long the upstream port (Phase 2) or downstream port (Phase 3) waits after requesting new coefficients/presets before looking for incoming EQ TS1 sets from the remote link partner.</p> <p>This delay by specification should be set to the round-trip delay to the remote link partner (including logic delays in the requesting port) + 500 ns.</p> <p>The delay value used = (eq_ts1_ack_delay [7:0] * 16) + 500 ns. However, 0 is a special value that selects 4.596 microseconds.</p>
[7:6]	request_eq_max_count	RW	2	0x2	<p>Maximum times Request Equalization bit is set in Recovery.RcvrCfg.</p> <p>When set to 2'b00, selects infinite times.</p>
[5]	tx_eq_eval_cnt_sel	RW	1	0x0	<p>Determines the number of clock cycles to wait after the first lane receives an Equalization Tx De-emphasis change request from the link partner until all lanes transmit a change response. The wait time must include the worst-case lane skew that can exist on the lanes as well as time to complete the coefficient computations for the new request.</p> <p>1 == Wait 127 clocks (conservative).</p> <p>0 == Wait 8 clocks plus 64 symbols which is: 72 clocks for 8-bit per lane PHY, 40 clocks for 16-bit per lane PHY, or 24 clocks for 32-bit per lane PHY.</p>
[4]	skip_final_coef_check	RW	1	0x0	<p>When set to 1, the Upstream Port skips the check in the Recovery.RcvrLock state after RX Equalization, which compares the TS sets coefficient/preset data with the last requested coefficients/preset from Phase 2 of Equalization.</p> <p>This exception is required for some non-compliant Downstream Port devices.</p>
[3]	ts1_ack_block_use_preset	RW	1	0x1	When set to 1, the <i>use preset</i> bit is always forced to 0 in all EQ TS1 ordered sets transmitted in RX Equalization.
[2]	ts1_ack_mask_use_preset	RW	1	0x1	<p>When set to 1, ignores the state of the use preset bit in incoming EQ TS1 sets when in Phase 2 (upstream port) or Phase 3 (downstream port).</p> <p>When set to 0, the use_preset bit is checked to make sure it matches the setting used in the EQ TS1 sets sent to request remote transmitter settings.</p> <p>In either setting, the preset value or coefficient values are compared as required by the PCIe 3.0 Specification.</p> <p>The value of this bit MUST be 1 for proper PCIe operation.</p>
[1]	early_rx_eval	RW	1	0x0	<p>When set to 1, the local PHY is told to evaluate the RX serial signals (using RxEval) BEFORE checking incoming TS1 sets for acknowledgment after each new request.</p> <p>When 0, the local PHY is told to evaluate the RX serial signals (using RxEval) AFTER checking incoming TS1 sets for acknowledgment after each new request.</p> <p>The 0 state is the default recommended state.</p>
[0]	no_remote_change	RW	1	0x0	When set to 1, the equalization algorithm monitors the advertised coefficients from the Link Partner before equalization starts, and requests the same coefficients when performing equalization, so that the link partner does not change the TX coefficients during equalization.
					This is primarily for debugging purposes.

eq_reduced_swing Register 0x188

This register set is used for the Equalization reduced swing configuration for 8G data rate.

Table 5.63. eq_reduced_swing Register 0x188

Field	Name	Access	Width	Reset	Description
[31:19]	reserved	RO	13	0x0	—
[18:8]	preset_reject	RW	11	0x0	Specifies which presets (if any) are rejected if requested by the remote link partner during 8G RX Equalization. A request to use preset[i] is rejected if mgmt_tlb_eq_reduced_swing_en==1 and mgmt_tlb_eq_reduced_swing_preset_reject[i]==1 and is otherwise accepted. Per PCIe Specification, all preset requests with a valid preset value (0x0 to 0xA) must be accepted with Full Swing, but selected presets may be rejected when implementing reduced swing.
[7:1]	reserved	RO	7	0x0	—
[0]	en	RW	1	0x0	Reduced swing support enable. When mgmt_tlb_eq_reduced_swing_en==1, a request to transmit with preset[i] is rejected as illegal if mgmt_tlb_eq_reduced_swing_preset_reject[i] == 1. Only affects the acceptance/rejection of preset requests. It is also necessary to use mgmt_tlb_phy_control_pipe_tx_swing to configure the PHY transmitter for reduced swing.

eq_method Register 0x1bc

This register set is used to select Equalization method for 8G data rate.

Table 5.64. eq_method Register 0x1bc

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	select_dir_fom_n	RW	1	0x0	The core implements two primary methods: Figure of Merit and Up/Down. This register chooses which major algorithm is used. Each major algorithm has its own CSR registers for control/status Primary Equalization Method Selection. 0 – Use Figure of Merit Equalization Methods 1 – Use Up/Down Equalization Methods

eq_fmerit_control Register 0x1c0

This register set is used for Equalization Figure of Merit Method configuration for 8G data rate.

Table 5.65. eq_fmerit_control Register 0x1c0

Field	Name	Access	Width	Reset	Description
[31:24]	req_feedback	RW	8	0x80	When phy_eq_rx_eval_f_merit \geq eq_req_feedback, the link is BER 10^{12} or better.
[23:2]	reserved	RO	22	0x0	—

Field	Name	Access	Width	Reset	Description
[1:0]	method	RW	2	0x3	Equalization Method Selection. 0 – Step through PCIe-defined Tx Presets 1 – Evenly step through the coefficients range 2 – Step through the user-provided coefficient table 3 – Step through the user-provided coefficient table with adaptive coefficient selection

eq_preset_method_control Register 0x1c4

This register set is used for Equalization Figure of Merit Preset Method configuration for 8G data rate.

Table 5.66. eq_preset_method_control Register 0x1c4

Field	Name	Access	Width	Reset	Description
[31:12]	reserved	RO	20	0x0	—
[11:8]	addr_limit	RW	4	0x4	Last preset to use. The Preset Algorithm steps through PCIe-Specification-defined Tx Equalization Presets from 0 to eq_preset_addr_limit; eq_preset_addr_limit has a maximum value of 9 (step through presets 0-9).
[7:1]	reserved	RO	7	0x0	—
[0]	use_coef	RW	1	0x0	Controls whether the presets are communicated to the remote device using (1) the associated coefficient values or (0) the Preset value. 1 – The LTSSM requests coefficient values that are equivalent to the desired presets in the C-1, C0, and C+1 fields of TS1 Ordered Sets. 0 – LTSSM requests the desired presets using the Use Preset and Tx Preset fields of TS1 Ordered Sets.

eq_alg_method_control Register 0x1c8

This register set is used for Equalization Figure of Merit Algorithm Method configuration for 8G data rate.

Table 5.67. eq_alg_method_control Register 0x1c8

Field	Name	Access	Width	Reset	Description
[31:30]	reserved	RO	2	0x0	—
[29:24]	post_cursor_step_size	RW	6	0x8	Step size to use when walking through Post-Cursor coefficient values.
[23:22]	reserved	RO	2	0x0	—
[21:16]	pre_cursor_step_size	RW	6	0x4	Step size to use when walking through Pre-Cursor coefficient values.
[15:14]	reserved	RO	2	0x0	—
[13:8]	post_cursor_limit	RW	6	0x20	Upper bound on the Post-Cursor coefficient values to try. Permissible values are 0-32 (0 to 0.5).
[7:6]	reserved	RO	2	0x0	—
[5:0]	pre_cursor_limit	RW	6	0x10	Upper bound on the Pre-cursor coefficient values to try. Permissible values are 0-16 (0 to 0.25).

eq_table_method_control Register 0x1cc

This register set is used for Equalization Figure of Merit Table Method and Adaptive Table Method configuration for 8G data rate.

Table 5.68. eq_table_method_control Register 0x1cc

Field	Name	Access	Width	Reset	Description
[31:9]	reserved	RO	23	0x0	—
[8]	end_on_hold	RW	1	0x1	When the Adaptive Table Method is selected, determines whether to exit early if a Prior PHY Up/Down Feedback response == {HOLD, HOLD} is received on all lanes while processing a Table Entry with interpret==3. 0 – NoExitOnHold 1 – YesExitOnHold
[7:5]	reserved	RO	3	0x0	—
[4:0]	addr_limit	RW	5	0x11	Last table entry to use for the Table Method and Adaptive Table Method. The Table method walks through table entries from i == 0 to eq_table_addr_limit selecting eq_table_method_pre_cursor[(i*6)+5:(i*6)] as the pre-cursor coefficient and eq_table_method_post_cursor[(i*6)+5:(i*6)] as the post-cursor coefficient for each Equalization evaluation trial.

eq_table_method_table Register 0x1d0

This register set is used to set the table array for the Equalization Figure of Merit Table Method and Adaptive Table Method for 8G data rate.

Table 5.69. eq_table_method_table Register 0x1d0

Field	Name	Access	Width	Reset	Description
[383:0]]	array	RW	384	0x3000300030003000300030003000 30003000300030003000300040 0700080009000600050004	For ≥ 8G capable cores only. The array consists of 16-bit table entries, packed back-back, for each of the 24 implemented table entries. Table entries are used to configure the Rx Equalization algorithms Table Method and Adaptive Table Method.

Each 16-bit table entry [i] is in the following format:

- array[(i*16)+15] – reserved
- array[(i*16)+14] – best
- array[(i*16)+13:(i*16)+12] – Interpret[1:0]
- array[(i*16)+11:(i*16)+6] – post[5:0]
- array[(i*16)+5:(i*16)+0] – pre [5:0]

When the Table Method is selected:

- When interpret[1:0] == 00, use the coefficients corresponding to Preset[pre[3:0]].
- When interpret[1:0] == 01, pre[5:0] is the desired pre-cursor coefficient and post[5:0] is the desired post-cursor coefficient. best is unused

When the Adaptive Table Method is selected:

- When interpret[1:0] == 00, use the coefficients corresponding to Preset[pre[3:0]].
- When interpret[1:0] == 01, pre[5:0] is the desired pre-cursor coefficient and post[5:0] is the desired post-cursor coefficient.
- When interpret[1:0] == 10, pre[5:0] is the relative pre-cursor offset from the current relative best coefficient pair {rel_best_post, rel_best_pre} and post[5:0] is the relative post-cursor offset from the current relative best coefficient pair {rel_best_post, rel_best_pre}.

- When interpret[1:0] == 11, apply the prior PHY Up/Down Feedback result to the current best coefficient pair {best_post, best_pre} and make the result the new best coefficient pair. best==1 instructs the core to set {rel_best_post, rel_best_pre} to the coefficient pair that returned the highest Figure of Merit from among all the coefficient pairs tried since the beginning of Rx Equalization (that is, include the currently executing table entry through table entry 0 inclusive).

eq_updn_control Register 0x240

This register set is used for the Equalization Up/Down Convergence Method configuration for 8G data rate.

Table 5.70. eq_updn_control Register 0x240

Field	Name	Access	Width	Reset	Description
[31:26]	iteration_max	RW	6	0x0	The iteration counts at which Up/Dn Equalization should assume convergence if not yet converged. A 0 value indicates no limit.
[25]	start_remote_adv	RW	1	0x0	If (1), then the initial pre-cursor and post-cursor coefficients requested from the remote link partner are initialized by the coefficients advertised by the link partner in received TS sets. This option is available to simplify the selection of the initial coefficient values by using the initial coefficients decided determined to be an optimal starting case for the link partner.
[24]	fail_limit_err	RW	1	0x0	If (1), then if an <i>up</i> response is received while a coefficient is at its maximum legal value, this is considered an error which causes RX Equalization to fail. If (0), it does not cause RX Equalization to fail, but the coefficient value is limited by the maximum value. This is also true for cases where a <i>down</i> response is received for a coefficient set to the minimum value (0).
[23:18]	reserved	RO	6	0x0	—
[17:16]	post_step	RW	2	0x2	Initial step size for changing the post-cursor coefficient values. 0 – Step Size 1 1 – Step Size 2 2 – Step Size 4 3 – Step Size 8
[15:10]	reserved	RO	6	0x0	—
[9:8]	pre_step	RW	2	0x1	This field defines the initial step size for changing the pre-cursor coefficient values based on the PHY up/dn response. 0 – Step Size 1 1 – Step Size 2 2 – Step Size 4 3 – Step Size 8
[7:3]	reserved	RO	5	0x0	—
[2]	use_coeff	RW	1	0x0	Controls whether the presets are communicated to the remote device using (1) the associated coefficient values or (0) the Preset value. When (1) the LTSSM requests coefficient values that are equivalent to the desired presets in the C-1, C0, and C+1 fields of TS1 Ordered Sets. When (0) the LTSSM requests the desired presets using the Use Preset and Tx Preset fields of TS1 Ordered Sets.
[1]	start_preset	RW	1	0x1	If set to (1) than the initial pre-cursor and post-cursor coefficients requested from the remote link partner are controlled as a preset value, which is loaded into eq_pre_cursor_laneX[3:0]. This option is available to simplify the selection of the initial coefficient values by using the preset settings specified in the PCIe Specification.

Field	Name	Access	Width	Reset	Description
[0]	numhold	RW	1	0x0	If set to (1), then two consecutive hold status responses are needed for each coefficient to indicate that the coefficient is at an optimal setting. This is required for PHYs which update only one coefficient on each response and set to the other coefficient response to hold. If set to (0), then a single hold response is sufficient to consider a coefficient at an optimal setting.

eq_firmware_control Register 0x280

This register set is used for Equalization Up/Down Firmware Controlled Method configuration for 8G data rate.

Table 5.71. eq_firmware_control Register 0x280

Field	Name	Access	Width	Reset	Description
[31:7]	reserved	RO	25	0x0	—
[6]	tx_quiesce	RW	1	0x0	<p>Transmit Quiesce Guarantee Control</p> <p>Value of Quiesce Guarantee in transmitted TS2 sets in Recovery.RcvrCfg when in the DL_ACTIVE Data Link Layer state (which is L0 and having exchanged Flow Control DLLPs successfully).</p> <p>Quiesce Guarantee is set to 1 in Detect.Quiet and is set to tx_quiesce when in DL_ACTIVE.</p> <p>Quiesce Guarantee holds the last value to which it is set.</p> <p>When the Upstream Port is requesting Equalization be re-run, the Upstream Port is permitted, but not required, to set Quiesce Guarantee == 1 to inform the Downstream Port that an equalization process initiated within 1 ms does not cause any side-effects to its operation.</p>
[5]	tx_req_eq	RW	1	0x0	<p>Transmit Link Equalization Request Control.</p> <p>Set to 1 to set Link Equalization Request == 1 in transmitted TS2 sets in Recovery.RcvrCfg.</p> <p>May be set to 1 by an Upstream Port to inform the Downstream Port link partner (which is the only port that is able to re-run Equalization) that the Upstream Port wants to re-run Equalization.</p> <p>This is a hint to the Downstream Port and the Downstream Port may or may not re-run Equalization.</p>
[4]	int_clr	RW	1	0x0	<p>Writing a 1 to this register clears any pending Equalization interrupts in eq_status – rx_quiesce_hold</p> <p>eq_status – rx_req_eq_hold</p> <p>eq_status – int</p>
[3]	int_en	RW	1	0x0	<p>Local Rx Equalization Interrupt Enable.</p> <p>Enables interrupts to be generated for Rx Equalization events.</p> <p>An interrupt is generated on Entry to Local Rx Equalization Phase 2 (US Port) or Phase 3 (DS Port) and after the PHY Response is received for each Local Rx Equalization trial.</p>
[2]	complete	RW	1	0x0	<p>Firmware Controlled Equalization – Complete.</p> <p>Set to 1 to instruct the Local Rx Firmware Controlled Equalization algorithm to consider Rx Equalization complete. Complete is set to 1, instead of setting advance to 1, when no new equalization step is needed, and Equalization can be considered complete.</p> <p>0 – NotComplete</p> <p>1 – Complete</p>

Field	Name	Access	Width	Reset	Description
[1]	advance	RW	1	0x0	<p>Firmware Controlled Equalization – Advance.</p> <p>Set to 1 to instruct the Local Rx Firmware Controlled Equalization algorithm to try the new coefficients specified in the eq_pre_cursor and eq_post_cursor registers.</p> <p>When the core completes a trial, the core stores the resulting PHY Figure of Merit and Directional feedback and waits until new coefficients are loaded by Firmware and Firmware sets the advance register to start another trial or else Firmware sets the complete register to end Equalization.</p> <p>0 – DoNotAdvance 1 – Advance</p>
[0]	ext_control	RW	1	0x0	<p>Specifies whether the local PHY RX Equalization is under Firmware or local hardware control.</p> <p>This option is only supported when the Equalization Up/Down method is selected (eq_method:select_dir_fom_n == 1).</p> <p>0 – HardwareControl 1 – FirmwareControl</p>

eq_pre_cursor Register 0x290

This register set is used to set pre-cursor coefficients for the Equalization Up/Down Firmware Controlled Method for 8G data rate

Table 5.72. eq_pre_cursor Register 0x290

Field	Name	Access	Width	Reset	Description
[95:0]	coef	RW	96	0x0	<p>For \geq 8G capable cores only, which are delivered with PHY implementing Up/Down Equalization Feedback -Pre-cursor table – 6-bit pre-cursor coefficients for each of the 16 possible lanes packed back-back.</p> <p>A particular lane entry[i] is accessed as $[(i*6)+5:(i*6)]$</p>

eq_post_cursor Register 0x2a0

This register set is used to set post-cursor coefficients for the Equalization Up/Down Firmware Controlled Method for 8G data rate.

Table 5.73. eq_post_cursor Register 0x2a0

Field	Name	Access	Width	Reset	Description
[95:0]	coef	RW	96	0x0	<p>For \geq 8G capable cores only, which are delivered with PHY implementing Up/Down Equalization Feedback – Post-cursor table – 6-bit post-cursor coefficients for each of the 16 possible lanes packed back-back.</p> <p>A particular lane entry[i] is accessed as $[(i*6)+5:(i*6)]$.</p>

eq_status Register 0x2c0

This register set is used to read the status registers for the Equalization Up/Down Firmware Controlled Method for 8G data rate.

Table 5.74. eq_status Register 0x2c0

Field	Name	Access	Width	Reset	Description
[31:7]	reserved	RO	25	0x0	—
[6]	rx_quiesce_hold	RO	1	0x0	<p>When the Request Equalization bit is set on ingress TS2 sets at 8G speed, mgmt_tlb_eq_status_rx_quiesce_hold is set to the value of the Quiesce Guarantee bit in those same TS2 sets.</p> <p>The Quiesce Guarantee bit indicates that it is safe for the remote link partner's application to re-run RX Equalization, which can take tens of milliseconds.</p> <p>mgmt_tlb_eq_status_rx_quiesce_hold is cleared when mgmt_tlb_eq_firmware_control_int_clr==1.</p> <p>Refer to the PCI Express 3.0 Spec, Section 4.2.3 for details on how to use this information.</p>
[5]	rx_req_eq_hold	RO	1	0x0	<p>When the Request Equalization bit is set on ingress TS2 sets at 8G speed, mgmt_tlb_eq_status_rx_req_eq_hold is set to 1.</p> <p>This indicates that the remote link partner is requesting RX Equalization be re-run.</p> <p>mgmt_tlb_eq_status_rx_req_eq_hold is cleared when mgmt_tlb_eq_firmware_control_int_clr==1.</p> <p>See the PCI Express 3.0 Spec, Section 4.2.3 for details on how to use this information.</p>
[4]	int_edge	RO	1	0x0	<p>Pulsed interrupt signal. Indicates an interrupt is signaled with a 1 clock wide pulse.</p> <p>Used for state machine logic, not applicable for CSR register reads or polling.</p>
[3]	err	RO	1	0x0	Indicates that an error occurred during RX Equalization.
[2]	exit	RO	1	0x1	Indicates that RX Equalization has not started or has completed.
[1]	ready	RO	1	0x0	Indicates the RX Equalization process requires a response from the external control process.
[0]	int	RO	1	0x0	<p>Rx Equalization Interrupt Status.</p> <p>int==1 indicates an interrupt is active.</p> <p>int is set to 1 when mgmt_tlb_eq_status_ready is set to 1 indicating that the Firmware Controlled Equalization algorithm is ready for new coefficients to try.</p> <p>int is also set to 1 when mgmt_tlb_eq_status_rx_req_eq_hold is set to 1 indicating that the link partner set Link Equalization Request==1 in its transmitted TS2 OS in Recovery.RcvrCfg to request that Equalization be re-run.</p> <p>int=1 is cleared to 0 when eq_firmware_control:advance is set to 1 indicating that new coefficients have been provided or when eq_firmware_control:complete is set to 1 indicating that Equalization is complete, or when eq_firmware_control:int_clr is written to 1.</p>

eq_status_error Register 0x2c4

This register set is used to read the error status registers for the Equalization Up/Down Firmware Controlled Method for 8G data rate.

Table 5.75. eq_status_error Register 0x2c4

Field	Name	Access	Width	Reset	Description
[31:16]	lane_error	read-only	16	0x0	Per-lane equalization error status. Errors can be caused either by the coefficients being rejected by the remote link partner (which is only permitted when certain presets are used in reduced-swing mode) or if a response is not detected by the remote link partner (which might be caused by extremely low link signal quality). For each lane: 0 – No Error 1 – Error
[15:0]	lane_active	read-only	16	0x0	Per-lane active indicator. Only lanes that are active (trained to be part of the link) can be expected to participate in equalization. For each lane: 0 – Inactive 1 – Active

eq_status_preset_coef Register 0x2c8

This register set is used to read the preset coefficient registers for the Equalization Up/Down Firmware Controlled Method for 8G data rate.

Table 5.76. eq_status_preset_coef Register 0x2c8

Field	Name	Access	Width	Reset	Description
[31:16]	lane_match	RO	16	0x0	Per-lane Coefficients or Preset Match Last Request. Indicates that in TS sets received in Recovery.RcvrLock, coefficients or preset fields matched those of the last coefficient or preset request. 0 – No Error 1 – Error
[15:0]	lane_match_valid	RO	16	0x0	Per-lane Remote PHY Match Field Valid. Indicates that the last time through Recovery.RcvrLock, RX Equalization phases 2 and 3 are completed, and this lane received 8 consecutive 8G ECO0 TS Sets. 0 – Inactive 1 – Active

eq_status_feedback_fom Register 0x2d0

This register set is used to read the per lane FOM from local PHY for the Equalization Figure of Merit Method for 8G data rate.

Table 5.77. eq_status_feedback_fom Register 0x2d0

Field	Name	Access	Width	Reset	Description
[127:0]	value	RO	128	0x0	Per-lane Figure of Merit Equalization feedback received from the local PHY – 8-bits per lane. value[(i*8)+7:(i*8)] is the measure of Equalization quality for Lane[i] with higher values indicating better BER.

eq_status_feedback_dir Register 0x2e0

This register set is used to read the per lane pre-cursor and post-cursor values from local PHY for the Equalization Up/Down Feedback Method for 8G data rate.

Table 5.78. eq_status_feedback_dir Register 0x2e0

Field	Name	Access	Width	Reset	Description
[63:0]	value	RO	164	0x0	Per-lane Up/Down Equalization feedback received from the local PHY – 4-bits per lane. value[(i*4)+3:(i*4)+2] is the post-cursor feedback and [(i*4)+1:(i*4)+0] is the pre-cursor feedback for Lane[i] with feedback encoded as:- 00==NoChange/Hold, 01==Increment, 10==Decrement, and 11==Reserved.

eq_status_remote_fs Register 0x2e8

This register set is used to read the per lane FS value of remote link partner during RX Equalization for 8G data rate.

Table 5.79. eq_status_remote_fs Register 0x2e8

Field	Name	Access	Width	Reset	Description
[95:0]	value	RO	96	0x0	Per-lane FS value advertised by the remote link partner in TS Sets received in Recovery.Equalization.Phase1. The FS value for lane[i] is value[(i*6)+5:(i*6)].

eq_status_remote_lf Register 0x2f4

This register set is used to read the per lane LF value of remote link partner during RX Equalization for 8G data rate.

Table 5.80. eq_status_remote_lf Register 0x2f4

Field	Name	Access	Width	Reset	Description
[95:0]	value	RO	96	0x0	Per-lane LF value advertised by the remote link partner in TS Sets received in Recovery.Equalization.Phase1. The LF value for lane[i] is value[(i*6)+5:(i*6)].

eq_status_remote_precursor Register 0x300

This register set is used to read the per lane PHY pre-cursor coefficient of remote link partner during RX Equalization for 8G data rate.

Table 5.81. eq_status_remote_precursor Register 0x300

Field	Name	Access	Width	Reset	Description
[95:0]	value	RO	96	0x0	Per-lane Remote PHY Pre-Cursor Coefficient. Indicates the remote device pre-cursor coefficient advertised in 8G TS Sets received in the last time through Recovery.RcvrLock. The precursor for lane[i] is value[(i*6)+5:(i*6)].

eq_status_remote_postcursor Register 0x30c

This register set is used to read the per lane PHY post-cursor coefficient of remote link partner during RX Equalization for 8G data rate.

Table 5.82. eq_status_remote_postcursor Register 0x30c

Field	Name	Access	Width	Reset	Description
[95:0]	value	RO	96	0x0	Per-lane Remote PHY Post-Cursor Coefficient. Indicates the remote device post-cursor coefficient advertised in 8G TS Sets received in the last time through Recovery.RcvrLock. The postcursor for lane[i] is value[(i*6)+5:(i*6)].

5.1.2.6. Physical Layer Register Set

pl_rx Register 0x33c

This register set is used for the Physical Layer Per Lane Receiver Control.

Table 5.83. pl_rx Register 0x33c

Field	Name	Access	Width	Reset	Description
[31:17]	reserved	RO	15	0x0	—
[16]	inject_data_error_en	RW	1	0x0	pipe_rx_data error injection for test purposes. inject_data_error_mask[NUM_LANES-1:0] controls which lane(s) is used for error injection. For example, to enable a bit error on lane 2, first write 0x04 to inject_data_error_mask, next write a 1 to inject_data_error_en, then finally write 0 to inject_data_error_en. This is a test only feature which is not used for normal operation. inject_data_error_en must be set to 0 whenever error injections are not desired. The write to this field must occur after writes to the other fields in this register have established the desired parameters of the injection.
[15:0]	inject_data_error_mask	RW	16	0x0	Lane select for data error injection. Bit 0 corresponds to lane 0, Bit 1 corresponds to lane 1, etc. Setting the bit for a corresponding lane to 1 results in an error being injected on that lane when inject_data_error_en changes from 0 to 1. Always setup inject_data_error_mask before setting inject_data_error_en to 1. This field may not be changed while inject_data_error_en==1.

pl_16g Register 0x340

This register set is used for the Physical Layer 16G Optional Behavior Enable.

Table 5.84. pl_16g Register 0x340

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable_16g_eie_same_as_8g	RW	1	0x0	Determines whether 16G EIEOS use Draft 0.7 and higher OS definition or Draft 0.5 and lower OS definition (which is the same as 8G). 0 – Use PCIe 4.0 Draft 0.7 and higher 16G EIEOS definition – 0xFFFF0000FFFF0000FFFF0000FFFF0000 1 – Use PCIe 4.0 Draft 0.5 and lower 16G EIEOS definition – 0xFF00FF00FF00FF00FF00FF00FF00

pl_tx_skp Register 0x344

This register set is used for the Physical Layer Transmit SKP Period Control.

Table 5.85. pl_tx_skp Register 0x344

Field	Name	Access	Width	Reset	Description
[31:30]	reserved	RO	2	0x0	—
[29:24]	period_sris_128b130b	RW	6	0x0	<p>The transmit SKP period used when operating at $\geq 8G$ with the SRIS capability enabled and configured for SRIS = period_sris_128b130b Blocks.</p> <p>PCIe Specification is < 38 blocks.</p> <p>0 is a special case that selects 36 Blocks.</p> <p>This register must be configured for a PCIe Specification compliant value.</p>
[23:16]	period_srns_128b130b	RW	8	0x0	<p>The transmit SKP period used when operating at $\geq 8G$ with the SRIS capability disabled or with SRIS enabled but configured for SRNS = 256 + period_srns_128b130b Blocks.</p> <p>PCIe Specification is 370-375 blocks.</p> <p>0 is a special case that selects 116 == 372 Blocks.</p> <p>This register must be configured for a PCIe Specification compliant value.</p>
[15:8]	period_sris_8b10b	RW	8	0x0	<p>The transmit SKP period used when operating at $\leq 5G$ with the SRIS capability enabled and configured for SRIS = period_sris_8b10b Symbol Times.</p> <p>PCIe Specification is < 154 Symbol Times.</p> <p>0 is a special case that selects 146 Symbol Times.</p> <p>This register must be configured for a PCIe Specification compliant value. The number of symbol times selected must be a multiple of the PHY per lane symbol data width or the lower bits are truncated.</p> <p>For example:</p> <p>For 16-bit per lane PHY, period_sris_8b10b[0] is always treated as 0.</p> <p>For 32-bit per lane PHY, period_sris_8b10b[1:0] are always treated as 00.</p> <p>For 64-bit per lane PHY, period_sris_8b10b[2:0] are always treated as 000.</p>
[7:0]	period_srns_8b10b	RW	8	0x0	<p>The transmit SKP period used when operating at $\leq 5G$ with the SRIS capability disabled or with SRIS enabled but configured for SRNS = (256 + period_srns_8b10b) * 4 Symbol Times.</p> <p>PCIe Specification is 1180-1538 Symbol Times.</p> <p>0 is a special case that selects 44 == 1200 Symbol Times. This register must be configured for a PCIe Specification compliant value.</p> <p>The number of symbol times selected must be a multiple of the PHY per lane symbol data width or the lower bits are truncated.</p> <p>For example:</p> <p>For 64-bit per lane PHY period_srns_8b10b[0] is always treated as 0.</p> <p>For 32, 16, and 8-bit per lane PHY, all period_srns_8b10b is relevant.</p>

pl_tx_debug Register 0x348

This register set is used for the Physical Layer Debug Control.

Table 5.86. pl_tx_debug Register 0x348

Field	Name	Access	Width	Reset	Description
[31:3]	reserved	RO	29	0x0	—
[2]	inject_margin_crc_error	RW	1	0x0	Setting this to 1 injects errors into the margin crc value of the control skp ordered set on all lanes
[1]	inject_margin_parity_error	RW	1	0x0	Setting this to 1 injects errors into the margin parity bit of the control skp ordered set on all lanes
[0]	inject_data_parity_error	RW	1	0x0	Setting this to 1 injects errors into the data parity bit of the control skp ordered set on all lanes

pl_ctrl Register 0x34c

This register set is used for the Physical Layer Control.

Table 5.87. pl_ctrl Register 0x34c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	8b10b_err_rec_entry_sel	RW	1	0x0	Selects the Physical Layer error threshold required to be received in L0, when operating with 8b10b encoding (2.5G/5G speed), before the link is directed to Recovery. 0 – When in L0 and using 8b10b encoding, direct the link to Recovery after receiving a single Physical Layer Error. This is the more conservative setting but has the disadvantage of causing Recovery entry on all L0 Physical Layer errors – even those errors that the link would be able to recover from on its own without having to go through Recovery. 1 – When in L0 and using 8b10b encoding, direct the link to Recovery only after receiving a massive burst of errors (which typically is an indication that there is a persistent problem, such as PHY loss of lock, for which Recovery entry is required to fix). The core implements an error counter. For each enabled PHY Rx clock cycle, the error counter is incremented when a clock cycle contains a Physical Layer error, and the error counter is decremented when a clock cycle contains no Physical Layer errors. If the counter reaches 1023, the link is directed to Recovery.

pl_ts_matching Register 0x350

This register set is used for the Physical Layer TS Match Control.

Table 5.88. pl_ts_matching Register 0x350

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	legacy_mode	RW	1	0x1	Setting this to 1 compares all symbols when matching TS sets (legacy behavior). Setting this to 0 compares only the symbols required to meet specifications.

5.1.2.7. Data Link Layer Control Register Set

dl_retry_timeout Register 0x380

This register set is used for the Replay Timeout Control.

Table 5.89. dl_retry_timeout Register 0x380

Field	Name	Access	Width	Reset	Description
[31:24]	pcie4_synt_sync	RW	8	0x0	Replay Timeout Timer PCIe 4.0 Simplified REPLAY_TIMER Limits Extended Sync==1 Value. {pcie4_synt_sync, 10'h0} = Symbol times to use for Replay Timer when pcie4_enable==1 and Extended Sync==1. 0 is a special case selecting 8'd80.
[23:16]	pcie4_synt_sync_n	RW	8	0x0	Replay Timeout Timer PCIe 4.0 Simplified REPLAY_TIMER Limits Extended Sync==0 Value. {pcie4_synt_sync_n, 10'h0} = Symbol times to use for Replay Timer when pcie4_enable==1 and Extended Sync==0. 0 is a special case selecting 8'd24.
[15]	pcie4_enable	RW	1	0x1	Replay Timeout Timer PCIe 4.0 Simplified REPLAY_TIMER Limits Enable. 0 – Use PCIe 3.0 Specification and prior REPLAY_TIMER Limits from UNADJUSTED REPLAY_TIMER LIMITS tables in the PCIe Specification. 1 – Use PCIe 4.0 Specification Simplified REPLAY_TIMER Limits.
[14:1]	l0s_adj	RW	14	0x180	Replay Timeout L0s Adjustment. The number of symbol times to add to the recommended PCIe Replay Timer timeout period to compensate for the remote link having to exit L0s before it can send an ACK/NAK DLLP. l0s_adj is added to the Replay Timer timeout period after the optional doubling controlled by mult_enable is applied. Not applicable when pcie4_enable==1.
[0]	mult_enable	RW	1	0x0	Replay Timeout Timer Multiplier Enable. Not applicable when pcie4_enable==1. 0 – The Replay Timer timeout period implemented is the recommended (-0%) value in the PCIe Specification UNADJUSTED REPLAY_TIMER LIMITS FOR 2.5/5.0/8.0 GT/S MODE OPERATION BY LINK WIDTH AND MAX_PAYLOAD_SIZE tables. 1 – The Replay Timer timeout period implemented is 2 times the recommended (-0%) value in the PCIe Specification UNADJUSTED REPLAY_TIMER LIMITS FOR 2.5/5.0/8.0 GT/S MODE OPERATION BY LINK WIDTH AND MAX_PAYLOAD_SIZE tables.

dl_ack_timeout_div Register 0x384

This register set is used for the ACK Timer Control.

Table 5.90. dl_ack_timeout_div Register 0x384

Field	Name	Access	Width	Reset	Descriptions
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	ACK Timer Control. 0 – Ack according to specifications. 1 – Ack twice as often as recommended by specifications.

dl_tx_ctrl Register 0x38c

This register set is used for the Data Link Layer TX Control.

Table 5.91. dl_tx_ctrl Register 0x38c

Field	Name	Access	Width	Reset	Descriptions
[31]	stp_override_en	RW	1	0x0	<p>8G STP Symbol Debug Length Override Enable.</p> <p>Enables the injection of 8G STP symbol length errors (for debug only).</p> <p>On a rising edge of stp_override_en, a request to inject an 8G STP length error is stored until it can be acted upon.</p> <p>The next TLP with a computed 8G STP length == stp_override_len has its STP token length field replaced by stp_override_new_len instead of using the computed value.</p> <p>Per PCIe Specification, the 8G STP token length must consider the full framed TLP length including 8G STP Token, TLP Header, TLP Payload, ECRC (if present), and LCRC, but must not include the EDB symbol (if the TLP is being nullified).</p> <p>These fields enable you to transmit an 8G TLP of incorrect length by placing the EOP at the end of the TLP data to transmit and then writing these fields to substitute the desired STP length matching the TLP being transmitted for the actual length of the TLP that would be computed from the TLP header.</p> <p>At 2.5 and 5G, these fields are unused as the full framed TLP length is not included in the STP token at these speeds and a malformed length TLP can be transmitted just by placing EOP at the incorrect location.</p> <p>0 – Disabled 1 – Enabled</p>
[30:27]	reserved	RO	4	0x0	—
[26:16]	stp_override_new_len	RW	11	0x0	8G STP Symbol Debug Length Replacement Value.
[15:11]	reserved	RO	5	0x0	—
[10:0]	stp_override_len	RW	11	0x0	8G STP Symbol Debug Length Replacement Match.

dl_ctrl Register 0x390

This register set is used for the Data Link Layer Control.

Table 5.92. dl_ctrl Register 0x390

Field	Name	Access	Width	Reset	Descriptions
[31:26]	reserved	RO	6	0x0	—
[25]	tx_pfx_par_inject_en	RW	1	0x0	<p>Transmit Data Link Layer Prefix Parity Error Injection Enable.</p> <p>0 – Do not inject error.</p> <p>1 – On the rising edge, a single prefix parity error injection, applied prior to assigning the TLP sequence number, is scheduled and injected at the next opportunity (TLP transmit). Tx prefix parity error Handling and Reporting are governed by tx_par2_handle_disable and tx_par2_report_disable.</p>
[24]	rx_early_forward_disable	RW	1	0x0	<p>Receive Data Link Layer down-trained early forwarding disable.</p> <p>0 – When down-trained, forward Rx Data Link Layer data for processing whenever a TLP/DLLP end occurs without a following TLP/DLLP start the same clock cycle. This setting results in lower Rx TLP/DLLP latency.</p> <p>1 – When down-trained, always aggregate Rx Data Link Layer data to full width before forwarding the data. For example, a x16 core operating at x1 receives and aggregate 16 clock cycles of 1 lane data before outputting one clock cycle of 16 lane data for further processing.</p>
[23]	reserved	RO	1	0x0	—
[22]	tx_gap_inject_en	RW	1	0x0	<p>Transmit Data Link Layer TX Valid Gap Injection Enable.</p> <p>0 – Do not inject gap.</p> <p>1 – On the rising edge, a single clock bp_tx_valid gap is scheduled and is injected at the next opportunity (within a TLP). This gap in the bp_tx_valid can cause a data underflow at the Physical Layer.</p>
[21]	rx_malf_inject_en	RW	1	0x0	<p>Receive Data Link Layer Malformed Length TLP Injection Enable.</p> <p>0 – Do not inject error.</p> <p>1 – On the rising edge, a single malformed TLP error injection is scheduled and is injected at the next opportunity (Tx TLP EOP). The TLP is malformed by deleting its end of TLP indicator causing the TLP to end at the incorrect location.</p>
[20]	rx_lcrc_inject_en	RW	1	0x0	<p>Receive Data Link Layer LCRC Injection Enable.</p> <p>0 – Do not inject error.</p> <p>1 – On the rising edge, a single LCRC TLP error injection is scheduled and injected at the next opportunity (Tx TLP EOP). The LCRC is corrupted by inverting LCRC bit 0 of the received TLP.</p>
[19]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Descriptions
[18]	rx_dl_active_disable	RW	1	0x0	Control the use of DL_Active to block reception of TLPs. 0 – Block reception of TLPs when dl_active is low. 1 – Do not block TLP reception based on dl_active.
[17]	rx_inhibit_tlp	RW	1	0x0	Receive Data Link Layer TLP Rx Inhibit Enable. 0 – Process received TLPs per PCIe Specification Required setting for compliant PCIe operation. 1 – For test purposes only, discard and do not accept received TLPs. Received TLPs are processed as if the Sequence Number is one greater than received. This prevents the TLP with the current expected Sequence Number and all the following TLPs from being received. This causes the link partner to do TLP replays as received TLPs are incorrect due to perceived Sequence Number errors.
[16]	rx_inhibit_ack_nak	RW	1	0x0	Receive Data Link Layer ACK/NAK Inhibit Enable. 0 – Process received ACK and NAK DLLPs per PCIe Specification. Required setting for compliant PCIe operation. 1 – For test purposes only, discard and do not process received ACK and NAK DLLPs. This causes the core to do TLP replays because TLP acknowledgements do not received.
[15]	reserved	RO	1	0x0	—
[14]	tx_par2_report_disable	RW	1	0x0	Transmit Data Link Layer Parity 2 Error Reporting Disable. 0 – Enable reporting. 1 – Disable reporting of Data Link Layer transmit parity errors.
[13]	tx_par2_handle_disable	RW	1	0x0	Transmit Data Link Layer Parity 2 Error Handling Disable. 0 – Enable handling. TLPs with errors are nullified and not retransmitted. 1 – Disable handling of Data Link Layer transmit parity errors. When error handling is disabled, TLPs with parity errors continue to be transmitted.
[12]	tx_par2_inject_en	RW	1	0x0	Transmit Data Link Layer Parity 2 Error Injection Enable. 0 – Do not inject error. 1 – On the rising edge, a single parity error injection, applied after assigning the TLP sequence number, is scheduled and is injected at the next opportunity (TLP transmit).
[11:9]	reserved	RO	3	0x0	—

Field	Name	Access	Width	Reset	Descriptions
[8]	tx_par1_inject_en	RW	1	0x0	Transmit Data Link Layer Parity 1 Error Injection Enable. 0 – Do not inject error. 1 – On the rising edge, a single parity error injection, applied prior to assigning the TLP sequence number, is scheduled and is injected at the next opportunity (TLP transmit).
[7]	reserved	RO	1	0x0	—
[6]	tx_replay_ecc2_report_disable	RW	1	0x0	Transmit Replay Buffer ECC 2-bit Error Reporting Disable. 0 – Enable reporting. 1 – Disable reporting of ECC 2-bit errors.
[5]	tx_replay_ecc2_handle_disable	RW	1	0x0	Transmit Replay Buffer ECC 2-bit Error Handling Disable. 0 – Enable handling. TLPs with errors are nullified and not retransmitted. 1 – Disable handling of ECC 2-bit errors. When error handling is disabled, TLPs with ECC 2-bit errors continue to be transmitted.
[4]	tx_replay_ecc2_inject_en	RW	1	0x0	Transmit Replay Buffer ECC 2-bit Error Injection Enable. 0 – Do not inject error. 1 – On the rising edge, a single ECC 2-bit error injection is scheduled and is injected at the next opportunity (Replay Buffer RAM write). The error is only seen if a Replay occurs of the TLP receiving the error injection.
[3]	reserved	RO	1	0x0	—
[2]	tx_replay_ecc1_report_disable	RW	1	0x0	Transmit Replay Buffer ECC 1-bit Error Reporting Disable. 0 – Enable reporting. 1 – Disable reporting of ECC 1-bit errors.
[1]	tx_replay_ecc1_handle_disable	RW	1	0x0	Transmit Replay Buffer ECC 1-bit Error Handling Disable. 0 – Enable correction. 1 – Disable correction of ECC 1-bit errors. When error correction is disabled, ECC 1-bit errors are treated the same as uncorrectable ECC 2-bit errors.
[0]	tx_replay_ecc1_inject_en	RW	1	0x0	Transmit Replay Buffer ECC 1-bit Error Injection Enable. 0 – Do not inject error. 1 – On the rising edge, a single ECC 1-bit error injection is scheduled and is injected at the next opportunity (Replay Buffer RAM write). The error is only seen if a Replay occurs of the TLP receiving the error injection.

dl_stat Register 0x394

This register set is used for the Data Link Layer Status.

Table 5.93. dl_stat Register 0x394

Field	Name	Access	Width	Reset	Description
[31]	info_bad_tlp_null_err	RW, W1C	1	0x0	Nullified TLP Received Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[30]	info_bad_tlp_phy_err	RW, W1C	1	0x0	TLP PHY Error Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[29]	info_bad_tlp_malf_err	RW, W1C	1	0x0	Malformed TLP Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[28]	info_bad_tlp_ecrc_err	RW, W1C	1	0x0	TLP ECRC Mismatch Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[27]	info_schedule_dupl_ack	RW, W1C	1	0x0	Duplicate TLP Received Status. This is not a reported error but is useful information to store for debug. Duplicate TLPs are received during TLP Replay. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[26]	info_bad_tlp_seq_err	RW, W1C	1	0x0	TLP Sequence Number Mismatch Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[25]	info_bad_tlp_crc_err	RW, W1C	1	0x0	TLP LCRC Mismatch Status. This is not a reported error but is useful information to store for debug. This is a sub-class of err_aer_bad_tlp that provides more information as to why the TLP is bad. 0 – Otherwise 1 – Event occurred. Write 1 to clear.

Field	Name	Access	Width	Reset	Description
[24]	info_nak_received	RW, W1C	1	0x0	NAK Received Status. This is not a reported error but is useful information to store for debug. Receiving a NAK indicates that the link partner requested a Replay. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[23]	info_deskew_overflow_error	RW, W1C	1	0x0	Rx Deskew FIFO Overflow Error Status. The lane-lane skew of Rx data on one or more lanes are latent from the other lanes that the deskew range of the Rx Deskew FIFO is exceeded. This is a correctable error since the core drives the link to Recovery to fix this issue. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[22]	info_tx_data_underflow	RW, W1C	1	0x0	Physical Layer TLP Transmit Underflow Error Status. A TLP is transmitted by the physical layer and more data is needed to continue the transmission, but no data is provided. This error is normally caused by the Transaction Layer failing to provide TLP data at \geq PCIe Line Rate. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[21]	info_replay_started	RW, W1C	1	0x0	A Replay is started. This is not a reported error but is useful information to store for debug. Indicates a Replay occurred on local TX interface due to either Ack Timeout or Nack Reception. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[20]	reserved	RO	1	0x0	—
[19]	err_aer_tx_par2	RW, W1C	1	0x0	Transmit Data Link Layer Parity 2 Error Status. Indicates that a Data Link Layer transmit parity error is detected after sequence number application. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[18]	reserved	RO	1	0x0	—
[17]	err_aer_tx_replay_ecc2	RW, W1C	1	0x0	Transmit Replay Buffer ECC 2-bit Error Status. Indicates that an uncorrectable ECC error occurred during Replay. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[16]	err_aer_tx_replay_ecc1	RW, W1C	1	0x0	Transmit Replay Buffer ECC 1-bit Error Status. Indicates that a correctable ECC error occurred during Replay. 0 – Otherwise 1 – Event occurred. Write 1 to clear.
[15:8]	reserved	RO	8	0x0	—
[7]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Description
[6]	err_aer_surprise_down	RW, W1C	1	0x0	Surprise Down Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[5]	err_aer_dl_protocol_error	RW, W1C	1	0x0	DL Protocol Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[4]	err_aer_replay_timer_timeout	RW, W1C	1	0x0	Replay Timer Timeout Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[3]	err_aer_replay_num_rollover	RW, W1C	1	0x0	Replay Num Rollover Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[2]	err_aer_bad_dllp	RW, W1C	1	0x0	Bad DLLP Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[1]	err_aer_bad_tlp	RW, W1C	1	0x0	Bad TLP Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.
[0]	err_aer_receiver_error	RW, W1C	1	0x0	Receiver Error Status. 0 – Otherwise 1 – Error occurred. Errors of this type must be logged in the Transaction Layer AER Capability. Write 1 to clear.

dl_ack_to_nak Register 0x398

This register set is used for the ACK-to-NAK error injection controls.

Table 5.94. dl_ack_to_nak Register 0x398

Field	Name	Access	Width	Reset	Description
[31]	enable	RW	1	0x0	Enable ACK-to-NAK injection. The write to this field must occur after writes to the other fields in this register have established the desired parameters of the injection. 0 – Do nothing 1 – Enable injection and load parameters into the ACK-to-NAK injector.
[30:24]	reserved	RO	7	0x0	—
[23:16]	count	RW	8	0x0	Number of times to replace the ACK with a NAK.
[15:12]	reserved	RO	4	0x0	—
[11:0]	seq_num	RW	12	0x0	Sequence Number of ACK to be changed to a NAK.

dl_inject Register 0x39c

This register set is used for the DLLP CRC/TLP ECRC error injection controls.

Table 5.95. dl_inject Register 0x39c

Field	Name	Access	Width	Reset	Description
[31]	dllp_crc_err_enable	RW	1	0x0	Enable DLLP CRC error injection. The write to this field must occur after writes to the other fields in this register have established the desired parameters of the injection. 0 – Disable the DLLP CRC Error injector. 1 – Enable DLLP CRC Error injector.
[30:28]	reserved	RO	3	0x0	—
[27:16]	dllp_crc_err_rate	RW	12	0x0	Rate at which DLLP CRC errors are to be injected. A value of 0 injects a single DLLP CRC error. A non-zero value injects errors at intervals of Rate*256*clk_period. This field may not be changed while dllp_crc_err_enable==1.
[15:13]	reserved	RO	3	0x0	—
[12]	dllp_inject_enable	RW	1	0x0	Inject a DLLP (transmit) using the data in the dllp_inject_data register. A single DLLP is injected after each rising edge of this signal.
[11:9]	reserved	RO	3	0x0	—
[8]	tlp_seq_err_enable	RW	1	0x0	Modify the sequence number in the next transmitted TLP to an invalid value (bad sequence number error). A single TLP is altered after each rising edge of this signal.
[7:4]	reserved	RO	4	0x0	—
[3]	tlp_lcrc_err_enable	RW	1	0x0	Enable TLP LCRC error injection. The write to this field must occur after writes to the other fields in this register have established the desired parameters of the injection. 0 – Disable the TLP LCRC Error injector 1 – Enable TLP LCRC Error injector

Field	Name	Access	Width	Reset	Description
[2:0]	tlp_lcrc_err_rate	RW	3	0x0	Rate at which TLP LCRC errors are to be injected. A value of 0 injects LCRC errors into all TLPs. A non-zero value injects an error into a TLP and then pass Rate TLPs without error and then repeat. This field may not be changed while tlp_lcrc_err_enable==1.

dllp_inject Register 0x3a0

This register set is used for the DLLP Injector Data.

