用低成本非易失可编程器件进行平台管理

莱迪思半导体公司 白皮书
2009年2月

Lattice Semiconductor
5555 Northeast Moore Ct.
Hillsboro, Oregon 97124 USA
Telephone: (503) 268-8000
www.latticesemi.com
引言

在电信基础设施、服务器和工业应用中，上电控制、通用I/O扩展、电压电平转换和接口桥接是常见的功能。系统设计人员正在转向他们的设计中使用可编程逻辑器件（PLD）来实现这些功能，由于可编程逻辑器件比ASIC和ASSP具有更快的产品上市时间和设计灵活的优势。设计人员用可编程逻辑器件进行设计就可以在短暂的时间内对不断变化的市场标准和要求作出反应。此外，通过用小尺寸的器件对离散逻辑元件进行整合，大大缩小了电路板的面积，因此设计人员采用可编程逻辑器件就能够降低整个系统的成本。

图1展示了在一个服务器中的典型管理应用平台。

图1 PLD在一个服务器中的典型应用
在这个例子中，平台管理器件是可编程逻辑器件，它与一个微控制器、ASSP、ASIC、LED和背板进行通信。经I2C或SPI接口并通过可编程逻辑器件，微控制器监测这个系统的状态。可编程逻辑器件通过LED和接口提供状态指示，或针对数据记录桥接存储器，或存储配置数据。通过LVDS I/O，可编程逻辑器件还与背板中的控制路径信号进行通信，此外还提供了一些至ASSP和ASIC器件的系统复位和上电信号。

以下是对这个应用的一种要求，并说明可编程逻辑器件是如何满足这些要求的。

瞬时启动
总线接口和控制逻辑功能必须在系统中其它器件上电之前就工作。这包括控制其它器件的以特定的时序上电，确保它们能够正常运行。嵌入式非易失存储使可编程逻辑器件能够在不到1毫秒上电，并实现这种‘瞬时启动’的功能。

3.3V电源电压
典型的平台管理可编程逻辑器件用辅助电源电压进行工作，因为这是第一个被供电，最后一个被关断的电压。对于许多系统辅助电压为3.3伏。用这个电压直接运行降低了支出，并避免了采用额外稳压器使元器件数量增加。

大量的I/O
由于电路板上器件数目的增加，提供了不同层次的系统功能，需要与这些器件之间接口的I/O数目也不断增加。可编程逻辑器件可用来监测和控制至多个器件的许多信号。此外，他们还可以与微控制器或ASSP一起使用，增加用户I/O的数量。

稳定的3.3V I/O和电平转换

设计人员需要连接系统内运行在不同电压范围的器件。例如，微控制器需要与外围器件接口，如ASSP、ASIC、存储器和运行在不同的电平的LED。电平转换器可用来执行这一功能。然而，比离散电平转换器便宜的可编程逻辑器件可与3.3V至1.2V不同的电压接口。在平台管理功能中，3.3V接口仍然是流行的，可编程逻辑器件不仅必须能够驱动和接收3.3V的信号，还必须很稳定，足以在噪声系统环境中工作。

![图2 采用可编程逻辑器件进行电平转换](image)

接口桥接和多种I/O功能

在一个系统内，与不同I/O接口的器件需要连接。例如，两种不同总线接口的连接，如I2C和SPI需要可编程器件承担桥接接口的任务。可编程逻辑器件可用于实现流行的接口，针对主处理器和外围设备之间的通信，如I2C总线控制器、I2C总线主控制器、SPI的总线控制器、UART、SRAM控制器和Compact Flash控制器，包括串行EEPROM和Compact Flash卡。可编程逻辑器件有单端I/O标准，如LVTTL、LVCMOS和和运行于3.3/2.5/1.8/1.2V的PCI，以及差分I/O标准，如需要与高速接口背板相接的LVDS。一些可编程逻辑器件还支持附加的模拟差分I/O的标准，如LVPECL、RSDS和BLVDS。

系统集成

为了满足客户对不断变化的特性和标准的要求，设计人员常常面临着支持高级功能的挑战，同时还要设法降低总的系统成本。分立器件会增加材料清单（BOM）中的元器件数目、降低板的可靠性，并增加系统总功率的预算。