Table 5.96. dllp_inject Register 0x3a0

Field	Name	Access	Width	Reset	Description
[31:0]	data	RW	32	0x0	Data to include in injected DLLP. This field may not be changed while dl_inject_dllp_inject_enable==1.

5.1.2.8. LTSSM Equalization Status Control

eq_status_table_control Register 0x3d8

This register set is used for LTSSM Equalization Status Control for 8G data rate.

The LTSSM Equalization Status is a debug feature that captures the status of the most recent Equalization execution from a single selected lane and allows software to read the status.

To use this feature:

1. Select a lane to monitor by writing lane_select.
2. Cause Equalization to be executed; Equalization can be executed by writing the following values in sequence to the Downstream Port PCIe Cfg Registers (see PCIe Specification for details):
 - a. Perform Equalization = 1
 - b. Target Link Speed = Desired Link Speed (1 = 2.5G, 2 = 5G, 3 = 8G, 4 = 16G)
 - c. Retrain Link = 1 (this must be written last)
3. Wait for Equalization to complete by reading eq_status_table_info_done until it indicates done.
4. The speed at which EQ is executed may be read through eq_status_table_info_16g_speed.
5. For (i=0; i<25; i=i+1).

```

begin
  Write eq_status_table_control_step_select = i
  Read eq_status_table_data == Equalization Status of iteration[i]
End
  
```

Table 5.97. eq_status_table_control Register 0x3d8

Field	Name	Access	Width	Reset	Description
[31:13]	reserved	RO	19	0x0	—
[12:8]	step_select	RW	5	0x0	Used to select which step (which EQ trial iteration) of the most recently completed EQ process is accessed at the eq_status_table_data. After Equalization has completed, step_select is intended to be written from 0 to 24 to read the Equalization status for all trials.
[7:4]	reserved	RO	4	0x0	—
[3:0]	lane_select	RW	4	0x0	Used to select which lane's data is collected during the next Equalization. This value of this register is captured at the start of Equalization and Equalization results are then saved for the selected lane.

eq_status_table_info Register 0x3dc

This register set is used to read whether the RX Equalization status registers are valid or not at 8G data rate.

Table 5.98. eq_status_table_info Register 0x3dc

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	16g_speed	RO	1	0x0	<p>Indicates speed at which Equalization is executed. This register is reset only by fundamental reset so that the status survives link down and other soft reset conditions.</p> <p>0 – Equalization run at 8G speed 1 – Equalization run at 16G speed</p>
[0]	done	RO	1	0x0	<p>Indicates that Equalization has been completed, and the table results are valid.</p> <p>This register is reset only by fundamental reset so that the status survives link down and other soft reset conditions.</p>

eq_status_table Register 0x3e0

This register set is used to read RX Equalization status registers for 8G data rate.

Table 5.99. eq_status_table Register 0x3e0

Field	Name	Access	Width	Reset	Description
[31:0]	data	RO	32	0x0	<ul style="list-style-type: none"> Equalization Status for the selected lane and step (iteration) recorded as follows: <ul style="list-style-type: none"> [1:0] – EQ Pre-Cursor Up/Down Feedback[1:0] (00=Hold,01=Inc,10=Dec,11=Rsvd) [3:2] – EQ Post-Cursor Up/Down Feedback[1:0] (00=Hold,01=Inc,10=Dec,11=Rsvd) [11: 4] – EQ Figure of Merit Feedback[7:0] [17:12] – Remote PHY Tx Post Cursor[5:0] [23:18] – Remote PHY Tx Pre Cursor[5:0] [24] – Error Status: 1==Error, 0==No Error [25] – Active Status: 1==Lane is part of the link, 0==Lane is not part of the link [31:16] – Reserved Equalization Status is reset to 0x0 for all iterations when Equalization begins so iterations that were not executed reads 0x0. Equalization Status is re-captured on every Equalization, so Equalization Status may only be read between Equalization attempts or it is unknown from which Equalization run the status is captured. Captured Equalization Status is reset only by fundamental reset so that the status survives link down and other soft reset conditions.

eq_capture_sel Register 0x3f0

This register set is used for selection of lane, TX or RX for RX Equalization results for 8G data rate.

Table 5.100. eq_capture_sel Register 0x3f0

Field	Name	Access	Width	Reset	Description
[31:6]	reserved	RO	26	0x0	—
[5]	dir	RW	1	0x0	Used to select TX (dir == 1) or RX (dir == 0) for equalization results read-back.
[4]	speed	RW	1	0x0	Used to select 16G (speed == 1) or 8G (speed == 0) for equalization results read-back.
[3:0]	lane	RW	4	0x0	Used to select the lane number (0 to 15) for equalization results read-back.

eq_capture Register 0x3f4

This register set is used to read out RX Equalization results for 8G data rate.

Table 5.101. eq_capture Register 0x3f4

Field	Name	Access	Width	Reset	Description
[31:22]	reserved	RO	10	0x0	—
[21:0]	result	RO	22	0x0	<ul style="list-style-type: none"> Equalization results from LTSSM recorded as follows: <ul style="list-style-type: none"> [5: 0] – EQ Post-Cursor[5:0] [11: 6] – EQ Cursor[5:0] [17:12] – EQ Pre-Cursor[5:0] [21:18] – EQ Preset Note: The Pre-Cursor, Cursor, and Post-Cursor values is 0x0 if Equalization Presets are used. Similarly, Preset is 0x0 if Equalization Coefficients are used. Equalization results are set to 0x0 for all lanes, speed, and directions by a fundamental reset. The values are updated at each step of the equalization procedure and then held until the next equalization or fundamental reset.

phy_eq_tx_force_per_lane Register 0x400

This register set is used to enable per-Lane Hardcoded Preset/Coefficient configuration for 8G data rate.

Table 5.102. phy_eq_tx_force_per_lane Register 0x400

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RO	28	0x0	—
[3]	16g_coef_enable	RW	1	0x0	Used to enable per-lane hardcoded coefficients at 16G speed.
[2]	16g_preset_enable	RW	1	0x0	Used to enable per-lane hardcoded presets at 16G speed
[1]	8g_coef_enable	RW	1	0x0	Used to enable per-lane hardcoded coefficients at 8G speed.
[0]	8g_preset_enable	RW	1	0x0	Used to enable per-lane hardcoded presets at 8G speed

phy_eq_tx_force_per_lane_8g_pre Register 0x404

This register set is used for per-Lane Hardcoded Preset/Pre-cursor values configuration for 8G data rate.

Table 5.103. phy_eq_tx_force_per_lane_8g_pre Register 0x404

Field	Name	Access	Width	Reset	Description
[95:0]	value	RW	96	0x0	Per-lane preset/pre-cursor values to use in hardcoded per-lane mode at 8G speed.

phy_eq_tx_force_per_lane_8g_post Register 0x410

This register set is used for per-Lane Hardcoded Preset/Post-cursor values configuration for 8G data rate.

Table 5.104. phy_eq_tx_force_per_lane_8g_post Register 0x410

Field	Name	Access	Width	Reset	Description
[95:0]	value	RW	96	0x0	Per-lane post-cursor values to use in hardcoded per-lane mode at 8G speed.

5.1.3. mgmt_ptl (0x03000)

The following are the register sets with the 0x3000 base address.

5.1.3.1. Simulation Register

Simulation Register 0x0

This register set is used for the Partial Transaction Layer simulation speed reduction.

Table 5.105. Simulation Register 0x0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	pm_reduce_timeouts	RW	1	0x0	Reduce Power Management State Machine timeouts from their value in ms to their value in μ s to shorten simulation time. 0 – Disable 1 – Enable

5.1.3.2. Power Management State Machine Register Set

pm_aspm_l0s Register 0x40

This register set is used for the Power Management State Machine ASPM L0s entry control.

Table 5.106. pm_aspm_l0s Register 0x40

Field	Name	Access	Width	Reset	Description
[31:16]	entry_time	RW	16	0x0	ASPM L0s TX Entry Time in μ s. 0 is a special case == 6.9 μ s.
[15:1]	reserved	RO	15	0x0	—
[0]	enable	RW	1	0x1	Enable Power Management State Machine to enter ASPM L0s. 0 – Disable 1 – Enable

pm_aspm_l1 Register 0x50

This register set is used for the Power Management State Machine ASPM L1 entry control.

Table 5.107. pm_aspm_l1 Register 0x50

Field	Name	Access	Width	Reset	Description
[31:16]	entry_time	RW	16	0x0	ASPM L1 TX Entry Time in ms. 0 is a special case == 1000 μ s
[15:1]	reserved	RO	15	0x0	—
[0]	enable	RW	1	0x1	Enable Power Management State Machine to enter ASPM L1. 0 – Disable 1 – Enable

pm_aspm_l1_min Register 0x54

This register set is used for the Power Management State Machine ASPM L1 re-entry control.

Table 5.108. pm_aspm_l1_min Register 0x54

Field	Name	Access	Width	Reset	Description
[31:30]	reserved	RO	2	0x0	—
[29:16]	reentry_time	RW	14	0x0	When reentry_disable==0, specifies the minimum time between ASPM L1 requests in ns. 0 is a special case == 9500 ns (PCIe Specification value).
[15:1]	reserved	RO	15	0x0	—
[0]	reentry_disable	RW	1	0x0	Disable enforcing a minimum time between ASPM L1 requests. 0 – Enable 1 – Disable

pm_l1 Register 0x60

This register set is used for the Power Management State Machine L1 entry control.

Table 5.109. pm_l1 Register 0x60

Field	Name	Access	Width	Reset	Description
[31:16]	us_port_ps_entry_time	RW	16	0x0	Upstream Ports only: Number of μ s to wait for the transmission of the completion to the PowerState Cfg Write that initiated L1 entry, before beginning to block TLPs and enter L1. 0 is a special case == 4 μ s.
[15:1]	reserved	RO	15	0x0	—
[0]	enable	RW	1	0x1	Enable Power Management State Machine to enter L1. 0 – Disable 1 – Enable

pm_l1_min Register 0x64

This register set is used for the Power Management State Machine L1 re-entry control.

Table 5.110. pm_l1_min Register 0x64

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	8	0x0	—
[23:16]	ps_reentry_time	RW	8	0x0	Minimum number of μ s to wait following an L1 exit when Power State != D0, before re-entering L1 due to Power State != D0. A wait time is needed to give the transaction layer time to process a Power State Cfg Write to D0 that caused L1 exit. 0 is a special case == 50 μ s.
[15:0]	reserved	RO	16	0x0	—

pm_l1pmss Register 0x68

This register set is used for the Power Management State Machine L1PMSS control.

Table 5.111. pm_l1pmss Register 0x68

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	ds_drive_clkreq	RW	1	0x0	Enable driveing the clkreq_n signal when operating as a downstream port. 0 – Disable 1 – Enable

pm_l2 Register 0x70

This register set is used for the Power Management State Machine L2 entry control.

Table 5.112. pm_l2 Register 0x70

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x1	Enable Power Management State Machine to enter L2. 0 – Disable 1 – Enable

pm_pme_to_ack_ep Register 0x80

This register set is used for the Power Management State Machine Endpoint PME_TO_Ack control.

Table 5.113. pm_pme_to_ack_ep Register 0x80

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	user_auto_n	RW	1	0x0	For Endpoints only: PME_TO_Ack message transmission scheduling method. Endpoints are required to respond to a PME_Turn_Off message with a PME_TO_Ack message when they are ready to allow power down. 0 – Schedule PME_TO_Ack message automatically on reception of PME_Turn_Off message. 1 – Schedule PME_TO_Ack message under user control through the pm_l2_enter_ack rising edge.

pm_pme_to_ack_ds Register 0x84

This register set is used for the Power Management State Machine Downstream Port PME_TO_Ack control.

Table 5.114. pm_pme_to_ack_ds Register 0x84

Field	Name	Access	Width	Reset	Description
[31:0]	reserved	RO	32	0x0	—

pm_pme Register 0x88

This register set is used for the Power Management State Machine PM_PME control.

Table 5.115. pm_pme Register 0x88

Field	Name	Access	Width	Reset	Description
[31:12]	reserved	RO	20	0x0	—
[11:0]	timeout_threshold	RW	12	0x0	ms to wait for a transmitted PM_PME Message to be acknowledged, by clearing of the PME_Status register, before reissuing the PM_PME message. 0xFFFF is a special case that disables the timeout mechanism. 0x000 is a special case == 100 ms.

pm_status Register 0x90

This register set is used for the Power Management State Machine Status.

Table 5.116. pm_status Register 0x90

Field	Name	Access	Width	Reset	Description
[31:5]	reserved	RO	27	0x0	—
[4:0]	state	RO	5	0x0	<p>Power Management State Machine State.</p> <p>0 – IDLE</p> <p>1 – L1_WAIT_IDLE</p> <p>2 – L1_WAIT_REPLY</p> <p>3 – L1_READY</p> <p>4 – L1_STOP_DLLP</p> <p>5 – L1</p> <p>6 – L1_1</p> <p>7 – L1_2_ENTRY</p> <p>8 – L1_2_IDLE</p> <p>9 – L1_2_EXIT</p> <p>10 – L1_EXIT</p> <p>11 – L2_WAIT_IDLE</p> <p>12 – L2_WAIT_REPLY</p> <p>13 – L23_READY</p> <p>14 – L2_STOP_DLLP</p> <p>15 – L2</p> <p>16 – LOS</p>

5.1.3.3. TLP Transmit Control

tlp_tx Register 0x1c4

This register set is used to enable TD bit.

Table 5.117. tlp_tx Register 0x1c4

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	td1_means_add_has_n	RW	1	0x0	<p>TLP Transmit TD==1 Header Field Interpretation.</p> <p>0 – When a TLP is transmitted with TLP header bit TD==1, this means that the TLP already contains an ECRC. The core transmits the TLP with the TLP's existing ECRC and does not attempt to generate/append a new ECRC.</p> <p>1 – Not supported for Full Transaction Layer cores like the CrossLink-NX cores. td1_means_add_has_n must be set to 0.</p>

5.1.3.4. FC Credit Init Control

fc_credit_init Register 0x1c8

This register set is used to force the core to reperform FC credit initialization.

Table 5.118. fc_credit_init Register 0x1c8

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	redo	RW	1	0x0	Force the core to redo FC Credit Initialization without taking the link down. This is only possible if both ends of the link are instructed to redo the initialization.

5.1.3.5. All Other Registers

rx_c Register 0x200

This register set is used for Receive Buffer arbitration and completion handling configuration.

Table 5.119. rx_c Register 0x200

Field	Name	Access	Width	Reset	Description
[31:24]	priority p starve thresh	RW	8	0x10	When priority == 1, priority p starve thresh == number of times a P TLP grant can be skipped before P priority is elevated to prevent it from starving.
[23:16]	priority n starve thresh	RW	8	0x10	When priority == 1, priority n starve thresh == number of times a N TLP grant can be skipped before N priority is elevated to prevent it from starving.
[15:2]	reserved	RC	14	0x0	—
[1]	force ro	RW	1	0x0	Force completion relaxed ordering (RO==1) behavior for all completion TLPS, even those with RO==0. Note that setting this register to 1 is not PCIe Spec. compliant but this may be fine for some designs since it is acceptable in many designs for C without

Field	Name	Access	Width	Reset	Description
					RO==1 to pass prior P. 0 Disable - Received completions are handled using their received RO attribute. 1 Enable - all received completions are handled as if the RO attribute was 1.
[0]	priority	RW	1	0x0	Completion priority enable. 0 Disable. Arbitration between Posted, Non-Posted, and Completion TLPs is round robin. 1 Enable. While arbitrating between putting pending received Posted, Non-Posted, and Completion TLPs on the user received TLP interface, completions are given highest priority. Posted and non-posted requests transact only when a completion is not pending or as needed to prevent starving.

rx_ctrl Register 0x208

This register set is used for Receive Buffer Control.

Table 5.120. rx_ctrl Register 0x208

Field	Name	Access	Width	Reset	Description
[31:23]	reserved	RC	9	0x0	—
[22:20]	max pl size supported max	RS	3	0x0	Maximum value recommended for max pl size supported. This status field is set to the TLP payload size that can be held by the lesser of 1/2 of the P or C TLP buffers and assumes that at least 1/2 of the P & C TLP buffer space is reserved to hold data credits (with the remaining space reserved to hold TLP headers). However, for sustained throughput performance it is better to configure the Rx Buffer to hold at least 3-4 max payload size TLPs in each of the P & C buffers. 0: 128 Bytes 1: 256 Bytes 2: 512 Bytes 3: 1024 Bytes 4: 2048 Bytes 5: 4096 Bytes 6: Reserved 7: Reserved
[19:16]	reserved	RC	4	0x0	—
[15:10]	reserved	RC	6	0x0	—
[9:8]	adv ch cd sel	RW	2	0x0	PCIe Spec. requires CH & CD credit advertisements to be infinite for Endpoints and the finite (actual credit values) for Root Port and Switch Ports. ch_cd_sel may be configured to over-ride the default PCIe Spec. expected behavior. 0: Implement CH, CD credit advertisements per port type: Endpoints == infinite, Root

Field	Name	Access	Width	Reset	Description
					Port and Switch Ports == actual. 1: Advertise actual CH, CD credits. 2: Advertise In_nite CH, CD credits.
[7:3]	reserved	RC	5	0x0	—
[2:1]	fc update timer div	RW	2	0x0	Receive Buffer Flow Control Divider. Configures the FC Update frequency of the Receive Buffer when fc update timer disable==0. 0: Use the PCIe Spec. recommended values 1: Use the PCIe Spec. recommended values divided by 2 2: Use the PCIe Spec. recommended values divided by 4 3: Use the PCIe Spec. recommended values divided by 8
[0]	fc update timer disable	RW	1	0x0	Receive Buffer Flow Control Disable 0: Enable the FC Update Timer - schedule FC Updates in accordance with PCIe. Spec. recommended values. 1: Disable FC Update Timer - schedule a FC Update on Every Consumed RX TLP.

p_stat_rx Register 0x210

This register set is used for Receive Buffer PCIe Clock Domain Input Status.

Table 5.121. p_stat_rx Register 0x210

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RC	30	0x0	—
[1]	mps violation	RW	1	0x0	Receive Buffer discarded a TLP on PCIe clock domain at the input of the Receive Buffer for exceeding the Max Payload Size. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[0]	tlp valid	RW	1	0x0	Receive Buffer received a valid TLP on PCIe clock domain at input of the Receive Buffer. Sticky, write 1 to clear. This field is referenced to clock p_clk.

u_stat_rx Register 0x214

This register set is used for Receive Buffer User Clock Domain Output Status.

Table 5.122. u_stat_rx Register 0x214

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RC	30	0x0	—
[1]	err ucor	RW	1	0x0	Uncorrectable ECC error detected at output of Receive Buffer. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[0]	err cor	RW	1	0x0	Correctable ECC error detected at output of Receive Buffer. Sticky, write 1 to clear. This field is referenced to clock u_clk.

vc_rx control Register 0x218

This register set is used for Receive Buffer Parity/ECC Control.

Table 5.123. vc_rx control Register 0x218

Field	Name	Access	Width	Reset	Description
[31:19]	reserved	RC	13	0x0	—
[18]	par_report_disable	RW	1	0x0	Receive Buffer Parity Error Reporting Disable. This field is referenced to clock u_clk. 0: Enable reporting. 1: Disable reporting of Receive Buffer detected parity errors.
[17]	reserved	RC	1	0x0	—
[16]	par_inject_en	RW	1	0x0	Receive Buffer Parity Error Injection Enable. This field is referenced to clock p_clk. 0: Do not inject error. 1: When par_inject_en is written from 0 to 1, a parity error injection is scheduled and is injected at the next opportunity (TLP receipt). The injection inverts the parity of TLP header/payload bytes being received in the clock cycle that the injection is performed.
[15]	reserved	RC	1	0x0	—
[14]	ecc2_report_disable	RW	1	0x0	Receive Buffer ECC 2-bit Error Reporting Disable. This field is referenced to clock u_clk. 0: Enable reporting. 1: Disable reporting of ECC 2-bit errors.
[13]	ecc2_handle_disable	RW	1	0x0	Receive Buffer ECC 2-bit Error Handling Disable. This field is referenced to clock u_clk. 0: Enable handling. 1: Disable handling of ECC 2-bit errors.
[12]	ecc2_inject_m_1_n	RW	1	0x0	Receive Buffer ECC 2-bit Error Injection Multiple/Single Select. This field is referenced to clock p_clk. 0: Inject only 1 error when ecc2_inject_en is written from 0 to 1. 1: Keep injecting errors as long as ecc2_inject_en == 1
[11:9]	ecc2_inject_type	RW	3	0x0	Receive Buffer ECC 2-bit Error Injection Type. This field is referenced to clock P_clk. 0: Inject error in Posted Data RAM 1: Inject error in Non-posted Data RAM 2: Inject error in Completion Data RAM 3: Reserved. Do not use. 4: Inject error in Posted Header RAM 5: Inject error in Non-posted Header RAM 6: Inject error in Completion Header RAM 7: Reserved. Do not use.

Field	Name	Access	Width	Reset	Description
[8]	ecc2_inject_en	RW	1	0x0	Receive Buffer ECC 2-bit Error Injection Enable. <code>ecc2_inject_en</code> must not be written in the same write that changes the value of <code>ecc1_inject_m_1_n</code> or <code>ecc1_inject_type</code> . This field is referenced to clock <code>p_clk</code> . 0: Do not inject error. 1: Inject ECC 2-bit error at the next opportunity (Receive Buffer RAM write).
[7]	reserved	RC	1	0x0	—
[6]	ecc1_report_disable	RW	1	0x0	Receive Buffer ECC 1-bit Error Reporting Disable. This field is referenced to clock <code>u_clk</code> . 0: Enable reporting. 1: Disable reporting of ECC 1-bit errors.
[5]	ecc1_handle_disable	RW	1	0x0	Receive Buffer ECC 1-bit Error Handling Disable. This field is referenced to clock <code>u_clk</code> . 0: Enable correction. 1: Disable correction of ECC 1-bit errors. When error correction is disabled, ECC 1-bit errors are treated the same as uncorrectable ECC 2-bit errors.
[4]	ecc1_inject_m_1_n	RW	1	0x0	Receive Buffer ECC 1-bit Error Injection Multiple/Single Select. This field is referenced to clock <code>p_clk</code> . 0: Inject only 1 error when <code>ecc1_inject_en</code> is written from 0 to 1. 1: Keep injecting errors as long as <code>ecc1_inject_en == 1</code>
[3:1]	ecc1_inject_type	RW	3	0x0	Receive Buffer ECC 1-bit Error Injection Type. This field is referenced to clock <code>p_clk</code> . 0: Inject error in Posted Data RAM 1: Inject error in Non-posted Data RAM 2: Inject error in Completion Data RAM 3: Reserved. Do not use. 4: Inject error in Posted Header RAM 5: Inject error in Non-posted Header RAM 6: Inject error in Completion Header RAM 7: Reserved. Do not use.
[0]	ecc1_inject_en	RW	1	0x0	Receive Buffer ECC 1-bit Error Injection Enable. <code>ecc1_inject_en</code> must not be written in the same write that changes the value of <code>ecc1_inject_m_1_n</code> or <code>ecc1_inject_type</code> . This field is referenced to clock <code>p_clk</code> . 0: Do not inject error. 1: Inject ECC 1-bit error at the next opportunity (Receive Buffer RAM write).

vc_rx_status Register 0x21c

This register set is used for Receive Buffer Parity/ECC Status.

Table 5.124. vc_rx_status Register 0x21c

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RC	28	0x0	—
[3]	reserved	RC	1	0x0	—
[2]	err_par	RW	1	0x0	Receive Buffer Parity Error Detection Status. This field is referenced to clock u_clk. 0: Otherwise. 1: Error occurred.
[1]	err_ecc2	RW	1	0x0	Receive Buffer ECC 2-bit Error Detection Status. This field is referenced to clock u_clk. 0: Otherwise. 1: Error occurred.
[0]	err_ecc1	RW	1	0x0	Receive Buffer ECC 1-bit Error Detection Status. This field is referenced to clock u_clk. 0: Otherwise. 1: Error occurred.

u_rx_credit_stat_p init Register 0x220

This register set is used for Receive Buffer Posted Credit Initialization Status.

Table 5.125. u_rx_credit_stat_p init Register 0x220

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of PH credits with which Receive Buffer was initialized. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Number of PD credits with which Receive Buffer was initialized. This field is referenced to clock u_clk.

u_rx_credit_stat_p_curr Register 0x224

This register set is used for Receive Buffer Posted Credit Current Status.

Table 5.126. u_rx_credit_stat_p_curr Register 0x224

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Receive Buffer PH limited status. 1==Forwarding of TLPs was limited due to PH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[30]	lim_d	RW	1	0x0	Receive Buffer PD limited status. 1==Forwarding of TLPs was limited due to PD credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[29:28]	reserved	RC	2	0x0	—

Field	Name	Access	Width	Reset	Description
[27:16]	h	RS	12	0x0	Receive Buffer - Current PH credits. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Receive Buffer - Current PD credits. This field is referenced to clock u_clk.

u_rx_credit_stat_n_init Register 0x228

This register set is used for Receive Buffer Non-Posted Credit Initialization Status.

Table 5.127. u_rx_credit_stat_n_init Register 0x228

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of NH credits with which Receive Buffer was initialized. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Number of ND credits with which Receive Buffer was initialized. This field is referenced to clock u_clk.

u_rx_credit_stat_n_curr Register 0x22c

This register set is used for Receive Buffer Non-Posted Credit Current Status.

Table 5.128. u_rx_credit_stat_n_curr Register 0x22c

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Receive Buffer NH limited status. 1==Forwarding of TLPs was limited due to NH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[30]	lim_d	RW	1	0x0	Receive Buffer ND limited status. 1==Forwarding of TLPs was limited due to ND credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[29:28]	reserved	RC	2	0x0	—
[27:16]	h	RS	12	0x0	Receive Buffer - Current NH credits. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Receive Buffer - Current ND credits. This field is referenced to clock u_clk.

u_rx_credit_stat_c_init Register 0x230

This register set is used for Receive Buffer Completion Credit Initialization Status.

Table 5.129. u_rx_credit_stat_c_init Register 0x230

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of CH credits with which Receive Buffer was initialized. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Number of CD credits with which Receive Buffer is initialized. This field is referenced to clock u_clk.

u_rx_credit_stat_c_curr Register 0x234

This register set is used for Receive Buffer Completion Credit Current Status.

Table 5.130. u_rx_credit_stat_c_curr Register 0x234

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Receive Buffer CH limited status. 1==Forwarding of TLPs was limited due to CH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[30]	lim_d	RW	1	0x0	Receive Buffer CD limited status. 1==Forwarding of TLPs was limited due to CD credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[29:28]	reserved	RC	2	0x0	—
[27:16]	h	RS	12	0x0	Receive Buffer - Current CH credits. This field is referenced to clock u_clk.
[15:0]	d	RS	16	0x0	Receive Buffer - Current CD credits. This field is referenced to clock u_clk.

rx_alloc_size_p Register 0x240

This register set is used for Receive Buffer Posted Storage Status.

Table 5.131. rx_alloc_size_p Register 0x240

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 PH credit.
[23:0]	storage	RS	24	0x0	Receive Buffer P RAM storage size in bytes.

rx_alloc_size_n Register 0x244

This register set is used for Receive Buffer Non-Posted Storage Status.

Table 5.132. rx_alloc_size_n Register 0x244

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 NH credit.
[23:0]	storage	RS	24	0x0	Receive Buffer N RAM storage size in bytes.

rx_alloc_size_c Register 0x248

This register set is used for Receive Buffer Completion Storage Status.

Table 5.133. rx_alloc_size_c Register 0x248

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 CH credit.
[23:0]	storage	RS	24	0x0	Receive Buffer C RAM storage size in bytes.

rx_alloc_lim Register 0x24c

This register set is used for Receive Buffer Allocation Limit Status.

Table 5.134. rx_alloc_lim Register 0x24c

Field	Name	Access	Width	Reset	Description
[31:24]	max_ch	RS	8	0x0	Receive Buffer maximum number of CH credits which may be allocated == $2^{mgmt_ptl_rx_alloc_lim_max_ch}$.
[23:16]	max_nh	RS	8	0x0	Receive Buffer maximum number of NH credits which may be allocated == $2^{mgmt_ptl_rx_alloc_lim_max_nh}$.
[15:8]	max_ph	RS	8	0x0	Receive Buffer maximum number of PH credits which may be allocated == $2^{mgmt_ptl_rx_alloc_lim_max_ph}$.
[7:0]	min_d_multiple	RS	8	0x0	Receive Buffer minimum multiple of D credits that can be allocated. <= 128-bit cores must allocate D credits in multiples of 1, 256-bit cores in multiples of 2, and 512-bit cores in multiples of 4.

rx_alloc_p Register 0x250

This register set is used for Receive Buffer Posted Credit Allocation.

Table 5.135. rx_alloc_p Register 0x250

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x10	Number of PH credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested PH & PD credits must not exceed the P RAM storage space.
[15:0]	d	RW	16	0x6C	Number of PD credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested PH & PD credits must not exceed the P RAM storage space.

rx_alloc_n Register 0x254

This register set is used for Receive Buffer Non-Posted Credit Allocation.

Table 5.136. rx_alloc_n Register 0x254

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x8	Number of NH credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested NH & ND credits must not exceed the N RAM storage space.
[15:0]	d	RW	16	0x6	Number of ND credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested NH & ND credits must not exceed the N RAM storage space.

rx_alloc_c Register 0x258

This register set is used for Receive Buffer Completion Credit Allocation.

Table 5.137. rx_alloc_c Register 0x258

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x20	Number of CH credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested CH & CD credits must not exceed the C RAM storage space.
[15:0]	d	RW	16	0x60	Number of CD credits to allocate to the Receive Buffer. The number of bytes required to allocate the requested CH & CD credits must not exceed the C RAM storage space.

rx_alloc_sel Register 0x25c

This register set is used for Receive Buffer Credit Allocation Selection.

Table 5.138. rx_alloc_sel Register 0x25c

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RC	31	0x0	—
[0]	en	RW	1	0x20	Receive Buffer credit allocation selection. 0: Credits are allocated by the hardware design. Credits are allocated in a balanced fashion using all available RAM. For designs supporting bifurcation, the hardware credit allocation automatically adapts to the current bifurcation. 1: Allocate credits under user control using the rx_alloc_p/n/ch and rx_alloc_p/n/cd registers.

rx_alloc_error Register 0x260

This register set is used for Receive Buffer Allocation Error Status.

Table 5.139. rx_alloc_error Register 0x260

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RC	8	0x0	—
[23]	reserved	RC	1	0x0	—
[22]	max_ch	RS	1	0x0	mgmt_ptl_rx_alloc_ch must be <= (2 ^{mgmt_ptl_rx_alloc_lim_max_ch}). 0: No Error 1: Error
[21]	max_nh	RS	1	0x0	mgmt_ptl_rx_alloc_nh must be <= (2 ^{mgmt_ptl_rx_alloc_lim_max_nh}). 0: No Error 1: Error
[20]	max_ph	RS	1	0x0	mgmt_ptl_rx_alloc_ph must be <= (2 ^{mgmt_ptl_rx_alloc_lim_max_ph}). 0: No Error 1: Error

Field	Name	Access	Width	Reset	Description
[19:16]	reserved	RC	4	0x0	—
[15]	reserved	RC	1	0x0	—
[14]	c_sum	RS	1	0x0	Storage space required for mgmt_ptl_rx_alloc_ch + mgmt_ptl_rx_alloc_cd exceeds C RAM storage space. 0: No Error 1: Error
[13]	n_sum	RS	1	0x0	Storage space required for mgmt_ptl_rx_alloc_nh + mgmt_ptl_rx_alloc_nd exceeds N RAM storage space. 0: No Error 1: Error
[12]	p_sum	RS	1	0x0	Storage space required for mgmt_ptl_rx_alloc_ph + mgmt_ptl_rx_alloc_pd exceeds P RAM storage space. 0: No Error 1: Error
[11]	reserved	RC	1	0x0	—
[10]	cd_mult	RS	1	0x0	mgmt_ptl_rx_alloc_cd[1:0] must be 0 for 512-bit and mgmt_ptl_rx_alloc_cd[0] must be 0 for 256-bit. 0: No Error 1: Error
[9]	nd_mult	RS	1	0x0	mgmt_ptl_rx_alloc_nd[1:0] must be 0 for 512-bit and mgmt_ptl_rx_alloc_nd[0] must be 0 for 256-bit. 0: No Error 1: Error
[8]	pd_mult	RS	1	0x0	mgmt_ptl_rx_alloc_pd[1:0] must be 0 for 512-bit and mgmt_ptl_rx_alloc_pd[0] must be 0 for 256-bit. 0: No Error 1: Error
[7]	reserved	RC	1	0x0	—
[6]	min_cd	RS	1	0x0	mgmt_ptl_rx_alloc_cd must be \geq Max Payload Size Supported. 0: No Error 1: Error
[5]	min_nd	RS	1	0x0	mgmt_ptl_rx_alloc_nd must be \geq 2 0: No Error 1: Error
[4]	min_pd	RS	1	0x0	mgmt_ptl_rx_alloc_pd must be \geq Max Payload Size Supported. 0: No Error 1: Error
[3]	reserved	RC	1	0x0	—
[2]	min_ch	RS	1	0x0	mgmt_ptl_rx_alloc_ch must be $>$ 0. 0: No Error 1: Error

Field	Name	Access	Width	Reset	Description
[1]	min_nh	RS	1	0x0	mgmt_ptl_rx_alloc_nh must be > 0. 0: No Error 1: Error
[0]	min_ph	RS	1	0x0	mgmt_ptl_rx_alloc_ph must be > 0. 0: No Error 1: Error

tx_c Register 0x280

This register set is used for Transmit Buffer arbitration and completion handling configuration.

Table 5.140. tx_c Register 0x280

Field	Name	Access	Width	Reset	Description
[31:24]	priority_p_starve_thresh	RW	8	0x10	When priority == 1, priority_p_starve_thresh == number of times a P TLP grant can be skipped before P priority is elevated to prevent it from starving.
[23:16]	priority_n_starve_thresh	RW	8	0x10	When priority == 1, priority_n_starve_thresh == number of times a N TLP grant can be skipped before N priority is elevated to prevent it from starving.
[15:2]	reserved	RC	14	0x0	—
[1]	Force_ro	RW	1	0x0	Force completion relaxed ordering (RO==1) behavior for all completion TLPs, even those with RO==0. Note that setting this register to 1 is not PCIe Spec. compliant but this may be fine for some designs since it is acceptable in many designs for C without RO==1 to pass prior P. 0: Disable - transmitted completions are handled using their transmitted RO attribute. 1: Enable - all transmitted completions are handled as if the RO attribute was 1.
[0]	priority	RW	1	0x0	Completion priority enable. 0: Disable. Arbitration between Posted, Non-Posted, and Completion TLPs is round robin. 1: Enable. While arbitrating between posting pending Transmitted Posted, Non- Posted, and Completion TLPs on the user Transmitted TLP interface, completions are given highest priority. The posted and non- posted requests transact only when a completion is not pending or as needed to prevent starving.

tx_ctrl Register 0x284

This register set is used for Transmit Buffer Control.

Table 5.141. tx_ctrl Register 0x284

Field	Name	Access	Width	Reset	Description
[31:23]	reserved	RC	9	0x0	—
[22:20]	max_pl_size_supported_max	RS	3	0x0	<p>Maximum value recommended for max pl size supported due to Tx Buffer size restrictions. This status field is set to the TLP payload size that can be held by the lesser of 1/2 of the P or C TLP buffers and assumes that at least 1/2 of the P & C TLP buffer space is reserved to hold data credits (with the remaining space reserved to hold TLP headers). However, for sustained throughput performance it is better to configure the Rx Buffer to hold at least 3-4 max payload size TLPs in each of the P & C buffers.</p> <p>0: 128 Bytes 1: 256 Bytes 2: 512 Bytes 3: 1024 Bytes 4: 2048 Bytes 5: 4096 Bytes 6: Reserved 7: Reserved</p>
[19:19]	reserved	RC	4	0x0	—
[15:8]	reserved	RC	8	0x0	—
[7:0]	reserved	RC	8	0x0	—

vc_tx_credit cleanup Register 0x288

This register set is used for TLP transmit error credit cleanup control.

Table 5.142. vc_tx_credit cleanup Register 0x288

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RC	31	0x0	—
[0]	method	RW	1	0x0	<p>TLP Transmit Credit Cleanup Method.</p> <p>0: Use the headers of the cleaned-up TLPs to recover the credits. The credits in TLPs with corrupted headers are not recovered.</p> <p>1: Use a credit lookup table based on the ID assigned to the TLP. This table is implemented in pcie_user_if.</p>

stat_tx Register 0x290

This register set is used for Transmit Buffer User Clock Domain Input Status.

Table 5.143. stat_tx Register 0x290

Field	Name	Access	Width	Reset	Description
[31:3]	reserved	RC	29	0x0	—
[2]	overflow	RW	1	0x0	Transmit Buffer was stalled because a transmitted TLP could not be stored in the Tx Buffer. If the user is using the core's transmit flow control interface to prevent overflows, then this error should not occur. If the customer is not implementing Tx flow control, then this error is expected whenever the user transmit TLP bandwidth exceeds the ability of PCIe to transmit the TLPs. In both cases, the core does not permit the overflow to corrupt the Tx Buffer and stalls the Tx Buffer until it has space to store the TLP. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[1]	mpsViolation	RW	1	0x0	Transmit Buffer discarded a TLP on the user clock domain at the input of the Transmit Buffer for exceeding the Max Payload Size. Sticky, write 1 to clear. This field is referenced to clock u_clk.
[0]	tlp_valid	RW	1	0x0	Transmit Buffer transmitted a valid TLP on the user clock domain at the input of the Transmit Buffer. Sticky, write 1 to clear. This field is referenced to clock u_clk.

p_stat_tx Register 0x294

This register set is used for Transmit Buffer PCIe Clock Domain Output Status.

Table 5.144. p_stat_tx Register 0x294

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RC	30	0x0	—
[1]	err_ucor	RW	1	0x0	Uncorrectable ECC error detected at output of Transmit Buffer. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[0]	err_cor	RW	1	0x0	Correctable ECC error detected at output of Transmit Buffer. Sticky, write 1 to clear. This field is referenced to clock p_clk.

vc_tx_control Register 0x298

This register set is used for Transmit Buffer Parity/ECC Control.

Table 5.145. vc_tx_control Register 0x298

Field	Name	Access	Width	Reset	Description
[31:19]	reserved	RC	13	0x0	—
[18]	par_report_disable	RW	1	0x0	Transmit Buffer Parity Error Reporting Disable. This field is referenced to clock p_clk. 0: Enable reporting. 1: Disable reporting of Transmit Buffer detected parity errors.
[17]	reserved	RC	1	0x0	—
[16]	par_inject_en	RW	1	0x0	Transmit Buffer Parity Error Injection Enable. This field is referenced to clock u_clk. 0: Do not inject error. 1: When par_inject_en is written from 0 to 1, a parity error injection is scheduled and is injected at the next opportunity (TLP receipt). The injection inverts the parity of TLP header/payload bytes being received in the clock cycle that the injection is performed.
[15]	reserved	RC	1	0x0	—
[14]	ecc2_report_disable	RW	1	0x0	Transmit Buffer ECC 2-bit Error Reporting Disable. This field is referenced to clock p_clk. 0: Enable reporting. 1: Disable reporting of ECC 2-bit errors.
[13]	ecc2_handle_disable	RW	1	0x0	Transmit Buffer ECC 2-bit Error Handling Disable. This field is referenced to clock p_clk. 0: Enable handling. 1: Disable handling of ECC 2-bit errors.
[12]	ecc2_inject_m_1_n	RW	1	0x0	Transmit Buffer ECC 2-bit Error Injection Multiple/Single Select. This field is referenced to clock u_clk. 0: Inject only 1 error when ecc2_inject_en is written from 0 to 1. 1: Keep injecting errors as long as ecc2_inject_en == 1
[11:9]	ecc2_inject_type	RW	3	0x0	Transmit Buffer ECC 2-bit Error Injection Type. This field is referenced to clock u_clk. 0: Inject error in Posted Data RAM 1: Inject error in Non-posted Data RAM 2: Inject error in Completion Data RAM 3: Reserved. Do not use. 4: Inject error in Posted Header RAM 5: Inject error in Non-posted Header RAM 6: Inject error in Completion Header RAM 7: Reserved. Do not use.

Field	Name	Access	Width	Reset	Description
[8]	ecc2_inject_en	RW	1	0x0	<p>Transmit Buffer ECC 2-bit Error Injection Enable. <code>ecc2_inject_en</code> must not be written in the same write that changes the value of <code>ecc1_inject_m_1_n</code> or <code>ecc1_inject_type</code>.</p> <p>This field is referenced to clock <code>u_clk</code>.</p> <p>0: Do not inject error.</p> <p>1: Inject ECC 2-bit error at the next opportunity (Transmit Buffer RAM write).</p>
[7]	reserved	RC	1	0x0	—
[6]	ecc1_report_disable	RW	1	0x0	<p>Transmit Buffer ECC 1-bit Error Reporting Disable. This field is referenced to clock <code>p_clk</code>.</p> <p>0: Enable reporting.</p> <p>1: Disable reporting of ECC 1-bit errors.</p>
[5]	ecc1_handle_disable	RW	1	0x0	<p>Transmit Buffer ECC 1-bit Error Handling Disable. This field is referenced to clock <code>p_clk</code>.</p> <p>0: Enable correction.</p> <p>1: Disable correction of ECC 1-bit errors. When error correction is disabled, ECC 1-bit errors are treated the same as uncorrectable ECC 2-bit errors.</p>
[4]	ecc1_inject_m_1_n	RW	1	0x0	<p>Transmit Buffer ECC 1-bit Error Injection Multiple/Single Select. This field is referenced to clock <code>u_clk</code>.</p> <p>0: Inject only 1 error when <code>ecc1_inject_en</code> is written from 0 to 1.</p> <p>1: Keep injecting errors as long as <code>ecc1_inject_en == 1</code></p>
[3:1]	ecc1_inject_type	RW	3	0x0	<p>Transmit Buffer ECC 1-bit Error Injection Type. This field is referenced to clock <code>u_clk</code>.</p> <p>0: Inject error in Posted Data RAM</p> <p>1: Inject error in Non-posted Data RAM</p> <p>2: Inject error in Completion Data RAM</p> <p>3: Reserved. Do not use.</p> <p>4: Inject error in Posted Header RAM</p> <p>5: Inject error in Non-posted Header RAM</p> <p>6: Inject error in Completion Header RAM</p> <p>7: Reserved. Do not use.</p>
[0]	ecc1_inject_en	RW	1	0x0	<p>Transmit Buffer ECC 1-bit Error Injection Enable. <code>ecc1_inject_en</code> must not be written in the same write that changes the value of <code>ecc1_inject_m_1_n</code> or <code>ecc1_inject_type</code>.</p> <p>This field is referenced to clock <code>u_clk</code>.</p> <p>0: Do not inject error.</p> <p>1: Inject ECC 1-bit error at the next opportunity (Transmit Buffer RAM write).</p>

vc_tx_status Register 0x29c

This register set is used for Transmit Buffer Parity/ECC Status.

Table 5.146. vc_tx_status Register 0x29c

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RC	28	0x0	—
[3]	reserved	RC	1	0x0	—
[2]	err_par	RW	1	0x0	Transmit Buffer Parity Error Detection Status. This field is referenced to clock p_clk. 0: Otherwise. 1: Error occurred.
[1]	err_ecc2	RW	1	0x0	Transmit Buffer ECC 2-bit Error Detection Status. This field is referenced to clock p_clk. 0: Otherwise. 1: Error occurred.
[0]	err_ecc1	RW	1	0x0	Transmit Buffer ECC 1-bit Error Detection Status. This field is referenced to clock p_clk. 0: Otherwise. 1: Error occurred.

p_tx_credit_stat_p_init Register 0x2a0

This register set is used for Transmit Buffer Posted Credit Initialization Status.

Table 5.147. p_tx_credit_stat_p_init Register 0x2a0

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of PH credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.
[15:0]	d	RS	16	0x0	Number of PD credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.

p_tx_credit_stat_p_curr Register 0x2a4

This register set is used for Transmit Buffer Posted Credit Current Status.

Table 5.148. p_tx_credit_stat_p_curr Register 0x2a4

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Transmit Buffer PH limited status. 1==Forwarding of TLPs was limited due to PH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[30]	lim_d	RW	1	0x0	Transmit Buffer PD limited status. 1==Forwarding of TLPs was limited due to PD credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[29:28]	reserved	RC	2	0x0	—
[27:16]	h	RS	12	0x0	Transmit Buffer - Current PH credits. This field is referenced to clock p_clk.
[15:0]	d	RS	16	0x0	Transmit Buffer - Current PD credits. This field is referenced to clock p_clk.

p_tx_credit_stat_n_init Register 0x2a8

This register set is used for Transmit Buffer Non-Posted Credit Initialization Status.

Table 5.149. p_tx_credit_stat_n_init Register 0x2a8

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of NH credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.
[15:0]	d	RS	16	0x0	Number of ND credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.

p_tx_credit_stat_n_curr Register 0x2ac

This register set is used for Transmit Buffer Non-Posted Credit Current Status.

Table 5.150. p_tx_credit_stat_n_curr Register 0x2ac

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Transmit Buffer NH limited status. 1==Forwarding of TLPs was limited due to NH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[30]	lim_d	RW	1	0x0	Transmit Buffer ND limited status. 1==Forwarding of TLPs was limited due to ND credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[29:28]	reserved	RC	2	0x0	—
[27:16]	h	RS	12	0x0	Transmit Buffer - Current NH credits. This field is referenced to clock p_clk.

Field	Name	Access	Width	Reset	Description
[15:0]	d	RS	16	0x0	Transmit Buffer - Current ND credits. This field is referenced to clock p_clk.

p_tx_credit_stat_c_init Register 0x2b0

This register set is used for Transmit Buffer Completion Credit Initialization Status.

Table 5.151. p_tx_credit_stat_c_init Register 0x2b0

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RS	12	0x0	Number of CH credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.
[15:0]	d	RS	16	0x0	Number of CD credits with which Transmit Buffer was initialized. This field is referenced to clock p_clk.

p_tx_credit_stat_c_curr Register 0x2b4

This register set is used for Transmit Buffer Completion Credit Current Status.

Table 5.152. p_tx_credit_stat_c_curr Register 0x2b4

Field	Name	Access	Width	Reset	Description
[31]	lim_h	RW	1	0x0	Transmit Buffer CH limited status. 1==Forwarding of TLPs was limited due to CH credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[30]	lim_d	RW	1	0x0	Transmit Buffer CD limited status. 1==Forwarding of TLPs was limited due to CD credits. 0==Otherwise. Sticky, write 1 to clear. This field is referenced to clock p_clk.
[29:28]	reserved	RC	2	0x0	—
[27:16]	h	RS	12	0x0	Transmit Buffer - Current CH credits. This field is referenced to clock p_clk.
[15:0]	d	RS	16	0x0	Transmit Buffer - Current CD credits. This field is referenced to clock p_clk.

tx_alloc_size_p Register 0x2c0

This register set is used for Transmit Buffer Posted Storage Status.

Table 5.153. tx_alloc_size_p Register 0x2c0

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 PH credit.
[23:0]	storage	RS	24	0x0	Transmit Buffer P RAM storage size in bytes.

tx_alloc_size_n Register 0x2c4

This register set is used for Transmit Buffer Non-Posted Storage Status.

Table 5.154. tx_alloc_size_n Register 0x2c4

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 NH credit.
[23:0]	storage	RS	24	0x0	Transmit Buffer N RAM storage size in bytes.

tx_alloc_size_c Register 0x2c8

This register set is used for Transmit Buffer Completion Storage Status.

Table 5.155. tx_alloc_size_c Register 0x2c8

Field	Name	Access	Width	Reset	Description
[31:24]	hdr	RS	8	0x0	Number of bytes required to store 1 CH credit.
[23:0]	storage	RS	24	0x0	Transmit Buffer C RAM storage size in bytes.

tx_alloc_lim Register 0x2cc

This register set is used for Transmit Buffer Allocation Limit Status.

Table 5.156. tx_alloc_lim Register 0x2cc

Field	Name	Access	Width	Reset	Description
[31:24]	max_ch	RS	8	0x0	Transmit Buffer maximum number of CH credits which may be allocated == $2^{mgmt_ptl_tx_alloc_lim_max_ch}$.
[23:16]	max_nh	RS	8	0x0	Transmit Buffer maximum number of NH credits which may be allocated == $2^{mgmt_ptl_tx_alloc_lim_max_nh}$.
[15:8]	max_ph	RS	8	0x0	Transmit Buffer maximum number of PH credits which may be allocated == $2^{mgmt_ptl_tx_alloc_lim_max_ph}$.
[7:0]	min_d_multiple	RS	8	0x0	Transmit Buffer minimum multiple of D credits that can be allocated. <= 128-bit cores must allocate D credits in multiples of 1, 256-bit cores in multiples of 2, and 512-bit cores in multiples of 4.

tx_alloc_p Register 0x2d0

This register set is used for Transmit Buffer Posted Credit Allocation.

Table 5.157. tx_alloc_p Register 0x2d0

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x10	Number of PH credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested PH & PD credits must not exceed the P RAM storage space.

Field	Name	Access	Width	Reset	Description
[15:0]	d	RW	16	0x6C	Number of PD credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested PH & PD credits must not exceed the P RAM storage space.

tx_alloc_n Register 0x2d4

This register set is used for Transmit Buffer Non-Posted Credit Allocation.

Table 5.158. tx_alloc_n Register 0x2d4

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x8	Number of NH credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested NH & ND credits must not exceed the N RAM storage space.
[15:0]	d	RW	16	0x6	Number of ND credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested NH & ND credits must not exceed the N RAM storage space.

tx_alloc_c Register 0x2d8

This register set is used for Transmit Buffer Completion Credit Allocation.

Table 5.159. tx_alloc_c Register 0x2d8

Field	Name	Access	Width	Reset	Description
[31:28]	reserved	RC	4	0x0	—
[27:16]	h	RW	12	0x20	Number of CH credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested CH & CD credits must not exceed the C RAM storage space.
[15:0]	d	RW	16	0x60	Number of CD credits to allocate to the Transmit Buffer. The number of bytes required to allocate the requested CH & CD credits must not exceed the C RAM storage space.

tx_alloc_sel Register 0x2dc

This register set is used for Transmit Buffer Credit Allocation Selection.

Table 5.160. tx_alloc_sel Register 0x2dc

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RC	31	0x0	—
[0]	en	RW	1	0x20	<p>Transmit Buffer credit allocation selection. 0: Credits are allocated by the hardware design. Credits are allocated in a balanced fashion using all available RAM. For designs supporting bifurcation, the hardware credit allocation automatically adapts to the current bifurcation. 1: Allocate credits under user control using the tx_alloc_p/n/ch and tx_alloc_p/n/cd registers.</p>

tx_alloc_error Register 0x2e0

This register set is used for Transmit Buffer Allocation Error Status.

Table 5.161. tx_alloc_error Register 0x2e0

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RC	8	0x0	—
[23]	reserved	RC	1	0x0	—
[22]	max_ch	RS	1	0x0	<p>mgmt_ptl_tx_alloc_ch must be <= ($2^{\text{mgmt_ptl_tx_alloc_lim_max_ch}}$). 0: No Error 1: Error</p>
[21]	max_nh	RS	1	0x0	<p>mgmt_ptl_tx_alloc_nh must be <= ($2^{\text{mgmt_ptl_tx_alloc_lim_max_nh}}$). 0: No Error 1: Error</p>
[20]	max_ph	RS	1	0x0	<p>mgmt_ptl_tx_alloc_ph must be <= ($2^{\text{mgmt_ptl_tx_alloc_lim_max_ph}}$). 0: No Error 1: Error</p>
[19:16]	reserved	RC	4	0x0	—
[15]	reserved	RC	1	0x0	—
[14]	c_sum	RS	1	0x0	<p>Storage space required for mgmt_ptl_tx_alloc_ch + mgmt_ptl_tx_alloc_cd exceeds C RAM storage space. 0: No Error 1: Error</p>
[13]	n_sum	RS	1	0x0	<p>Storage space required for mgmt_ptl_tx_alloc_nh + mgmt_ptl_tx_alloc_nd exceeds N RAM storage space. 0: No Error 1: Error</p>

Field	Name	Access	Width	Reset	Description
[12]	p_sum	RS	1	0x0	Storage space required for mgmt_ptl_tx_alloc_ph + mgmt_ptl_tx_alloc_pd exceeds P RAM storage space. 0: No Error 1: Error
[11]	reserved	RC	1	0x0	—
[10]	cd_mult	RS	1	0x0	mgmt_ptl_tx_alloc_cd[1:0] must be 0 for 512-bit and mgmt_ptl_tx_alloc_cd[0] must be 0 for 256-bit. 0: No Error 1: Error
[9]	nd_mult	RS	1	0x0	mgmt_ptl_tx_alloc_nd[1:0] must be 0 for 512-bit and mgmt_ptl_tx_alloc_nd[0] must be 0 for 256-bit. 0: No Error 1: Error
[8]	pd_mult	RS	1	0x0	mgmt_ptl_tx_alloc_pd[1:0] must be 0 for 512-bit and mgmt_ptl_tx_alloc_pd[0] must be 0 for 256-bit. 0: No Error 1: Error
[7]	reserved	RC	1	0x0	—
[6]	min_cd	RS	1	0x0	mgmt_ptl_tx_alloc_cd must be >= Max Payload Size Supported. 0: No Error 1: Error
[5]	min_nd	RS	1	0x0	mgmt_ptl_tx_alloc_nd must be >= 2 0: No Error 1: Error
[4]	min_pd	RS	1	0x0	mgmt_ptl_tx_alloc_pd must be >= Max Payload Size Supported. 0: No Error 1: Error
[3]	reserved	RC	1	0x0	—
[2]	min_ch	RS	1	0x0	mgmt_ptl_tx_alloc_ch must be > 0. 0: No Error 1: Error
[1]	min_nh	RS	1	0x0	mgmt_ptl_tx_alloc_nh must be > 0. 0: No Error 1: Error
[0]	min_ph	RS	1	0x0	mgmt_ptl_tx_alloc_ph must be > 0. 0: No Error 1: Error

5.1.4. mgmt_ftl (0x04000)

5.1.4.1. Simulation Register

Simulation Register 0x0

This register set is used for simulation only such as Full Transaction Layer simulation speed reduction.

Table 5.162. Simulation Register 0x0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	reduce_timeouts	RW	1	0x0	Reduce timeouts to shorten simulation time. When enabled, ms timeouts are shortened to the value in μ s. 0 – Disable 1 – Enable

5.1.4.2. Transaction Layer Decode Configuration Register

Decode Register 0x10

This register set is used for the Transaction Layer Decode configuration.

Table 5.163. decode Register 0x10

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	8	0x0	—
[23:18]	reserved	RO	6	0x0	—
[17]	tx_bypass_decode_en	RW	1	0x0	Bypass the TLP decode block in the Transmit path. 0 – Decode_in_path module is enabled. 1 – Decode_in_path module is bypassed.
[16]	rx_bypass_decode_en	RW	1	0x0	Bypass the TLP decode block in the Receive path. 0 – Decode_in_path module is enabled. 1 – Decode_in_path module is bypassed.
[15:11]	reserved	RO	5	0x0	—
[10]	tx_convert_ur_to_ca	RW	1	0x0	When decoding TX packets convert Unsupported Request (UR) packets to Completer Abort (CA). 0 – Normal Operation. 1 – Convert UR to CA.
[9]	rx_convert_ur_to_ca	RW	1	0x0	When decoding RX packets convert Unsupported Request (UR) packets to Completer Abort (CA). 0 – Normal Operation. 1 – Convert UR to CA.
[8]	t0_rx_bypass_msg_dec	RW	1	0x0	When implementing Type 0 Configuration Space (Endpoint) – Bypass RX Message TLP Decode Enable. 0 – Normal operation. The core claims and does not forward Message TLPs to the TLP Receive Interface. 1 – All valid Msg TLPs received on PCIe (except Routed by ID and Routed by Address which are routed according to the routing type) are forwarded to the TLP Receive Interface.
[7:3]	reserved	RO	5	0x0	—
[2]	vendor0_ur	RW	1	0x1	Vendor Type 0 Messages received from PCIe are reported as UR. 0 – Do not report received Vendor Type 0 Messages as Unsupported Request (UR). 1 – Report received Vendor Type 0 Messages as Unsupported Request (UR).
[1]	target_only	RW	1	0x0	Target Only. Enable for user designs that implement purely target-only functionality. When enabled all received completions are considered Unexpected Completions and are not forwarded to the TLP Receive Interface. 0 – Disable 1 – Enable

Field	Name	Access	Width	Reset	Description
[0]	ignore_poison	RW	1	0x1	<p>Ignore Poison – Set to 1 to have the core ignore the EP poison indicator for received TLPs with data payload that do not terminate in the core. When set to 1, the core passes all poisoned TLPs to you the same way it would pass the TLP if the TLP is not poisoned. Note that the Ignore Poison control is forced to 1 by the core when the core is configured as a Root-Port.</p> <p>Note that the following TLP types ignore the setting of this bit.</p> <p>Poisoned Configuration Type 0 writes is terminated in the core in all cases, independent of the Ignore Poison bit setting. A completion with UR status is generated and the appropriate error message, ERR COR or ERR FAT, is generated if not masked. Note that Poisoned Configuration Type 0 reads are always treated as if they were not poisoned. The read completes with successful completion status and an optional Advisory Non-Fatal Error status is set provided the severity level is set to NON-FATAL.</p> <p>Poisoned packets without data payload is passed to you in all cases since EP should not be set on packets without data payload and these packets should generally be handled as if they were not poisoned or alternatively handled as Advisory Non-Fatal Errors by user logic.</p> <p>Poisoned Vendor-defined Type 1 messages with data payload are always passed to you and, if ignore poison is 0, additionally an Advisory Non-Fatal Error status is set provided the severity level is set to NON-FATAL.</p> <p>When Ignore Poison is set to 0, the core handles the remaining poisoned TLPs with data payload as follows.</p> <p>Poisoned Write request and poisoned read completions with data TLPs are consumed by the core and handled as TLP Poisoned errors that generate the appropriate poison, ERR NON-FATAL or ERR FATAL, depending upon the error severity register error message. Poisoned Message with data payload (other than vendor-defined type 1) are consumed by the core and handled as TLP Poisoned errors that generate the appropriate poison, ERR NON-FATAL or ERR FATAL depending upon the error severity register, error message.</p> <p>The recommended default for target-only endpoints is to set Ignore Poison == 0 and to have user logic ignore the EP header bit on TLPs that it receives. In this case poisoned TLPs with data payload (other than config 0 writes and vendor-defined type 1 messages) generates a NON-FATAL error message and is discarded by the core. Poisoned TLPs without data payload (for which EP does not apply) is processed as if they were not poisoned.</p> <p>0 – Disable 1 – Enable</p>

decode_t1 Register 0x14

This register set is used for the Type 1 Configuration Space Transaction Layer Decode configuration.

Table 5.164. decode_t1 Register 0x14

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	8	0x0	—
[23:16]	reserved	RO	8	0x0	—
[15:0]	reserved	RO	16	0x0	—

5.1.4.3. Transaction Layer TLP Processing Configuration Register

tlp_processing Register 0x18

This register set is used for the Transaction Layer TLP Processing configuration.

Table 5.165. tlp_processing Register 0x18

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	8	0x0	—
[23:16]	reserved	RO	8	0x0	—
[15:8]	reserved	RO	8	0x0	—
[7:2]	reserved	RO	6	0x0	—
[1]	ignore_ecrc	RW	1	0x0	Ignore ECRC Error Enable. When enabled ECRC errors are ignored for TLPs passed to you in the TLP Receive Interface. 0 – Disable 1 – Enable
[0]	crs_enable	RW	1	0x0	Configuration Request Retry Status Enable. 0 – Disable. Type 0 Configuration Writes and Reads are performed normally. 1 – Enable. Type 0 Configuration Writes and Reads return Configuration Request Retry Status.

5.1.4.4. Initial Register

Initial Register 0x20

This register set is used for the initial speed and width configuration.

Table 5.166. Initial Register 0x20

Field	Name	Access	Width	Reset	Description
[31:19]	reserved	RO	13	0x0	—
[18:16]	max_link_width	RW	3	0x5	Max Link Width Override. This setting, if different from zero, overrides the value of Maximum Link Width in the PCIe Link Capabilities register. 0 – Maximum core lane width 1 – 1 lane 2 – 2 lanes 3 – 4 lanes 4 – 8 lanes

Field	Name	Access	Width	Reset	Description
					5 – 16 lanes 6 – Reserved6 7 – Reserved7
[15:2]	reserved	RO	14	0x0	—
[1:0]	target_link_speed	RW	2	0x3	Initial value of Target Link Speed Configuration Register. Determines the maximum initial link speed which can be reached during initial training. Must be set to the lesser of the maximum speed supported by the core and the maximum speed at which you desired the core to operate. 0 – 2.5G 1 – 5.0G 2 – 8.0G 3 – 16.0G

5.1.4.5. Configuration Register type

cfg Register 0x30

This register set is used for the Configuration Register type.

Table 5.167. cfg Register 0x30

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	type1_type0_n	RW	1	0x0	Determines the type of Configuration Registers implemented by the core. 0 – Type 0 – Endpoint 1 – Reserved

5.1.4.6. Downstream Port Configuration

ds_port Register 0x34

This register set is used for the Downstream Port configuration.

Table 5.168. ds_port Register 0x34

Field	Name	Access	Width	Reset	Description
[31:0]	reserved	RO	32	0x0	—

5.1.4.7. Upstream Port Configuration

us_port Register 0x38

This register set is used for the Upstream Port configuration.

Table 5.169. us_port Register 0x38

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	adv_target_link_speed	RW	1	0x0	For an upstream port, advertise the link speeds specified by the target_link_speed field rather than the maximum supported speed.

5.1.4.8. Device ID Configuration

id1 Register 0x40

This register set is used for the ID1 configuration.

Table 5.170. id1 Register 0x40

Field	Name	Access	Width	Reset	Description
[31:16]	device_id	RW	16	0xe004	Value returned when the Device ID Configuration Register is read.
[15:0]	vendor_id	RW	16	0x19aa	Value returned when the Vendor ID Configuration Register is read.

id2 Register 0x44

This register set is used for the ID2 configuration.

Table 5.171. id2 Register 0x44

Field	Name	Access	Width	Reset	Description
[31:16]	subsystem_id	RW	16	0xe004	Value returned when the Subsystem ID Configuration Register is read.
[15:0]	subsystem_vendor_id	RW	16	0x19aa	Value returned when the Subsystem Vendor ID Configuration Register is read.

id3 Register 0x48

This register set is used for the ID3 configuration.

Table 5.172. id3 Register 0x48

Field	Name	Access	Width	Reset	Description
[31:8]	class_code	RW	24	0x118000	Value returned when the Class Code Configuration Register is read. Must be set to the correct value for the type of device being implemented; see PCI Local Bus Specification Revision 2.3 Appendix D for details on setting Class Code.
[7:0]	revision_id	RW	8	0x4	Value returned when the Revision ID Configuration Register is read.

5.1.4.9. Cardbus Configuration

Cardbus Register 0x4c

This register set is used for the Cardbus configuration.

Table 5.173. Cardbus Register 0x4c

Field	Name	Access	Width	Reset	Description
[31:0]	cis_pointer	RW	32	0x0	Value returned when the Cardbus CIS Pointer Configuration Register is read. Set to 0x00000000 unless a Cardbus CIS structure is implemented in memory (which is rare), in which case set to the address of the CIS Structure.

5.1.4.10. Interrupt Configuration

Interrupt Register 0x50

This register set is used for the Interrupt configuration.

Table 5.174. Interrupt Register 0x50

Field	Name	Access	Width	Reset	Description
[31:10]	reserved	RO	22	0x0	—
[9:8]	pin	RW	2	0x0	Selects which legacy interrupt is used. 0 – INTA 1 – INTB 2 – INTC 3 – INTD
[7:1]	reserved	RO	7	0x0	—
[0]	disable	RW	1	0x0	Disable support for interrupts. 0 – Enable 1 – Disable

5.1.4.11. BAR Configuration

bar0 Register 0x60

This register set is used for the BAR0 configuration.

Table 5.175. bar0 Register 0x60

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffff000c	Configuration of BAR0 (Cfg address 0x10). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

bar1 Register 0x64

This register set is used for the BAR1 configuration.

Table 5.176. bar1 Register 0x64

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar1 (Cfg address 0x14). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

bar2 Register 0x68

This register set is used for the BAR2 configuration.

Table 5.177. bar2 Register 0x68

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xfffffe00c	Configuration of bar2 (Cfg address 0x18). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

bar3 Register 0x6c

This register set is used for the BAR3 configuration.

Table 5.178. bar3 Register 0x6c

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar3 (Cfg address 0x1C). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

bar4 Register 0x70

This register set is used for the BAR4 configuration.

Table 5.179. bar4 Register 0x70

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xfffffe00c	Configuration of bar4 (Cfg address 0x20). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

bar5 Register 0x74

This register set is used for the BAR5 configuration.

Table 5.180. bar5 Register 0x74

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar5 (Cfg address 0x24). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.4.12. Expansion ROM Configuration

exp_rom Register 0x78

This register set is used for the Expansion ROM configuration.

Table 5.181. exp_rom Register 0x78

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0x0	Configuration of exp_rom. Use to define a 32-bit Memory Expansion ROM region. If an Expansion ROM region is defined, the region must map to PCIe-compliant Expansion ROM code, or the device may fail to boot.

5.1.4.13. PCI Express Configuration

pcie_cap Register 0x80

This register set is used for the PCI Express Capabilities configuration.

Table 5.182. pcie_cap Register 0x80

Field	Name	Access	Width	Reset	Description
[31:14]	reserved	RO	18	0x0	—
[13:9]	interrupt_message_number	RW	5	0x0	MSI/MSI-X vector is used for the interrupt message generated in association with any of the status bits of the PCI Express Capability structure.
[8]	slot_implemented	RW	1	0x0	Indicates that the Link associated with this Port is connected to a slot. This field is valid for Downstream Ports only.
[7:4]	device_port_type	RW	4	0x0	Indicates the specific type of this PCI Express Function. 0 – PCI Express Endpoint 1 – Legacy PCI Express Endpoint 2 – Reserved 3 – Reserved 4 – Reserved 5 – Reserved 6 – Reserved 7 – Reserved 8 – Reserved 9 – Reserved 10 – Reserved 11 – Reserved 12 – Reserved 13 – Reserved 14 – Reserved 15 – Reserved
[3:0]	capability_version	RW	4	0x2	Indicates PCI-SIG defined PCI Express Capability structure version number. Must be set to 0x2.

pcie_dev_cap Register 0x84

This PCI Express Device Capabilities configuration.

Table 5.183. pcie_dev_cap Register 0x84

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28]	disable_flr_capability	RW	1	0x0	Function Level Reset Capability 0 – Enable 1 – Disable
[27:26]	reserved	RO	2	0x0	—
[25:18]	reserved	RO	8	0x0	—
[17:16]	reserved	RO	2	0x0	—
[15]	reserved	RO	1	0x0	—
[14:13]	reserved	RO	2	0x0	—
[12]	extended_tag_field_en_default	RW	1	0x1	Extended Tag Field Enable Default Value. PCIe Specification allows the Extended Tag Field Enable register to reset to either 1 or 0. This register determines the reset value. 0 – 5-bit Tag field enabled on reset 1 – 8-bit Tag field enabled on reset
[11:9]	endpoint_l1_acceptable_latency	RW	3	0x0	Endpoint L1 Acceptable Latency 0 – Maximum of 1 μ s. Must be 0 when not an Endpoint. 1 – Maximum of 2 μ s 2 – Maximum of 4 μ s 3 – Maximum of 8 μ s 4 – Maximum of 16 μ s 5 – Maximum of 32 μ s 6 – Maximum of 64 μ s 7 – No limit
[8:6]	endpoint_l0s_acceptable_latency	RW	3	0x0	Endpoint L0s Acceptable Latency 0 – Maximum of 64 ns. Must be 0 when not an Endpoint. 1 – Maximum of 128 ns 2 – Maximum of 256 ns 3 – Maximum of 512 ns 4 – Maximum of 1 μ s 5 – Maximum of 2 μ s 6 – Maximum of 4 μ s 7 – No limit
[5]	extended_tag_field_supported	RW	1	0x1	Extended Tag Field Supported 0 – 5-bit Tag field supported 1 – 8-bit Tag field supported
[4:3]	phantom_functions_supported	RW	2	0x0	Phantom Functions Supported 0 – No Function Number bits are used for Phantom Functions 1 – The most significant bit of the Function number in Requester ID is used for Phantom Functions 2 – The two most significant bits of Function Number in Requester ID are used for Phantom Functions 3 – All 3 bits of Function Number in Requester ID used for Phantom Functions.

Field	Name	Access	Width	Reset	Description
[2:0]	max_payload_size_supported	RW	3	0x2	Max Payload Size Supported 0 – 128 Bytes 1 – 256 Bytes 2 – 512 Bytes 3 – 1024 Bytes 4 – 2048 Bytes 5 – 4096 Bytes 6 – Reserved 7 – Reserved

pcie_link_cap Register 0x88

This register set is used for the PCI Express Link Capabilities configuration.

Table 5.184. pcie_link_cap Register 0x88

Field	Name	Access	Width	Reset	Description
[31:24]	port_number	RW	8	0x0	Indicates the PCI Express Port number for the PCI Express Link.
[23:18]	reserved	RO	6	0x0	—
[17:15]	l1_exit_latency	RW	3	0x7	L1 Exit Latency. The value reported indicates the length of time this Port requires to complete transition from ASPM L1 to L0. 0 – Less than 1 μ s 1 – 1 μ s to less than 2 μ s 2 – 2 μ s to less than 4 μ s 3 – 4 μ s to less than 8 μ s 4 – 8 μ s to less than 16 μ s 5 – 16 μ s to less than 32 μ s 6 – 32 μ s to 64 μ s 7 – More than 64 μ s
[14:12]	l0s_exit_latency	RW	3	0x7	L0s Exit Latency. The value reported indicates the length of time this Port requires to complete transition from ASPM L0s to L0. 0 – Less than 64 ns 1 – 64 ns to less than 128 ns 2 – 128 ns to less than 256 ns 3 – 256 ns to less than 512 ns 4 – 512 ns to less than 1 μ s 5 – 1 μ s to less than 2 μ s 6 – 2 μ s to 4 μ s 7 – More than 4 μ s
[11:10]	aspm_support	RW	2	0x3	Active State Power Management (ASPM) Support (Support disabled until hardware testing is completed) 0 – No ASPM Support (IP settings fixed to 0) 1 – L0s Supported 2 – L1 Supported 3 – L0s and L1 Supported
[9:0]	reserved	RO	10	0x0	—

pcie_link_stat Register 0x8c

This register set is used for the PCI Express Link Status configuration.

Table 5.185. pcie_link_stat Register 0x8c

Field	Name	Access	Width	Reset	Description
[31:13]	reserved	RO	19	0x0	—
[12]	slot_clock_configuration	RW	1	0x1	Indicates whether the component uses the physical reference clock that the platform provides on the connector. 0 – Using independent reference clock. 1 – Using reference clock provided by slot.
[11:0]	reserved	RO	12	0x0	—

pcie_slot_cap Register 0x90

This register set is used for the PCI Express Slot Capabilities configuration.

Table 5.186. pcie_slot_cap Register 0x90

Field	Name	Access	Width	Reset	Description
[31:19]	physical_slot_number	RW	13	0x1	Indicates whether the physical slot number attached to this Port. This field must be hardware initialized to a value that assigns a slot number that is unique within the chassis, regardless of the form factor associated with the slot. This field must be initialized to zero for Ports connected to devices that are either integrated on the system board or integrated within the same silicon as the Root Port.
[18]	no_command_completed_support	RW	1	0x0	Indicates whether the slot generates software notification when an issued command is completed by the Hot-Plug Controller. This bit is only permitted to be 1 if the hot-plug capable Port can accept writes to all fields of the Slot Control register without delay between successive writes. 0 – Software notification provided. 1 – Software notification not provided.
[17]	em_interlock_present	RW	1	0x0	Indicates whether an Electromechanical Interlock is implemented on the chassis for this slot. 0 – Not Supported 1 – Supported
[16:15]	slot_power_limit_scale	RW	2	0x0	Slot Power Limit Scale. In combination with the Slot Power Limit Value, specifies the upper limit on power supplied by the slot or by other means to the adapter. Refer PCIe Specification section for details.

Field	Name	Access	Width	Reset	Description
[14:7]	slot_power_limit_value	RW	8	0xa	Slot Power Limit Value. In combination with the Slot Power Limit Scale, specifies the upper limit on power supplied by the slot or by other means to the adapter. Refer PCIe Specification section for details.
[6]	hot_plug_capable	RW	1	0x0	Indicates whether this slot can support hot-plug operations. 0 – Not Supported 1 – Supported
[5]	hot_plug_surprise	RW	1	0x0	Indicates whether an adapter present in this slot might be removed from the system without any prior notification. This is a form factor specific capability. This bit is an indication to the operating system to allow for such removal without impacting continued software operation. 0 – Hot Plug Surprise not possible 1 – Hot Plug Surprise possible
[4]	power_indicator_present	RW	1	0x0	Indicates whether a Power Indicator is electrically controlled by the chassis for this slot. 0 – Not Supported 1 – Supported
[3]	attention_indicator_present	RW	1	0x0	Indicates whether an Attention Indicator is electrically controlled by the chassis. 0 – Not Supported 1 – Supported
[2]	mrl_sensor_present	RW	1	0x0	Indicates whether a MRL Sensor is implemented on the chassis for this slot. 0 – Not Supported 1 – Supported
[1]	power_controller_present	RW	1	0x0	Indicates whether a software programmable Power Controller is implemented for this slot/adapter. 0 – Not Supported 1 – Supported
[0]	attention_button_present	RW	1	0x0	Indicates whether an Attention Button for this slot is electrically controlled by the chassis. 0 – Not Supported 1 – Supported

pcie_dev_cap2 Register 0x98

This register set is used for the PCI Express Device Capabilities 2 configuration.

Table 5.187. pcie_dev_cap2 Register 0x98

Field	Name	Access	Width	Reset	Description
[31:22]	reserved	RO	10	0x0	—
[21]	end_end_prefixes_supported	RW	1	0x0	End-End TLP Prefix Supported 0 – Not Supported 1 – Supported
[20:19]	reserved	RO	2	0x0	—
[18]	obff_supported	RW	1	0x0	OBFF Supported 0 – OBFF Not Supported 1 – OBFF supported using Message signaling only
[17:16]	reserved	RO	2	0x0	—
[15:8]	reserved	RO	8	0x0	—
[7:5]	reserved	RO	3	0x0	—
[4]	cpl_timeout_disable_supported	RW	1	0x1	Completion Timeout Disable Supported. Completion timeout is not implemented by the core, so the advertised value must match the capabilities of the connected design which is implementing completion timeouts. 0 – Not Supported 1 – Supported

Field	Name	Access	Width	Reset	Description
[3:0]	cpl_timeout_ranges_supported	RW	4	0x0	<p>Completion Timeout Ranges Supported advertised value. Completion timeout is not implemented by the core, so the advertised value must match the capabilities of the connected design which is implementing completion timeouts.</p> <p>0 – Completion Timeout programming not supported. Timeout value in the range 50 μs to 50 ms is used.</p> <p>1 – Range A (50 μs to 10 ms)</p> <p>2 – Range B (10 ms to 250 ms)</p> <p>3 – Range A (50 μs to 10 ms) and B (10 ms to 250 ms)</p> <p>4 – Range B (10 ms to 250 ms) and C (250 ms to 4 s)</p> <p>5 – Range A (50 μs to 10 ms) and B (10 ms to 250 ms) and C (250 ms to 4 s)</p> <p>6 – Range B (10 ms to 250 ms) and C (250 ms to 4 s) and D (4 s to 64 s)</p> <p>7 – Range A (50 μs to 10 ms) and B (10 ms to 250 ms) and C (250 ms to 4 s) and D (4 s to 64 s)</p> <p>8 – Reserved</p> <p>9 – Reserved</p> <p>10 – Reserved</p> <p>11 – Reserved</p> <p>12 – Reserved</p> <p>13 – Reserved</p> <p>14 – Reserved</p> <p>15 – Reserved</p>

pcie_link_ctl2 Register 0xa0

This register set is used for the PCI Express Link Control 2 configuration.

Table 5.188. pcie_link_ctl2 Register 0xa0

Field	Name	Access	Width	Reset	Description
[31:0]	reserved	RO	32	0x0	—

5.1.4.14. Power Management Configuration

pm_cap Register 0xc0

This register set is used for the Power Management Capabilities configuration.

Table 5.189. pm_cap Register 0xc0

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15:11]	pme_support	RW	5	0x1f	PME Support. Indicates the power states from which the function may generate a PME. For each power state {D3Cold, D3hot, D2, D1, D0}: 0 – PME# not supported 1 – PME# supported
[10]	d2_support	RW	1	0x1	D2 Power Management State support. 0 – Not supported 1 – Supported
[9]	d1_support	RW	1	0x1	D1 Power Management State support. 0 – Not supported 1 – Supported
[8:6]	aux_current	RW	3	0x0	Aux Current. Reports the 3.3Vaux auxiliary current requirements for the PCI function. See PCIe Specification for details. 0 – Self-powered 1 – 55 mA 2 – 100 mA 3 – 160 mA 4 – 220 mA 5 – 270 mA 6 – 320 mA 7 – 375 mA
[5]	dsi	RW	1	0x0	Device Specific Initialization. Indicates whether special initialization of this function is required (beyond the standard PCI configuration header) before the generic class device driver can use it. 0 – No Device Specific Initialization necessary. 1 – Function requires a device specific initialization sequence following transition to the D0 uninitialized state.
[4]	reserved	RO	1	0x0	—
[3]	pme_clock	RW	1	0x0	PME Clock. Does not apply to PCI Express and must be 0.
[2:0]	version	RW	3	0x3	PCI Power Management Interface Specification Version. Must be set to 0x3 to indicate revision 1.2 of the PCI Power Management Interface Specification.

pm Register 0xc4

This register set is used for the Power Management Control/Status configuration.

Table 5.190. pm Register 0xc4

Field	Name	Access	Width	Reset	Description
[31:24]	data	RW	8	0x0	—
[23]	pmcsr_bus_p_c_en	RW	1	0x0	—
[22]	pmcsr_b2_b3_support	RW	1	0x0	—

Field	Name	Access	Width	Reset	Description
[21:16]	reserved	RO	6	0x0	—
[15]	reserved	RO	1	0x0	—
[14:13]	cstat_data_scale	RW	2	0x0	0 – Unknown scale 1 – power = data * 0.1 Watts 2 – power = data * 0.01 Watts 3 – power = data * 0.001 Watts
[12:9]	cstat_data_select	RW	4	0x0	0 – D0 Power Consumed 1 – D1 Power Consumed 2 – D2 Power Consumed 3 – D3 Power Consumed 4 – D0 Power Dissipated 5 – D1 Power Dissipated 6 – D2 Power Dissipated 7 – D3 Power Dissipated 8 – Common logic power consumption. For multifunction devices, reported in Function 0 only. 9 – Reserved 10 – Reserved 11 – Reserved 12 – Reserved 13 – Reserved 14 – Reserved 15 – Reserved
[8:0]	reserved	RO	9	0x0	—

pm_aux Register 0xc8

This register set is used for the Power Management Auxiliary Power configuration.

Table 5.191. pm_aux Register 0xc8

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	power_required	RW	1	0x0	<ul style="list-style-type: none"> Identifies whether the design requires auxiliary power. <ul style="list-style-type: none"> 0 – Aux Power is not required. 1 – Aux Power is required. If Aux Power is required, PME is advertised supported from D3 Cold, or advertised. aux_current != 0, then the value of Aux Power PM Enable is sticky and preserved through conventional reset when Aux Power is provided.

5.1.4.15. ARI Capability Configuration

ari_cap Register 0xe0

This register set is used for the ARI Capability configuration.

Table 5.192. ari_cap Register 0xe0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	disable	RW	1	0x0	ARI Capability Disable When disabled, the ARI Capability does not appear in PCIe Configuration Space. This must be enabled when SR-IOV is enabled and must be disabled for downstream ports, Root Complex Integrated Endpoints, and Root Complex Event Collectors.

aer_cap Register 0x100

This register set is used for the AER Capability configuration.

Table 5.193. aer_cap Register 0x100

Field	Name	Access	Width	Reset	Description
[31]	en_tlp_prefix_blocked	RW	1	0x0	Enable TLP Prefix Blocked error reporting. 0 – Disable 1 – Enable
[30]	en_atomicop_egress_blocked	RW	1	0x0	Enable AtomicOp Egress Blocked error reporting. 0 – Disable 1 – Enable
[29]	en_mc_blocked_tlp	RW	1	0x0	Enable MC Blocked TLP error reporting. Not supported by core, so must be 0. 0 – Disable 1 – Enable
[28]	en_ucorr_internal_error	RW	1	0x0	Enable Uncorrectable Internal Error. 0 – Disable 1 – Enable
[27]	en_acsViolation	RW	1	0x0	Enable ACS Violation error reporting. Not supported by core, so must be 0. 0 – Disable 1 – Enable
[26]	en_receiver_overflow	RW	1	0x0	Enable Receiver Overflow error reporting. Not supported by core, so must be 0. 0 – Disable 1 – Enable
[25]	en_completer_abort	RW	1	0x0	Enable Completer Abort error reporting. 0 – Disable 1 – Enable
[24]	en_completion_timeout	RW	1	0x1	Enable Completion Timeout error reporting. 0 – Disable 1 – Enable
[23]	en_surprise_down_error	RW	1	0x0	Enable Surprise Down Error reporting. 0 – Disable 1 – Enable
[22]	en_corr_internal_error	RW	1	0x0	Enable Correctable Internal Error reporting. 0 – Disable 1 – Enable
[21:16]	reserved	RO	6	0x0	—
[15:2]	reserved	RO	14	0x0	—
[1]	ecrc_gen_chk_capable	RW	1	0x1	ECRC Generation/Checking Capable. 0 – Not supported 1 – Supported

Field	Name	Access	Width	Reset	Description
[0]	version	RW	1	0x0	AER Capability Version. 0 – Version 0x1 1 – Version 0x2

5.1.4.16. MSI Capability Configuration

msi_cap Register 0xe8

This register set is used for the MSI Capability configuration.

Table 5.194. msi_cap Register 0xe8

Field	Name	Access	Width	Reset	Description
[31:8]	reserved	RO	24	0x0	—
[7]	reserved	RO	1	0x0	—
[6:4]	mult_message_capable	RW	3	0x5	Number of requested MSI vectors. 0 – 1 1 – 2 2 – 4 3 – 8 4 – 16 5 – 32 6 – Reserved 7 – Reserved
[3:2]	reserved	RO	2	0x0	—
[1]	vec_mask_capable	RW	1	0x1	MSI Capability Per Vector Mask Capable. 0 – Disable 1 – Enable
[0]	disable	RW	1	0x0	MSI Capability Disable. When disabled, the MSI Capability does not appear in PCIe Configuration Space. 0 – Enable 1 – Disable

msix_cap Register 0xf0

This register set is used for the MSI-X Capability configuration.

Table 5.195. msix_cap Register 0xf0

Field	Name	Access	Width	Reset	Description
[31:27]	reserved	RO	5	0x0	—
[26:16]	table_size	RW	11	0x1f	Number of requested MSI-X vectors == (table_size+1).
[15:1]	reserved	RO	15	0x0	—
[0]	disable	RW	1	0x0	MSI-X Capability Disable. When disabled, the MSI-X Capability does not appear in PCIe Configuration Space. 0 – Enable 1 – Disable

msix_table Register 0xf4

This register set is used for the MSI-X Capability – MSI-X Table configuration.

Table 5.196. msix_table Register 0xf4

Field	Name	Access	Width	Reset	Description
[31:3]	offset	RW	29	0xc00	{offset, 3'b000} == byte address offset, within the BAR selected by bir, at which the MSI-X Table begins.
[2:0]	bir	RW	3	0x0	Indicates which Base Address register, located beginning at 10h in Configuration Space, is used to map the MSI-X Table into Memory Space. 0 – 0x10 (BAR0) 1 – 0x14 (BAR1) 2 – 0x18 (BAR2) 3 – 0x1C (BAR3) 4 – 0x20 (BAR4) 5 – 0x24 (BAR5) 6 – Reserved 7 – Reserved

msix_pba Register 0xf8

This register set is used for the MSI-X Capability – MSI-X PBA configuration.

Table 5.197. msix_pba Register 0xf8

Field	Name	Access	Width	Reset	Description
[31:3]	offset	RW	29	0xe00	{offset, 3'b000} == byte address offset, within the BAR selected by bir, at which the MSI-X PBA begins
[2:0]	bir	RW	3	0x0	Indicates which Base Address register, located beginning at 10h in Configuration Space, is used to map the MSI-X PBA into Memory Space. 0 – 0x10 (BAR0) 1 – 0x14 (BAR1) 2 – 0x18 (BAR2) 3 – 0x1C (BAR3) 4 – 0x20 (BAR4) 5 – 0x24 (BAR5) 6 – Reserved 7 – Reserved

5.1.4.17. Vendor-Specific Capability Configuration

vsec_cap Register 0x110

This register set is used for the Vendor-Specific Capability configuration.

Table 5.198. vsec_cap Register 0x110

Field	Name	Access	Width	Reset	Description
[31:16]	id	RW	16	0x1	Vendor-Specific Capability ID.
[15:1]	reserved	RO	15	0x0	—
[0]	enable	RW	1	0x1	Vendor-Specific Capability Enable. When disabled, the VSEC Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.4.18. SRIS Capability Configuration

sris_cap Register 0x120

This register set is used for the SRIS Capability configuration.

Table 5.199. sris_cap Register 0x120

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15:12]	low_skp_generation_speeds	RW	4	0x0	SRIS Lower SKP OS Generation Supported Speeds Vector advertisement
[11:8]	low_skp_reception_speeds	RW	4	0x0	SRIS Lower SKP OS Reception Supported Speeds Vector advertisement
[7:1]	reserved	RO	7	0x0	—
[0]	enable	RW	1	0x0	SRIS Capability Enable. When disabled, the SRIS Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.4.19. Device Serial Number

dsn_cap Register 0x130

This register set is used for the DSN capable cores only such as Device Serial Number Capability configuration.

Table 5.200. dsn_cap Register 0x130

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Device Serial Number Capability Enable. When disabled, the Device Serial Number Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

dsn_serial Register 0x134

This register set is used for the Device Serial Number Capability – Serial Number.

Table 5.201. dsn_serial Register 0x134

Field	Name	Access	Width	Reset	Description
[63:0]	number	RW	64	0x0	Device Serial Number.

5.1.4.20. Power Budgeting Capability Configuration

pwr_budget_cap Register 0x150

This register set is used for the Power Budgeting Capability configuration.

Table 5.202. pwr_budget_cap Register 0x150

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	sys_alloc	RW	1	0x0	Power Budgeting System Allocated. 0 – Power Budget should use Power Budgeting Capability Values 1 – Power Budget is System Allocated
[0]	enable	RW	1	0x0	Power Budgeting Capability Enable. When disabled, the Power Budgeting Capability does not appear in PCIe. Configuration Space. 0 – Disable 1 – Enable

5.1.4.21. Dynamic Power Allocation Configuration

dpa_cap Register 0x158

This register set is used for the Dynamic Power Allocation Capability configuration.

Table 5.203. dpa_cap Register 0x158

Field	Name	Access	Width	Reset	Description
[31:24]	xlcy1	RW	8	0x0	Transition Latency Value 1. When the Transition Latency Indicator for a substate is 1, this value is multiplied by the Transition Latency Unit to determine the maximum Transition Latency for the substate.
[23:16]	xlcy0	RW	8	0x0	Transition Latency Value 0. When the Transition Latency Indicator for a substate is 0, this value is multiplied by the Transition Latency Unit to determine the maximum Transition Latency for the substate.
[15:14]	reserved	RO	2	0x0	—
[13:12]	pas	RW	2	0x0	Power Allocation Scale. The value of the substate Power Allocation Register is multiplied by the decoded value of this field to determine the power allocation of the substate. 0 – 10x 1 – 1x 2 – 0.1x 3 – 0.01x
[11:10]	reserved	RO	2	0x0	—

Field	Name	Access	Width	Reset	Description
[9:8]	tlunit	RW	2	0x0	Transition Latency Unit. The substate Transition Latency Value is multiplied by the decoded Transition Latency Unit to Determine the maximum Transition Latency for the substate. 0 – 1 ms 1 – 10 ms 2 – 100 ms 3 – Reserved
[7:3]	substate_max	RW	5	0x0	Substate_Max. Specifies the maximum substate number. Substates from [substate_max:0] are supported. For example, substate_max==0 indicates support for 1 substate.
[2:1]	reserved	RO	2	0x0	—
[0]	enable	RW	1	0x0	Dynamic Power Allocation (DPA) Capability Enable. When disabled, the Dynamic Power Allocation Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

dpa_xlcy Register 0x15c

This register set is used for the Dynamic Power Allocation – Transition Latency.

Table 5.204. dpa_xlcy Register 0x15c

Field	Name	Access	Width	Reset	Description
[31:0]	indicator	RW	32	0x0	Transition Latency Indicator. Indicates which Transition Latency Value applies to each substate. For each substate[i], indicator[i] indicates which Transition Latency Value applies: 0 – Use Transition Latency Value 0 1 – Use Transition Latency Value 1

dpa_alloc Register 0x160

This register set is used for the Dynamic Power Allocation Capability – Dynamic Power Allocation Array.

Table 5.205. dpa_alloc Register 0x160

Field	Name	Access	Width	Reset	Description
[255:0]	array	RW	256	0x0	Substate Power Allocation Array. For each substate[i], multiply array[(i*8)+7i*8] times the Power Allocation Scale to determine the power allocation in Watts for the associated substate.

5.1.4.22. Latency Tolerance Reporting Capability Configuration

Itr_cap Register 0x180

This register set is used for the Latency Tolerance Reporting Capability configuration.

Table 5.206. Itr_cap Register 0x180

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Latency Tolerance Reporting Capability Enable. When disabled, the Latency Tolerance Reporting Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.4.23. L1 PM Substates Capability Configuration

I1pmss_cap Register 0x188

This register set is used for the L1 PM Substates Capability configuration.

Table 5.207. I1pmss_cap Register 0x188

Field	Name	Access	Width	Reset	Description
[31:24]	cm_restore_time	RW	8	0x0	Default Common Mode Restore Time. Default time, in microseconds, used by the Downstream Port for timing the re establishment of common mode. See the L1 PM Substates ECN for further details.
[23:16]	port_cm_restore_time	RW	8	0x0	Port Common Mode Restore Time. Time, in microseconds, required for this port to re-establish common mode. See the L1 PM Substates ECN for further details
[15:11]	port_tpower_on_value	RW	5	0x0	Port TPOWER_ON Value. Required for ports supporting PCI-PM L1.2 or ASPM L1.2. The value of TPOWER_ON is calculated by multiplying the value in this field by the decoded TPOWER_ON Scale field.
[10]	reserved	RO	1	0x0	—
[9:8]	port_tpower_on_scale	RW	2	0x0	Port TPOWER_ON Scale. Required for ports supporting PCI-PM L1.2 or ASPM L1.2. 0 – 2 µs 1 – 10 µs 2 – 100 µs 3 – Reserved
[7]	pcipm_l1_1_supported	RW	1	0x1	PCI-PM L1.1 Substate Supported. Must be set to 1 for all ports supporting L1 PM Substates. 0 – Not supported 1 – Supported
[6]	pcipm_l1_2_supported	RW	1	0x1	PCI-PM L1.2 Substate Supported. 0 – Not supported 1 – Supported
[5]	aspm_l1_1_supported	RW	1	0x1	ASPM L1.1 Substate Supported. 0 – Not supported 1 – Supported
[4]	aspm_l1_2_supported	RW	1	0x1	ASPM L1.2 Substate Supported. 0 – Not supported 1 – Supported
[3]	l1pm_supported	RW	1	0x1	L1 PM Substates Supported. 0 – Not supported 1 – Supported

Field	Name	Access	Width	Reset	Description
[2:1]	reserved	RO	2	0x0	—
[0]	enable	RW	1	0x0	L1 PM Substates Capability Enable. When disabled, the L1 PM Substates Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.4.24. Resizable BAR Capability Configuration

rbar_cap Register 0x1a0

This register set is used for the Resizable BAR Capability configuration.

Table 5.208. rbar_cap Register 0x1a0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Resizable BAR Capability Enable. When disabled, the Resizable BAR Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

rbar_cfg0 Register 0x1a4

This register set is used for the Resizable BAR Capability – BAR Configuration 0.

Table 5.209. rbar_cfg0 Register 0x1a4

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes
[23:4]	supported_sizes	RW	20	0xf	Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR. For example, if supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.
[3]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Description
[2:0]	bar_index	RW	3	0x0	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved</p>

rbar_cfg1 Register 0x1a8

This register set is used for the Resizable BAR Capability – BAR Configuration 1.

Table 5.210. rbar_cfg1 Register 0x1a8

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR. For example. If supported_sizes[0] is set, a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Description
[2:0]	bar_index	RW	3	0x1	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10.</p> <p>1 – BAR located at Configuration Register address offset 0x14.</p> <p>2 – BAR located at Configuration Register address offset 0x18.</p> <p>3 – BAR located at Configuration Register address offset 0x1C.</p> <p>4 – BAR located at Configuration Register address offset 0x20.</p> <p>5 – BAR located at Configuration Register address offset 0x24.</p> <p>6 – Reserved</p> <p>7 – Reserved</p>

rbar_cfg2 Register 0x1ac

This register set is used for the Resizable BAR Capability – BAR Configuration 2.

Table 5.211. rbar_cfg2 Register 0x1ac

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes.</p> <p>For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB).</p> <p>The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^i+20 is supported for this BAR.</p> <p>For example, if supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x2	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10.</p> <p>1 – BAR located at Configuration Register address offset 0x14.</p> <p>2 – BAR located at Configuration Register address offset 0x18.</p> <p>3 – BAR located at Configuration Register address offset 0x1C.</p> <p>4 – BAR located at Configuration Register address offset 0x20.</p> <p>5 – BAR located at Configuration Register address offset 0x24.</p> <p>6 – Reserved</p> <p>7 – Reserved</p>

rbar_cfg3 Register 0x1b0

This register set is used for the Resizable BAR Capability – BAR Configuration 3.

Table 5.212. rbar_cfg3 Register 0x1b0

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes.
[23:4]	supported_sizes	RW	20	0x0	Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR. For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x3	BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR. 0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved

rbar_cfg4 Register 0x1b4

This register set is used for the Resizable BAR Capability – BAR Configuration 4.

Table 5.213. rbar_cfg4 Register 0x1b4

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR.</p> <p>BAR Size == 2 size+20 bytes.</p> <p>For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB.</p> <p>The max value is 19 ($2^{39}=512$ GB).</p> <p>The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR.</p> <p>For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x4	<p>BAR Index.</p> <p>BAR offset for which this configuration is valid.</p> <p>For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10.</p> <p>1 – BAR located at Configuration Register address offset 0x14.</p> <p>2 – BAR located at Configuration Register address offset 0x18.</p> <p>3 – BAR located at Configuration Register address offset 0x1C.</p> <p>4 – BAR located at Configuration Register address offset 0x20.</p> <p>5 – BAR located at Configuration Register address offset 0x24.</p> <p>6 – Reserved</p> <p>7 – Reserved</p>

rbar_cfg5 Register 0x1b8

This register set is used for the Resizable BAR Capability – BAR Configuration 5.

Table 5.214. rbar_cfg5 Register 0x1b8

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes.</p> <p>For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB).</p> <p>The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR.</p> <p>For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x5	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved</p>

5.1.4.25. ATS Capability Configuration

ats_cap Register 0x1c0

This register set is used for the ATS capable cores only such as ATS Capability configuration.

Table 5.215. ats_cap Register 0x1c0

Field	Name	Access	Width	Reset	Description
[31:17]	reserved	RO	15	0x0	—
[16]	global_inval_support	RW	1	0x1	<p>Cores with both ATS and PASID support only: ATS/PASID Global Invalidate Support.</p> <p>If set to 1, the function supports Invalidate Requests with the Global Invalidate bit set.</p>
[15:13]	reserved	RO	3	0x0	—
[12:8]	inval_q_depth	RW	5	0x0	<p>ATS Invalidate Queue Depth. Number of invalidate requests that can be queued.</p> <p>0 is a special case that indicates a queue depth of 32.</p>
[7:1]	reserved	RO	7	0x0	—
[0]	enable	RW	1	0x0	<p>ATS Capability Enable.</p> <p>When disabled, the ATS Capability does not appear in PCIe Configuration Space.</p> <p>0 – Disable 1 – Enable</p>

5.1.4.26. Atomic Op Capability Configuration

atomic_op_cap Register 0x1cc

This register set is used for the Atomic Op Capability configuration.

Table 5.216. atomic_op_cap Register 0x1cc

Field	Name	Access	Width	Reset	Description
[31:6]	reserved	RO	26	0x0	—
[5]	rp_completer_enable	RW	1	0x0	Enable Root Port to be an Atomic Op Completer which means that the Root Port completes rather than forwards Atomic Op TLPs. 0 – Disable 1 – Enable
[4]	completer_128_supported	RW	1	0x0	Atomic Op Completer 128-bit Operand Support. 0 – Not Supported 1 – Supported
[3]	completer_64_supported	RW	1	0x0	Atomic Op Completer 64-bit Operand Support. 0 – Not Supported 1 – Supported
[2]	completer_32_supported	RW	1	0x0	Atomic Op Completer 32-bit Operand Support. 0 – Not Supported 1 – Supported
[1]	routing_supported	RW	1	0x0	Atomic Op Routing Supported. 0 – Not Supported 1 – Supported
[0]	enable	RW	1	0x0	Atomic Op Capability Enable. When disabled, the Atomic Op Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.5. mgmt_ftl_mf[3:1] (0x05000,0x06000,0x07000)

The base address for mgmt._ftl_mf is shown in [Table 5.217](#).

Table 5.217. Base Address for mgmt_ftl_mf

Port	Base Address
mgmt_ftl_mf1_BASE	0x5000
mgmt_ftl_mf2_BASE	0x6000
mgmt_ftl_mf3_BASE	0x7000

5.1.5.1. Function Register 0x8

This register set is used for the Function disable for Functions[3:1]. Function[0] may not be disabled.

Table 5.218. Function Register 0x8

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	disable	RW	1	0x0	Function disable for Functions[3:1]. Function[0] may not be disabled. 0 – Enable 1 – Disable

5.1.5.2. us_port Register 0x38

This register set is used for the Upstream Port Configuration.

Table 5.219. us_port Register 0x38

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	adv_target_link_speed	RW	1	0x0	For an upstream port, advertise the link speeds specified by the target_link_speed field rather than the maximum supported speed.

5.1.5.3. id1 Register 0x40

This register set is used for the ID1 configuration.

Table 5.220. id1 Register 0x40

Field	Name	Access	Width	Reset	Description
[31:16]	device_id	RW	16	0xe004	Value returned when the Device ID Configuration Register is read
[15:0]	vendor_id	RW	16	0x19aa	Value returned when the Vendor ID Configuration Register is read

5.1.5.4. id2 Register 0x44

This register set is used for the ID2 configuration.

Table 5.221. id2 Register 0x44

Field	Name	Access	Width	Reset	Description
[31:16]	subsystem_id	RW	16	0xe004	Value returned when the Subsystem ID Configuration Register is read.
[15:0]	subsystem_vendor_id	RW	16	0x19aa	Value returned when the Subsystem Vendor ID Configuration Register is read.

5.1.5.5. id3 Register 0x48

This register set is used for the ID3 configuration.

Table 5.222. id3 Register 0x48

Field	Name	Access	Width	Reset	Description
[31:8]	class_code	RW	24	0x118000	Value returned when the Class Code Configuration Register is read. Must be set to the correct value for the type of device being implemented. Refer to PCI Local Bus Specification Revision 2.3 Appendix D for details on setting Class Code.
[7:0]	revision_id	RW	8	0x4	Value returned when the Revision ID Configuration Register is read.

5.1.5.6. Cardbus Register 0x4c

This register set is used for the Cardbus configuration.

Table 5.223. Cardbus Register 0x4c

Field	Name	Access	Width	Reset	Description
[31:0]	cis_pointer	RW	32	0x0	Value returned when the Cardbus CIS Pointer Configuration Register is read. Set to 0x00000000 unless a Cardbus CIS structure is implemented in memory (which is rare), in which case set to the address of the CIS Structure.

5.1.5.7. Interrupt Register 0x50

This register set is used for the Interrupt configuration.

Table 5.224. Interrupt Register 0x50

Field	Name	Access	Width	Reset	Description
[31:10]	reserved	RO	22	0x0	—
[9:8]	pin	RW	2	0x0	Selects which legacy interrupt is used. 0 – INTA 1 – INTB 2 – INTC 3 – INTD
[7:1]	reserved	RO	7	0x0	—
[0]	disable	RW	1	0x0	Disable support for interrupts. 0 – Enable 1 – Disable

5.1.5.8. bar0 Register 0x60

This register set is used for the BAR0 configuration.

Table 5.225. bar0 Register 0x60

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffff000c	Configuration of BAR0 (Cfg address 0x10). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.5.9. bar1 Register 0x64

This register set is used for the BAR1 configuration.

Table 5.226. bar1 Register 0x64

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar1 (Cfg address 0x14). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.5.10. bar2 Register 0x68

This register set is used for the BAR2 configuration.

Table 5.227. bar2 Register 0x68

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xfffffe00c	Configuration of bar2 (Cfg address 0x18). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.5.11. bar3 Register 0x6c

This register set is used for the BAR3 configuration.

Table 5.228. bar3 Register 0x6c

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar3 (Cfg address 0x1C). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region

5.1.5.12. bar4 Register 0x70

This register set is used for the BAR4 configuration.

Table 5.229. bar4 Register 0x70

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xfffffe00c	Configuration of bar4 (Cfg address 0x20). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.5.13. bar5 Register 0x74

This register set is used for the BAR5 configuration.

Table 5.230. bar5 Register 0x74

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0xffffffff	Configuration of bar5 (Cfg address 0x24). Use to define a 32-bit Memory or I/O region or combine with an adjacent BAR to define a 64-bit Memory region.

5.1.5.14. exp_rom Register 0x78

This register set is used for the Expansion ROM configuration.

Table 5.231. exp_rom Register 0x78

Field	Name	Access	Width	Reset	Description
[31:0]	cfg	RW	32	0x0	Configuration of exp_rom. Use to define a 32-bit Memory Expansion ROM region. If an Expansion ROM region is defined, the region must map to PCIe-compliant Expansion ROM code or the device may fail to boot.

5.1.5.15. msi_cap Register 0xe8

This register set is used for the MSI Capability configuration.

Table 5.232. msi_cap Register 0xe8

Field	Name	Access	Width	Reset	Description
[31:8]	reserved	RO	24	0x0	—
[7]	reserved	RO	1	0x0	—
[6:4]	mult_message_capable	RW	3	0x5	Number of requested MSI vectors. 0 – 1 1 – 2 2 – 4 3 – 8 4 – 16 5 – 32

Field	Name	Access	Width	Reset	Description
					6 – Reserved 7 – Reserved
[3:2]	reserved	RO	2	0x0	—
[1]	vec_mask_capable	RW	1	0x1	MSI Capability Per Vector Mask Capable. 0 – Disable 1 – Enable
[0]	disable	RW	1	0x0	MSI Capability Disable. When disabled, the MSI Capability does not appear in PCIe Configuration Space. 0 – Enable 1 – Disable

5.1.5.16. msix_cap Register 0xf0

This register set is used for the MSI-X Capability configuration.

Table 5.233. msix_cap Register 0xf0

Field	Name	Access	Width	Reset	Description
[31:27]	reserved	RO	5	0x0	—
[26:16]	table_size	RW	11	0x1f	Number of requested MSI-X vectors == (table_size+1)
[15:1]	reserved	RO	15	0x0	—
[0]	disable	RW	1	0x0	MSI-X Capability Disable. When disabled, the MSI-X Capability does not appear in PCIe Configuration Space. 0 – Enable 1 – Disable

5.1.5.17. msix_table Register 0xf4

This register set is used for the MSI-X Capability – MSI-X Table configuration.

Table 5.234. msix_table Register 0xf4

Field	Name	Access	Width	Reset	Description
[31:3]	offset	RW	29	0xc00	{offset, 3'b000} == byte address offset, within the BAR selected by bir, at which the MSI-X Table begins
[2:0]	bir	RW	3	0x0	Indicates which Base Address register, located beginning at 10h in Configuration Space, is used to map the MSI-X Table into Memory Space. 0 – 0x10 (BAR0) 1 – 0x14 (BAR1) 2 – 0x18 (BAR2) 3 – 0x1c (BAR3) 4 – 0x20 (BAR4) 5 – 0x24 (BAR5) 6 – Reserved 7 – Reserve d

5.1.5.18. msix_pba Register 0xf8

This register set is used for the MSI-X Capability – MSI-X PBA configuration.

Table 5.235. msix_pba Register 0xf8

Field	Name	Access	Width	Reset	Description
[31:3]	offset	RW	29	0xe00	{offset, 3'b000} == byte address offset, within the BAR selected by bir, at which the MSI-X PBA begins.
[2:0]	bir	RW	3	0x0	Indicates which Base Address register, located beginning at 10h in Configuration Space, is used to map the MSI-X PBA into Memory Space. 0 – 0x10 (BAR0) 1 – 0x14 (BAR1) 2 – 0x18 (BAR2) 3 – 0x1c (BAR3) 4 – 0x20 (BAR4) 5 – 0x24 (BAR5) 6 – Reserved 7 – Reserved

5.1.5.19. dsn_cap Register 0x130

This register set is used for the DSN capable cores only such as Device Serial Number Capability configuration.

Table 5.236. dsn_cap Register 0x130

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Device Serial Number Capability Enable. When disabled, the Device Serial Number Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.5.20. dsn_serial Register 0x134

This register set is used for the Device Serial Number Capability – Serial Number.

Table 5.237. dsn_serial Register 0x134

Field	Name	Access	Width	Reset	Description
[63:0]	number	RW	64	0x0	Device Serial Number

5.1.5.21. rbar_cap Register 0x1a0

This register set is used for the Resizable BAR Capability configuration.

Table 5.238. rbar_cap Register 0x1a0

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	enable	RW	1	0x0	Resizable BAR Capability Enable. When disabled, the Resizable BAR Capability does not appear in PCIe Configuration Space. 0 – Disable 1 – Enable

5.1.5.22. rbar_cfg0 Register 0x1a4

This register set is used for the Resizable BAR Capability – BAR Configuration 0.

Table 5.239. rbar_cfg0 Register 0x1a4

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8\text{MB}$. The max value is 19 ($2^{39}=512\text{ GB}$). The default value must be one of the supported BAR sizes indicated by supported_sizes.
[23:4]	supported_sizes	RW	20	0xf	Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR. For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2\text{MB}$ is supported.
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x0	BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR. 0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved

5.1.5.23. rbar_cfg1 Register 0x1a8

This register set is used for the Resizable BAR Capability – BAR Configuration 1.

Table 5.240. rbar_cfg1 Register 0x1a8

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^i+20 is supported for this BAR. For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x1	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR. 0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved</p>

5.1.5.24. rbar_cfg2 Register 0x1ac

This register set is used for the Resizable BAR Capability – BAR Configuration 2.

Table 5.241. rbar_cfg2 Register 0x1ac

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size+20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes.</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of $2i+20$ is supported for this BAR. For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x2	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR. 0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved</p>

5.1.5.25. rbar_cfg3 Register 0x1b0

This register set is used for the Resizable BAR Capability – BAR Configuration 3.

Table 5.242. rbar_cfg3 Register 0x1b0

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR.</p> <p>BAR Size == 2 size+20 bytes.</p> <p>For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB.</p> <p>The max value is 19 ($2^{39}=512$ GB).</p> <p>The default value must be one of the supported BAR sizes indicated by supported_sizes</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes.</p> <p>supported_sizes [i] indicates a BAR Size of 2^{i+20} is supported for this BAR.</p> <p>For example. If supported_sizes [0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x3	<p>BAR Index.</p> <p>BAR offset for which this configuration is valid.</p> <p>For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10.</p> <p>1 – BAR located at Configuration Register address offset 0x14.</p> <p>2 – BAR located at Configuration Register address offset 0x18.</p> <p>3 – BAR located at Configuration Register address offset 0x1C.</p> <p>4 – BAR located at Configuration Register address offset 0x20.</p> <p>5 – BAR located at Configuration Register address offset 0x24.</p> <p>6 – Reserved</p> <p>7 – Reserved</p>

5.1.5.26. rbar_cfg4 Register 0x1b4

This register set is used for the Resizable BAR Capability – BAR Configuration 4.

Table 5.243. rbar_cfg4 Register 0x1b4

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size.</p> <p>Indicates the default size after reset for this BAR.</p> <p>BAR Size == 2 size + 20 bytes.</p> <p>For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB.</p> <p>The max value is 19 ($2^{39}=512$ GB).</p> <p>The default value must be one of the supported BAR sizes indicated by supported_sizes</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes.</p> <p>supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR.</p> <p>For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported.</p>

Field	Name	Access	Width	Reset	Description
[3]	reserved	RO	1	0x0	—
[2:0]	bar_index	RW	3	0x4	<p>BAR Index. BAR offset for which this configuration is valid. For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10. 1 – BAR located at Configuration Register address offset 0x14. 2 – BAR located at Configuration Register address offset 0x18. 3 – BAR located at Configuration Register address offset 0x1C. 4 – BAR located at Configuration Register address offset 0x20. 5 – BAR located at Configuration Register address offset 0x24. 6 – Reserved 7 – Reserved</p>

5.1.5.27. rbar_cfg5 Register 0x1b8

This register set is used for the Resizable BAR Capability – BAR Configuration 5.

Table 5.244. rbar_cfg5 Register 0x1b8

Field	Name	Access	Width	Reset	Description
[31:29]	reserved	RO	3	0x0	—
[28:24]	size	RW	5	0x0	<p>Default BAR Size. Indicates the default size after reset for this BAR. BAR Size == 2 size + 20 bytes. For example, if this field is set to a value of 3, that indicates this BAR has a default size of $2^{23}=8$ MB. The max value is 19 ($2^{39}=512$ GB). The default value must be one of the supported BAR sizes indicated by supported_sizes</p>
[23:4]	supported_sizes	RW	20	0x0	<p>Supported BAR Sizes. supported_sizes[i] indicates a BAR Size of 2^{i+20} is supported for this BAR. For example. If supported_sizes[0] is set, then a BAR size of $2^{20}=2$ MB is supported</p>
[3]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Description
[2:0]	bar_index	RW	3	0x5	<p>BAR Index.</p> <p>BAR offset for which this configuration is valid.</p> <p>For a 64-bit BAR, this index must indicate the lower DWORD used for the BAR.</p> <p>0 – BAR located at Configuration Register address offset 0x10.</p> <p>1 – BAR located at Configuration Register address offset 0x14.</p> <p>2 – BAR located at Configuration Register address offset 0x18.</p> <p>3 – BAR located at Configuration Register address offset 0x1C.</p> <p>4 – BAR located at Configuration Register address offset 0x20.</p> <p>5 – BAR located at Configuration Register address offset 0x24.</p> <p>6 – Reserved</p> <p>7 – Reserved</p>

5.1.6. pcie_ll(0x0F000)

5.1.6.1. Main Control Register

main_ctrl_0 Register 0x0

This register set is used for the Main Control 0 register.

Table 5.245. main_ctrl_0 Register 0x0

Field	Name	Access	Width	Reset	Description
[31]	en_user_write	RW	1	0x1	<p>This option allows you to modify the values of this register (excluding this field). By default, you have write and read access to this register.</p> <p>0 – Read only access</p> <p>1 – Read/Write access</p>
[30:17]	reserved	RO	14	0x0	—
[16]	disable_csr_reset_port	RW	1	0x0	<p>Disables the reset of configuration and status registers (CSR) through reset port.</p> <p>0 – Asserting the usr_lmmi_resetn_i resets the CSRs</p> <p>1 – Disable reset port. (You can still use soft reset by writing to the reset register pcie_ll_main_ctrl_2[0]).</p>
[15:6]	reserved	RO	10	0x1	—
[5]	sel_pclk_div2	RW	1	0x1	<p>This field selects the clock output on port link[LINK].clk_usr_o.</p> <p>0 – pclk (250 MHz)</p> <p>1 – pclk_div2 (125 MHz)</p>
[4:2]	num_lanes	RW	3	0x1	This field indicates the maximum number of lanes that is used when PCIe LL core is enabled.
[1]	reserved	RO	1	0x0	—

Field	Name	Access	Width	Reset	Description
[0]	core_enable	RW	1	0x1	Enable or disable the PCIe Link Layer Core. 0 – Disable 1 – Enable

main_ctrl_1 Register 0x4

This register set is used for the Main Control 1 register.

Table 5.246. main_ctrl_1 Register 0x4

Field	Name	Access	Width	Reset	Description
[31:17]	reserved	RO	15	0x0	—
[16]	hold_reset	RW	1	0x0	Controls the core_reset and pipe_reset if it remains asserted or automatically deasserts. 0 – (not supported on this version) – writing 1 to core_reset/pipe_reset field toggles the PCIe Link Layer core reset or PIPE reset for 1 clock cycle 1 – Hold the core_reset/pipe_reset (core_reset/pip_reset does not automatically deasserts unless 0 is written to the corresponding field).
[15:9]	reserved	RO	7	0x0	—
[8]	pipe_reset	RW	1	0x0	This field controls the PIPE reset (PCS reset). The behaviour of pipe_reset depends on the hold_reset field. 0 – Deassert PIPE Reset (Normal operation) 1 – Assert PIPE Reset
[7:1]	reserved	RO	7	0x0	—
[0]	core_reset	RW	1	0x0	This field controls the PCIe Link Layer core reset. The behaviour of core_reset depends on the hold_reset field. 0 – Deassert Core Reset (Normal operation) 1 – Assert Core Reset

main_ctrl_2 Register 0x8

This register set is used for the Main Control 2 register.

Table 5.247. main_ctrl_2 Register 0x8

Field	Name	Access	Width	Reset	Description
[31:2]	reserved	RO	30	0x0	—
[1]	ll_csr_reset	RW	1	0x0	This field controls the reset of PCIe Link Layer mgmt_* configuration and status registers. Automatically returns to 0 after a write of 1. 0 – reserved 1 – Assert Link Layer CSR Reset, writing 1 to ll_csr_reset field toggles the Link Layer CSR reset for 1 clock cycle.
[0]	phy_csr_reset	RW	1	0x0	This field controls the reset of PHY configuration and status registers. Automatically returns to 0 after a write of 1. 0 – reserved 1 – Assert PHY CSR Reset, writing 1 to phy_csr_reset field toggles the PHY CSR reset for 1 clock cycle.

main_ctrl_3 Register 0xC

This register set is used for the Main Control 3 register.

Table 5.248. main_ctrl_3 Register 0xC

Field	Name	Access	Width	Reset	Description
[31:16]	u_clk_period_in_ps	RW	16	0x1F40	The current period of clk_usr in picoseconds. This is used to time events with fixed time duration such as LTSSM state machine timeouts. Default is 8000 ps (125 MHz).
[15:0]	p_clk_period_in_ps	RW	16	0xFA0	The current period of pclk in picoseconds. This is used to time events with fixed time duration such as LTSSM state machine timeouts. Default is 4000 ps (250 MHz).

main_ctrl_4 Register 0x10

This register set is used for the Main Control 4 register.

Table 5.249. main_ctrl_4 Register 0x10

Field	Name	Access	Width	Reset	Description
[31:16]	aux_clk_period_in_ps	RW	16	0xF424	The current period of phy aux_clk in picoseconds. This is used to time events with fixed time duration such as LTSSM state machine timeouts. Default is 62500 ps (16 MHz).
[15:3]	reserved	RO	13	0x0	—
[2]	merge_cfcfgreg_lmmi_rdata	RW	1	0x0	This option is provided to allow the reduction of ports and merge the PCIe Configuration Register read data port (ucfg_rd_data_o) with the LMMI read data (usr_lmmi_rdata_o) port. When enabled, it is expected that you do not issue a simultaneous read access on CSR and PCIe Configuration Registers 0 – Disable 1 – Enable
[1]	en_port_mgmt_interrupt_leg	RW	1	0x1	Enables the input port mgmt_interrupt_leg, otherwise use register access. 0 – Disable 1 – Enable
[0]	en_port_mgmt_ltssm_disable	RW	1	0x0	Enables the input port link[LINK]_ltssm_disable_i, otherwise use register access (see register pcie_ll_conv_port_0). 0 – Disable 1 – Enable

main_ctrl_5 Register 0x14

This register set is used for the Main Control 5 register.

Table 5.250. main_ctrl_4 Register 0x10

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	en_pipe_if_ctrl	RW	1	0x0	<p>When enabled, allows you to control the following pipe interface signals:- pipe_pclkreq_n, pipe_rx_ei_disable, pipe_tx_cm_disable, pipe_power_down.</p> <p>This should not be enabled during normal operation.</p> <p>0 – Disable 1 – Enable</p>

5.1.6.2. Converted Port Register Set

conv_port_0 Register 0x100

This register set is used for the Converted Port 0 register.

Table 5.251. conv_port_0 Register 0x100

Field	Name	Access	Width	Reset	Description
[31:1]	reserved	RO	31	0x0	—
[0]	mgmt_ltssm_disable	RW	1	0x0	<p>(refer to register pcie_ll_main_ctrl_4)</p> <p>The LTSSM does not transition from Detect.Quiet to Detect. Active to begin LTSSM training while mgmt_ltssm_disable ==1.</p> <p>mgmt_ltssm_disable may be used to delay the start of LTSSM training which otherwise begins as soon as rst_usr_n is deasserted.</p> <p>mgmt_ltssm_disable must be set to 1 relatively soon (within a few ms) after rst_usr_n is released as the system allocates a finite amount of time for devices to initialize before it begins to scan for devices.</p> <p>If mgmt_ltssm_disable is held for too long, software may scan for the device before it becomes operational and assume that no device is present.</p>

conv_port_1 Register 0x104

This register set is used for the Converted Port 1 register.

Table 5.252. conv_port_1 Register 0x104

Field	Name	Access	Width	Reset	Description
[31:4]	reserved	RO	28	0x0	—
[3:0]	mgmt_interrupt_leg	RW	4	0x0	<p>(refer to register pcie_ll_main_ctrl_4)</p> <p>When Legacy Interrupt Mode is enabled, mgmt_interrupt_leg implements one level-sensitive interrupt (INTA, INTB, INTC, or INTD) for each Base Function.</p> <p>Each functions' interrupt sources must be logically ORed together and input as mgmt_interrupt_leg[i] for a given function i.</p> <p>Each interrupt source must continue to drive a 1 until it has been serviced and cleared by software at which time it must switch to driving 0.</p> <p>The core ORs together INTA/B/C/D from all functions to create an aggregated INTA/INTB/INTC/INTD.</p> <p>The core monitors high and low transitions on the aggregated INTA/B/C/D and sends an Interrupt Assert message on each 0 to 1 transition and an Interrupt De-Assert Message on each 1 to 0 transition of the aggregated INTA/B/C/D.</p> <p>Transitions which occur too close together to be independently transmitted are merged.</p>

conv_port_2 Register 0x108

This register set is used for the Converted Port 2 register.

Table 5.253. conv_port_2 Register 0x108

Field	Name	Access	Width	Reset	Description
[31:5]	reserved	RO	27	0x0	—
[4:3]	pipe_power_down	RW	2	0x0	<p>Applicable if en_pipe_if_ctrl == 1 (pcie_ll_main_ctrl_5[0]). Set this register to force drive the pipe interface signal. Power up or down the transceiver.</p> <p>00 – P0, normal operation</p> <p>01 – P0s, low recovery time latency power saving state</p> <p>10 – P1, longer recovery time latency power saving state</p> <p>11 – P2, lowest power state</p>
[2]	pipe_tx_cm_disable	RW	1	0x0	<p>Applicable if en_pipe_if_ctrl == 1 (pcie_ll_main_ctrl_5[0]). Set this register to force drive the pipe interface signal.</p> <p>L1 substate disable Tx common mode voltage. Through this signal the Link Layer effectively configure the Tx driver into Hi-Z (power down) and move the PHY to L1.2 (Tx common mode voltage is disabled).</p>
[1]	pipe_rx_ei_disable	RW	1	0x0	<p>Applicable if en_pipe_if_ctrl == 1 (pcie_ll_main_ctrl_5[0]). Set this register to force drive the pipe interface signal. L1 substate disable activity detector.</p> <p>Through this signal the Link Layer effectively disable the activity detector circuit (power down) and move the PHY to either L1.1 (Tx common mode voltage is still valid) or L1.2 (Tx common mode voltage is disabled).</p>

Field	Name	Access	Width	Reset	Description
[0]	pipe_pclkreq_n	RW	1	0x0	<p>Applicable if en_pipe_if_ctrl == 1 (pcie_ll_main_ctrl_5[0]).</p> <p>Set this register to force drive the pipe interface signal. L1 substate request. Active low request to enter L1 substate.</p> <p>The Link Layer should wait for pipe_pclkack_n assertion (low) before to effectively gate the reference clock on the board through CLKREQ# out of band signal.</p>

5.1.6.3. Status Port Register

stat_port_0 Register 0x200

This register set is used for the Status Port 0 register.

Table 5.254. stat_port_0 Register 0x200

Field	Name	Access	Width	Reset	Description
[31:16]	reserved	RO	16	0x0	—
[15:14]	phy_sts_pipe_power_down	RO	2	0x0	<p>Power up or down the transceiver.</p> <p>00 – P0, normal operation</p> <p>01 – P0s, low recovery time latency power saving state</p> <p>10 – P1, longer recovery time latency power saving state</p> <p>11 – P2, lowest power state</p>
[13]	phy_sts_pipe_tx_cm_disable	RO	1	0x0	<p>Signal from PIPE interface.</p> <p>This register may not reflect the current value due to synchronization.</p> <p>L1 substate disable Tx common mode voltage.</p> <p>Through this signal the LL effectively configure the Tx driver into Hi-Z (power down) and move the PHY to L1.2 (Tx common mode voltage is disabled).</p>
[12]	phy_sts_pipe_rx_ei_disable	RO	1	0x0	<p>Signal from PIPE interface.</p> <p>This register may not reflect the current value due to synchronization.</p> <p>L1 substate disable Rx common mode voltage.</p> <p>Through this signal the LL effectively configure the Rx driver into Hi-Z (power down) and move the PHY to L1.2 (Rx common mode voltage is disabled).</p>
[11]	phy_sts_pipe_pclkack_n	RO	1	0x0	<p>Signal from PIPE interface.</p> <p>This register may not reflect the current value due to synchronization.</p> <p>L1 substate acknowledge. Active low acknowledge signal to enter L1 substate.</p> <p>The Link Layer should wait for pipe_pclkack_n assertion (low) before to effectively gate the reference clock on the board through CLKREQ# out of band signal.</p>
[10]	phy_sts_pipe_pclkreq_n	RO	1	0x0	<p>Signal from PIPE interface.</p> <p>This register may not reflect the current value due to synchronization.</p> <p>L1 substate request. Active low request signal to enter L1 substate.</p> <p>The Link Layer should wait for pipe_pclkack_n assertion (low) before to effectively gate the reference clock on the board through CLKREQ# out of band signal</p>

Field	Name	Access	Width	Reset	Description
[9]	phy_sts_pipe_phy_status	RW, W1C	1	0x0	Signal from PIPE interface. 0 – Otherwise 1 – pipe_phy_status is asserted. Write 1 to clear.
[8]	phy_sts_pipe_rstn	RW, W1C	1	0x0	Signal from PIPE interface. 0 – Otherwise 1 – pipe_rstn is asserted. Write 1 to clear.
[7:6]	reserved	RO	2	0x0	—
[5]	phy_sts_arxpllstable	RO	1	0x0	Signal from PMA interface. Rx PLL locked.
[4]	phy_sts_atxpllstable	RO	1	0x0	Signal from PMA interface. Tx PLL locked
[3]	phy_sts_acdrdiagout	RO	1	0x0	Signal from PMA interface. CDR PLL locked on data.
[2]	phy_sts_atrandet	RO	1	0x0	Signal from PMA interface. Activity detected
[1]	phy_sts_acdrpllrstb	RO	1	0x0	Signal from PMA interface. Rx PLL reset.
[0]	phy_sts_txpllrstb	RO	1	0x0	Signal from PMA interface. Tx PLL reset.

stat_port_0 Register 0x204

This register set is used for the Status Port 0 register.

Table 5.255. stat_port_0 Register 0x204

Field	Name	Access	Width	Reset	Description
[31:24]	reserved	RO	16	0x0	—
[23:16]	phy_sts_pipe_power_down	RO	2	0x0	Power up or down the transceiver. 00 – P0, normal operation 01 – P0s, low recovery time latency power saving state 10 – P1, longer recovery time latency power saving state 11 – P2, lowest power state
[15:12]	phy_sts_pipe_tx_cm_disable	RO	1	0x0	Signal from PIPE interface. This register may not reflect the current value due to synchronization. L1 substate disable Tx common mode voltage. Through this signal the LL effectively configure the Tx driver into Hi-Z (power down) and move the PHY to L1.2 (Tx common mode voltage is disabled).
[11:8]	phy_sts_pipe_rx_ei_disable	RO	1	0x0	Signal from PIPE interface. This register may not reflect the current value due to synchronization. L1 substate disable Rx common mode voltage. Through this signal the LL effectively configure the Rx driver into Hi-Z (power down) and move the PHY to L1.2 (Rx common mode voltage is disabled).
[7:4]	phy_sts_pipe_pclkack_n	RO	1	0x0	Signal from PIPE interface. This register may not reflect the current value due to synchronization. L1 substate acknowledge. Active low acknowledge signal to enter L1 substate. The Link Layer should wait for pipe_pclkack_n assertion (low) before to effectively gate the reference clock on the board through CLKREQ# out of band signal.

Field	Name	Access	Width	Reset	Description
[3:0]	phy_sts_pipe_pclkreq_n	RO	1	0x0	<p>Signal from PIPE interface.</p> <p>This register may not reflect the current value due to synchronization.</p> <p>L1 substate request. Active low request signal to enter L1 substate.</p> <p>The Link Layer should wait for pipe_pclkack_n assertion (low) before to effectively gate the reference clock on the board through CLKREQ# out of band signal.</p>

5.2. PCI Express Configuration Space Registers

The Lattice PCIe x4 IP Core implements Header Type 00 and Header Type 01 Configuration Registers, including Capability and Extended Capability Items, as detailed in the PCI Express Base Specification, Rev 3.0, PCI Local Interface Specification Revision 3.0, and PCI Bus Power Management Interface Specification Revision 1.2.

Type 00 and Type 01 Configuration Registers implement the first 64 bytes of Configuration Space differently:

- Type 00 – Implemented by Endpoints; refer [Table 5.256](#).
- Type 01 – Implemented by Root Ports; refer [Table 5.257](#).

Capability and Extended Capability Items are located at the same addresses regardless of which the header type is implemented, see [Table 5.258](#) for details.

[Table 5.256](#), [Table 5.257](#), and [Table 5.258](#) illustrate the core's PCIe Configuration Register map.

The Configuration Registers provide the ability for standard PCI/PCIe BIOS/OS software to discover the device, determine its capabilities, and configure the core's features. Since there are a tremendous variety of applications, the core's Configuration Registers are highly configurable.

5.2.1. Type 00 Configuration Header

Table 5.256. Type 00 Configuration Header

Addr	Byte3	Byte2	Byte1	Byte0
00	Device ID		Vendor ID	
04	Status		Command	
08	Class Code			Revision ID
0C	BIST	Header Type	Latency Timer	Cache Line Size
10	Base Address Register 0			
14	Base Address Register 1			
18	Base Address Register 2			
1C	Base Address Register 3			
20	Base Address Register 4			
24	Base Address Register 5			
28	Cardbus CIS Pointer			
2C	Subsystem ID		Subsystem Vendor ID	
30	Expansion ROM Base Address			
34	Reserved			Capabilities Pointer
38	Reserved			
3C	Max Latency	Min Grant	Interrupt Pin	Interrupt Line

5.2.2. Type 01 Configuration Header

Table 5.257. Type 01 Configuration Header

Addr	Byte3	Byte2	Byte1	Byte0		
00	Device ID		Vendor ID			
04	Status		Command			
08	Class Code			Revision ID		
0C	BIST	Header Type	Primary Latency Timer	Cache Line Size		
10	Base Address Register 0					
14	Base Address Register 1					
18	Secondary Latency Timer	Subordinate Bus Number	Secondary Bus Number	Primary Bus Number		
1C	Secondary Status		I/O Limit	I/O Base		
20	Memory Limit		Memory Base			
24	Prefetchable Memory Limit		Prefetchable Memory Base			
28	Prefetchable Base Upper 32 Bits					
2C	Prefetchable Limit Upper 32 Bits					
30	I/O Limit Upper 16 Bits		I/O Base Upper 16 Bits			
34	Reserved			Capability Pointer		
38	Expansion ROM Base Address					
3C	Bridge Control		Interrupt Pin	Interrupt Line		

5.2.3. Capability and Extended Capability Address Locations

Table 5.258. Capability and Extended Capability Items

Addr	Byte3	Byte2	Byte1	Byte0
7B-40	PCI Express Capability			
7F-7C	Reserved			
87-80	Power Management Capability			
8F-88	Reserved			
9B-90	MSI-X Capability			
9F-9C	Reserved			
B7-A0	MSI Capability			
FF-B8	Reserved			
147-100	Advanced Error Reporting Capability			
14F-148	ARI Capability			
17F-150	Vendor-Specific Extended Capability			
1AB-180	Secondary PCI Express Extended Capability			
1FF-1AC	Reserved			
207-200	ATS Capability			
20F-208	Reserved			
21B-210	DSN Capability			
26B-240	Reserved			
2BF-280	Resizable BAR Capability			
38F-2C0	Reserved			
39F-390	Power Budgeting Capability			
3CF-3A0	Dynamic Power Allocation (DPA) Capability			
3DF-3D0	L1 PM Substates Extended Capability			
3E7-3E0	Latency Tolerance Reporting (LTR) Capability			
FFF-3E8	Reserved			

5.2.4. Type 00 Configuration Registers

Table 5.259. Type 00 Configuration Registers

Addr	Config Register	Register Description
01–00	Vendor ID	Read Only: This field identifies the manufacturer of the device.
03–02	Device ID	Read Only: This field identifies the device.
05–04	Command Register	<p>Command Register Bits: Bits 10, 8, 6, and 2..0 are Read/Write. Bits[15:11] = 00000. Not implemented.</p> <p>Bit[10] – Interrupt Disable – If set, interrupts are disabled and cannot be generated; if clear interrupts are enabled</p> <p>Bit[9] = 0. Not implemented.</p> <p>Bit[8] – SERR Enable – When set enables the reporting of fatal and non-fatal errors detected by the device to the root complex (not supported).</p> <p>Bit[7] = 0. Not implemented.</p> <p>Bit[6] – Parity Error Enable – Affects the mapping of PCI Express errors to legacy PCI errors. See <i>PCI Express Base Specification Rev1.1</i>, Section 6.2 for details.</p> <p>Bit[5] = 0. Not implemented.</p> <p>Bit[4] = 0. Not implemented.</p> <p>Bit[3] = 0. Not implemented.</p> <p>Bit[2] – Bus Leader Enable – Memory and I/O Requests can only be generated on the Transaction Layer Interface if this bit is set.</p> <p>Bit[1] – Memory Space Enable – If set, the core decodes the packets to determine memory BAR hits; if clear, memory BARs are disabled.</p> <p>Bit[0] – I/O Space Enable – If set, the core decodes the packets to determine I/O BAR hits; if clear, I/O BARs are disabled.</p>
07–06	Status Register	<p>Status Register Bits: Bits 15..11 and 8 are Read/Write. Writing a 1 to a bit location clears that bit. Writing a 0 to a bit location has no affect.</p> <p>Bit[15] – Set by a device whenever it receives a Poisoned TLP.</p> <p>Bit[14] – Set when a device sends an ERR_FATAL or ERR_NONFATAL Message and the SERR Enable bit in the Command Register is set.</p> <p>Bit[13] – Set when a requestor receives a completion with Unrecognized Request Completion Status</p> <p>Bit[12] – Set when a requestor receives a completion with Completer Abort Completion Status</p> <p>Bit[11] – Set when a device completes a request using Completer Abort Completion Status</p> <p>Bits[10:9] = 00. Not implemented.</p> <p>Bit[8] – Leader Data Parity Error – This bit is set by a Requestor if its Parity Error Enable bit is set and either a Completion is received that is marked poisoned or the requestor poisons a write request.</p> <p>Bits[7:5] = 000. Not implemented.</p> <p>Bit[4] = 1 to indicate the presence of a Capabilities List.</p> <p>Bit[3] – Interrupt Status – Reflects the value of mgmt_interrupt.</p> <p>Bits[2:0] = 000. Reserved.</p>
08	Revision ID	Read Only: This register specifies the device specific revision identifier.
0B–09	Class Code	Read Only: The Class Code identifies the generic function of the device.
0C	0x0C: Cache Line Size	Read/Write: Cache Line Size is not used with PCI Express but is still implemented as read/write register for legacy compatibility purposes.
0D	0x0D: Latency Timer	Read Only returning 0x00.
0E	0x0E: Header Type	Read Only: This register reads 0x00 to indicate that the core complies to the standard PCI configuration register mapping and that it is a single function device.
0F	0x0F: BIST	Not implemented. Reads return 0x00.
13–10	Base Address Register 0	Read/Write: Base Address Register0, Base Address Register1, Base Address Register2, Base Address Register3, Base Address Register4, and Base Address Register5 inform system software of the device's resource requirements and are subsequently programmed to allocate memory and I/O resources to the device.

Addr	Config Register	Register Description
17-14	Base Address Register 1	See Base Address Register 0 description
1B-18	Base Address Register 2	See Base Address Register 0 description
1F-1C	Base Address Register 3	See Base Address Register 0 description
23-20	Base Address Register 4	See Base Address Register 0 description
27-24	Base Address Register 5	See Base Address Register 0 description
2B-28	Card Bus CIS Pointer	Read Only: Reads return the value of the Cardbus CIS Pointer.
2D-2C	Subsystem Vendor ID	Read Only: Additional vendor information. Reads return the value of the Subsystem Vendor ID.
2F-2E	Subsystem ID	Read Only: Additional device information. Reads return the value of the Subsystem ID.
33-30	Expansion ROM Base Addr. Reg.	<p>Informs system software of the device's Expansion ROM resource requirements and is subsequently programmed to allocate memory resources to the device.</p> <p>Read/Write: Expansion ROM Base Address Register Bits[31:11] – Written to specify where to locate this region in memory space Bits[10:1] = 0.0 Reserved Bit[0] = Set by S/W to enable decoding the Expansion ROM and clear to disable</p>
34	Capabilities Pointer	Read Only: Reads return 0x40 which is the beginning address of the PCI Express Capabilities Item.
37-35	Reserved	Not implemented. Reads return 0x000000.
3B-38	Reserved	Not implemented. Reads return 0x00000000.
3C	Interrupt Line	Legacy interrupt is always ENABLED.
3D	Interrupt Pin	Interrupt support is enabled/disabled by CSR register. When interrupts are enabled, Interrupt Pin returns 0x01 indicating the core implements INTA# and when interrupts are disabled, Interrupt Pin returns 0x00 indicating no interrupts are used.
3E	Minimum Grant	Read Only: Returns 0x00.
3F	Maximum Latency	Read Only: Returns 0x00.

5.2.5. PCI Express Capability

Table 5.260. PCI Express Capability

Addr	Config Register	Register Description
40	PCI Express Capability ID	Read Only = 0x10 (Beginning of PCI Express Capability Item)
41	Next Capability Pointer	Read Only = 0x80 (Pointer to beginning of Power Management Capability)
43-42	PCI Express Capabilities	<p>Read Only</p> <ul style="list-style-type: none"> Bits[15:14] – Reserved = 00 Bits[13:9] – Interrupt Message Number[4:0]; MSI/MSI-X interrupt vector associated with interrupts generated by Configuration Register events (change in link bandwidth and root port error) Bit[8] – Slot Implemented; Downstream Switch/Root Port only Bits[7:4] – Device/Port Type – Must match the core application since the value programmed enables/hides Configuration Registers and functionality that is only applicable to some Device/Port types: <ul style="list-style-type: none"> 0000 – PCI Express Endpoint Required for Endpoint applications

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> • 0001 – Legacy PCI Express Endpoint • 0100 – Reserved • 0101 – Reserved • 0110 – Reserved • 0111 – Reserved • 1000 – Reserved • 1001 – Reserved • 1010 – Reserved • Bits[3:0] – Capability Version – Must be 0x2 for PCIe 3.0
47-44	Device Capabilities Register	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[31:29] – Reserved. • Bit[28] – Function Level Reset Capability <ul style="list-style-type: none"> • 1 – Capability Present • 0 – Capability Not Present • Bits[27:26] – Captured Slot Power Limit Scale • Bits[25:18] – Captured Slot Power Limit Value • Bits[17:16] = 00. Reserved. • Bit[15] = 1. Role-based Error Reporting • Bit[14] = 0 – Reserved • Bit[13] = 0 – Reserved • Bit[12] = 0 – Reserved • Bits[11:9] – Endpoint L1 Acceptable Latency • Bit[8:6] – Endpoint L0s Acceptable Latency • Bit[5] – Extended Tag Field Supported • Bits[4:3] – Phantom Functions Supported • Bits[2:0] – Max Payload Size Supported <ul style="list-style-type: none"> • 000 – 128 bytes max payload size • 001 – 256 bytes max payload size • 010 – 512 bytes max payload size • 011 – 1024 bytes max payload size • 100 – 2048 bytes max payload size • 101 – 4096 bytes max payload size • 110 – Reserved • 111 – Reserved
49-48	Device Control Register	<p>Read/Write</p> <ul style="list-style-type: none"> • Bit[15] – Bridge Configuration Retry Enable/Initiate Function Level Reset • Bits[14:12] – Max Read Request Size; the Transmit Interface may not transmit a read request TLP with a length larger than the size indicated by Max Read Request Size: <ul style="list-style-type: none"> • 000 == 128 bytes • 001 == 256 bytes • 010 == 512 bytes • 011 == 1024 bytes • 100 == 2048 bytes • 101 == 4096 bytes • 110 == Reserved • 111 == Reserved • Bit[11] – Enable No Snoop • Bit[10] – Aux Power PM Enable • Bit[9] – Phantom Functions Enable • Bit[8] – Extended Tag Field Enable

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> Bits[7:5] – Max Payload Size; the Transmit Interface may not transmit a TLP with a payload larger than the size indicated by Max Payload Size: <ul style="list-style-type: none"> 000 == 128 bytes 001 == 256 bytes 010 == 512 bytes 011 == Reserved 100 == Reserved 101 == Reserved 110 == Reserved 111 == Reserved Bit[4] – Enable Relaxed Ordering Bit[3] – Unsupported Request Reporting Enable Bit[2] – Fatal Error Reporting Enable Bit[1] – Non-Fatal Error Reporting Enable Bit[0] – Correctable Error Reporting Enable
4B-4A	Device Status Register	<p>Bits[15:4] are Read Only. Bits[3:0] are cleared by writing a 1 to the corresponding bit location.</p> <ul style="list-style-type: none"> Bits[15:6] = 000000000. Reserved Bit[5] – Transactions Pending Bit[4] – AUX Power Detected Bit[3] – Unsupported Request Detected Bit[2] – Fatal Error Detected Bit[1] – Non-Fatal Error Detected Bit[0] – Correctable Error Detected
4F-4C	Link Capabilities Register	<p>Read Only.</p> <ul style="list-style-type: none"> Bits[31:24] – Port Number Bits[22] = 1. ASPM Optional Compliance Bit[21] – Link Bandwidth Notification Capability <ul style="list-style-type: none"> == 1 when operating as a Downstream Port; else 0 Bit[20] – Data Link Layer Active Reporting Capable <ul style="list-style-type: none"> == 1 when operating as a Downstream Port; else 0 Bit[19] – Surprise Down Error Reporting Capable <ul style="list-style-type: none"> == 1 when operating as a Downstream Port; else 0 Bit[18] = 0. Clock Power Management Bits[17:15] – L1 Exit Latency Bits[14:12] – L0s Exit Latency Bits[11:10] – Active State Power Management (ASPM) Support <ul style="list-style-type: none"> 00 – No ASMP Support 01 – L0s Supported 10 – L1 Supported 11 – L0s and L1 Supported Bits[9:4] – Maximum Link Width <ul style="list-style-type: none"> 000001 – x1 000010 – x2 000100 – x4 001000 – x8 010000 – x16 Bits[3:0] – Maximum Link Speed <ul style="list-style-type: none"> 0001 (2.5GT/s) 0010 (5GT/s) 0011 (8GT/s)

Addr	Config Register	Register Description
51-50	Link Control Register	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[15:14] – DRS Signaling Control. Bits[13:12] – 00. Reserved. Bit[11] – 0. Reserved. Bit[10] – 0. Reserved. Bit[9] – Hardware Autonomous Width Disable Bit[8] – 0. Enable Clock Power Management Bit[7] – Extended Sync Bit[6] – Common Clock Configuration Bit[5] – 0. Reserved. Bit[4] – 0. Reserved. Bit[3] – Read Completion Boundary (RCB) <ul style="list-style-type: none"> 0 – 64 bytes 1 – 128 bytes Bit[2] = 0. Reserved. Bits[1:0] – Active State Power Management (ASPM) Control <ul style="list-style-type: none"> 00 – Disabled 01 – L0s Enabled 10 – L1 Enabled 11 – L0s and L1 Enabled
53-52	Link Status Register	<p>Read Only</p> <ul style="list-style-type: none"> Bit[15] – Link Autonomous Bandwidth Status Bit[14] – Link Bandwidth Management Status Bit[13] – Data Link Layer Active Bit[12] – Slot Clock Configuration Bit[11] – Link Training Bit[10] = 0. Reserved. Bits[9:4] Negotiated Link Width – indicates the number of lanes currently in use <ul style="list-style-type: none"> 010000 = x16 001000 = x8 000100 = x4 000010 = x2 000001 = x1 Bits[3:0] Link Speed <ul style="list-style-type: none"> 0001 (2.5 GT/s) 0010 (5.0 GT/s) 0011 (8.0 GT/s)
57-54	Slot Capabilities Root Port/Switch Only	<p>Normally Read Only; Writable when HW.Init Write Enable == 1 (see Table 5.266)</p> <ul style="list-style-type: none"> Bits[31:19] – Physical Slot Number Bit[18] – No Command Completed Support Bit[17] – Electromechanical Interlock Present Bits[16:15] – Slot Power Limit Scale[1:0] Bits[14:7] – Slot Power Limit Value[7:0] Bit[6] – Hot-Plug Capable Bit[5] – Hot-Plug Surprise Bit[4] – Power Indicator Present Bit[3] – Attention Indicator Present Bit[2] – MRL Sensor Present Bit[1] – Power Controller Present Bit[0] – Attention Button Present
59-58	Slot Control	Read Only

Addr	Config Register	Register Description
	Root Port/Switch Only	<ul style="list-style-type: none"> • Bits[15:13] = 0. Reserved. • Bit[12] – Data Link Layer State Changed Enable • Bit[11] = 0. Electromechanical Interlock Control • Bit[10] – Power Controller Control • Bit[9:8] – Power Indicator Control • Bit[7:6] – Attention Indicator Control • Bit[5] – Hot-Plug Interrupt Enable • Bit[4] – Command Completed Interrupt Enable • Bit[3] – Presence Detect Changed Enable • Bit[2] – MRL Sensor Changed Enable • Bit[1] – Power Fault Detected Enable • Bit[0] – Attention Button Pressed Enable
5b-5a	Slot Status Root Port/Switch Only	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[15:9] = 0. Reserved. • Bit[8] – Data Link Layer State Changed • Bit[7] – Electromechanical Interlock Status • Bit[6] – Presence Detect State • Bit[5] – MRL Sensor State • Bit[4] – Command Completed • Bit[3] – Presence Detect Changed • Bit[2] – MRL Sensor Changed • Bit[1] – Power Fault Detected • Bit[0] – Attention Button Pressed
5d-5c	Root Control Root Port Only	<p>Read/Write</p> <ul style="list-style-type: none"> • Bits[15:5] = 0. Reserved. • Bit[4] = CRS Software Visibility Enable • Bit[3] – PME Interrupt Enable • Bit[2] – System Error on Fatal Error Enable • Bit[1] – System Error on Non-Fatal Error Enable • Bit[0] – System Error on Correctable Error Enable
5f-5e	Root Capabilities Root Port Only	<p>Read Only; Bit[16] – Write 1 to clear.</p> <ul style="list-style-type: none"> • Bits[15:1] = 0. Reserved • Bit[0] = 1. CRS Software Visibility supported.
63-60	Root Status Root Port Only	<p>Read Only; Bit[16] – Write 1 to clear.</p> <ul style="list-style-type: none"> • Bits[31:18] = 0. Reserved • Bit[17] – PME Pending • Bit[16] – PME Status • Bits[15:0] – PME Requester ID
67-64	Device Capabilities 2	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[31:24] = 0. Reserved • Bits[23:22] = 00. Max End-End TLP Prefixes • Bit[21] = 0. End-End TLP Prefix Supported • Bit[20] = 0. Extended Fmt Field Supported • Bit[19:18] = 00. OBFF Supported • Bits[17:14] = 0000. Reserved • Bits[13:12] = 00. TPH Completer Supported • Bit[11] = LTR Mechanism Supported • Bit[10] = 0. No RO-enabled PR-PR Passing • Bit[9] = 0. 128-bit CAS Completer Supported • Bit[8] = 0. 64-bit AtomicOp Completer Supported • Bit[7] = 0. 32-bit AtomicOp Completer Supported

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> • Bit[6] = 0. AtomicOp Routing Supported • Bit[5] = 0. ARI Forwarding Supported • Bit[4] – Completion Timeout Disable Supported • Bits[3:0] – Completion Timeout Ranges Supported
69-68	Device Control 2	<p>Read/Write</p> <ul style="list-style-type: none"> • Bit[15] – End-End TLP Prefix Blocking • Bits[14:13] – OBFF Enable; not supported • Bits[12:11] = 00. Reserved. • Bit[10] – LTR Mechanism Enable • Bit[9] – IDO Completion Enable • Bit[8] – IDO Request Enable • Bit[7] – AtomicOp Egress Blocking • Bit[6] – AtomicOp Request Enable • Bit[5] – ARI Forwarding Enable • Bit[4] – Completion Timeout Disable – Set by system software to disable this device from generating completion timeouts. You must disable completion timeout error generation when this bit is set. • Bits[3:0] – Completion Timeout Value – Set by system software to select the completion timeout range which must be used by users which are implementing completion timeouts. See PCI Express Specification Table 7.24 for details.
6B-6A	Device Status 2	Reserved by PCI SIG for future use. Reads return 0x00000000.
6F-6C	Link Capabilities 2	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[31:23] – Reserved • Bits[22:16] – Lower SKP OS Reception Supported Speeds Vector • Bits[15:9] – Lower SKP OS Generation Supported Speeds Vector • Bit[8] – Crosslink Supported • Bits[7:1] – Supported Link Speeds Vector • Bit[0] = 0. Reserved
71-70	LinkControl 2	<p>Read/Write</p> <ul style="list-style-type: none"> • Bit[15:12] – Compliance Preset/De-emphasis[3:0] • Bit[11] – Compliance SOS • Bit[10] – Enter Modified Compliance • Bits[9:7] – Transmit Margin • Bit[6] – Selectable De-emphasis • Bit[5] – Hardware Autonomous Speed Disable • Bit[4] – Enter Compliance • Bits[3:0] – Target Link Speed[3:0] <ul style="list-style-type: none"> • 0001 (2.5 GT/s) • 0010 (5.0 GT/s) • 0011 (8.0 GT/s)

Addr	Config Register	Register Description
73-72	Link Status 2	Read Only; Bit[5] – write 1 to clear: <ul style="list-style-type: none"> Bits[15:6] = 0000000000. Reserved. Bit[5] – Link Equalization Reset Bit[4] – Equalization Phase 3 Successful Bit[3] – Equalization Phase 2 Successful Bit[2] – Equalization Phase 1 Successful Bit[1] – Equalization Complete Bit[0] – Current De-emphasis Level <ul style="list-style-type: none"> 1== -3.5 dB 0== -6 dB
77-74	Slot Capabilities 2 Root Port/Switch Only	Reserved by PCI SIG for future use. Reads return 0x00000000.
79-78	Slot Control 2 Root Port/Switch Only	Reserved by PCI SIG for future use. Reads return 0x00000000.
7b-7a	Slot Status 2 Root Port/Switch Only	Reserved by PCI SIG for future use. Reads return 0x00000000.
7F-7C	Reserved	Reads return 0x00000000.

5.2.6. Power Management Capability

Table 5.261. Power Management Capability

Addr	Config Register	Register Description
80	Power Management Capability ID	Read Only = 0x01 (Beginning of Power Management Capability Item)
81	Next Capability Pointer	Read Only. Pointer to next Capability Item in the list.
83-82	Power Management Capabilities	Read Only. <ul style="list-style-type: none"> Bits[15:11] – PME Support; recommended default == 0. Bits[10] – D2 Support (1) Yes (0) No; this bit must be set for the core to allow Power State to be written to D2; recommended default == 0. Bit[9] – D1 Support (1) Yes (0) No; this bit must be set for the core to allow Power State to be written to D1; recommended default == 0. Bit[8:6] – Aux Current; recommended default = 0. Bit[5] – Device Specific Initialization(DSI); recommended default = 0. Bit[4] – Reserved; set to 0. Bit[3] – PME Clock; recommended default = 0. Bits[2:0] – Version; set to 011 (complies with revision 1.2 of the PCI Power Management Interface Specification). <p>Refer Error Handling for additional detail.</p>

Addr	Config Register	Register Description
85-84	Power Management Control/Status	<p>Read/Write.</p> <ul style="list-style-type: none"> Bit[15] – PME Status; if Power Management Capabilities[15] == 1 indicating that PME is generated from D3cold, then PME_Status is implemented by the core; otherwise PME_Status == 0. Bits[14:13] – Data Scale; recommend == 0 (Data not implemented) Bits[12:9] – Data Select; recommend == 0 (Data not implemented) Bit[8] – PME En – ; if Power Management Capabilities[15:11] == 0 indicating that PME is not generated from any power state then PME_En == 0; is implemented by the core and written by system software to enable PME generation from D3cold; otherwise PME_En == 0. Bits[7:4] – Reserved – set to 0 Bit[3] – No Soft Reset – Core sets to 1 since the core is not reset when transitioning from D3hot to D0 purely due to power state changes. This bit is used by system software to know whether the device needs to be reinitialized when transitioning between D3hot and D0. Bit[2] – Reserved; set to 0 Bits[1:0] – Power State; software writes this field to transition a device into a different power state; increasing Dx numbers represent increasingly lower power states <ul style="list-style-type: none"> 00 – D0; normal operation 01 – D1; not allowed to be written unless D1 Support == 1 10 – D2; not allowed to be written unless D2 Support == 1 11 – D3hot; “off” <p>Refer Error Handling for additional detail.</p>
86	PMCSR PCI to PCI Bridge Support	<p>Read Only.</p> <ul style="list-style-type: none"> Bit[7] – Bus Power/Clock Control Enable; set to 0 Bit[6] – B2/B3 Support for D3bat; set to 0 Bits[5:0] – Reserved; set to 0
87	Data	<p>Read Only.</p> <ul style="list-style-type: none"> Bits[7:0] – Data; recommended default = 0; not implemented
8F-88	Reserved	Reads return 0x00000000.

5.2.7. MSI-X Capability

Table 5.262. MSI-X Capability

Addr	Config Register	Register Description
90	MSI-X Capability ID	<p>Read Only = 0x11 (Beginning of MSI-X Capability Item)</p> <p>MSI-X Support may be enabled/disabled through the CSR registers. If present, its capability is defined as follows otherwise all the following registers read 0x0.</p>
91	Next Capability Pointer	Read Only. Pointer to the next Capability Item on the list.
93-92	Message Control	<p>Only bits[15:14] are Read/Write.</p> <ul style="list-style-type: none"> Bit[15] – MSI-X Enable (Read/Write) Bit[14] – Function Mask (Read/Write) Bits[13:11] – Reserved – 000 (Read Only) Bit[10:0] – Table Size[10:0] (Read Only) <ul style="list-style-type: none"> The number of MSI-X vectors requested/supported by the user’s design is Table Size + 1.
97-94	Table_Offset, Table_BIR	<p>Read Only.</p> <p>Bits[31:3] – Table_Offset[31:3]</p> <ul style="list-style-type: none"> {Table_Offset[31:3], 000} is the offset into the BAR indicated by Table_BIR where the MSI-X Table begins. Bits[2:0] – Table BIR[2:0]

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> Indicates which BAR location contains the MSI-X Table. In the case of a 64-bit BAR Table BIR indicates the BAR that contains the lower 32-bit address: <ul style="list-style-type: none"> 000 – BAR0 001 – BAR1 010 – BAR2 011 – BAR3 100 – BAR4 101 – BAR5 110, 111 – Reserved
9B-98	PBA_Offset, PBA_BIR	<p>Read Only.</p> <p>Bits[31:3] – PBA_Offset[31:3]</p> <ul style="list-style-type: none"> Same as Table Offset above but indicates the location of the PBA (Pending Bit Array). <ul style="list-style-type: none"> Bits[2:0] – PBA BIR[2:0] Same as Table BIR above, but indicates the location of the PBA

5.2.8. MSI Capability

Table 5.263. MSI Capability

Addr	Config Register	Register Description
9F-9C	Reserved	Reads return 0x00000000.
A0	Message Capability ID	Read Only = 0x05 (Beginning of Message Capability Item); MSI Support is enabled/disabled by CSR registers. If present, its capability is defined as follows otherwise all the following registers read 0x0.
A1	Next Capability Pointer	Read Only. Pointer to next Capability Item in the list.
A3-A2	Message Control	<ul style="list-style-type: none"> Bits[6:4] and Bit[0] are Read/Write; remainder are Read Only Bits[15:9] = 0x00. Reserved Bit[8] = 0. Note per vector masking capable. Bit[7] – 64-bit Address Capable = 1 (Capable of generating 64-bit messages) Bits[6:4] – Multiple Message Enable – system software writes the number of allocated messages; 000==1, 001==2, 010==4, 011==8, 100==16, 101==32, 110 Reserved, 111 Reserved Bits[3:1] – Multiple Message Capable – Number of messages requested by the device == 000 (1 Message) Bit[0] – MSI Enable – System software sets this bit to enable MSI. When set, the core uses the MSI mechanism instead of the legacy interrupt mechanism to forward user interrupts on mgmt_interrupt to PCI Express.
A7-A4	Message Address	<p>Bits[31:2] are Read/Write; Bits[1:0] are Read Only</p> <ul style="list-style-type: none"> Bits[31:2] Message Address[31:2] Bits[1:0] – Reserved – Message Address[1:0] is always 00
AB-A8	Message Upper Address	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[31:0] Message Address[63:32]
AD-AC	Message Data	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[15:0] Message Data[15:0] – An MSI Message is sent by writing Message Data to Message Address.

5.2.9. Advanced Error Reporting Extended Capability

Table 5.264. Advanced Error Reporting Extended Capability

Addr	Config Register	Register Description
103-100	Advanced Error Reporting Enhanced Capability Header	<p>Beginning of Advanced Error Reporting (AER) Capability; the AER capability is only present if AER support is enabled in the design, however, AER support is a standard core feature that is present unless AER removal has been specifically requested to be excluded at core deliver time (which is unusual).</p> <ul style="list-style-type: none"> • Bits[15:0] – Read Only = 0x0001 == AER Capability ID • Bits[19:16] – Read Only = 0x01 == AER Capability Version (PCIe 2.0/1.1) • Bits[31:20] – Read Only. Pointer to next Enhanced/Extended Capability Item in the list.
107-104	Uncorrectable Error Status	<ul style="list-style-type: none"> • Read/Write: Bit set when corresponding error event occurs, and the error is not masked by the Uncorrectable Error Mask register; clear set bits by writing a 1: • Bits[3:0] – Reserved == 0 • Bit[4] – DataLink_Protocol_Error_Status • Bit[5] – Surprise_Down_Error_Status • Bits[11:6] – Reserved == 0 • Bit[12] – Poisoned_TLP_Status • Bit[13] – Flow_Control_Protocol_Error_Status • Bit[14] – Completion_Timeout_Status • Bit[15] – Completer_Abort_Status • Bit[16] – Unexpected_Completion_Status • Bit[17] – Receiver_Overflow_Status • Bit[18] – Malformed_TLP_Status • Bit[19] – ECRC_Error_Status • Bit[20] – Unsupported_Request_Error_Status • Bit[21] – Reserved = 0 • Bit[22] – Uncorrectable Internal Error Status • Bits[31:23] – Reserved == 0
10B-108	Uncorrectable Error Mask	<p>Read/Write: Set corresponding bit to mask (not report) selected error events; clear to unmask (report):</p> <ul style="list-style-type: none"> • Bits[3:0] – Reserved == 0 • Bit[4] – DataLink_Protocol_Error_Mask • Bit[5] – Surprise_Down_Error_Mask • Bits[11:6] – Reserved == 0 • Bit[12] – Poisoned_TLP_Mask • Bit[13] – Flow_Control_Protocol_Error_Mask • Bit[14] – Completion_Timeout_Mask • Bit[15] – Completer_Abort_Mask • Bit[16] – Unexpected_Completion_Mask • Bit[17] – Receiver_Overflow_Mask • Bit[18] – Malformed_TLP_Mask • Bit[19] – ECRC_Error_Mask • Bit[20] – Unsupported_Request_Error_Mask • Bit[21] – Reserved = 0 • Bit[22] – Uncorrectable Internal Error Mask • Bits[31:23] – Reserved == 0
10F-10C	Uncorrectable Error Severity	<p>Read/Write: Set corresponding bit to mark selected error events as FATAL errors; clear to mark selected error events as NON-FATAL errors:</p> <ul style="list-style-type: none"> • Bits[3:0] – Reserved == 0 • Bit[4] – DataLink_Protocol_Error_Severity • Bit[5] – Surprise_Down_Error_Severity • Bits[11:6] – Reserved == 0

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> • Bit[12] – Poisoned_TLP_Severity • Bit[13] – Flow_Control_Protocol_Error_Severity • Bit[14] – Completion_Timeout_Severity • Bit[15] – Completer_Abort_Severity • Bit[16] – Unexpected_Completion_Severity • Bit[17] – Receiver_Overflow_Severity • Bit[18] – Malformed_TLP_Severity • Bit[19] – ECRC_Error_Severity • Bit[20] – Unsupported_Request_Error_Severity • Bit[21] – Reserved = 0 • Bit[22] – Uncorrectable Internal Error Severity • Bits[31:23] – Reserved == 0
113-110	Correctable Error Status	<p>Read/Write: Bit set when corresponding error event occurs, and the error is not masked by the Correctable Error Mask register; clear set bits by writing a 1:</p> <ul style="list-style-type: none"> • Bit[0] – Receiver_Error_Status • Bits[5:1] – Reserved == 0 • Bit[6] – Bad_TLP_Status • Bit[7] – Bad_DLLP_Status • Bit[8] – Replay_Num_Rollover_Status • Bits[11:9] – Reserved == 000 • Bit[12] – Replay_Timer_Timeout_Status • Bit[13] – Advisory_Non_Fatal_Error_Status • Bit[14] – Corrected Internal Error Status • Bit[15] – Header Log Overflow Status • Bits[31:16] – Reserved == 0
117-114	Correctable Error Mask	<p>Read/Write: Set corresponding bit to mask (not report) selected error events; clear to unmask (report):</p> <ul style="list-style-type: none"> • Bit[0] – Receiver_Error_Mask • Bits[5:1] – Reserved == 0 • Bit[6] – Bad_TLP_Mask • Bit[7] – Bad_DLLP_Mask • Bit[8] – Replay_Num_Rollover_Mask • Bits[11:9] – Reserved == 000 • Bit[12] = Replay_Timer_Timeout_Mask • Bit[13] = Advisory_Non_Fatal_Error_Mask • Bit[14] – Corrected Internal Error Mask • Bit[15] – Header Log Overflow Mask • Bits[31:16] – Reserved == 0
11B-118	Advanced Error Capabilities and Control	<p>Read/Write: Misc Capabilities and Control</p> <ul style="list-style-type: none"> • Bits[4:0] = Read Only – First_Error_Pointer[4:0] • Bit[5] = Read Only – ECRC_Generation_Capable <ul style="list-style-type: none"> • 1 == Device can generate ECRC; set if the core includes ECRC generation logic (non-standard core option). • 0 == Device is not capable of generating ECRC. • Bit[6] = Read/Write – ECRC_Generation_Enable <ul style="list-style-type: none"> • Software sets to control whether ECRCs are generated and inserted for TLPs transmitted by the core; if ECRC support is not implemented in the core, this bit is Read Only == 0. • 1 == Generate and insert ECRC for TLPs transmitted by the core. • 0 == Do not generate and insert ECRC.

Addr	Config Register	Register Description
		<ul style="list-style-type: none"> Bit[7] = Read Only – ECRC_Check_Capable <ul style="list-style-type: none"> 1 == Device is capable of checking ECRC; set if the core includes ECRC generation logic (non-standard core option). 0 == Device is not capable of checking ECRC. Bit[8] = Read/Write – ECRC_Check_Enable <ul style="list-style-type: none"> Software sets to control whether ECRCs are checked for TLPs received by the core; if ECRC support is not implemented in the core, this bit is Read Only == 0. 1 == Check ECRC for all TLPs with ECRC received by the core. 0 == Do not check ECRC. Bits[31:9] – Reserved = 0
12B-11C	Header Log	Header[127:0] of the TLP associated with the error. TLP format is in same order as illustrated in PCIe Specification: <ul style="list-style-type: none"> 0x11F-11C – {Byte0, Byte1, Byte2, Byte3} 0x123-120 – {Byte4, Byte5, Byte6, Byte7} 0x127-124 – {Byte8, Byte9, Byte10, Byte11} 0x12B-0x128 – {Byte12, Byte13, Byte14, Byte15}
137-12C	Reserved	Only implemented by AER Root Ports. Reads return 0x00000000.
147-138	Reserved	TLP Prefix Log Register

5.2.10. ARI Extended Capability

ARI is located at offset 0x148 unless AER is not present in which case it is moved to 0x100.

Table 5.265. ARI Extended Capability

Addr	Config Register	Register Description
14B-148 or 103-100	ARI Capability Extended Capability Header	Beginning of ARI Extended Capability – Read Only <ul style="list-style-type: none"> Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] = 0x1 == Capability Version Bits[15:0] = 0x000E == Capability ID
14D-14C or 105-104	ARI Capability Register	Read Only <ul style="list-style-type: none"> Bits[15:8] – Next Function Number = 0 (not implemented) Bits[7:2] – Reserved = 0 Bit[1] – ACS Function Groups Capability = 0 (not implemented) Bit[0] – MFVC Function Groups Capability = 0 (not implemented)
14F-14E or 107-106	ARI Control Register	Read Only <ul style="list-style-type: none"> Bits[15:7] – Reserved Bit[6:4] – Function Group = 0 (not implemented) Bits[3:2] – Reserved = 0 Bit[1] – ACS Function Groups Enable = 0 (not implemented) Bit[0] – MFVC Function Groups Enable = 0 (not implemented)

5.2.11. Vendor-Specific Extended Capability

Table 5.266. Vendor-Specific Extended Capability

Addr	Config Register	Register Description
153-150	Vendor-Specific PCI Express Extended Capability Header	<p>Beginning of Vendor-Specific Extended Capability (VSEC)</p> <ul style="list-style-type: none"> Bits[31:20] – Read Only. Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] – Read Only = 0x1 == Capability Version Bits[15:0] – Read Only = 0x000B == Capability ID
157-154	Vendor-Specific Header	<p>Read Only</p> <ul style="list-style-type: none"> Bits[31:20] – VSEC Length = 0x24 (36 bytes) Bits[19:16] – VSEC Rev = 0x1 Bits[15:0] – VSEC ID
15B-158	HW.Init	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[31:1] = 0. Reserved Bit[0] – HW.Init Write Enable – Used to allow software to write some Configuration Registers which are type <i>HW.Init</i> when they would otherwise not be writable; default value == 0 <ul style="list-style-type: none"> 1 – HW.Init Write Enabled – Allow specific HW.Init fields to be written by software; only relevant for Configuration Registers in this document which specifically state they are writable when HW.Init Write Enable == 1 (for example, PCI Express Capability: Slot Capabilities). 0 – HW.Init Write Disabled
15F-15C	Link Power Down Root Port/Downstream Switch Port Only	<p>Read/Write – Used by system software in a Root Port or Downstream Switch Port application to cause a PME_Turn_Off Message to be transmitted on PCI Express to request that the downstream PCI Express hierarchy prepare for Power Down.</p> <ul style="list-style-type: none"> Bits[31:3] = 0. Reserved. Bit[2] – L2 Request Timeout; indicates when an L2 Request completed due to a timeout; L2 Request Timeout is cleared (0) when L2_Request is written to 1 or when 1 is written to this register; L2 Request Timeout is set (1) when a PME_TO_ACK message is not received in response to a transmitted PME_Turn_Off within the expected 100 ms (100 μs for simulation when mgmt_short_sim == 1) timeout window. Bit[1] – L2 Request Status; indicates when an L2 Request has completed either due to receiving the expected PME_TO_Ack message response or due to timeout; L2 Request Status is cleared (0) when L2_Request is written to 1 or when 1 is written to this register; L2 Request Status is set (1) when a PME_TO_ACK message is received or a timeout occurs Bit[0] – L2 Request; write to 1 to cause a PME_Turn_Off Message to be transmitted downstream to the PCI Express hierarchy; after all downstream devices have prepared for power-down the core should receive a PME_TO_Ack message in response indicating the downstream PCIe hierarchy is ready for removal of power; L2 Request stays set until a PME_TO_ACK message is received or a timeout occurs.

Addr	Config Register	Register Description
163-160	Autonomous Recovery, Speed, and Width	<p>Read/Write – Used by system software in an US Port to perform autonomous speed change, width change, or entry to recovery.</p> <p>Bits[31:16] – Lane Width Mask. A 1 indicates that the lane can be used. [16] = Lane 0 .. [31] = Lane 15.</p> <p>Bits[15:12] – Reserved</p> <p>Bits[11:8] – Target Speed. (1=2.5G, 2=5G, 3=8G, 4=16G).</p> <p>Bits[7:3] – Reserved</p> <p>Bit[2] – Autonomous Entry to Recovery command. When Set to 1, Bits[1] and [0] must both be set to 0. Setting this bit to 1 causes the Link to immediately transition to recovery.</p> <p>Bit[1] – Autonomous Width Change command. When set to 1, the Link transitions to recovery to perform a link width change, using the Lane Width Mask field. This bit is ignored if HW Autonomous Width Disable has been set in the Link Control register.</p> <p>Bit[0] – Autonomous Speed Change command. When set to 1, the Link transitions to Recovery to perform a speed change, using the Target Speed field. This bit is ignored if HW Autonomous Speed Disable has been set in the Link Control 2 register.</p> <p>Speed and width changes can be signaled together. However, entry to recovery must be signaled independently from speed or width changes.</p>
173-164	Reserved	Reserved

5.2.12. Secondary PCI Express Extended Capability

Table 5.267. Secondary PCI Express Extended Capability

Addr	Config Register	Register Description
183-180	Secondary PCI Express Extended Capability Header	<p>Beginning of Secondary PCI Express Extended Capability; this capability is only present if the PCIe 3.0 support is enabled in the design. If the AER capability is not present, this capability is located at offset 0x100 instead.</p> <p>Bits[31:20] – Read Only. Pointer to next Enhanced/Extended Capability Item in the list.</p> <ul style="list-style-type: none"> Bits[19:16] – Read Only = 0x1 == Capability Version Bits[15:0] – Read Only = 0x0019 == Capability ID
187-184	Link Control 3	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[31:16] – Reserved = 0 Bits[15:9] – Enable Lower SKP OS Generation Vector Bits[8:2] – Reserved = 0 Bit[1] – Link Equalization Request Interrupt Enable Bit[0] – Perform Equalization
18B-188	Lane Error Status	<p>Read Only: Indicates lane-specific error status.</p> <ul style="list-style-type: none"> Bits[31:NUM_LANES] – Reserved = 0 Bit[Lane#] – 1 == Error detected on lane[[Lane#]]; 0 == no error
1AB-18C	Lane Equalization Control Register	<p>Read Only: Control and status fields for link equalization; 16-bits per lane starting with Lane[0] with higher lane #s at higher addresses.</p> <p>Per lane format is as follows:</p> <ul style="list-style-type: none"> Bit[15] – Reserved = 0 Bits[14:12] – Upstream Port Receiver Preset Hint Bits[11:8] – Upstream Port Transmitter Preset Bit[7] – Reserved = 0 Bits[6:4] – Downstream Port Receiver Preset Hint Bits[3:0] – Downstream Port Transmitter Preset

5.2.13. ATS Extended Capability

Table 5.268. ATS Extended Capability

Addr	Config Register	Register Description
203-200	ATS Capability Extended Capability Header	<p>Beginning of ATS Extended Capability – Read Only</p> <ul style="list-style-type: none"> Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] = 0x1 == Capability Version Bits[15:0] = 0x000F == Capability ID
205-204	ATS Capability Register	<p>Read Only</p> <ul style="list-style-type: none"> Bits[4:0] – Invalidate Queue Depth Bit[5]Page Aligned Request Bits[15:6] – Reserved
207-206	ATS Control Register	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[4:0] – Smallest Translation Unit Bits[14:5] – Reserved Bit[15] – Enable

5.2.14. DSN Extended Capability

Table 5.269. DSN Extended Capability

Addr	Config Register	Register Description
213-210	DSN Capability Extended Capability Header	<p>Beginning of DSN Extended Capability – Read Only</p> <ul style="list-style-type: none"> Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] = 0x1 == Capability Version Bits[15:0] = 0x0003 == Capability ID
21B-214	DSN Serial NUmber	<p>Read Only</p> <ul style="list-style-type: none"> Bits[63:0] – DSN Serial Number

5.2.15. Resizable BAR Capability

Table 5.270. Resizable BAR Capability

Addr	Config Register	Register Description
283-280	Resizable BAR Extended Capability Header	<p>Resizable BAR Capability Header – Read Only</p> <ul style="list-style-type: none"> Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] = 0x1 == Capability Version Bits[15:0] = 0x0015 == Capability ID
287-284	Resizable BAR Capability(0)	<p>Read Only</p> <ul style="list-style-type: none"> Bits[31:24] – Reserved Bits[23:4] – When Bit n is Set, The BAR Indicated by the BAR Index in the Control Register operates with BAR sized to 2^{n+16} Bytes. For example, bit[4] = 2^{20} Bytes = 1 MB. Bits[3:0] – Reserved
28B-288	Resizable Bar Control Register(0)	<p>Read Only</p> <ul style="list-style-type: none"> Bits[31:13] – Reserved <p>R/W</p> <ul style="list-style-type: none"> Bits[12:8] – BAR Size. Encoded Value for the Size this BAR should use. <p>Read Only</p> <ul style="list-style-type: none"> Bits[7:5] – Number of Resizable BARs. Value must be between 1 and 6. These bits are only valid in the Resizable BAR Control Register (0). In Control Registers (1) or higher, these bits are Reserved. <p>Bits[2:0] – BAR Index for this BAR:</p> <p>0 = BAR located at offset 0x10</p>

Addr	Config Register	Register Description
		<p>1 = BAR located at offset 0x14 2 = BAR located at offset 0x18 3 = BAR located at offset 0x1C 4 = BAR located at offset 0x20 5 = BAR located at offset 0x24 Other values reserved. For a 64-bit BAR, this index should point to the lower DWORD.</p>
2BF-28C	Resizable BAR Capability and Control Registers (1..6)	<p>See Resizable BAR Capability (0). See Resizable Bar Control Register(0). The number of Implemented BAR Capability and Control Registers depends on the setting of <i>Number of Resizable BARs Control Register (0)</i>.</p>

5.2.16. Power Budgeting Capability

Table 5.271. Power Budgeting Capability

Addr	Config Register	Register Description
393-390	Power Budgeting Capability Extended Capability Header	<p>Beginning of Power Budgeting Extended Capability – Read Only</p> <ul style="list-style-type: none"> Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. Bits[19:16] = 0x1 == Capability Version Bits[15:0] = 0x0004 == Capability ID
394	Data Select Register	<p>Read/Write</p> <ul style="list-style-type: none"> Bits[7:0] – Data Select Register
397-395	Reserved	Reserved
39B-398	Data Register	<p>Read Only</p> <ul style="list-style-type: none"> Bits[31:21] – Reserved Bits[20:18] – Power Rail (0:12V,1:3.3V,2:1.5/1.8V,7:Thermal) Bits[17:15] – Type (0:PME Aux,1:Aux,2:Idle,3:Sustained,7:Max) Bits[14:13] – PM State (0:D0,1:D1,2:D2,3:D3) Bits[12:10] – PM Sub State (0:Default,others: Device Specific) Bits[9:8] – Data Scale (0:1x,1:0.1x,2:0.01x,3:0.001x) Bits[7:0] – Base Power
39C	Capabilities Register	<p>Read Only</p> <ul style="list-style-type: none"> Bits[7:1] – Reserved Bit[0] – System Allocated – Set to 1 to indicate that the Power Budget Should be System Allocated, and the values from the Data Register should NOT be used for System Power Budgeting. Set to 0 to indicate that the values provided in the Data Register should be used for System Power Budgeting.

5.2.17. Dynamic Power Allocation Capability

Table 5.272. Dynamic Power Allocation (DPA) Capability

Addr	Config Register	Register Description
3A3-3A0	DPA Capability Extended Capability Header	<p>Beginning of DPA Extended Capability – Read Only</p> <ul style="list-style-type: none"> • Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. • Bits[19:16] = 0x1 == Capability Version • Bits[15:0] = 0x0016 == Capability ID
3A7-3A4	DPA Capability Register	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[31:24] – Transition Latency Value1 (xlcy1) • Bits[23:16] – Transition Latency Value0 (xlcy0) • Bits[15:14] – Reserved • Bits[13:12] – Power Allocation Scale (PAS) • Bits[11:10] – Reserved • Bits[9:8] – Transition Latency Unit (tlunit) • Bits[7:5] – Reserved • Bits[4:0] – Substate_Max
3AB-3A8	DPA Latency Indicator Register	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[31:Substate_Max+1] – Reserved • Bits[Substate_Max:0] – Transition Latency Indicator Bits
3AD-3AC	DPA Status Register	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[15:9] – Reserved <p>Read, Write 1 to Clear</p> <ul style="list-style-type: none"> • Bits[8] – Substate Control Enabled <p>Read Only</p> <ul style="list-style-type: none"> • Bits[7:0] – Substate Status
3EF-3AE	DPA Control Register	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[15:5] – Reserved <p>Read/Write</p> <ul style="list-style-type: none"> • Bits[4:0] – Substate Control
3CF-3B0	DPA Power Allocation Array	<p>Read Only</p> <ul style="list-style-type: none"> • Bits[7:0] – Substate Power Allocation Register <p>Address 3B0 is for Substate 0</p> <p>Address 3B1 is for Substate 1, up to Substate Substate_Max</p>

5.2.18. L1 PM Substates Extended Capability

Table 5.273. L1 PM Substates Extended Capability

Addr	Config Register	Register Description
3D3-3D0	L1 PM Substates Capability Extended Capability Header	<p>Beginning of L1 PM Substates Extended Capability – Read Only</p> <ul style="list-style-type: none"> • Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. • Bits[19:16] = 0x1 == Capability Version • Bits[15:0] = 0x001E == Capability ID

Addr	Config Register	Register Description
3D7-3D4	L1 PM Substates Capabilities Register	<p>HwInit</p> <ul style="list-style-type: none"> • Bits[31:24] – Reserved • Bits[23:19] – Port TPOWER_ON Value • Bits[18] – Reserved • Bits[17:16] – Port TPOWER_ON Scale • Bits[15:8] – Port Common_Mode_Restore_Time (in μs) • Bits[7:5] – Reserved • Bit[4] – L1 PM Substates Supported • Bit[3] – ASPM L1.1 Supported • Bit[2] – ASPM L1.2 Supported • Bit[1] – PCI-PM L1.1 Supported • Bit[0] – PCI-PM L1.2 Supported
3DB-3D8	L1 PM Substates Control 1 Register	<p>Read/Write</p> <ul style="list-style-type: none"> • Bits[31:29] – LTR_L1.2_THRESHOLD_Scale • Bits[28:26] – Reserved • Bits[25:16] – LTR_L1.2_THRESHOLD_Value • Bits[15:8] – Common_Mode_Restore_Time • Bits[7:4] – Reserved • Bit[3] – ASPM L1.1 Enable • Bit[2] – ASPM L1.2 Enable • Bit[1] – PCI-PM L1.1 Enable • Bit[0] – PCI-PM L1.2 Enable
3DF-3DC	L1 PM Substates Control 2 Register	<p>Read/Write</p> <ul style="list-style-type: none"> • Bits[31:8] – Reserved • Bits[7:3] – TPOWER_ON Value • Bit[2] – Reserved • Bits[1:0] – TPOWER_ON Scale

5.2.19. Latency Tolerance Reporting Capability

Table 5.274. Latency Tolerance Reporting (LTR) Capability

Addr	Config Register	Register Description
3E3-3E0	LTR Capability Extended Capability Header	<p>Beginning of LTR Extended Capability – Read Only</p> <ul style="list-style-type: none"> • Bits[31:20] – Pointer to next Enhanced/Extended Capability Item in the list. • Bits[19:16] = 0x1 == Capability Version • Bits[15:0] = 0x0018 == Capability ID
3E5-3E4	Max Snoop Latency Register	<p>R/W</p> <ul style="list-style-type: none"> • Bits[15:13] – Reserved • Bits[12:10] – Max Snoop LatencyScale • Bits[9:0] – Max Snoop LatencyValue
3E7-3E6	Max No-Snoop Latency Register	<p>R/W</p> <ul style="list-style-type: none"> • Bits[15:13] – Reserved • Bits[12:10] – Max No-Snoop LatencyScale • Bits[9:0] – Max No-Snoop LatencyValue

6. Example Design

This section provides information on how to generate the PCIe x4 IP example designs using Lattice Radiant software.

The example design allows you to compile, simulate and test the PCIe x4 IP on the following Lattice evaluation boards.

The PCIe x4 IP can generate two types of example designs:

- DMA Design
- Non-DMA Design

For AXI-MM DMA Design, it is tested with the following Lattice evaluation board:

- CertusPro-NX Bridge Board

For PCIe EP Design (TLP interface), it is tested with the following Lattice evaluation board:

- CertusPro-NX Versa Board
- CertusPro-NX Bridge Board

AXI-Stream DMA and PCIe EP in AXI-Stream Interface have not been tested with any Lattice evaluation board yet.

6.1. Example Design Supported Configuration

The Example Design Supported Configuration is shown in [Table 6.1](#).

Table 6.1. PCIe x4 IP Configuration Supported by the Example Design

PCIe x4 IP User Interface Parameter	PCIe x4 IP Configuration Supported in the Example Demo Design	
	DMA Design	Non-DMA Design
Bifurcation select	1x1, 1x2, 1x4	1x1, 1x2, 1x4
Target Link Speed	Gen1, Gen2, Gen3	Gen1, Gen2, Gen3
Data Interface Type	AXI-MM AXI-Stream ²	TLP AXI-MM AXI-Lite
Number of Physical Function	1 is supported (Function 0)	1 is supported (Function 0)
PCIe CSR Base Address (512 kB aligned)	X	0xC5200000
Optional Ports: Enable Clkreq port Enable LTSSM disable port	X	X
Flow Control Tab	Refer to Flow Control Update, Receive Buffer Allocation , and Transmit Buffer Allocation section for the configuration performed in this tab.	Refer to Flow Control Update, Receive Buffer Allocation , and Transmit Buffer Allocation section for the configuration performed in this tab.
Configuration Device ID and Vendor ID Subsystem ID Subsystem Vendor ID Class Code and Revision ID	Default	Default
EnableResizable Bar Capabilities	X	X
BAR 0 Enable	✓	✓
BAR 1 Enable	Depends on DMA Bypass Mode and the BAR assigned to it.	Yes except for when TLP mode is being used.
BAR 2, BAR 3, BAR 4, BAR 5	Depends on DMA Bypass Mode and the BAR assigned to it.	X

PCIe x4 IP User Interface Parameter	PCIe x4 IP Configuration Supported in the Example Demo Design	
	DMA Design	Non-DMA Design
Disable Legacy Interrupt	✓	✓
Disable MSI Capability	X	✓
Disable MSI-X capability	✓	✓
Enable DSN Capability	X	X
Maximum Payload Size Supported	128 bytes, 256 bytes, or 512 bytes	128 bytes, 256 bytes, or 512 bytes
Disable Function Level Reset	✓	✓
Enable Extended Tag Filed	✓	✓
Advance Error Reporting Capability	Refer to the Advance Error Reporting Capability section for the configuration done in this tab.	Refer to the Advance Error Reporting Capability section for the configuration done in this tab.
ATS Capability	Disabled through APB configuration	Disabled through APB/LMMI Configuration

Notes:

- ✓ refers to a checked option in the PCIe x4 IP example design and X refers to an unchecked option or a non-applicable option in the PCIe x4 IP example design.
- This is only supported in Gen3x4.

6.2. Overview of Example Design and Features

The Example Design contains the PCIe DMA design and PCIe non-DMA design. Using the graphical user interface, you can test the PCIe in any configuration. The testbench adapts and generates the testcases based on the configuration.

You can configure the parameters like the PCIe generation (Gen1, 2, or 3), PCIe lane width (x1, x2, x4), PCIe DMA enabled or disable, and data interface to be used.

To perform a DMA write or read process, you must select the following parameters:

- PCIe Gen speed
- DMA support enable/disable.

Based on these instructions, the BFM selects the type of testcase that needs to be implemented. If a Gen3x4 PCIe with non-DMA with TLP interface is selected, the BFM sends a testcase that is compatible with the DUT (PCIe Endpoint).

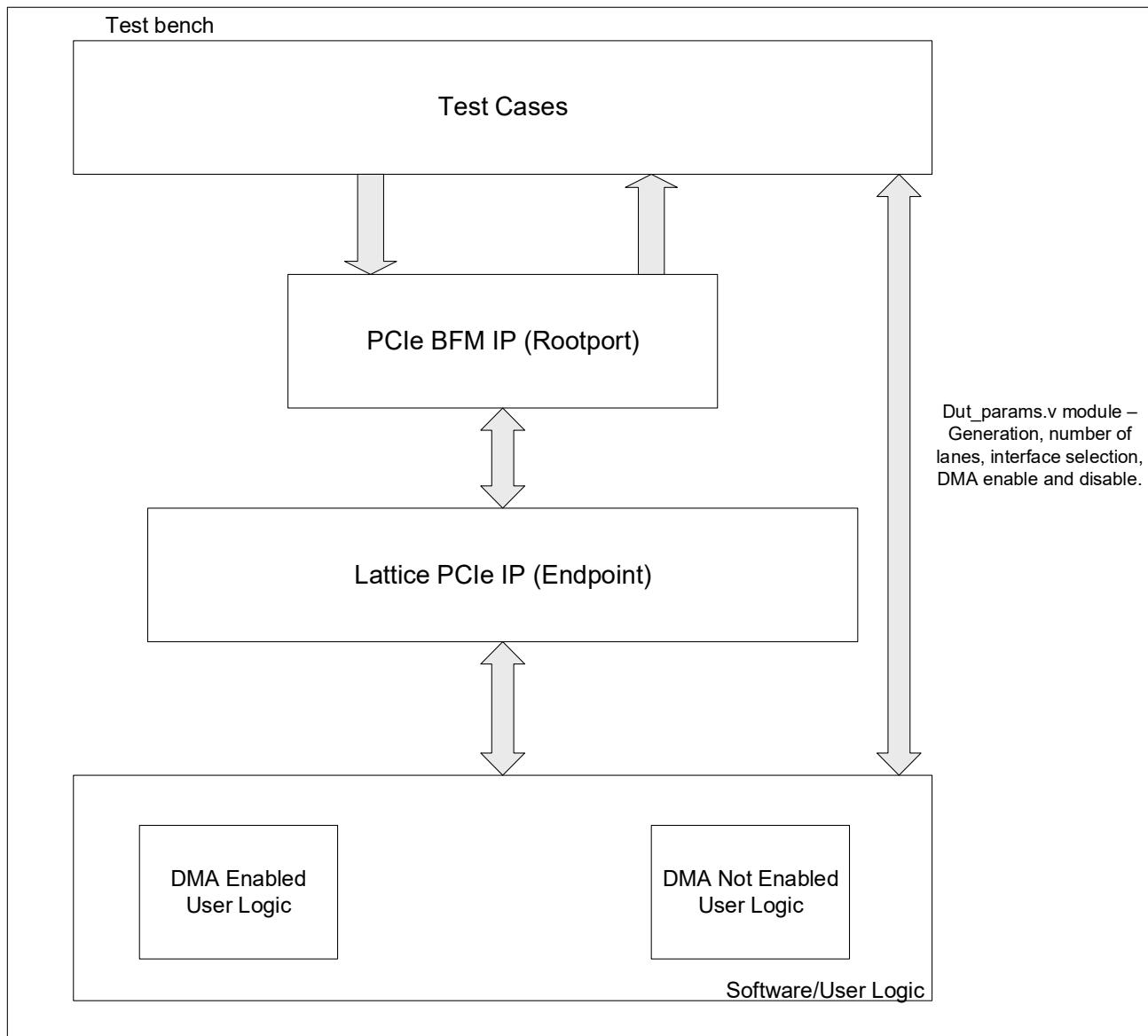


Figure 6.1. PCIe x4 IP Example Design Block Diagram

6.3. Example Design Components

6.3.1. DMA Design (AXI-MM)

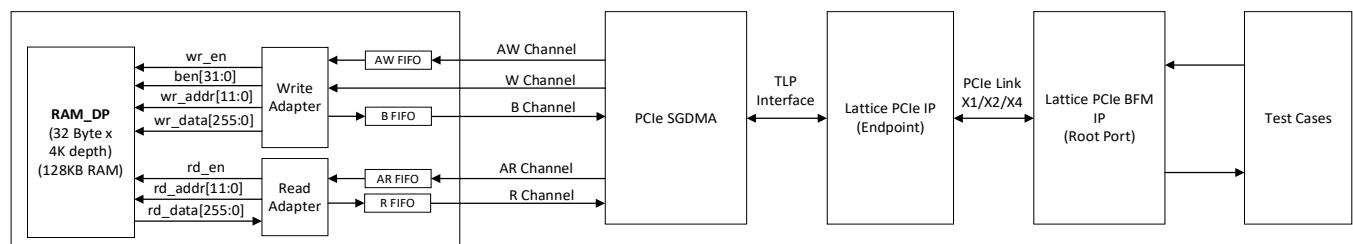


Figure 6.2. Components within AXI-MM DMA Example Design

The PCIe x4 Example Design implements the DMA Design with the following components:

- AR FIFO, B FIFO, AR FIFO, R FIFO – FIFOs that stores information from AXI-MM interface.
- RAM_DP – A True Dual Port RAM that is configured to 128 kB size, with 32 Byte width and 4K depth. It is a storage on FPGA for F2H and H2F data transfer.
- Write Adapter – A component that converts AXI-MM write to RAM_DP write interface.
- Read Adapter – A component that converts AXI-MM read to RAM_DP read interface.
- PCIe DMA – The PCIe IP DMA is used to implement the DMA Operations.

The following shows the DMA Design's data flow:

- Read the configuration of the Lattice PCIe x4 IP DMA
- The BFM waits for the Linkup to occur.
- The BFM setups a single entry of H2F descriptor table with transfer size of 16 kB and with INTR and EOP bits set to 1.
- The BFM programs the PCIe DMA H2F registers to start DMA transfer.
- The BFM waits for MSI interrupt from DUT.
- The BFM setups a single entry of F2H descriptor table with transfer size of 16 kB and with INTR and EOP bits set to 1.
- The BFM programs the PCIe DMA F2H registers to start DMA transfer.
- The BFM waits for MSI interrupt from DUT.

The BFM does data comparison for F2H and H2H to make sure they are intact.

6.3.1.1. Generating the AXI-MM DMA Example Design

To generate the AXI-MM DMA example design:

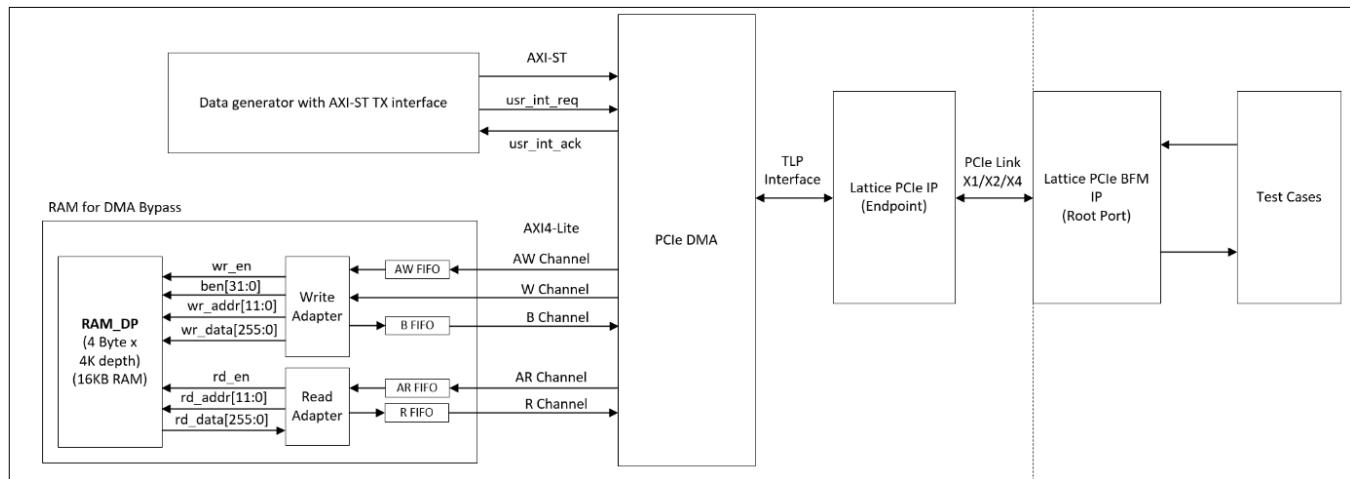

1. Create a Lattice Radiant software project. Double-click the **PCIE_X4** in the **IP Catalog** and generate the IP with selecting **DMA only Mode** at **Configuration Mode** and **AXI_MM** at **Data Interface Type** drop-down menu.
2. Configure Target Link Speed and Bifurcation Select.
3. Right-click on Input Files and select **Add > Existing Files**.
4. Add <Component Name>/testbench/PCIE_DMA/aximm_dma_ed_top.sv.

Figure 6.3. File List View of the Created AXI-MM DMA Example Design

5. Right-click on **Post-Synthesis Constraint Files**.
6. Add <Component Name>/eval/constraint_ED_CPNX-100_Bridge_Board.pdc.
7. Proceed to the Radiant flow if the hierarchical view shows **aximm_dma_ed_top** as the top module.

6.3.2. DMA Design (AXI-Stream)

Figure 6.4. Components within AXI-Stream DMA Example Design

The PCIe x4 Example Design implements the DMA Design with the following components:

- AR FIFO, B FIFO, AR FIFO, R FIFO – FIFOs that stores information from AXI-Lite interface for DMA Bypass Mode.
- RAM_DP – A True Dual Port RAM that is configured to 16 kB size, with 4 Byte width and 4K depth. It is a storage on FPGA for DMA Bypass Mode.
- Write Adapter – A component that converts AXI-Lite write to RAM_DP write interface.
- Read Adapter – A component that converts AXI-Lite read to RAM_DP read interface.
- PCIe DMA – The PCIe IP DMA is used to implement the DMA Operations.

The following shows the DMA Design's data flow:

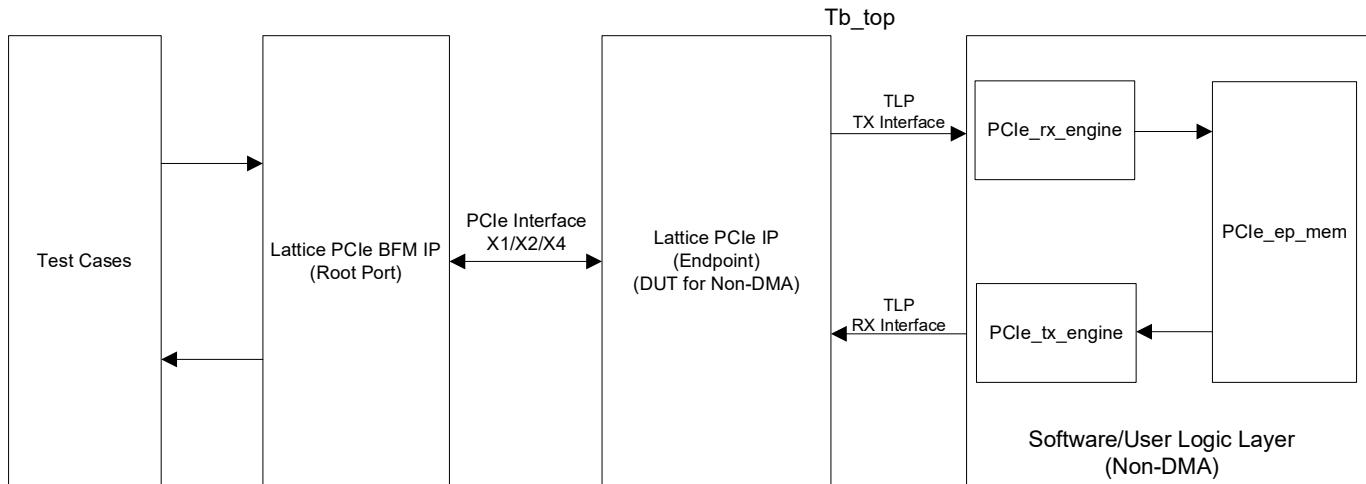
- Read the configuration of the Lattice PCIe x4 IP DMA
- The BFM waits for the Linkup to occur.
- The BFM write 1DW to address 'h0000 of DMA Bypass BAR.
- The BFM read 1DW from address 'h0000 of DMA Bypass BAR and does data comparison for the data written previously to make sure they are intact.
- The BFM setups a single entry of F2H descriptor table with transfer size of 16 kB and with INTR and EOP bits set to 1.
- The BFM programs the PCIe DMA F2H registers to start DMA transfer.
- The BFM waits for MSI interrupt from DUT.

The BFM does data comparison for F2H to make sure they are intact.

6.3.2.1. Generating the AXI-Stream DMA Example Design

To generate the AXI-Stream DMA example design:

1. Create a Lattice Radiant software project. Double-click the **PCIE_X4** in the **IP Catalog** and generate the IP with selecting **DMA only Mode at Configuration Mode** and **AXI_STREAM** at **Data Interface Type** drop-down menu.
2. Right-click on **Input Files** and select **Add > Existing Files**.
3. Add <Component Name>/testbench/PCIE_DMA/axist_dma_ed_top.sv.

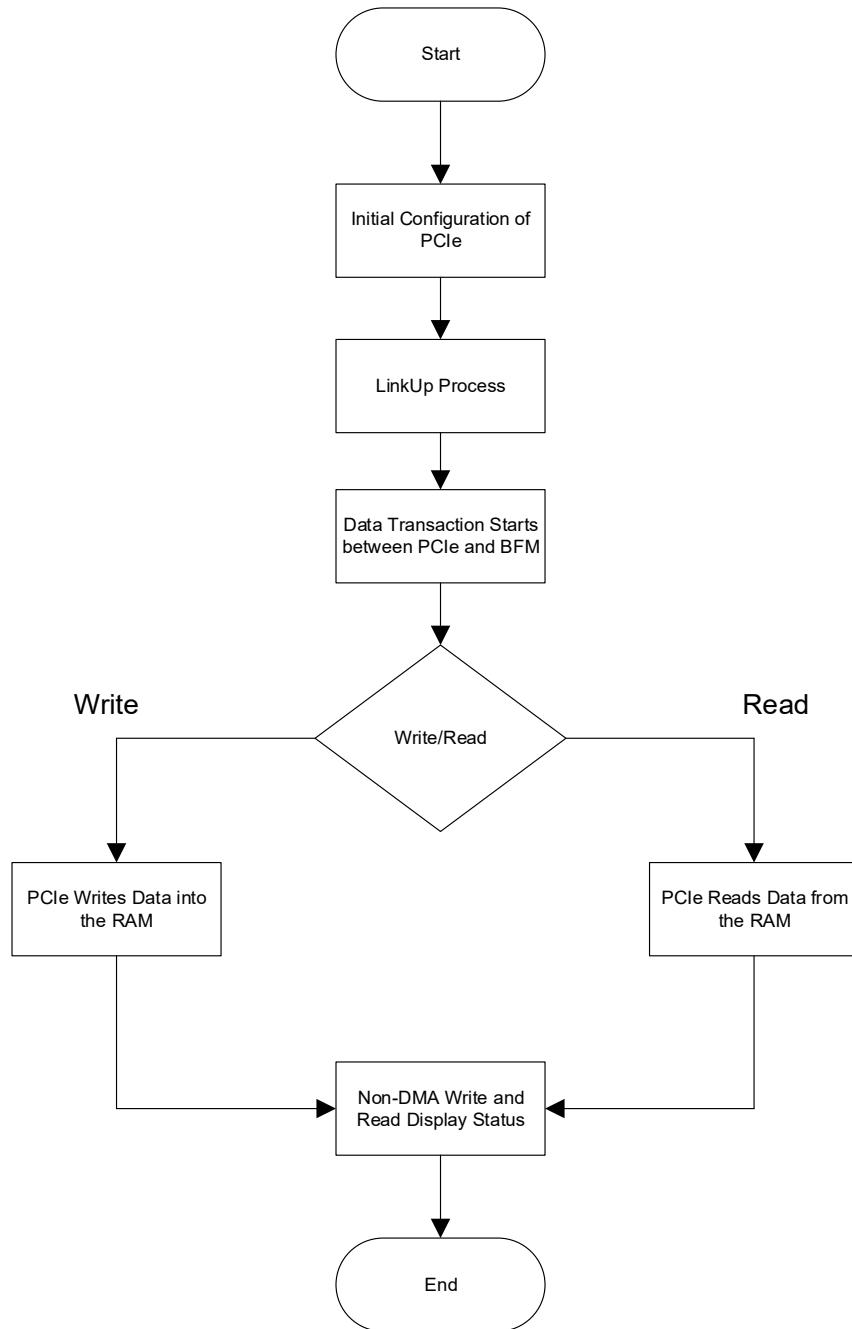

Figure 6.5. File List View of the Created AXI-Stream DMA Example Design

4. Right-click on **Post-Synthesis Constraint Files**.
5. Add <Component Name>/eval/constraint_ED_CPNX-100_Bridge_Board.pdc.
6. Proceed to the Radiant flow if the hierarchical view shows **axist_dma_ed_top** as the top module.

6.3.3. Non-DMA Design (TLP Interface)

The PCIe x4 Example Design implements the Non-DMA Design (TLP Interface) with the following components:

- PCIe_rx_engine – The received TLPs on the Rx TLP Interface is decoded in this block. For write(posted) operations, the received TLP data is sent to the *pcie_ep_mem* block to store this data into a RAM. For read(non-posted) operations, the received TLP header information is sent to the *pcie_tx_engine* block for the completion TLP.
- PCIe_tx_engine – The transmitted TLPs on Tx TLP Interface managed by this block. This block sends out the completion packets in response to the received non-posted TLP packets to meet the PCIe specification requirements. For example, in case of memory read TLP type packet. The required header information for the completion packet is received from the *pcie_rx_engine*. The data payload is read from the *pcie_ep_mem* block for transmitting along with the completion header.
- PCIe_ep_mem – The *PCie_ep_mem* module receives the instructions from *rx_engine*, whether the data is written or read. This module consist of a RAM, which is used to store the received data. The design consists of a single BAR (BAR 0) enabled in the PCIe endpoint. The *PCie_ep_mem* module performs read or writes to the RAM block depending on type of TLP request coming in, memory read or memory write.


Figure 6.6. Components within Non-DMA Design (TLP Interface)

Additional Lattice IPs are used to enable the components required for the Non-DMA design as specified below:

- [Phase Locked Loop Module \(FPGA-IPUG-02063\)](#) – The Phase-Locked Loop (PLL) Module is capable of frequency synthesis and clock phase management including clock injection delay cancellation.
- [Memory Modules User Guide \(FPGA-IPUG-02033\)](#) – A RAM_DQ of 32-bit is used in the *pcie_ep_mem* module to store the data and can read or write the data from/to this RAM.

The following shows the Non-DMA (TLP Interface) data flow:

- Reading the configuration of Lattice PCIe x4 IP
- BFM performs the linkup with PCIe IP.
- Once linkup is done, the BFM sends the header info of the data packet to the PCIe whether to write/read into/from the preferred BAR location of the PCIe.
- PCIe sends the packet information to application layer, which the *pcie_rx_engine* decodes the header data and performs read/write operation accordingly.
- For write operations, the data is written into RAM which stores the data received.
- For read operations, the data is read from RAM and sent to the PCIe along with the header information of the packet.

Figure 6.7. Non-DMA Design Data Flow

6.3.3.1. Generating the Non-DMA Example Design

To generate the Non-DMA example design:

1. Create a Lattice Radiant software project. Double-click the **PCIE_X4** in the **IP Catalog** and generate the IP with your desired choice of PCIe generation support, bifurcation and ensure that the **Configuration Mode** being chosen is **TLP Mode**. Some screenshots are provided below to guide you through the IP generation process.

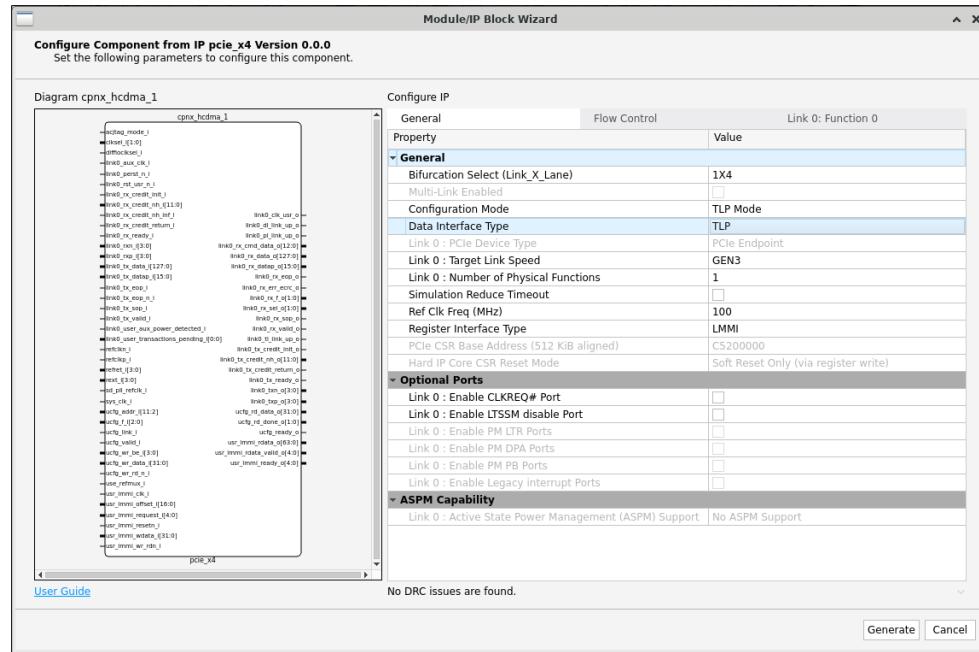


Figure 6.8. Non-DMA Example Design (TLP Mode) Settings (General Tab)

- BAR 0 must be enabled here and the other BAR's must be disabled.

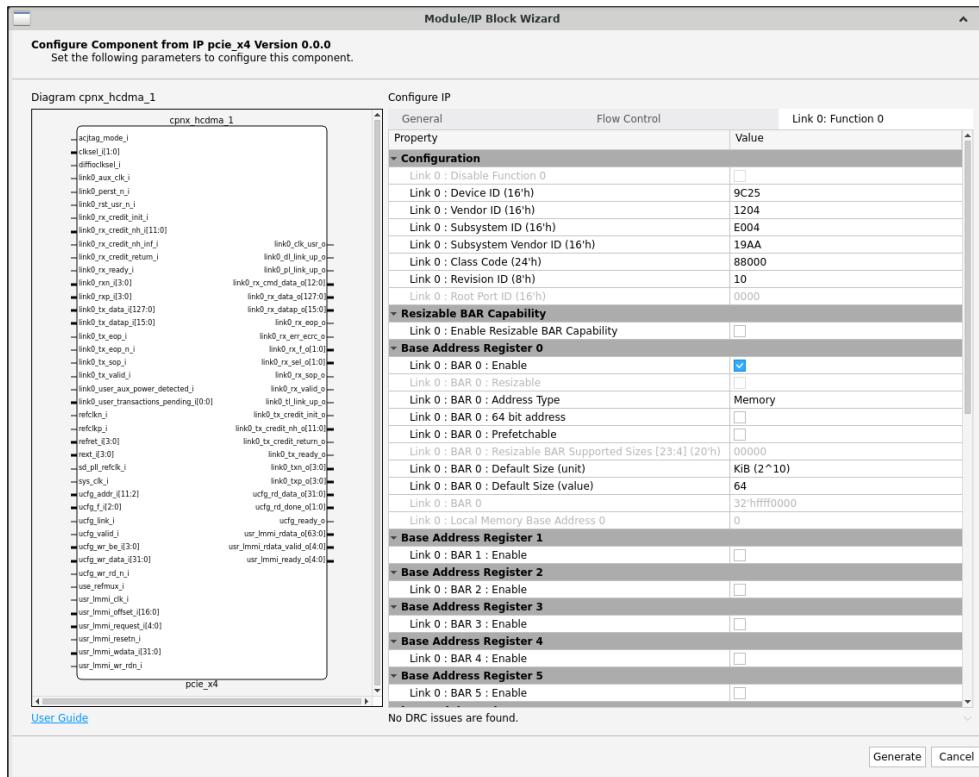


Figure 6.9. Non-DMA Example Design (TLP Mode) Settings (Link 0: Function 0 Tab)

- The rest of the settings can be left as default.

- Right-click on **Input Files** and select **Add > Existing Files**.

3. Add <Component Name>/testbench/NON_DMA/example_design_top.sv.

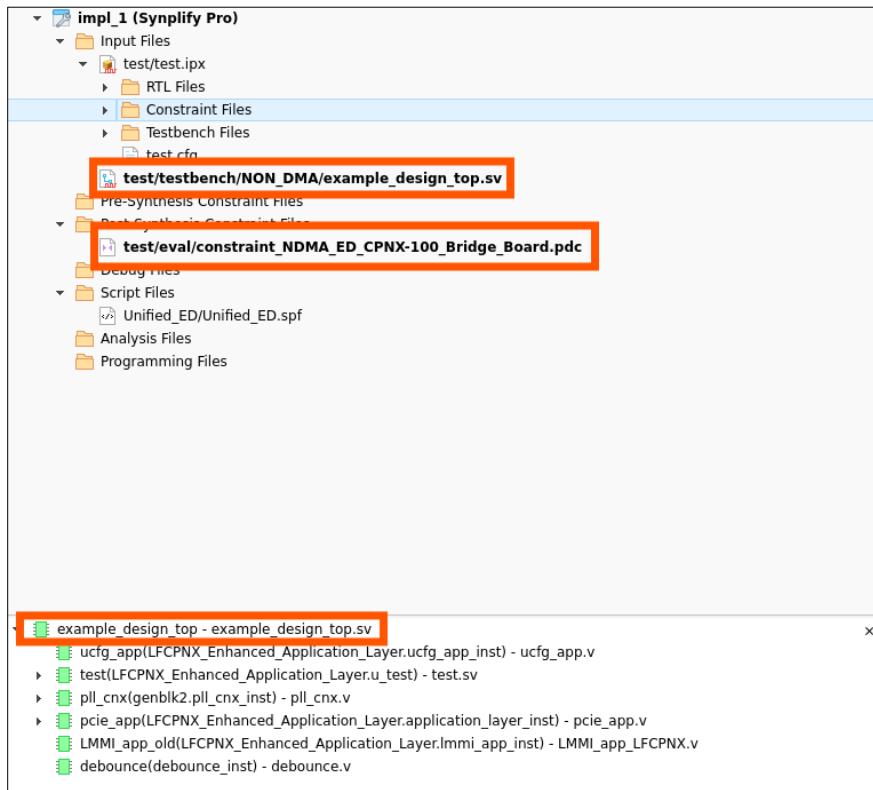


Figure 6.10. File List View of the Created Non-DMA Example Design

4. Right-click on Post-Synthesis Constraint Files.

5. Add <Component Name>/eval/constraint_NDMA_ED_CPNX-100_Bridge_Board.pdc.

a. Note that if you are using bifurcations other than 1x4, follow the instructions on the PDC file to comment out the unused SERDES lanes. Commenting in a PDC file is done using the hashtag (#) symbol.

```
ldc_set_location -site {SD0_RXDP} [get_ports {link0_rxp_i[0]}]
ldc_set_location -site {SD0_RXDN} [get_ports {link0_rxn_i[0]}]
ldc_set_location -site {SD0_TXDP} [get_ports {link0_txp_o[0]}]
ldc_set_location -site {SD0_TXDN} [get_ports {link0_txn_o[0]}]

# Please comment this section out if you are using the 1x1 configuration
# Commenting is done with the hashtag symbol
# Section Start
ldc_set_location -site {SD1_RXDP} [get_ports {link0_rxp_i[1]}]
ldc_set_location -site {SD1_RXDN} [get_ports {link0_rxn_i[1]}]
ldc_set_location -site {SD1_TXDP} [get_ports {link0_txp_o[1]}]
ldc_set_location -site {SD1_TXDN} [get_ports {link0_txn_o[1]}]
# Section End

# Please comment this section out if you are using the 1x2 and 1x1 configuration
# Commenting is done with the hashtag symbol
# Section Start
ldc_set_location -site {SD2_RXDP} [get_ports {link0_rxp_i[2]}]
ldc_set_location -site {SD2_RXDN} [get_ports {link0_rxn_i[2]}]
ldc_set_location -site {SD2_TXDP} [get_ports {link0_txp_o[2]}]
ldc_set_location -site {SD2_TXDN} [get_ports {link0_txn_o[2]}]
ldc_set_location -site {SD3_RXDP} [get_ports {link0_rxp_i[3]}]
ldc_set_location -site {SD3_RXDN} [get_ports {link0_rxn_i[3]}]
ldc_set_location -site {SD3_TXDP} [get_ports {link0_txp_o[3]}]
ldc_set_location -site {SD3_TXDN} [get_ports {link0_txn_o[3]}]
# Section End
```

Figure 6.11. Non-DMA Example Design PDC File

6. Proceed to the Radiant flow if the hierarchical view shows **example_design_top** as the top module.

6.3.4. Non-DMA Design (Bridge Mode)

The PCIe x4 Example Design implements the Non-DMA Design (Bridge Mode) with the following components:

- Write Adapter – Convert AXI Write to the pmi_fifo write interface.
- Read Adapter – Convert AXI Read to the pmi_fifo read interface.
- RAM_DP – pmi_fifo that contains EBR-based RAM.

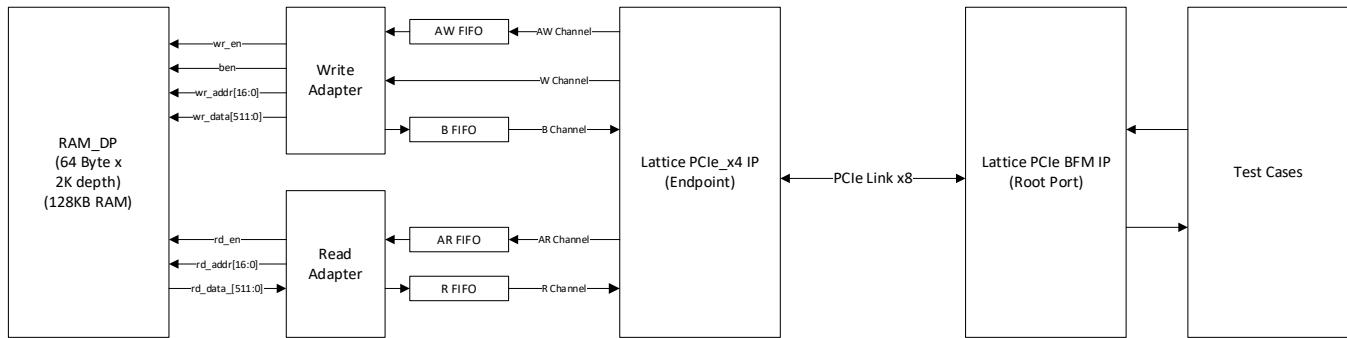


Figure 6.12. Components within NON-DMA Design (Bridge Mode)

The following shows the Non-DMA (Bridge Mode) data flow:

- Reading the configuration of Lattice PCIe x4 IP
- BFM performs the linkup with PCIe IP.
- Once linkup is done, the BFM sends the header info of the data packet to the PCIe whether to write/read into/from the BAR1 location of the PCIe.
- PCIe sends the packet information to application layer via AXI Write or AXI Read Channels, which the *Write Adapter*/Read Adapter decodes AXI Write/Read Channel and performs write/read operation accordingly.
- For write operations, the data is written into RAM which stores the data received.
- For read operations, the data is read from RAM and sent to the IP.

6.3.4.1. Generating the Bridge Mode Example Design

To generate the Bridge Mode example design:

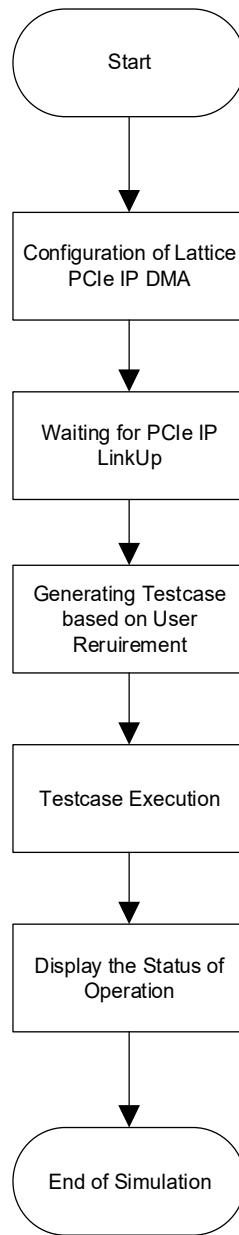
1. Create a Lattice Radiant software project. Double-click the **PCIE_X4** in the **IP Catalog** and generate the IP by selecting **Bridge Mode** in **Configuration Mode** drop-down menu. Right-click on Input Files and select **Add > Existing Files**.
2. Add <Component Name>/testbench/PCIE_DMA/aximm_dma_ed_top.sv.

Figure 6.13. File List View of the Created Bridge Mode Example Design

3. Right-click on **Post-Synthesis Constraint Files**.
4. Add **<Component Name>/eval/constraint_ED_CPNX-100_Bridge_Board.pdc**. Note that if you are using the target link speed other than Gen3, comment out the unused clk constraints below.

```
set_clock_groups -group [get_clocks clk_usr_1_125MHz] -group [get_clocks clk_250]
-asynchronous
set_clock_uncertainty -setup 0.05 [get_clocks clk_250]
```

5. Proceed to the Radiant flow if the hierarchical view shows **aximm_dma_ed_top** as the top module.


Most of the above steps are expected to be the same as the steps to generate AXI-MM DMA example design.

6.3.5. PDC Settings for Hardware Example Design

When using *SPI Flash programming* on the CertusPro-NX Bridge board, the following system configuration constraint must be applied:

```
1dc_set_sysconfig {JTAG_PORT=ENABLE PROGRAMN_PORT=ENABLE BOOTMODE=SINGLE MASTER_SPI_PORT=SERIAL
CONFIG_SECURE=OFF CONFIG_IOSLEW=FAST MCCLK_FREQ=56.2}
```

6.4. Running the Example Design

Figure 6.14. PCIe x4 IP Example Design Flowchart

The Example Design can run in simulation as follows:

1. Generate the PCIe x4 IP with the required configuration. Some of the configurations of PCIe can be done through the APB interface for DMA Design or through LMMI for the Non-DMA Design. The Testbench then waits for the linkup to occur.
2. Enumeration is started and wait for completion.
3. The BFM waits for the PCIe to link up.
4. The BFM starts sending the testcase based on the user requirement.
5. The status of the testcase is displayed as PASS or FAIL.

6.5. Debugging Example Design Issues

6.5.1. Signals to Debug

6.5.1.1. Simulation Debug for DMA (AXI-MM) Design

Table 6.2. AXI-MM DMA Signals to Debug Description

Module Name	Signal Name	Description
tb_top	link0_pl_link_up_o	PCIe IP Physical Layer linkup
tb_top	link0_dl_link_up_o	PCIe IP Data Link Layer linkup
tb_top	link0_tl_link_up_o	PCIe IP Transaction Layer linkup
Host-to-FPGA		
tb_top	m0_dma_axi_awaddr_o	Write address. The write address gives the address of the first transfer in a write burst transaction.
tb_top	m0_dma_axi_awlen_o	Burst length. The burst length gives the exact number of transfers (beat) in a burst. This information determines the number of data transfers associated with the address. 0x00 – 1 beat 0x01 – 2 beats ... 0xFF – 256 beats
tb_top	m0_dma_axi_awvalid_o	Write address valid. This signal indicates that the channel is signaling valid write address and control information.
tb_top	m0_dma_axi_awready_i	Write address ready. This signal indicates that the subordinate is ready to accept an Address and associated control signals.
tb_top	m0_dma_axi_wdata_o	Write data.
tb_top	m0_dma_axi_wstrb_o	Write strobes. This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
tb_top	m0_dma_axi_wlast_o	Write last. This signal indicates the last transfer in a write burst.
tb_top	m0_dma_axi_wready_i	Write ready. This signal indicates that the subordinate can accept the write data.
tb_top	m0_dma_axi_bresp_i	Write response. This signal indicates the status of the write transaction.
tb_top	m0_dma_axi_bvalid_i	Write response valid. This signal indicates that the channel is signaling a valid write response.
tb_top	m0_dma_axi_bready_o	Response ready. This signal indicates that the manager can accept a write response.
FPGA-to-Host		
tb_top	m0_dma_axi_araddr_o	Read address. The read address gives the address of the first transfer in a read burst transaction.
tb_top	m0_dma_axi_arlen_o	Burst length. The burst length gives the exact number of transfers (beat) in a burst. This information determines the number of data transfers associated with the address. 0x00 – 1 beat 0x01 – 2 beats ... 0xFF – 256 beats
tb_top	m0_dma_axi_arvalid_o	Read address valid. This signal indicates that the channel is signaling valid read address and control information.
tb_top	m0_dma_axi_arready_i	Read address ready. This signal indicates that the subordinate is ready to accept an Address and associated control signals.
tb_top	m0_dma_axi_rdata_i	Read data.

Module Name	Signal Name	Description
tb_top	m0_dma_axi_rresp_i	Read response. This signal indicates the status of the read transfer.
tb_top	m0_dma_axi_rlast_i	Read last. This signal indicates the last transfer in a read burst.
tb_top	m0_dma_axi_rvalid_i	Read valid. This signal indicates that the channel is signaling the required read data.
tb_top	m0_dma_axi_rready_o	Read ready. This signal indicates that the manager can accept the read data and response information.

6.5.1.2. Simulation Debug for DMA (AXI-Stream) Design

Table 6.3. AXI-Stream DMA Signals to Debug Description

Module Name	Signal Name	Description
tb_top	link0_pl_link_up_o	PCIe IP Physical Layer linkup
tb_top	link0_dl_link_up_o	PCIe IP Data Link Layer linkup
tb_top	link0_tl_link_up_o	PCIe IP Transaction Layer linkup
FPGA-to-Host		
tb_top	tx0_dma_axist_tdata_i	Stream data.
tb_top	tx0_dma_axist_tlast_i	This signal indicates the last transfer in a data stream.
tb_top	tx0_dma_axist_tvalid_i	This signal indicates that tx_dma_axist_tdata_i is valid.
tb_top	tx0_dma_axist_tready_o	This signal indicates that IP can accept the data stream.
DMA Bypass Mode		
tb_top	m0_axil_awaddr_o	Write address. The write address gives the address in a write transaction.
tb_top	m0_axil_awvalid_o	Write address valid. This signal indicates that the channel is signaling valid write address.
tb_top	m0_axil_awready_i	Write address ready. This signal indicates that the subordinate is ready to accept an Address.
tb_top	m0_axil_wdata_o	Write data.
tb_top	m0_axil_wstrb_o	Write strobes. This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
tb_top	m0_axil_wready_i	Write ready. This signal indicates that the subordinate can accept the write data.
tb_top	m0_axil_bresp_i	Write response. This signal indicates the status of the write transaction.
tb_top	m0_axil_bvalid_i	Write response valid. This signal indicates that the channel is signaling a valid write response.
tb_top	m0_axil_bready_o	Response ready. This signal indicates that the manager can accept a write response.
tb_top	m0_axil_araddr_o	Read address. The read address gives the address in a read transaction.
tb_top	m0_axil_arvalid_o	Read address valid. This signal indicates that the channel is signaling valid read address.
tb_top	m0_axil_arready_i	Read address ready. This signal indicates that the subordinate is ready to accept an Address.
tb_top	m0_axil_rdata_i	Read data.
tb_top	m0_axil_rresp_i	Read response. This signal indicates the status of the read transfer.
tb_top	m0_axil_rvalid_i	Read valid. This signal indicates that the channel is signaling the required read data.

Module Name	Signal Name	Description
tb_top	m0_axil_rready_o	Read ready. This signal indicates that the manager can accept the read data and response information.
User Interrupt		
tb_top	usr_int_req_i	Request by application logic to trigger interrupt to the Host via the IP.
tb_top	usr_int_ack_o	Acknowledgement by the IP with respect to the request from signal <code>usr_int_req_i</code> .

6.5.1.3. Simulation Debug for Non-DMA (Bridge Mode) Design

Table 6.4. AXI-Lite Bridge Mode to Debug Description

Module Name	Signal Name	Description
tb_top	link0_pl_link_up_o	PCIe IP Physical Layer linkup
tb_top	link0_dl_link_up_o	PCIe IP Data Link Layer linkup
tb_top	link0_tl_link_up_o	PCIe IP Transaction Layer linkup
AXI-Lite		
tb_top	m0_axil_awaddr_o	Write address. The write address gives the address in a write transaction.
tb_top	m0_axil_awvalid_o	Write address valid. This signal indicates that the channel is signaling valid write address.
tb_top	m0_axil_awready_i	Write address ready. This signal indicates that the subordinate is ready to accept an Address.
tb_top	m0_axil_wdata_o	Write data.
tb_top	m0_axil_wstrb_o	Write strobes. This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
tb_top	m0_axil_wready_i	Write ready. This signal indicates that the subordinate can accept the write data.
tb_top	m0_axil_bresp_i	Write response. This signal indicates the status of the write transaction.
tb_top	m0_axil_bvalid_i	Write response valid. This signal indicates that the channel is signaling a valid write response.
tb_top	m0_axil_bready_o	Response ready. This signal indicates that the manager can accept a write response.
tb_top	m0_axil_araddr_o	Read address. The read address gives the address in a read transaction.
tb_top	m0_axil_arvalid_o	Read address valid. This signal indicates that the channel is signaling valid read address.
tb_top	m0_axil_arready_i	Read address ready. This signal indicates that the subordinate is ready to accept an Address.
tb_top	m0_axil_rdata_i	Read data.
tb_top	m0_axil_rresp_i	Read response. This signal indicates the status of the read transfer.
tb_top	m0_axil_rvalid_i	Read valid. This signal indicates that the channel is signaling the required read data.
tb_top	m0_axil_rready_o	Read ready. This signal indicates that the manager can accept the read data and response information.

Module Name	Signal Name	Description
User Interrupt		
tb_top	usr_int_req_i	Request by application logic to trigger interrupt to the Host via the IP.
tb_top	usr_int_ack_o	Acknowledgement by the IP with respect to the request from signal <code>usr_int_req_i</code> .

6.5.1.4. Simulation Debug for Non-DMA (TLP Interface) Design

Table 6.5. Non-DMA Signals to Debug Description

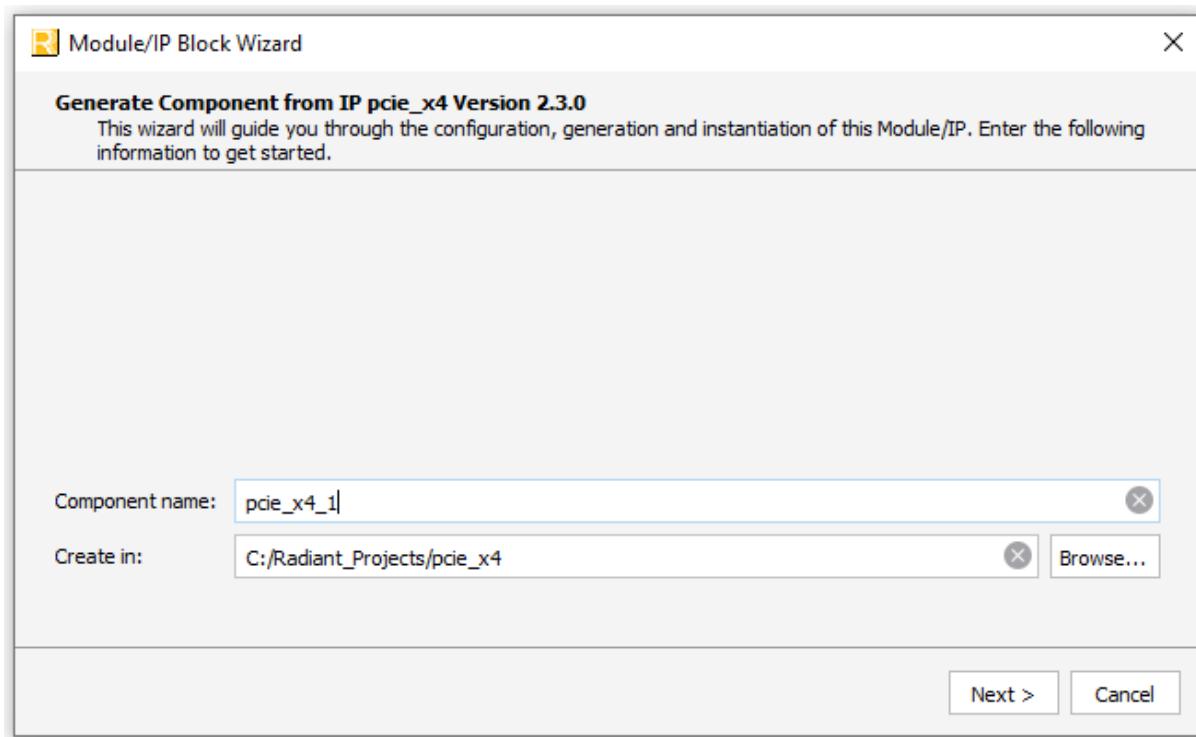
Module Name	Signal Name	Description
tb_top	lmmi_offset	Lower 17-bit address of LMMI interface registers
tb_top	lmmi_wdata	Data written into PCIe IP through LMMI interface
tb_top	lmmi_rdata	Data read from PCIe IP through LMMI interface
tb_top	link0_pl_link_up	PCIe IP physical layer linkup
tb_top	link0_dl_link_up	PCIe IP data layer linkup
tb_top	link0_tl_link_up	PCIe IP transaction layer linkup

The following are the steps to debug the non-DMA design:

- You must check whether the initial configuration is performed properly. You can check the `lmmi_offset`, `lmmi_wdata`, and `lmmi_rdata` signals to verify. Note that in the actual application, the register configuration may not be necessary if the corresponding register is configured through the IP Catalog's Module/IP wizard.
- The linkup signals such as `link0_pl_link_up`, `link0_dl_link_up`, and `link0_tl_link_up` must be asserted.

7. Designing with the IP

This section provides information on how to generate the IP Core using the Lattice Radiant software and how to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant software user guide.


Note: The screenshots provided are for reference only. Details may vary depending on the version of the IP or software being used. If there have been no significant changes to the GUI, a screenshot may reflect an earlier version of the IP.

7.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device's architecture. The steps below describe how to generate the PCIe x4 IP in the Lattice Radiant software.

To generate the PCIe x4 IP:

1. Create a new Lattice Radiant software project or open an existing project.
2. In the **IP Catalog** tab, double-click **PCIE_X4** under **IP, Connectivity** category. The **Module/IP Block Wizard** opens as shown in [Figure 7.1](#). Enter values in the **Component name** and the **Create in** fields and click **Next**.

Figure 7.1. Module/IP Block Wizard

3. In the next **Module/IP Block Wizard** window, customize the selected PCIe x4 IP using drop-down lists and check boxes. [Figure 7.2](#) shows an example configuration of the PCIe x4 IP. For details on the configuration options, refer to the [IP Parameter Description](#) section.

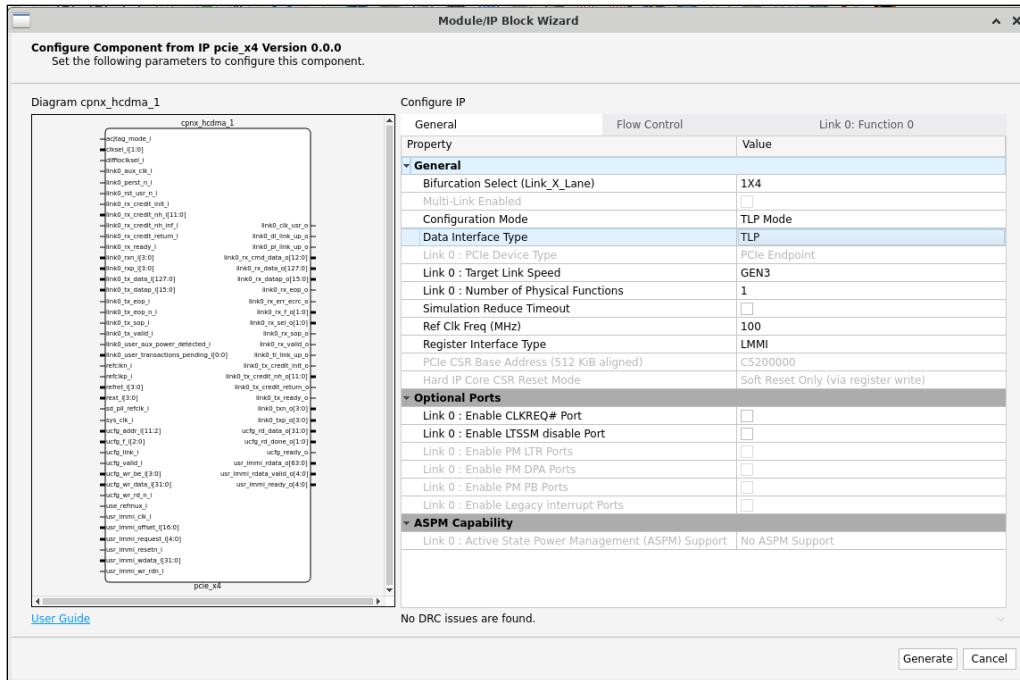


Figure 7.2. IP Configuration

4. Click **Generate**. The **Check Generating Result** dialog box opens, showing design block messages and results as shown in Figure 7.3.

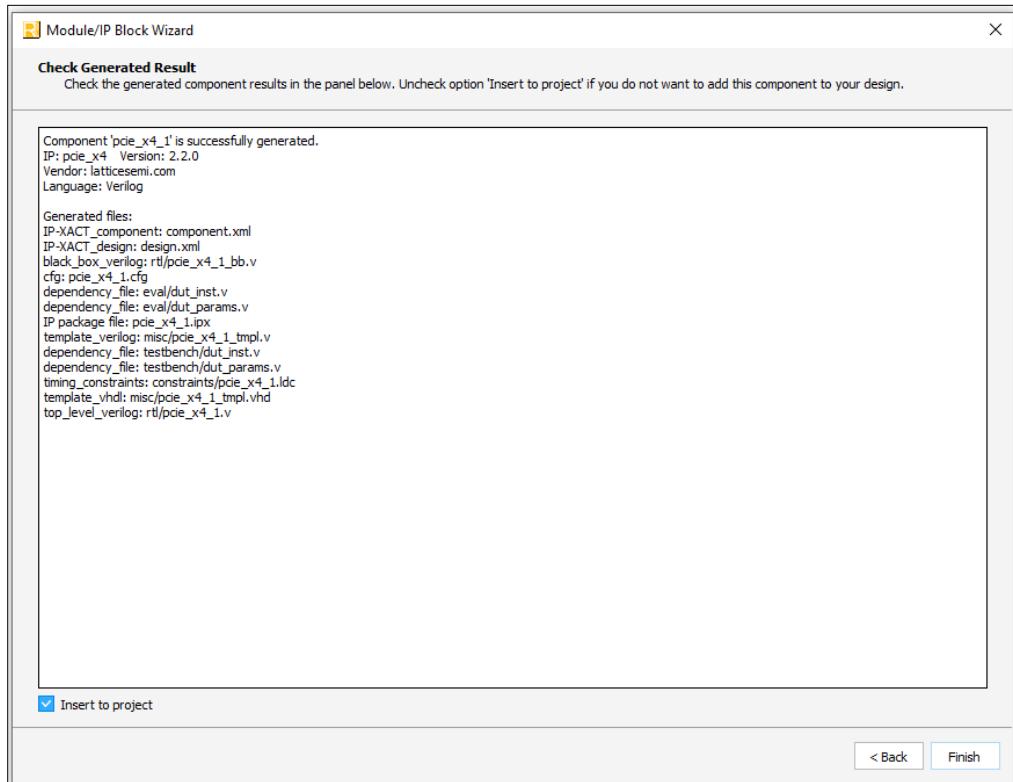


Figure 7.3. Check Generated Result

5. Click **Finish**. All the generated files are placed under the directory paths in the **Create in** and the **Component name** fields shown in [Figure 7.1](#).

7.1.1. Generated Files and File Structure

The generated PCIe x4 module package includes the black box (<Component name>_bb.v) and instance templates (<Component name>_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file (<Component name>.v) that can be used as an instantiation template for the module is also provided. You may also use this top-level reference as the starting template for the top-level for the complete design. The generated files are listed in [Table 7.1](#).

Table 7.1. Generated File List

Attribute	Description
<Component name>.ipx	This file contains the information on the files associated to the generated IP.
<Component name>.cfg	This file contains the parameter values used in IP configuration.
component.xml	Contains the ipxact:component information of the IP.
design.xml	Documents the configuration parameters of the IP in IP-XACT 2014 format.
rtl/<Component name>.v	This file provides an example RTL top file that instantiates the module.
rtl/<Component name>_bb.v	This file provides the synthesis black box.
misc/<Component name>_tmpl.v	These files provide instance templates for the module.
misc/<Component name>_tmpl.vhd	

7.1.2. Design Implementation

Completing the design includes additional steps to specify analog properties, pin assignments, and timing constraints. You can add and edit the constraints using the Device Constraint Editor or by manually creating a PDC File.

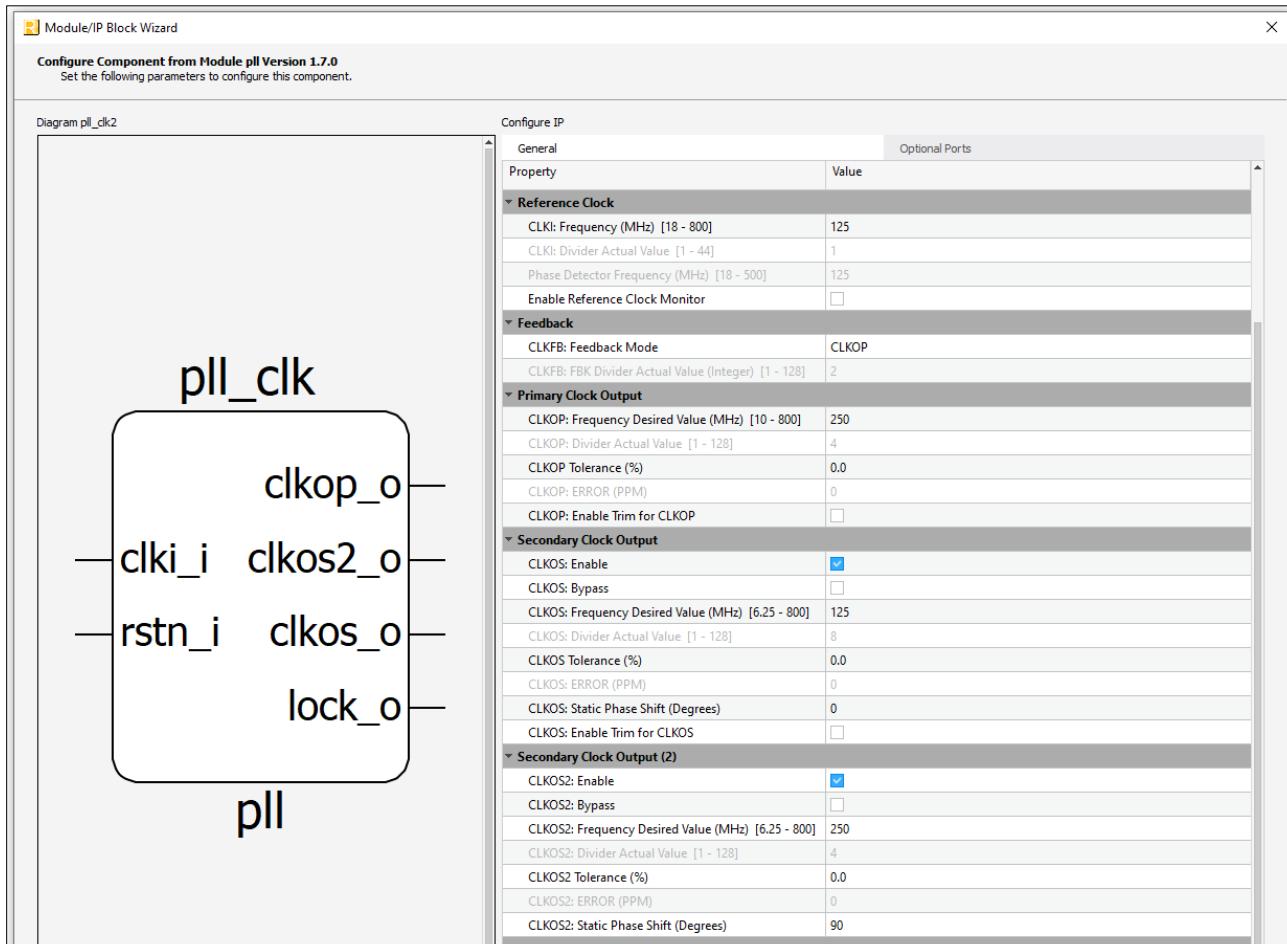
7.1.2.1. Device Constraint Editor

Refer to the latest Lattice Radiant User Guide in the [Lattice Radiant](#) web page for more information on how to use the device constraint editor.

7.1.2.2. Manual PDC File Creation

To create the manual PDC file, add the .pdc (post synthesis constraint file) file in the Lattice Radiant software and define the I/O pins according to the schematic design for ports defined in your design. You can define different types of constraints such as pins, clocks, and other timing paths. Post-Synthesis constraint files (.pdc) contain both timing and non-timing constraint .pdc source files for storing logical timing/physical constraints.

Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to create or edit constraints.


7.1.3. Timing Constraints

The timing constraints are based on the clock frequency used. The timing constraints for the IP are defined in relevant constraint files. The example below shows the IP timing constraints generated for the PCIe x4 IP.

```
create_clock -name {sys_clk_i} -period 8 -waveform {0 4} [get_ports sys_clk_i]
if {$USE_DEFAULT_IF == 1} {
    create_clock -name {usr_lmmi_clk_i} -period 8 -waveform {0 4} [get_ports usr_lmmi_clk_i]
} else {
    if {$USR_CFG_IF_TYPE == "APB"} {
        create_clock -name {c_apb_pclk_i} -period 8 -waveform {0 4} [get_ports c_apb_pclk_i]
    }
}
```

Figure 7.4. Timing Constraint File (.sdc) for the PCIe x4 IP

- Add the timing constraints shown in [Figure 7.6](#) in the design's .pdc or constraint file. Refer to the [Lattice Radiant Software 2022.1 User Guide](#) to learn more about the .pdc file.
- For sys_clk_i and clk_usr_div2, refer to [Table 2.1](#) on selecting the frequencies for Gen1, Gen2, or Gen3 data rates. You can use a PLL IP to create these clocks. Refer to the [PLL Module IP User Guide \(FPGA-IPUG-02063\)](#) for instantiation and generation of PLL IP. [Figure 7.5](#) shows the IP configuration for Gen 3 rates if using an input clock of 125 MHz.

Figure 7.5. PLL IP Configuration for Input Clock of 125 MHz

- Define input reference clock of PLL in the timing constraints using `create_clock -name ...`. As shown in [Figure 7.6](#), the input reference clock of 125 MHz is sourced from an I/O pin and named `clk_125` in the design.

```
create_clock -name {clk_usr_div2_i} -period 7.2 [get_ports clk_usr_div2_i]
create_clock -name {sys_clk_i} -period 4 -waveform {0 2} [get_ports sys_clk_i]
set_clock_groups -group [get_clocks clk_usr_div2_i] -group [get_clocks sys_clk_i] -asynchronous
```

Figure 7.6. Timing Constraints for PCIe x4 IP Example

7.1.4. Multi Seed Timing Closure

If a design has timing failure, the recommended workaround is to enable multi seed run on Radiant and choose the best/passing seed.

This can be done by changing the *Placement Iterations* to 10 under *Place & Route Design* tab in Radiant settings.

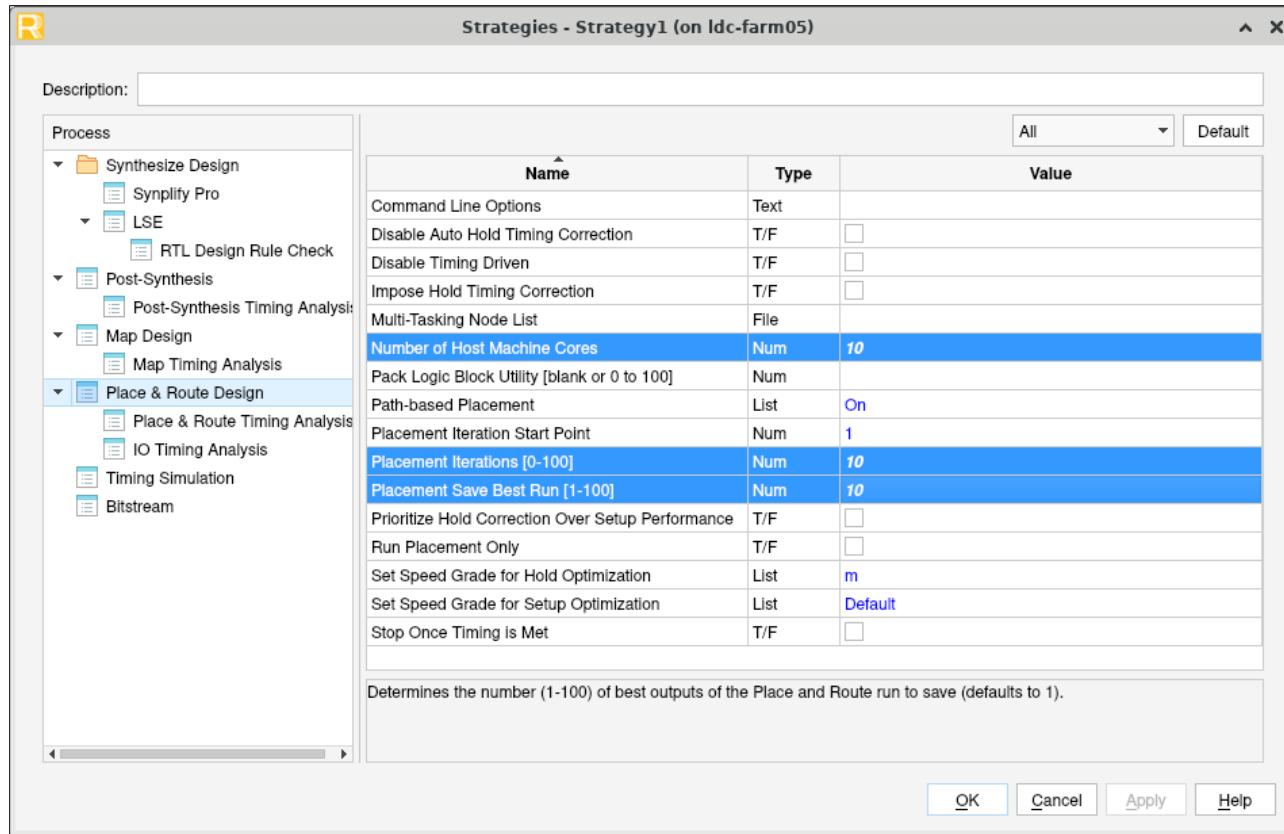


Figure 7.7. Placement Iteration Setup on Radiant under Strategies Tab

7.2. Running Functional Simulation

Functional Simulation can be performed after the IP is generated through the Example Design testbench. For more details on the Example Design configuration and test cases, refer to the [Example Design](#) section.

7.2.1. QuestaSim Lattice-Edition

To run the functional simulation on QuestaSim Lattice-Edition (DMA as example):

1. Create a new Radiant project, select the target device that supports the PCIE_X4 IP.
2. Select **IP on Server** and install the latest version of PCIE_X4 IP, if it is not yet installed.
3. Switch to **IP on Local**, double-click PCIE_X4 and enter your desired component name.

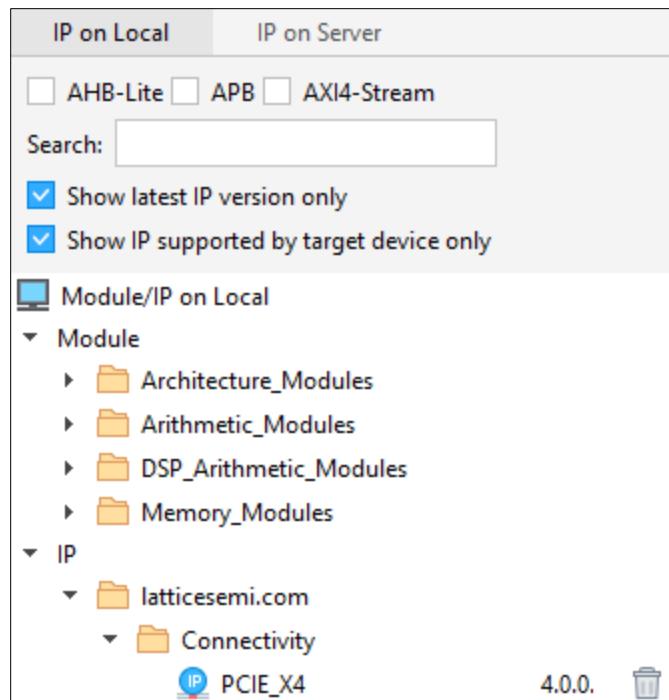


Figure 7.8. IP on Local

4. Parameterize the PCIE_X4, for simulation purpose, it is important to tick the **Simulation Reduce Timeout** option. Other parameters can be left as default (or changed). Click **Generate** and **Finish**.

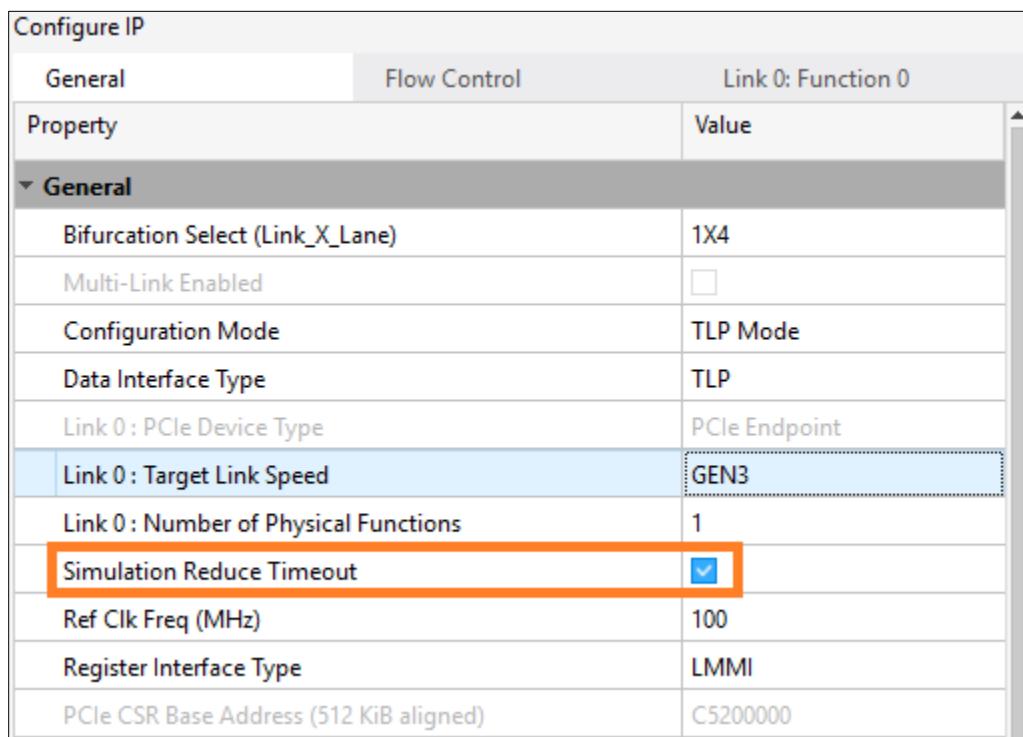


Figure 7.9. Parameterize the PCIE_X4

5. Make sure that the testbench files are generated during PCIe x4 IP generation.

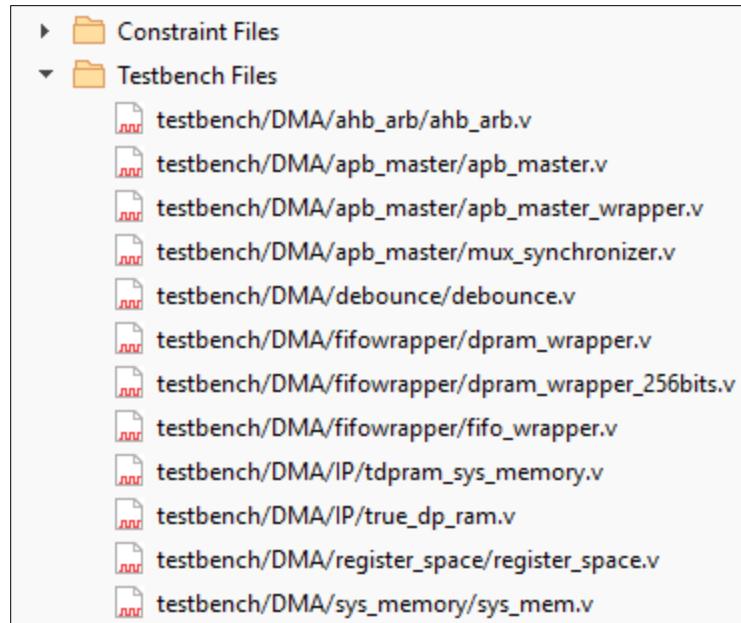


Figure 7.10. Testbench Files

6. Click the icon to initiate the Simulation Wizard and create a new simulation project. Name the project.

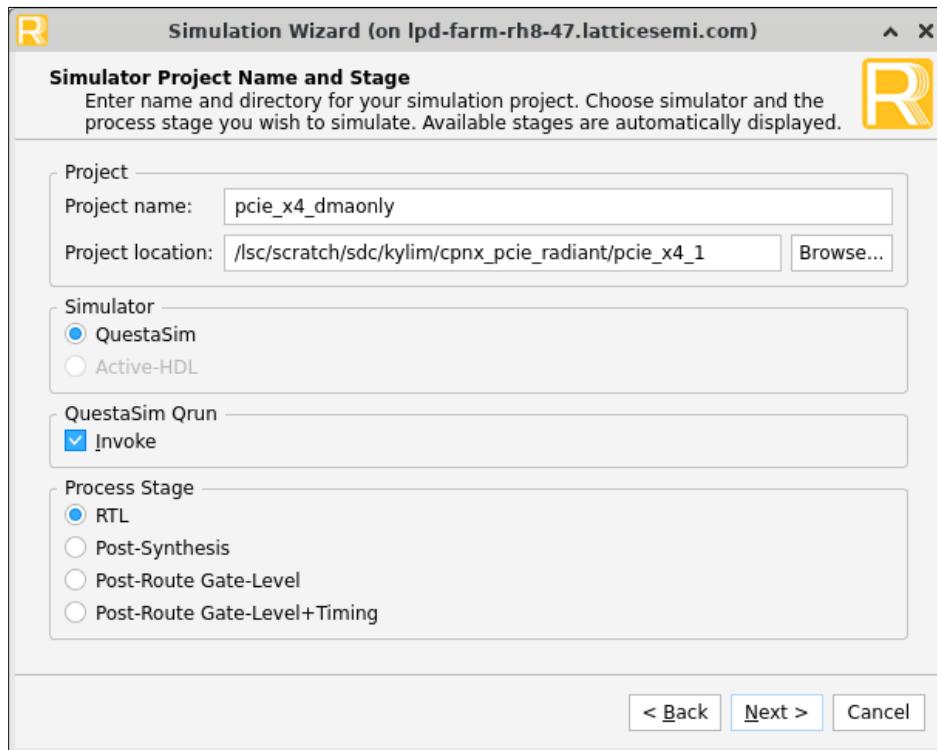


Figure 7.11. Project Naming

7. Select **tb_top** as Simulation Top module.

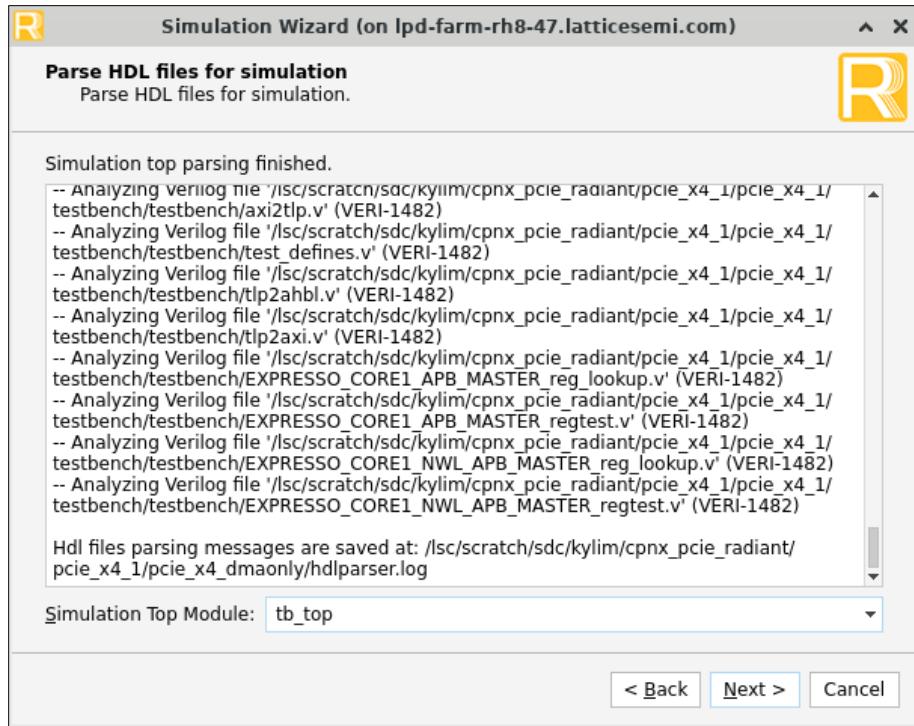
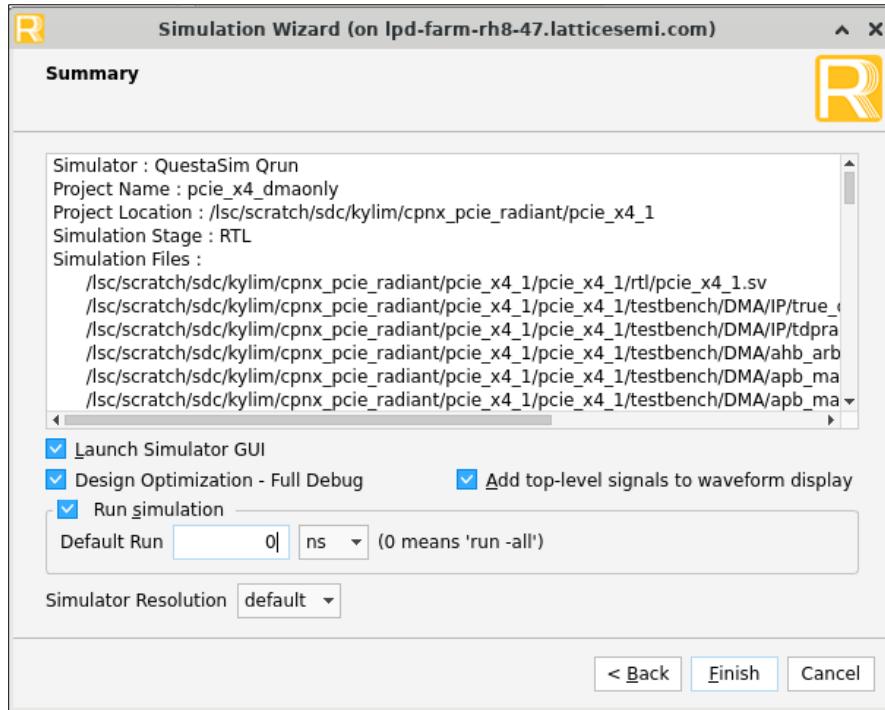
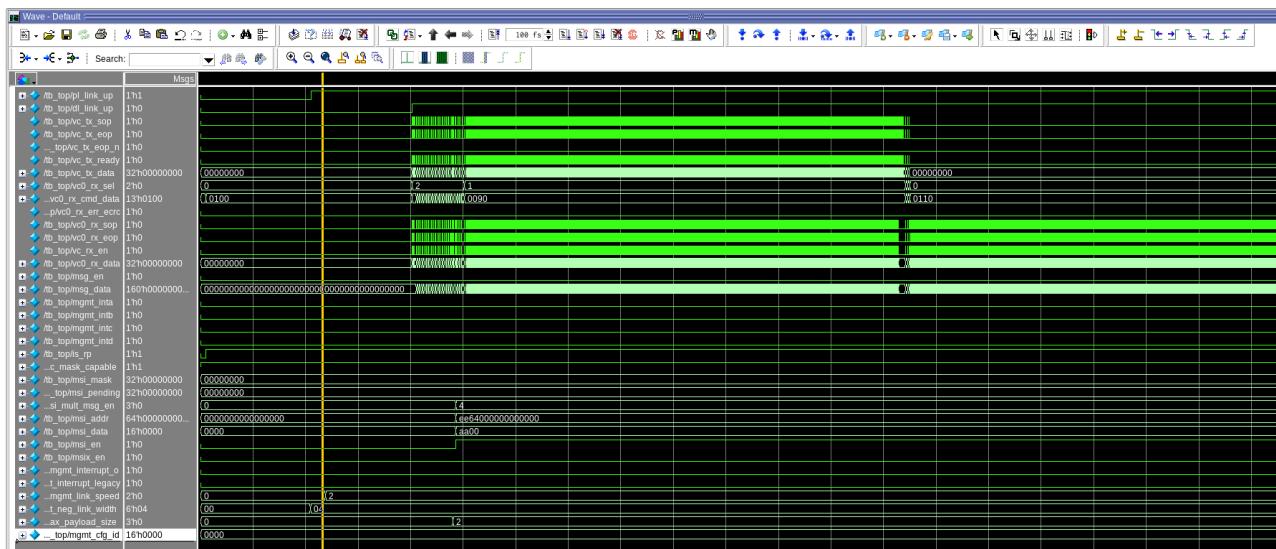


Figure 7.12. Simulation Top Module

8. Use the following simulation settings. Default Run set to 0 is required.




Figure 7.13. Simulation Setting

9. Once simulation is completed, below log printing must be observed.

Figure 7.14. Expected Log Printing

10. For the AXI-MM DMA example design, the functional simulation flow is specified in [DMA Design](#) section.
11. For the Non-DMA (TLP Interface) example design, you can change the parameters below in `tb_top` module, under Non-DMA Design parameters section only:
 - `NON_DMA_TESTCASE_TYPE`
 - 3'd0 – SINGLE BAR MEM_WRITE
 - 3'd1 – SINGLE BAR MEM_READ
 - 3'd2 – SINGLE BAR MEM_WRITE AND MEM_READ
 - 3'd4 – CONFIGURE WRITE
 - 3'd5 – CONFIGURE READ
 - 3'd6 – Single BAR Multiple Write and Multiple Read transactions to incremental address with incremental data.
 - 3'd8 – Single BAR Multiple Write and Multiple Read transactions to same address with similar data.
 - `NON_DMA_SERIES_PATTERN`:
 - 1'b1 – Incremental pattern
 - 1'b0 – Fixed pattern
 - `NON_DMA_FIXED_DATA` – You can give a fixed 32-bit data when fixed pattern is selected.
 - `NON_DMA_NUM_DWORD` – Number of DWORDS (32-bit data) to be written in each packet.
 - `NON_DMA_NUM_PACKETS` – Number of packets used in data transaction.
 - `NUM_WRITES` – Number of write transactions in multiple transactions.
 - `NUM_READS` – Number of read transactions in multiple transactions.
12. For the Non-DMA (Bridge Mode such as AXI-MM or AXI-Lite) example design, the stimulus triggers the Memory Write with 1DW data (32'h0000BEEF) followed by trigger Memory Read to the same address. Afterwards, the test expects the read data is 32'h0000BEEF.
13. The simulation run completion is indicated by *SIMULATION STATUS of ALL TESTS PASS* or *ERRORS DETECTED* in the QuestaSim transcript window. [Figure 7.15](#) shows the example of a simulation waveform.

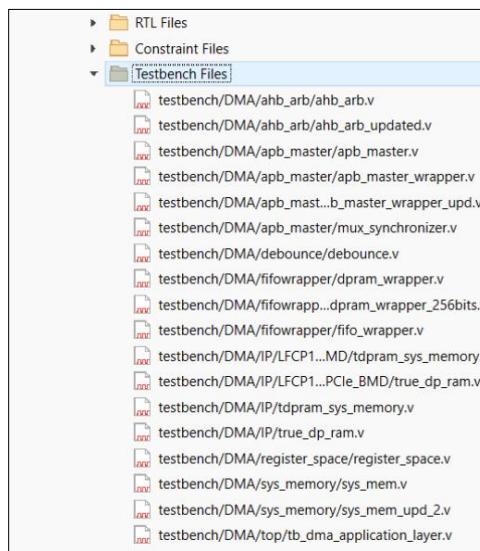


Figure 7.15. Simulation Waveform

7.2.2. QuestaSim Pro

To run the functional simulation on QuestaSim Pro (DMA as example):

1. Make sure that the testbench files are generated during PCIe x4 IP generation.

Figure 7.16. Testbench Files

2. Click the icon to initiate the Simulation Wizard and create a new simulation project. Name the project.

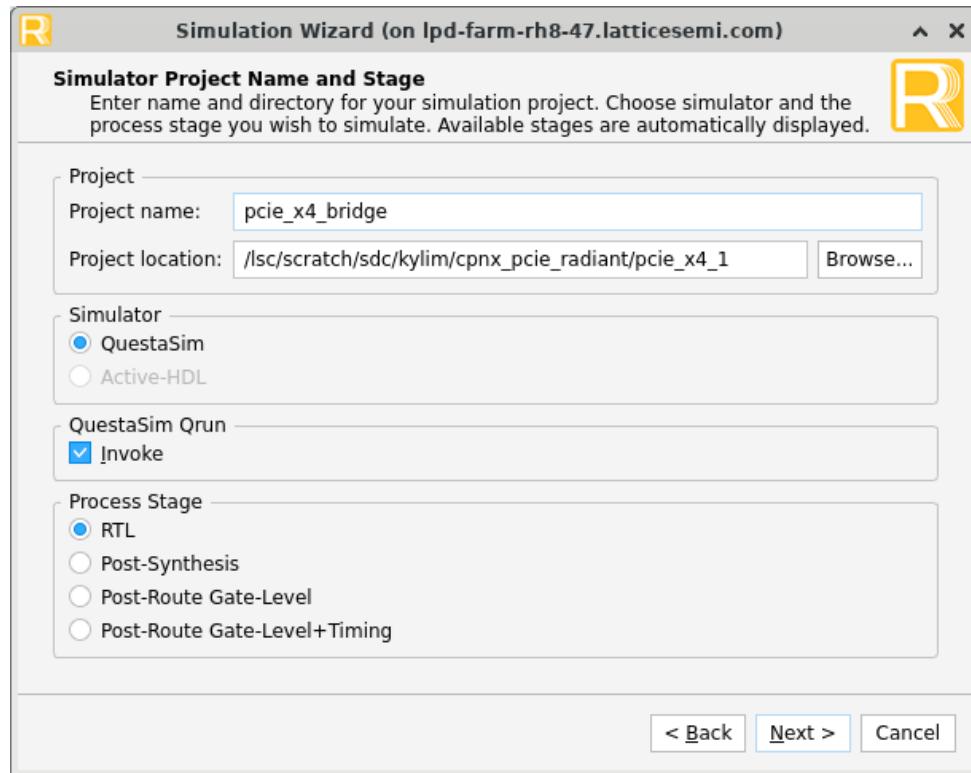


Figure 7.17. Project Naming

3. Select **tb_top** as Simulation Top Module.

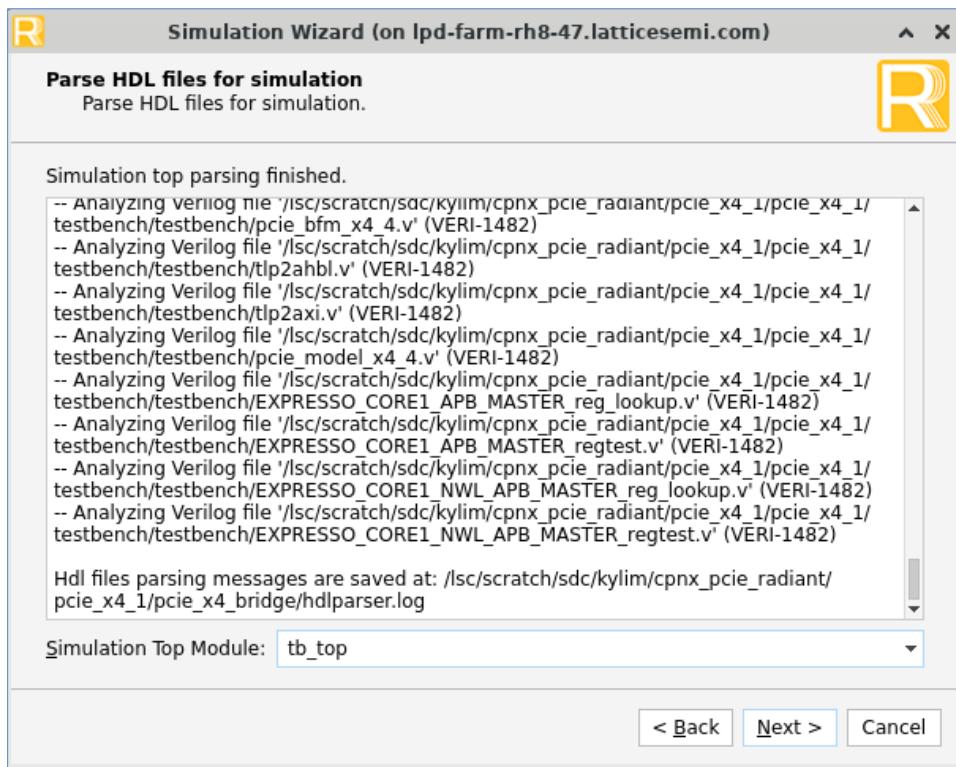
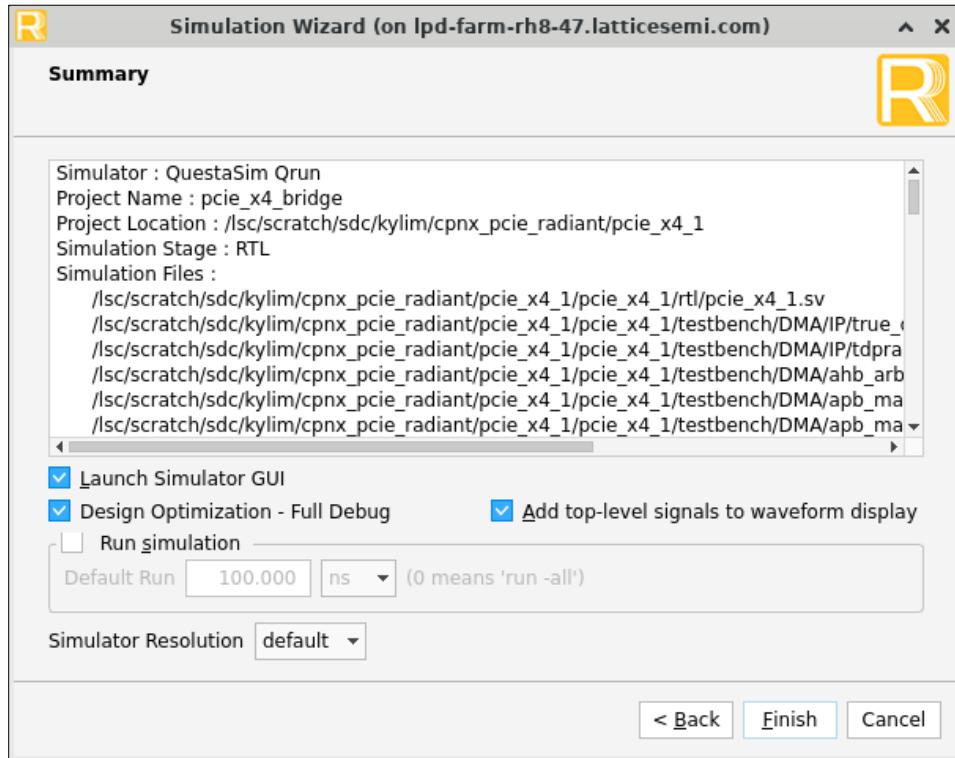



Figure 7.18. Simulation Top Module

4. Use the following simulation settings. Untick *Run simulation* option.

Figure 7.19. Simulation Setting

5. QuestaSim Lattice-Edition is being launched to perform design compilation. Proceed to close the current QuestaSim window once design compilation is completed.

```

# Loading work_EXPRESSION_CORE1_LMMI_APP_MASTER_REG_LOOKUP(fast)
# Loading work_EXPRESSION_CORE1_LMMI_APP_MASTER_REGTEST(fast)
# Loading work_ap4_be_master_fat

# ** Warning: (simu-3015) [PCDMC] - Port size (5) does not match connection size (1) for port 'usr_lmmi_request_o'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(4).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (32) does not match connection size (1) for port 'usr_lmmi_wdata_o'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(6).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (17) does not match connection size (1) for port 'usr_lmmi_offset_o'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(7).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (64) does not match connection size (1) for port 'usr_lmmi_rdata'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(8).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (5) does not match connection size (1) for port 'usr_lmmi_rdata_valid'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(9).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (5) does not match connection size (1) for port 'usr_lmmi_ready'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/LMMI_app.v(10).
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 325
# ** Warning: (simu-3015) [PCDMC] - Port size (1) does not match connection size (1) for port 'pcie_rx4_1_rx'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 177.
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/MMI_dma_ed_top.v Line: 177
# ** Warning: (simu-3015) [PCDMC] - Port size (1) does not match connection size (1) for port 'rx_ext'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/dut_inst.v Line: 1
# ** Warning: (simu-3015) [PCDMC] - Port size (4) does not match connection size (1) for port 'rx_ext1'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/dut_inst.v Line: 1
# Time: 0 fs Iteration: 0 Instance: /tb_top/PCIE_AXI_DMA/genblk1/ed_top_inst/lmmi_app_inst File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/dut_inst.v Line: 1
# ** Warning: (simu-3015) [PCDMC] - Port size (4) does not match connection size (1) for port 'mgmt_neq_link_width'. The port definition is at: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/dut_inst.v Line: 1
# Time: 0 fs Iteration: 0 Instance: /tb_top/ref_design_ts File: /lsc/scratch/sdc/kylin/cpnx_pcie_radiant/pcie_x4_1/pcie_x4_1/testbench/PCIE_DMA_1/dut_inst.v Line: 1762
# log /* -r -opecells
# view wave
# .main.panel.wave.interior.csbody.pw.wf
# add wave /*
```

Figure 7.20. Transcript Log Printing

6. Open the `<project>.f`, then update the `-reflib` to following

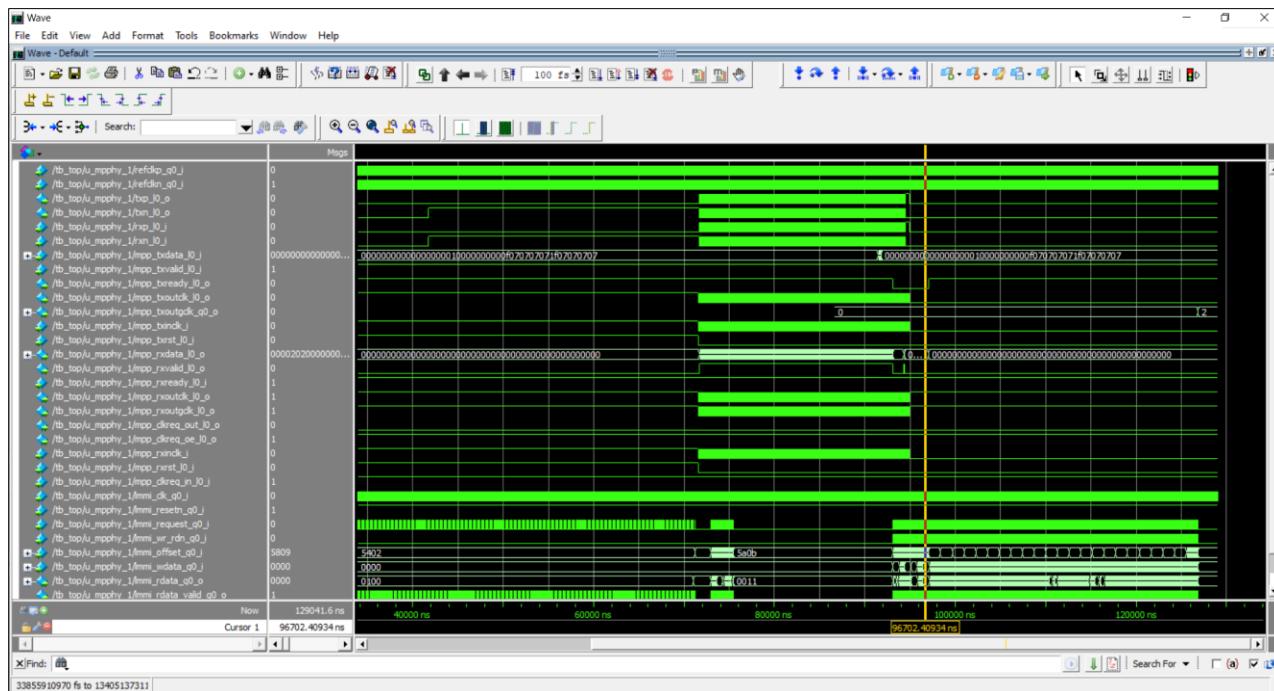
For Linux:

```
-reflib <radiant_installation_directory>/cae_library/simulation/libs/pmi_work  
-reflib <radiant installation directory>/cae library/simulation/libs/lfcpnx
```

For Windows:

```
-reflib C:/lscc/radiant/2025.2/cae_library/simulation/libs/pmi_work  
-reflib C:/lscc/radiant/2025.2/cae_library/simulation/libs/lfcpxn
```

7. Update the `<project>.f` file to include the BFM files.


```
"<project_path>/testbench/testbench/pcie_model_x4_4.v"  
"<project_path>/testbench/testbench/pcie bfm x4_4.v"
```


- NON_DMA_TESTCASE_TYPE
 - 3'd0 – SINGLE BAR MEM_WRITE
 - 3'd1 – SINGLE BAR MEM_READ
 - 3'd2 – SINGLE BAR MEM_WRITE AND MEM_READ
 - 3'd4 – CONFIGURE WRITE
 - 3'd5 – CONFIGURE READ
 - 3'd6 – Single BAR Multiple Write and Multiple Read transactions to incremental address with incremental data.
 - 3'd8 – Single BAR Multiple Write and Multiple Read transactions to same address with similar data.
- NON_DMA_SERIES_PATTERN:
 - 1'b1 – Incremental pattern
 - 1'b0 – Fixed pattern
- NON_DMA_FIXED_DATA – You can give a fixed 32-bit data when fixed pattern is selected.
- NON_DMA_NUM_DWORD – Number of DWORDS (32-bit data) to be written in each packet.
- NON_DMA_NUM_PACKETS – Number of packets used in data transaction.
- NUM_WRITES – Number of write transactions in multiple transactions.
- NUM_READS – Number of read transactions in multiple transactions.

Note: The number of bytes in a packet in a Non-DMA design must be less than the Maximum Payload Size. Otherwise, the maximum payload size is taken as the number of bytes in a packet.

16. For the Non-DMA (Bridge Mode such as AXI-MM or AXI-Lite) example design, the stimulus triggers the Memory Write with 1DW data (32'h0000BEEF) followed by trigger Memory Read to the same address. Afterwards, the test expects the read data is 32'h0000BEEF.
17. The simulation run completion is indicated by *SIMULATION STATUS* of ALL TESTS PASS or *ERRORS DETECTED* in the QuestaSim transcript window. [Figure 7.23](#) shows the example of a simulation waveform.

Figure 7.23. Simulation Waveform

7.3. Production Driver

7.3.1. DMA

For more information, refer to the [Lattice Avant and Nexus PCIe Host DMA Driver Software User Guide \(FPGA-TN-02386\)](#) document.

7.3.2. Non-DMA

For more information, refer to the [Lattice Avant and Nexus PCIe Basic Memory-Mapped Host Driver \(Non-DMA\) User Guide \(FPGA-TN-02387\)](#) document.

8. Debugging

The PCIe protocol involves the interface between a root port and endpoint with both sides being linked up. Hence, PCIe issues can range from device recognition issues, link training issue, flow control errors, enumeration issues, link down due to fatal errors, and others. This section provides the debug flow diagrams for some of the most common issues when using the PCIe x4 IP. Several debug flow charts are introduced with additional information on critical debug registers to refer to and loopback diagnostic features. This section also provides a short description on signals to be used for debugging simulation.

8.1. Debug Methods

8.1.1. Debug Flow Charts

One debugging method is to identify the type of PCIe issue. The following sections show the steps to debug various issues.

8.1.1.1. Hardware Detection Failure

Follow the steps shown in the flow diagram below if the system is not detecting the hardware.

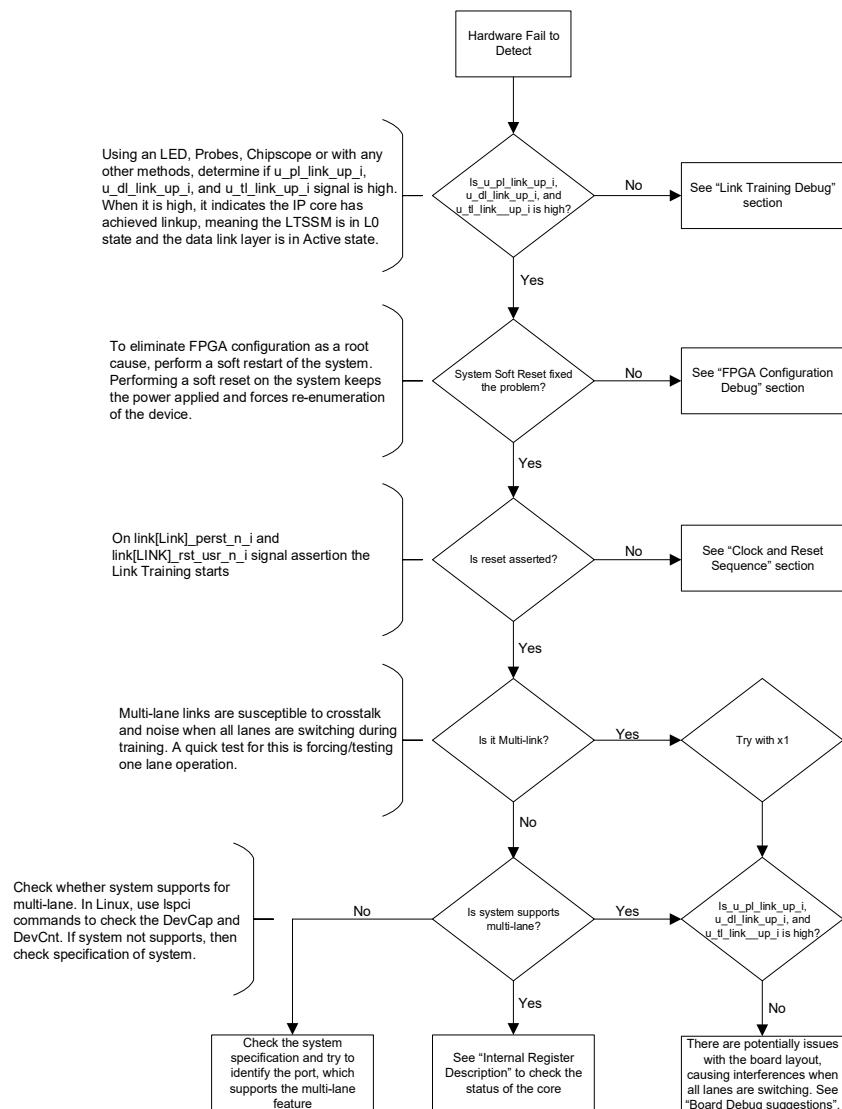
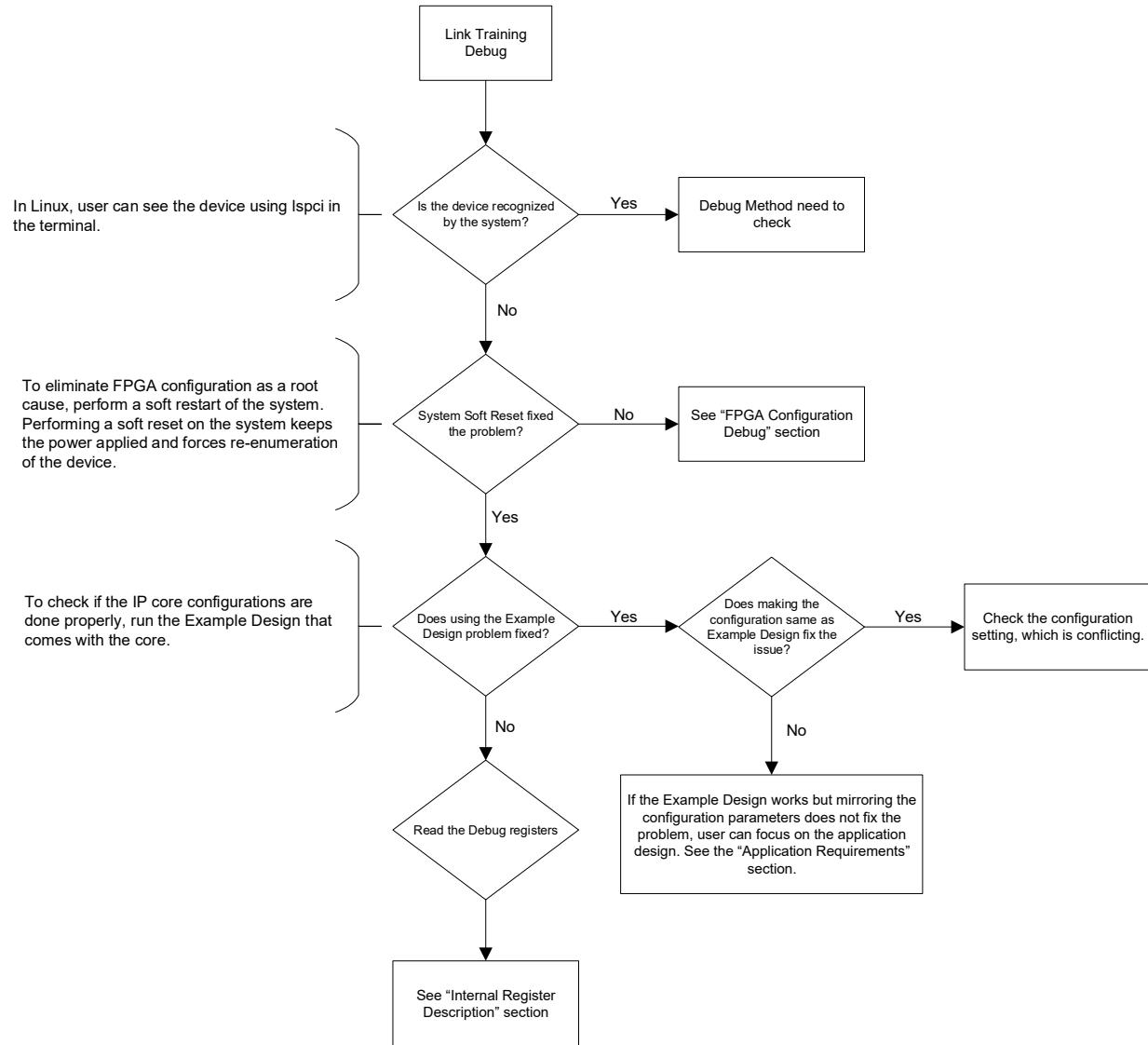



Figure 8.1. Hardware Detection Failure Debugging Flow

8.1.1.2. Link Training Debug

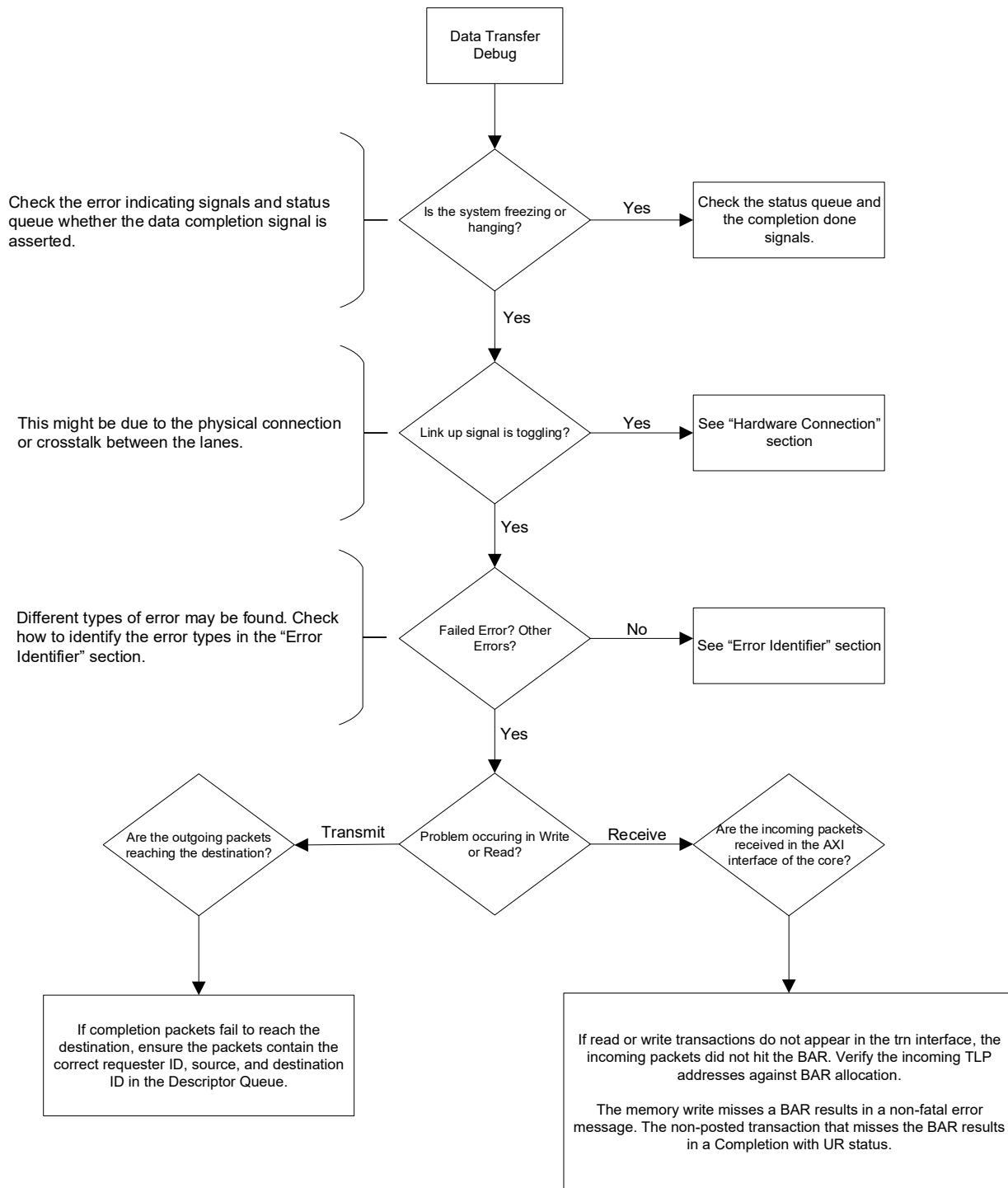

For link training debug refer the flow chart as shown [Figure 8.2](#):

Figure 8.2. Link Training Issue Debugging Flow

8.1.1.3. Data Transfer Debug

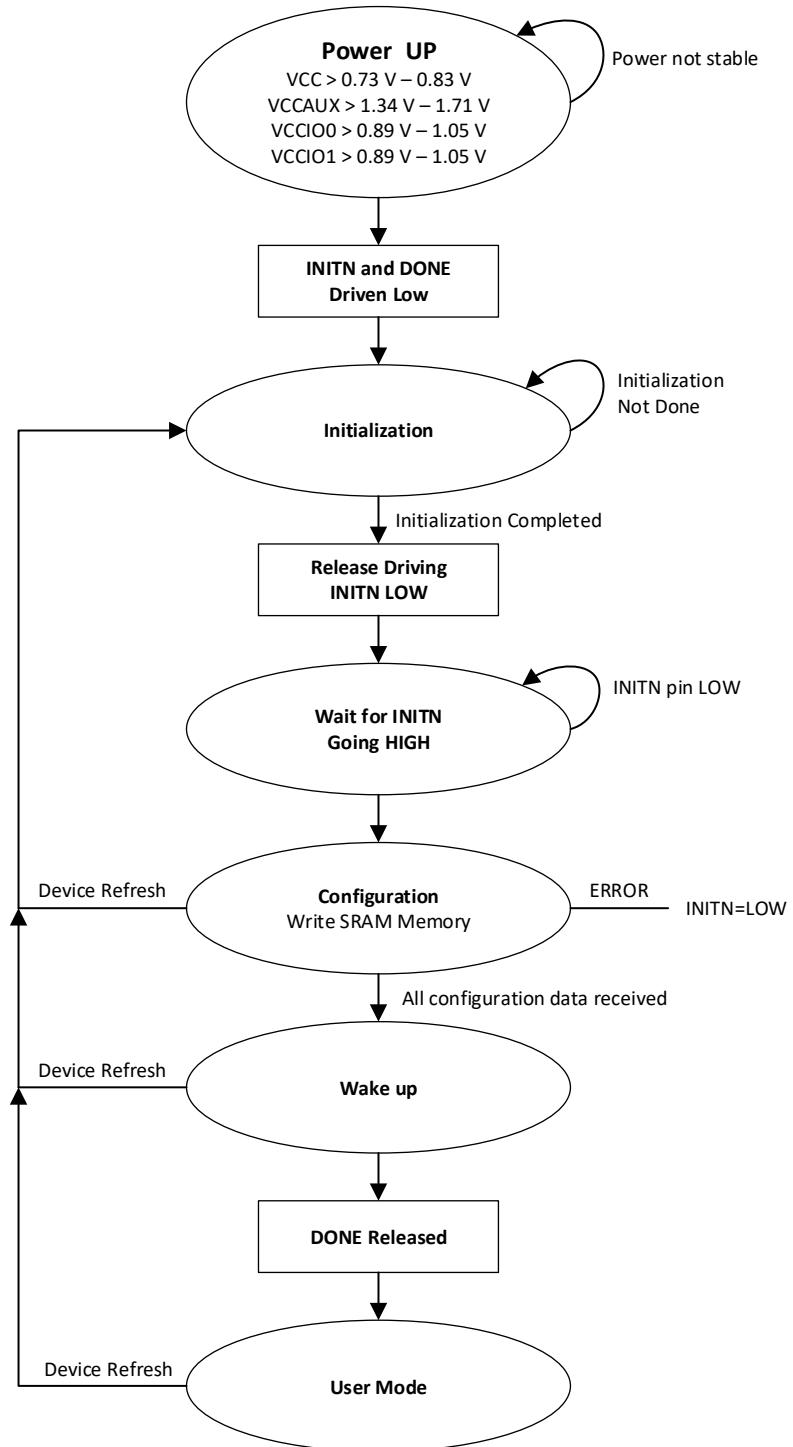

If data transfer fails, refer to the steps shown in [Figure 8.3](#).

Figure 8.3. Data Transfer Issue Debugging Flow

8.1.1.4. FPGA Configuration Debug

Device initialization and configuration issues can be caused by not having the FPGA configured fast enough to enter link training and be recognized by the system. Prior to becoming operational, the FPGA goes through a sequence of states, including initialization, configuration, and wake-up. After programming the FPGA, a soft reset is required to configure the FPGA from flash. Performing the soft reset operation restarts the enumeration process.

Figure 8.4. Debugging the FPGA Configuration Issues Flow

You can refer to the [sysCONFIG User Guide for Nexus Platform \(FPGA-TN-02099\)](#) document for more information on FPGA configuration.

8.1.2. Internal Register Read for Debug

If the above flowcharts do not capture the issues mentioned, you can read the 0x03114 (*vc_rx_status*) register, which indicates the Receive Buffer Parity/ECC Status where the error detection status can be seen.

The PCIe capability register addresses listed below also provide relevant information for debugging the PCIe issues:

- 0x47-0x44 (Device capability register) address for checking the different supported capabilities of the connected system.
- 0x49-0x48 (Device Control Register) address for checking the supported capabilities of the device.
- 0x4B-0x4A (Device Status Register) address for the device status. You can obtain the error status through this register address.

8.1.3. PCIe Loopback Test

The PCIe loopback test is a diagnostic feature specified by the PCIe Specification that can aid in debugging. The LTSSM Loopback is a state of the Link Training and Status State Machine (LTSSM), which is a mechanism for managing the link state of a serial bus such as PCI Express. In this state, the link partner can test its own transmitter and receiver by sending and receiving data packets without involving the link partner.

The LTSSM Loopback state can be entered from two different states: Configuration or Recovery. The entry into Loopback state is initiated by a Leader Loopback. Before register 0x2100 field is set to 1, all relevant registers containing Leader Loopback control options must be set to the desired values.

When `mgmt_tlb_debug_direct_to_loopback = 1`, no Leader Loopback control options may be changed. The LTSSM Loopback state has three substates: Entry, Active, and Exit. In Entry substate, both link partners wait for eight EIOS (End of Initialization Ordered Sets) before transitioning to Active substate. In Active substate, both link partners exchange data packets for testing purposes. In Exit substate, both link partners wait for eight EIOS before transitioning to Recovery or Configuration state depending on whether they received an Electrical Idle signal or not.

The LTSSM Loopback is useful for debugging and characterizing the performance of PCI Express links during Link Equalization Training which is a process of optimizing the signal quality between two link partners by adjusting various parameters such as amplitude, de-emphasis, preshoot, and jitter. For more information on the Loopback state, see [Table 2.7](#).

9. Design Considerations

9.1. DMA Based Design

To create a DMA based design:

1. According to the PCIe IP configuration, select the appropriate clocking architecture. Refer to the [Clocking](#) section.
2. Select *DMA only Mode* in *Configuration Mode* drop-down menu in the IP wizard General section. Configure DMA in the IP wizard [DMA Support](#) section.
3. Select AXI-MM or AXI-STREAM in the IP wizard [General](#) section.
4. Set up Descriptors in Host Memory. Program DMA registers to initiate DMA transfer.
5. If AXI-MM DMA is selected, verify F2H and H2F data transfer through AXI-MM interface.
6. If AXI-S DMA is selected, verify F2H data transfer through AXI-Stream interface.

9.2. Non-DMA Based Design

To create a Non-DMA based design:

1. According to the PCIe IP configuration, select the appropriate clocking architecture. Refer to the [Clocking](#) section.
2. Select the proper Configuration Mode in IP according to the design requirement. Refer to the [General](#) section.
3. Initialize the register using LMMI interface/APB interface which are configured from the IP wizard. Refer to the [LMMI Interface](#) section.
4. Verify the TLP write and read Transactions. Refer to the [Transaction Layer Interface](#) section.
5. Verify the AXI-Stream write and read Transactions. See [AXI-Stream Interface](#) section.
6. Verify the AXI-MM transactions. See [AXI Data Interface \(Bridge Mode\)](#) section.
7. Verify the AXI-Lite transactions. See [AXI Data Interface \(Bridge Mode\)](#) section.
8. Select the BAR's with BAR size according to the requirements. See [Base Address Register \(BAR\) \[0 to 5\]](#) section.

Appendix A. Resource Utilization

The Lattice PCIe IP core utilization report is provided in this section. You can check the resource utilized by the IP core and design top logic based on the available resource in the CertusPro-NX/MachXO5-NX FPGA device.

Table A.1 shows a sample resource utilization of the Lattice PCIe x4 IP Core on LFCPNX-100-9LFG72C with various link widths.

Table A.1. Lattice PCIe IP Core Resource Utilization

PCIe Core Config	Device Family	Map Resource Utilization				
		LUT4	PFU Register	I/O Buffer	EBR	Data Interface Type
Gen 1x1/ Gen 2x1/ Gen 3x1 EP ²	CertusPro-NX /MachXO5-NX	4268	2581	0	8	AXI-Stream
Gen 1x2/ Gen 2x2/ Gen 3x2 EP	CertusPro-NX	6148	3029	0	12	AXI-Stream
Gen 1x4/ Gen 2x4/ Gen 3x4 EP	CertusPro-NX	12423	6697	0	20	AXI-Stream
Gen 1x1/ Gen 2x1/ Gen 3x1 EP ²	CertusPro-NX /MachXO5-NX	422	3	0	0	TLP
Gen 1x2/ Gen 2x2/ Gen 3x2 EP	CertusPro-NX	465	3	0	0	TLP
Gen 1x4/ Gen 2x4/ Gen 3x4 EP	CertusPro-NX	544	3	0	0	TLP
Gen 1x1/ Gen 2x1 EP DMA	CertusPro-NX /MachXO5-NX	7355	6551	23	32	AXI-MM
Gen 1x2/ Gen 2x2 EP DMA	CertusPro-NX	7840	7695	23	34	AXI-MM
Gen 1x4/ Gen 2x4 EP DMA	CertusPro-NX	8742	9098	23	38	AXI-MM
Gen3x1 EP DMA	CertusPro-NX	8244	8007	23	42	AXI-MM
Gen3x2 EP DMA	CertusPro-NX	9358	9475	23	50	AXI-MM
Gen3x4 EP DMA	CertusPro-NX	11586	13023	23	54	AXI-MM
Gen3x4 EP DMA ³	CertusPro-NX	7799	7605	14	26	AXI-Stream
Gen1x1/Gen2x1 EP	CertusPro-NX /MachXO5-NX	2400	2091	14	0	AXI-MM
Gen1x1/Gen2x1 EP	CertusPro-NX /MachXO5-NX	2400	2091	14	0	AXI-Lite

Notes:

1. Resource utilization differs with different configurations of the PCIe IP. The above resource utilization is provided for reference only. You can view the resource utilization under Report > Map > Map Resource Usage. To view the resource usage, you must run the Synthesize and Map Design.
2. MachXO5-NX only supports x1 and up to Gen2.
3. FPGA-to-Host only.

Appendix B. Guide to Close Timing for Gen 3: (9-High-Perf_1.0 V) for DMA

This is only required by Gen3.

1. Generate PLL with output clocks as below; define and add proper clock constraints as follows:
 - a. Create clk_usr_div2_i = 125 MHz and clk_usr_i = 250 MHz with a PLL.
 - b. Define input clk of PLL with clk name and period with “create_clock -name ...”
 - c. set_clock_groups -group [get_clocks clk_usr_div2_i] -group [get_clocks clk_usr_i] -asynchronous
2. To place time critical logic closer to HardIP, add the following constraints in the user’s pdc file.

```
ldc_create_group -name PCIE_RX_1TO2 -bbox {11 41} [get_cells
{*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/rx_tlp_router/*.router/DCFIFO.rx_1_to_2_inst
*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/UCFG_READER.ucfg_reader_inst }]
ldc_set_location -site {R2C32D} [ldc_get_groups PCIE_RX_1TO2]
ldc_create_group -name TX_2STG -bbox {3 30} [get_cells
{*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/NO_UCFG_ARB.ucfg_pipestg_inst
*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/NO_UCFG_ARB.ucfg_pipestg_2_inst
*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/tx_tlp_arbiter/*.tx_2_to_1_inst/tx_pipestg_2 }]
ldc_set_location -site {R2C2D} [ldc_get_groups TX_2STG]
ldc_create_group -name TX_4STG -bbox {4 30} [get_cells
{*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/tx_tlp_arbiter/*.tx_2_to_1_inst/tx_pipestg }]
ldc_set_location -site {R5C2D} [ldc_get_groups TX_4STG]
ldc_create_group -name TX_DC_FIFO -bbox {4 30} [get_cells
{*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/tx_tlp_arbiter/*.tx_2_to_1_inst/TLP_INTF_128.tx_tlp_dc_fif
o_inst0
*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/tx_tlp_arbiter/*.tx_2_to_1_inst/TLP_INTF_128.tx_tlp_dc_fif
o_inst1 }]
ldc_set_location -site {EBR_CORE_R10C2} [ldc_get_groups TX_DC_FIFO]
ldc_create_group -name DATA_FLOP2 -bbox {1 30} [get_cells
{*/lscc_pcie_x4_inst/NEW_AXI_DMA.pcie_axi_sgdma_inst/tx_tlp_arbiter/*.tx_2_to_1_inst/tx_dcfifo_data_flop2 }]
ldc_set_location -site {R8C2D} [ldc_get_groups DATA_FLOP2]
```

References

- [PCIe x4 IP Release Notes \(FPGA-RN-02059\)](#)
- [Lattice Avant and Nexus PCIe Host DMA Driver Software User Guide \(FPGA-TN-02386\)](#)
- [Lattice Avant and Nexus PCIe Basic Memory-Mapped Host Driver \(Non-DMA\) User Guide \(FPGA-TN-02387\)](#)
- [CertusPro-NX web page](#)
- [PCI Express Base Specification, Rev 3.0 and Rev 3.1](#)
- [PCI Local Interface Specification Revision 3.0](#)
- [PCI Bus Power Management Interface Specification Revision 1.2](#)
- [Lattice MPCS Module User Guide \(FPGA-IPUG-02118\)](#)
- [CertusPro-NX SerDes/PCS User Guide \(FPGA-TN-02245\)](#)

Other references:

- [Lattice Insights](#) for Lattice Semiconductor training courses and learning plans
- [Lattice Radiant](#) FPGA design software

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Note: In some instances, the IP may be updated without changes to the user guide. The user guide may reflect an earlier IP version but remains fully compatible with the later IP version. Refer to the IP Release Notes for the latest updates.

Revision 2.3, IP v4.0.0, December 2025

Section	Change Summary
All	<ul style="list-style-type: none">Updated IP version on the cover page.Made editorial fixes across the document.Added the following note where applicable: <i>For designs requiring x2 or x4 lane interfaces, contact your local Lattice Sales Representative for important design guidelines.</i>
Introduction	<ul style="list-style-type: none">Updated the following in Table 1.1. Summary of the PCIe x4 IP, including table caption:<ul style="list-style-type: none">Updated IP core and Radiant version.Updated QuestaSim information to <i>QuestaSim Pro, QuestaSim Lattice Edition</i>Added table notes regarding IP versions.Removed Table 1.2 Summary of the PCIe x4 IP (other than AXI DMA).Updated Table 1.2. PCIe IP Support Readiness to update CertusPro-NX PCIe EP DMA values and add PCIe EP DMA for MachXO5-NX.Updated Soft IP section content, including removing some footnotes.Updated Licensing and Ordering Information section content including removing Ordering Part Number section.Added footnote for speed grade in Table 1.3. Lattice PCIe IP Core Supported Speed Grade.
Functional Description	<ul style="list-style-type: none">Updated PCIe IP Architecture Overview section content including Figure 2.1. Lattice PCIe x4 IP Core Block Diagram.Updated Clocking section content, including removing some clock related figures and updated Table 2.1. PHY Clock and User Clock Frequencies to update column values and column name to <i>Minimum Speed Grade</i>.Changed Physical Layer Packets to <i>Ordered Sets</i> in Protocol Layers.Updated Figure of Merit – Preset Method section content, including removing Preset to Coefficient Conversion table.Updated DMA Support section name and sub-sections content, including updating table values: updated from RSVD[8:0] to <i>RSVD[7:0]</i> and from LENGTH[22:0] to <i>LENGTH[23:0]</i>; updated some table captions from INT to MSI and removed INTx and MSI-X references; added <i>USR_MSI_VEC</i> related tables; removed Known Issue sub-section; updated sub-section content and name to DMA With Bridge Mode; updated DMA User Interrupts section content.Removed AHB-L DMA Support section.Updated Non-DMA Support section content, including table values.Updated Soft IP Interface to remove AHBL Interface sub-section; update section content and name to Bridge Mode, including adding new sub-sections and updating table content; updated APB Interface sub-section content including adding note regarding a known bug.
IP Parameter Description	<ul style="list-style-type: none">Updated Figure 3.1. Attributes in the General Tab and Table 3.1. General Tab Attributes Description to update values and add table note and reference to table note.Updated Optional Port section content including Figure 3.2. Attributes in the Optional Port Tab and Table 3.2. Optional Port Attributes.Updated section content and name to DMA/Bridge Mode Support, including Figure 3.4. Attributes in the DMA/Bridge Mode Support Tab and Table 3.3. DMA/Bridge Mode Support Attributes.Added ASPM Capability section.Updated Figure 3.21. Attributes in Dynamic Allocation Capability.Removed RX TLP Destination Base Address section.

Section	Change Summary
Signal Description	<ul style="list-style-type: none"> Updated Table 4.1. Clock Ports content. Removed AHB-Lite Data Interface and DMA Interrupt Interface sections. Updated section description of AXI-Stream (Non-DMA) Data Interface. Updated Table 4.15. AXI-MM Manager Interface (DMA) to update ports to <i>m0_dma_mm</i>, added <i>sys_clk_i</i> in Clock Domain, and added table note for Gen3. Updated Table 4.16. AXI-Stream RX Interface (DMA) to update port to <i>tx0_dma_axist</i>. Updated Table 4.17. AXI-MM Manager Write Interface (Bridge Mode) to update ports to <i>m0_axi_mm</i>; updated to <i>clk_usr_div2_i</i> and <i>sys_clk_i</i> in Clock Domain; added table note for Gen1 and Gen2. Updated Table 4.18. AXI-Lite Manager Interface (Bridge Mode) to <i>m0_axil</i>, updated to <i>clk_usr_div2_i</i> and <i>sys_clk_i</i> in Clock Domain, and added table note for Gen1 and Gen2. Removed AXI-Lite Manager Interface (DMA Bypass) table.
Register Description	Removed Soft IP Configuration, Control, and Status Registers section.
Example Design	<ul style="list-style-type: none"> Updated Example Design Supported Configuration section content, including updating Table 6.1. PCIe x4 IP Configuration Supported by the Example Design values to update values and add table note and reference to table note 2 and remove PCIe x4 IP Configuration Supported by the Example Design (versions older than 3.0.0). Updated Overview of Example Design and Features to remove AXI or AHB-Lite bullet point. Updated Example Design Components section content, including DMA Design (AXI-MM) and DMA Design (AXI-Stream) sub-section content and names, removed AHB-L DMA Design sub-section, updated steps and figures in Generating the Non-DMA Example Design and Generating the Bridge Mode Example Design, and added PDC Settings for Hardware Example Design section. Updated sub-section contents in Debugging Example Design Issues including sub-section names, remove Simulation Debug for AHB-L DMA Design sub-section, and update Signal Names in the tables to <i>m0_dma_axi</i>. Removed Limitations of the Example Design section.
Designing with the IP	<ul style="list-style-type: none"> Added note for screenshots at the beginning of the section. Updated Generating and Instantiating the IP section content, including updating figures and updated Timing Constraints and Multi Seed Timing Closure sub-section content. Updated Running Functional Simulation section content, including adding QuestaSim Lattice-Edition and moving previous content from the main section and renaming to QuestaSim Pro. Updated Production Driver section content, including updating document reference name to Lattice Avant and Nexus PCIe Host DMA Driver Software User Guide (FPGA-TN-02386) in DMA.
Design Considerations	Updated DMA Based Design and Non-DMA Based Design section content and removed AHB-L DMA Design section.
Appendix A. Resource Utilization	Updated Table A.1. Lattice PCIe IP Core Resource Utilization section content, including removing AHB-Lite support and IP version table note, and added AXI-MM support.
References	Updated reference document name from PCIe Host Driver Software for CertusPro-NX AXI-MM and AXI-S DMA (FPGA-TN-02386) to Lattice Avant and Nexus PCIe Host DMA Driver Software User Guide (FPGA-TN-02386) .
Revision History	Added note regarding IP version.

Revision 2.2, IP v3.6.0, October 2025

Section	Change Summary
All	Updated IP version on the cover page.
Introduction	<ul style="list-style-type: none"> Updated section content to add note for MachXO5-NX. Updated the IP core and Radiant version and added LFMXO5-55TDQ support in Table 1.1. Summary of the PCIe X4 IP (AXI DMA) and Table 1.2. Summary of the PCIe X4 IP (other than AXI DMA). Updated Table 1.3. PCIe IP Support Readiness to MachXO5-NX support.
Functional Description	Updated Known Issue to add v3.6.0.
Designing with the IP	Updated Non-DMA to changed reference document name to <i>Lattice Avant and Nexus PCIe Basic Memory-Mapped Host Driver (Non-DMA) User Guide (FPGA-TN-02387)</i> .
References	Updated reference document name from CertusPro-NX and Avant-G/X PCIe Basic Memory-Mapped Host Driver (Non-DMA) User Guide (FPGA-TN-02387) to <i>Lattice Avant and Nexus PCIe Basic Memory-Mapped Host Driver (Non-DMA) User Guide (FPGA-TN-02387)</i> .

Revision 2.1, IP v3.5.0, June 2025

Section	Change Summary
All	<ul style="list-style-type: none"> Updated IP version on the cover page. Changed AXI4 to AXI instances across the document, including section names, figure captions, and table captions.
Acronyms in This Document	Added definition for AXI-MM.
Introduction	<ul style="list-style-type: none"> Updated section name from Supported FPGA Family to Supported Devices and included devices supported by MachXO5-NX, updated the IP core and Radiant version and updated Supported User Interface row including adding AXI-Lite support and removing Targeted Devices row in Table 1.1. Summary of the PCIe X4 IP (AXI DMA) and Table 1.2. Summary of the PCIe X4 IP (other than AXI DMA). Added AXI-MM/AXI-Lite rows for PCIe EP in Table 1.3. PCIe IP Support Readiness. Updated Soft IP section content including adding footnote 6 for IP version 3.5.0. Updated content of Table 1.5. Lattice PCIe IP Core Supported Speed Grade.
Functional Description	<ul style="list-style-type: none"> Updated PCIe IP Architecture Overview section content including adding bullet points for Non-DMA AXI-MM and AXI-Lite. Changed AHB-L to AHB-Lite in User and System Clocks. Updated content including updating SGDMA instances to DMA and section name to AXI DMA Support. <ul style="list-style-type: none"> Updated values of SRC_ADDR[63:0] and DEST_ADDR[63:0] bullet point in Descriptor Rules. Updated Table 2.22. Access Types content including adding RC row. Updated Table 2.23. PCIe DMA Register Group including removing Description column. Updated Access column for REQUEST in Table 2.24. H2F_DMA_CTRL (0x0000) and Table 2.28. F2H_DMA_CTRL (0x0100). Added General Status (0x0500) section. Corrected F2H to H2F in Host-to-FPGA (H2F) Transaction. Added v3.5.0 in the Known Issue section. Updated content of DMA Bypass Interface and DMA User Interrupts. Updated Figure 2.24. Non-DMA Application Data Flow – TLP Interface figure caption and added Figure 2.25. Non-DMA Application Data Flow – AXI-Stream Interface, Figure 2.26. Non-DMA Application Data Flow – AXI-MM Interface (Bridge Mode), and Figure 2.27. Non-DMA Application Data Flow – AXI-Lite Interface (Bridge Mode). Updated Table 2.51. Register Access for Different Data Interfaces to add AXI-MM and AXI-Lite rows. Added AXI Bridge Mode section.

Section	Change Summary
IP Parameter Description	Updated section name to Function.
Signal Description	<ul style="list-style-type: none"> Added footnote in Power Management Interface. Updated section name to AXI-Stream (Non-DMA) Data Interface. Added AXI Data Interface (DMA) and AXI Data Interface (Bridge Mode) section.
Example Design	<ul style="list-style-type: none"> Updated Data Interface Type row in Table 6.1. PCIe X4 IP Configuration Supported by the Example Design (version 3.2.0 and onwards). Updated Non-DMA Design value for BAR 1 Enable in Table 6.2. PCIe X4 IP Configuration Supported by the Example Design (versions older than 3.0.0). Updated Overview of Example Design and Features section content to updated to Gen3x4. Updated AXI-MM DMA Design section content including the steps in Generating the AXI-MM DMA Example Design and Figure 6.3. File List View of the Created AXI-MM DMA Example Design. Updated AXI-Stream DMA Design section content including the steps in Generating the AXI-Stream DMA Example Design and Figure 6.5. File List View of the Created AXI-Stream DMA Example Design. Updated section content including section name to Non-DMA Design (TLP Interface). Added Generating the Non-DMA Example Design, Non-DMA Design (Bridge Mode), and Simulation Debug for AXI (Bridge Mode) Design section.
Designing with the IP	<ul style="list-style-type: none"> Updated Generating and Instantiating the IP section content including Figure 7.7. Placement Iteration Setup on Radiant under Strategies Tab. Added step for Non-DMA (Bridge Mode) and removed some parameters in Non-DMA (TLP interface) step in Running Functional Simulation.
Design Considerations	Updated Non-DMA Based Design to add step for AXI-MM and AXI-Lite.
Appendix A. Resource Utilization	Updated section content to remove IP and Radiant version text and updated Table A.1. Lattice PCIe IP Core Resource Utilization content including IP and Radiant version, updated LUT4, PFU Register and Data Interface Type values and added Gen1x1/Gen2x1 EP rows, and added IP v3.5.0 table note.
Appendix B. Guide to Close Timing for Gen 3: (9-High-Perf_1.0 V) for AXI DMA	Added this section.

Revision 2.0, IP v3.4.0, April 2025

Section	Change Summary
All	Updated IP version on the cover page.
Introduction	Updated IP core and Radiant version in Table 1.1. Summary of the PCIe X4 IP (AXI DMA) and Table 1.2. Summary of the PCIe X4 IP (other than AXI DMA).
Functional Description	Added v3.3.0 and v3.4.0 in the Known Issue section.
Designing with the IP	<ul style="list-style-type: none"> Changed section name to AXI-MM/AXI-S DMA and updated document name from PCIe Host Driver Software for CertusPro-NX AXI-MM DMA to <i>PCIe Host Driver Software for CertusPro-NX AXI-MM and AXI-S DMA</i>. Updated document name from PCIe Basic Function Non-DMA Host Driver User Application for CertusPro-NX Devices to <i>CertusPro-NX and Avant-G/X PCIe Basic Memory-Mapped Host Driver (Non-DMA) User Guide</i> in Non-DMA.
References	<ul style="list-style-type: none"> Updated document names to <i>PCIe Host Driver Software for CertusPro-NX AXI-MM and AXI-S DMA</i> and <i>CertusPro-NX and Avant-G/X PCIe Basic Memory-Mapped Host Driver (Non-DMA) User Guide</i>. Corrected document link for CertusPro-NX SerDes/PCS User Guide.

Revision 1.9, IP v3.3.0, March 2025

Section	Change Summary
All	Updated IP version on the cover page.
Introduction	<ul style="list-style-type: none"> Updated IP core version in Table 1.1. Summary of the PCIe X4 IP (AXI DMA) and Table 1.2. Summary of the PCIe X4 IP (other than AXI DMA) including correcting doc link for release notes. Removed 1x2+1x1 and 2x1 options in x4 PCIe lanes bullet point and added support disabled information in Power Management bullet point in Hard IP Link Layer. Updated PCIe Core Config column values and added table note and reference to table note in Table 1.5. Lattice PCIe IP Core Supported Speed Grade.
Functional Description	<ul style="list-style-type: none"> Added <i>support disabled</i> information for ASPM L0s and ASPM L1 bullet points in Power Management. Added note that support is disabled in APSM L0s and APSM L1s. Updated section name to DMA Performance (AXI-MM) and added Known Issue section. Added DMA Performance (AXI-S) section and Figure 2.12. User Interrupt Request and User Interrupt ACK Relationship.
IP Parameter Description	<ul style="list-style-type: none"> Added DMA Bypass Mode row in Table 3.1. General Tab Attributes Description and updated Figure 3.3. Attributes in the AXI DMA Support Tab (supported in version 3.0.0 and onwards). Updated Table 3.3. AXI DMA Support Attributes (version 3.2.0 and onwards) to add Number of User Interrupt row and removed DMA Bypass Mode row.
Register Description	Updated [11:10] description in Table 5.184. pcie_link_cap Register 0x88.
Designing with the IP	Removed <i>Using the AXI-MM DMA Demo Driver</i> section.
References	Added PCIe driver doc references.

Revision 1.8, IP v3.2.0, December 2024

Section	Change Summary
All	<ul style="list-style-type: none"> Changed AXI-MM to AXI and AXI4-MM to AXI4 across the document, including in the content, figure caption, table content and caption, and section names. Updated IP version in the cover page and revision history.
Introduction	<ul style="list-style-type: none"> Updated Table 1.1 Summary of the PCIe X4 IP (AXI DMA) to add IP Changes row, add AXI4-Stream in Supported User Interface, and update IP Core and Radiant software version. Updated Table 1.2 Summary of the PCIe X4 IP (other than AXI DMA) to add IP Changes row, remove IP version info for AXI4-Stream in Supported User Interface, and update IP Core and Radiant software version. Renamed IP Validation Summary section to Hardware Support and updated section content. Added IP Support Summary section.
Functional Description	<ul style="list-style-type: none"> Updated section content including the following: <ul style="list-style-type: none"> Updated Figure 2.1. Lattice PCIe X4 IP Core Block Diagram to correct Link Layer blocks to Transaction and Data Link Layer and Physical Layer. Updating AXI4-Stream to Non-DMA AXI4-Stream and removing IP version info across the section. Adding IP version older than 3.0.0 info for Gen3 in the section. Updated Gen 1 and Gen 2 Minimum Speed Grade in Table 2.1. PHY Clock and User Clock Frequencies. Added DMA AXI4-Stream and Link0 x4 support info and removed v3.0.0 support for EP mode with Link0 in AXI4 DMA Support section. Updated Table 2.25. H2F_SGDMA_STS (0x000C) and Table 2.29. F2H_SGDMA_STS (0x010C) to add more rows. Added Table 2.26. H2F_SGDMA_INT_MASK (0x0010) and Table 2.30. F2H_SGDMA_INT_MASK (0x0110).

Section	Change Summary
	<ul style="list-style-type: none"> Updated Table 2.31. F2H_CPLT_DESC_COUNT (0x0118) and Table 2.31. F2H_CPLT_DESC_COUNT (0x0118) to update Description column for 31.0. Updated content of Table 2.38. INT_MODE (0x0400) to Table 2.41. USR_INT_VEC (0x040C). Updated section name to DMA Transaction (AXI-MM) and updated content of DMA Interrupt section. Added DMA Transaction (AXI-Stream), DMA Bypass Interface, and DMA User Interrupts sections. Removed IP version info for AXI4_Stream in Table 2.51. Register Access for Different Data Interfaces and AXI-Stream Interface section.
IP Parameter Description	<ul style="list-style-type: none"> Updated Figure 3.1. Attributes in the General Tab including adding note for EBR Timing and Table 3.1. General Tab Attributes Description to remove AXI4_Stream IP version info for Data Interface Type. Updated Table 3.3. AXI DMA Support Attributes (version 3.2.0 and onwards) to update to version 3.2.0 and 2024.2, removed AXI-MM and added AXI-S for Channel 0 F2H Interface, and added DMA bypass Mode row.
Signal Description	Removed 3.0.0 version support info in AXI-4 Stream Data Interface.
Register Description	Updated Table 5.260. PCI Express Capability to updated values in the Description column of 51-50 Addr.
Example Design	<ul style="list-style-type: none"> Added boards used for AXI-MM and PCIe EP Design and updated section description. Updated Table 6.1. PCIe X4 IP Configuration Supported by the Example Design (version 3.2.0 and onwards) to update version to 3.2.0, add AXI4-Stream RX and AXI4-Stream in Data Interface Type, added BAR 2, and updated DMA Design column for BAR1 Enable and BAR2, BAR3, BAR4, and BAR5. Updated Table 6.2. PCIe X4 IP Configuration Supported by the Example Design (versions older than 3.0.0) to add BAR 2. Updated figure caption to Figure 6.2. Components within AXI-MM DMA Example Design. Updated steps in Generating the AXI4-MM DMA Example Design, including Figure 6.3. File List View of the Created AXI4-MM DMA Example Design. Added AXI-Stream DMA Design and Simulation Debug for AXI4-Stream DMA Design sections.
Designing with the IP	<ul style="list-style-type: none"> Updated Lattice Radiant version in Multi Seed Timing Closure. Added info that the demo driver is applicable to AXI-MM DMA example design only in Using the Demo Driver section. Added Production Driver section.
Design Considerations	Updated steps in AXI DMA Based Design.
Appendix A. Resource Utilization	Moved Resource Utilization to the Appendix section and updated Table A.1. Lattice PCIe IP Core Resource Utilization content including updating table notes.

Revision 1.7, IP v3.1.0, October 2024

Section	Change Summary
All	<ul style="list-style-type: none"> Removed Root Port description, as this is not supported, across the document. Added IP version to the cover page and revision history.
Introduction	<ul style="list-style-type: none"> Updated Table 1.1 Summary of the PCIe X4 IP (AXI DMA) to add MachXO5-NX and TLP information and updated IP version to 3.1.0. Updated Table 1.4. Ordering Part Number and Table 1.4. IP Validation Level to add MachXO5-NX information. Updated Resource Utilization section including Table A.1. Lattice PCIe IP Core Resource Utilization to add MachXO5-NX support. Added Speed Grade Supported section.
Functional Description	<ul style="list-style-type: none"> Added DMA Performance section. Updated Table 2.53. UCFG Address Space to change description value of Vendor Specific Capability to 1 – Reserved. Updated AHBL Interface section to correct address in AHB-Lite to PCIe Transaction: 32'hC2500000 to 32'hC5200000, 32'hC2530000 to 32'hC5230000, and 32'hC2532000 to 32'hC5232000. Added MachXO5-NX support in Multi-Protocol Support section.
Register Description	<ul style="list-style-type: none"> Added Table 5.3. Hard PCIe Core Register Mapping to describe how PMA and MPCS registers offset are mapped. Updated Table 5.114. pm_pme_to_ack_ds Register 0x84 to remove Root Port info and updated field and width values to 31:0 and 32 respectively. Updated Table 5.164. decode_t1 Register 0x14 to remove Root Port info and updated field and width values to 15:0 and 16 respectively. Updated Table 5.167. cfg Register 0x30 to update Description of [0] to 1 – Reserved. Updated Table 5.168. ds_port Register 0x34 and Table 5.188. pcie_link_ctrl Register 0xa0 to remove Root Port info and updated field and width values to 31:0 and 32 respectively. Updated Table 5.182. pcie_cap Register 0x80 [7:4] description value to Reserved for 4 to 10. Updated Table 5.218. Function Register 0x8 to correct the Description columns. Updated Table 5.260. PCI Express Capability 43-42 register description value to Reserved for 0100 to 1010. Removed Root Port information in PCI Express Configuration Space Registers section.
Example Design	Updated section content to remove The PCIe x4 IP example design is only available for the simulation purposes in this IP version text and added Generating the AXI4-MM DMA Example Design section.
Designing with the IP	<ul style="list-style-type: none"> Added Multi Seed Timing Closure and Using the Demo Driver section. Updated Figure 7.2. IP Configuration. Updated the following in Running Functional Simulation: <ul style="list-style-type: none"> Updated step 5 to add this text: <i>Default Run set to 0 is required.</i> Updated step 7 to start sentence with <i>Open the..</i> and update the reflib for Linux and Windows.

Revision 1.6, July 2024

Section	Change Summary
Introduction	<ul style="list-style-type: none"> Updated Overview of the IP section content to add MachXO5-NX support. Updated the following in Table 1.1 Summary of the PCIe X4 IP (AXI-MM DMA), including table name: <ul style="list-style-type: none"> Added AXI4-MM as supported User interface and removed AHB-Lite and AXI4-Stream. Updated IP Core version to <i>v3.0.0</i> and Radiant version to <i>2024.1</i> Removed ModelSim support in Simulation. Added table note. Added Table 1.2 Summary of the PCIe X4 IP (other than AXI-MM DMA). Updated the following in Soft IP section: <ul style="list-style-type: none"> Specified AXI4-Stream, DMA and Non-DMA support in AHB-Lite are only available in IP versions older than 3.0.0; added reference to footnote 3. Added AXI4-MM Manager Data bullet point. Added note 2 (only x4 mode supported in 2024.1), note 3 (Only available in IP versions older than 3.0.0), and note 4 (Only available in IP version 3.0.0 and onwards) in this section. Updated the following in Table 1.5. Lattice PCIe IP Core Resource Utilization: <ul style="list-style-type: none"> Removed DMA and Non-DMA header rows and rearranged AHB_LITE DMA rows. Added AXI4-MM x4 EP DMA row. Added table notes (and reference to table notes) for <i>IP versions older than 3.0.0, IP versions 3.0.0 and onwards</i>, and Known issue.
Functional Description	<ul style="list-style-type: none"> Updated the following in PCIe IP Architecture Overview: <ul style="list-style-type: none"> Updated AHB-Lite bullet point to add Non-DMA support and that it is supported in IP versions older than 3.0.0. Updated AXI4-Stream bullet point to add information that it is supported in IP versions older than 3.0.0. Updated note for Clock and Rest Interface bullet point to indicate <code>sys_clk_i</code> is used for the TLP Interface only. Updated Figure 2.3. PCIe IP Overall Clock Domain Block Diagram for Gen3 to move <code>sys_clk_i</code> signal. Added Figure 2.5. PCIe IP Overall Clock Domain Block Diagram for AXI-MM DMA. Updated User and System Clocks to add that <code>clk_usr_ps90_i</code> clock is supported in IP versions older than 3.0.0. Updated Table 2.1. PHY Clock and User Clock Frequencies to add Minimum Speed Grade column. Updated Clock Ports column values in Table 2.2. Port Values when Reference Clock Frequency is 125 MHz and steps in Use of the 125 MHz Reference Clock section. Updated information in Reset Overview to keep Non-DMA support only and added information that for AHB-L DMA <code>c_apb_preset_n_i</code> signal is used. Updated APSM LOs to add link to Table 5.13. <code>ltssm_nfts</code> Register 0x50 for <code>mgmt_tlb_ltssm_nfts_to_extend</code>. Added AXI4-MM DMA Support section. Changed section name from DMA Support to AHB-L DMA Support and updated section description to: DMA with AHB-L data interface is only supported in IP versions older than 3.0.0. Updated Table 2.46. Register Access for Different Data Interfaces to add supported in IP versions older than 3.0.0 information to AHB_Lite and AXI4_Stream interfaces. Updated TLP Header Description to modify text to: The Lattice PCIe uses 3DW or 4DW header for memory transactions to transfer the data in the form of TLP packets per the PCIe standard. Figure 2.31 shows the 3 DW Memory TLP Header format. Updated the following in Soft IP Interface:

Section	Change Summary
	<ul style="list-style-type: none"> Updated AHBL Interface section content to add information that AHBL is supported in IP versions older than 3.0.0 and has different configurations when DMA is enabled and disabled; updated reference section in DMA Enabled from DMA Support to AHB-L DMA Support. Updated AXI-4 Stream Interface section content to add information that AXI-4 Stream is supported in IP versions older than 3.0.0. Updated APB Interface section to add information AHB-L DMA is supported in IP versions older than 3.0.0, changed Register Address bullet point to PHY Register Address and 0Xf200 value to 0X7F, and updated figure caption to Figure 2.66. AHB-L DMA APB Configuration.
IP Parameter Description	<ul style="list-style-type: none"> Updated the following in Table 3.1. General Tab Attributes Description: <ul style="list-style-type: none"> Removed 1x1 and 1x2 support in Bifurcation Select description, changed DMA to AXI-MM DMA, added AHB-L DMA information including availability to IP versions older than 3.0.0. Updated Selectable Values column for Data Interface Type, including availability to IP versions older than 3.0.0 and IP versions 3.0.0 and onwards. Changed Enable to <i>AXI DMA Support</i>, including availability to IP versions 3.0.0 and onwards, and updated Description and Parameter columns. Removed Manager (Data) Interface Type and Subordinate (Data Interface) Type rows. Updated DMA Support to update figure caption from Attributes in the DMA Support to Figure 3.2. Attributes in the AHB-L DMA Support Tab (supported in versions older than 3.0.0), updated table caption from DMA Support Attributes to Table 3.2. AHB-L DMA Support Attributes (supported in versions older than 3.0.0), and added Figure 3.3. Attributes in the AXI DMA Support Tab (supported in version 3.0.0 and onwards) and Table 3.3. AXI DMA Support Attributes (version 3.0.0 and onwards). Updated Table 3.4. RX TLP Destination Base Address Attributes to include information that AHB-Lite is available to IP versions older than 3.0.0.
Signal Description	<ul style="list-style-type: none"> Updated Table 4.1. Clock Ports to update Description field for clk_usr_ps90_i. Updated AHB-Lite Data Interface section content to add that this interface is supported in IP versions older than 3.0.0. Updated AXI-4 Stream Data Interface and DMA Interrupt Interface section content to add that this interface is supported in IP versions older than 3.0.0.
Register Description	<ul style="list-style-type: none"> Removed Receive Buffer section. Added All Other Registers section. Updated Table 5.263. MSI Capability to update AB-A8 register description to just Read/Write Bits[31:0] Message Address[63:32]. Updated Soft IP Configuration, Control and Status Registers section content to add information that these registers are supported in IP versions older than 3.0.0.

Section	Change Summary
Example Design	<ul style="list-style-type: none">Added Table 6.1. PCIe X4 IP Configuration Supported by the Example Design (version 3.0.0 and onwards).Updated table caption from Table 6.1 PCIe X4 IP Configuration Supported by the Example Design to Table 6.2. PCIe X4 IP Configuration Supported by the Example Design (versions older than 3.0.0).Updated the following including section name and content of AXI4-MM DMA Design in Example Design Components:<ul style="list-style-type: none">Updated Figure 6.2. Components within DMA Design.Added AXI4-MM DMA Design section.Updated section name from DMA Design to AHB-L DMA Design, updated figure caption from Components within DMA Design to Figure 6.4. Components within AHB-L DMA Design, added information that AHB-L DMA is supported in IP versions older than 3.0.0.Updated figure caption from DMA Design Data Flow to Figure 6.5. AHB-L DMA Design Data Flow.Removed Design Test Case Examples section.Updated Signals to Debug to add Simulation Debug for AXI4-MM DMA Design section and update section name from Simulation Debug for DMA Design to Simulation Debug for AHB-L DMA Design and add information that AHB-L DMA is supported in IP versions older than 3.0.0.Added information for IP version 3.0.0 and onwards and changed For IP version 2.2.0 to For IP versions older than 3.0.0 in Limitations of the Example Design.
Designing with the IP	<ul style="list-style-type: none">Updated Figure 7.2. IP Configuration.Updated the following in Running Functional Simulation:<ul style="list-style-type: none">Updated description to procedure to: <i>To run the functional simulation (AXI-MM DMA as example)</i>.Updated steps 3 to 9, including adding Figure 7.9. Project Naming to Figure 7.14. Expected Log Printing.Added <i>For the AXI4-MM DMA example design</i>. step.Updated DMA example design step to <i>For AHB-L DMA example design...</i> and added information that this is only supported in IP versions older than 3.0.0.Removed ModelSim support in <i>Simulation Run Completion</i> step.
Design Considerations	<ul style="list-style-type: none">Added AXI4-MM DMA Based Design section.Updated section name to AHB-L DMA Based Design and added information that AHB-L DMA is available in IP versions older than 3.0.0.Updated Non-DMA Based Design to update support information on AHBL and AXI-4 Stream steps.
Appendix A. Guide to Close Timing for Gen 3: (9-High-Perf_1.0 V) for AHB-L DMA and Non-DMA	Added this section back as this was removed in the previous version, updated section name, and added information that this is only available in versions older than 3.0.0.

Revision 1.5, April 2024

Section	Change Summary
All	Updated document name from PCIe X4 IP Core – Lattice Radiant Software to <i>PCIe X4 IP Core</i> .
Introduction	<ul style="list-style-type: none"> Updated Radiant tool version and PCIe IP core version in the Resource Utilization section. Updated Table 1.5. Lattice PCIe IP Core Resource Utilization to change values for LUT4 and PFU register for DMA and LUT4, PFU register, EBR for Non-DMA.

Revision 1.4, September 2023

Section	Change Summary
All	Revamped document structure for clarity by re-arranging sections and sub-sections.
Disclaimers	Updated this section.
Introduction	<ul style="list-style-type: none"> Revamped this section. Updated Features to add sub-sections. Moved Ordering Part Number to this section as sub-section and changed to table format. Added Licensing and Ordering Information, IP Validation Summary, Minimum Device Requirements, and Resource Utilization.
Functional Description	Revamped this section, including updating diagrams and tables.
IP Parameter Description	Added this section.
Signal Description	Converted subsection (previously under Functional Description) to a main section.
Register Description	Converted subsection (previously under Functional Description) to a main section.
Designing this IP	Changed name from IP Generation to <i>Designing this IP</i> and revamped this section.
Example Design	Added this section.
Debugging	Added this section.
Design Considerations	Added this section.
References	Added Rev 3.1 for PCI Express Base Specification.

Revision 1.3, July 2023

Section	Change Summary
All	Updated the title from <i>PCI X4 Core</i> to <i>PCI X4 IP Core</i> in this document.
Functional Description	<ul style="list-style-type: none"> Updated the below details in Table 2.22. UCFG Address Space: <ul style="list-style-type: none"> Replaced <i>Address 0x04</i> with <i>Address 0x01</i> in the description of Configuration Header. Replaced <i>Bit 3:0</i> and <i>Bit 9:4</i> with <i>19:16</i> and <i>25:20</i> in the description of PCI Express Capability.
Ordering Part Number	Converted Ordering Part Numbers information into Table 4.1. Ordering Part Numbers..
Reference	<p>Added below links in Reference section.</p> <ul style="list-style-type: none"> CertusPro-NX FPGA webpage Lattice MPCS Module User Guide CertusPro-NX SerDes/PCS User Guide Lattice Radiant Software FPGA webpage

Revision 1.2, April 2023

Section	Change Summary
Introduction	Added steps Only link0 is supported; X1, X2 and X4 mode are supported and Due to doubling of data width in AHBL intf, min data size of TLP mem_wr and rd to access descriptor table, status queue or user register/data space is 8B under Soft IP features in Features section.
Functional Description	<ul style="list-style-type: none"> Added Merging Between IPs and 125 MHz refclk Usage sections. Updated from 512b to 4KB in Table 2.8. Descriptor Entry Format. Added 5 – 5 Word (256b), if Link 0 is configured as 1x4 in Table 2.23. AHB-Lite Manager 0 Interface Port Descriptions, Table 2.24. AHB-Lite Manager 1 Interface Port Descriptions, and Table 2.25. AHB-Lite Subordinate Interface Port Descriptions.

Section	Change Summary
	<ul style="list-style-type: none"> Updated ahbl_max_burst transactions in ahbl_bus_config Register 0x44 section. Updated figures to correct rx and tc ports: <ul style="list-style-type: none"> Figure 2.1. Lattice PCIe X4 Core Block Diagram Figure 2.2. Lattice PCIe X4 Core Hard IP Figure 2.4. AHB-Lite Data Interface, APB Register Interface Figure 2.5. AHB-Lite Data Interface with DMA, APB Register Interface Figure 2.6. AXI4-Stream Data Interface, APB Register Interface Replaced Master with Leader and Slave with Follower in Table 2.1. LTSSM State Definitions, Table 2.22. UCFG Address Space, Table 2.37. Type 00 Configuration Registers, and mgmt_tlb (0x02000) section. Replaced Master with Initiator in DMA Support, Using the UCFG Interface, and dma_support_reg3 Register 0x18 sections. Replaced Master with Manager and Slave with Subordinate in Table 2.26. AHB-Lite Configuration Interface Port Descriptions, Table 2.33. GUI Attribute Descriptions, Table 2.35. Type 01 Configuration Header, Table 2.28. AXI4-Stream Manager Interface Port Descriptions, AXI4-Stream Subordinate Interface Port Descriptions, and AHB-Lite Data Interface sections. Replaced Slave with Target in Table 2.18. Lattice Memory Mapped interface (LMMI).
IP Generation	<ul style="list-style-type: none"> Updated figures as per latest pclex4 ver 2.2.0: <ul style="list-style-type: none"> Figure 3.1. Select PCIe Endpoint IP Figure 3.2. Configure Module/IP Block Wizard Figure 3.3. Lattice PCIe X4 Core Configuration GUI (General Tab) Figure 3.4. Lattice PCIe X4 Core Configuration GUI (Flow Control Tab) Figure 3.5. Lattice PCIe X4 Core Configuration GUI (Function 0 Tab) Figure 3.6. Check Generated IP Figure 3.7. Generated IP Core Directory Structure Figure 3.8. Generated IP Core Directory Structure Figure 3.9. Include eval_PCIE.v top Design Module Added Running Functional Simulation section.
Appendix B. Guide to Close Timing for Gen 3: (9-High-Perf_1.0V)	Under step 2.a, added content <pre>#for x2 : ldc_create_group -name PCIE_TX_RDY_GRP1 [get_cells {<top_level>/lsc_pcie_x4_inst/gen_ahbtop.u_pcie_x4x1_ahblapb_top/u_pcie_1_ to_2/gen_link0_fifo_152to76.u_shreg_pipe_76_tx/gen_no_usedtin.pipe*[*].ff_inst}] #for x1 : ldc_create_group -name PCIE_TX_RDY_GRP1 [get_cells {<top_level>/lsc_pcie_x4_inst/gen_ahbtop.u_pcie_x4x1_ahblapb_top/u_pcie_1_to _2/gen_link0_fifo_80to40.u_shreg_pipe_40_tx/gen_no_no_usedtin.pipe*[*].ff_inst}].</pre>
Appendix C. Known Issues	Added Appendix C section.

Revision 1.1, December 2022

Section	Change Summary
All	<ul style="list-style-type: none"> Updated to support Gen3. Updated format and styles.
Functional Description	<ul style="list-style-type: none"> Added Section 2.1.14 and Section 2.1.15. Updated Figure 2.4. AHB-Lite Data Interface, APB Register Interface, Figure 2.5. AHB-Lite Data Interface with DMA, APB Register Interface, and Figure 2.6. AXI4-Stream Data Interface, APB Register Interface. Added 125 MHZ in the description of refclkp_i and refclkn_i ports in Table 2.12. PHY Interface.
Ordering Part Number	Added Ordering Part Number section.
Appendix B. Guide to close timing for Gen 3: (9-High-Perf_1.0 V)	Updated step 2 and 4 in Appendix B section.

Revision 1.0, June 2022

Section	Change Summary
All	Initial release.

www.latticesemi.com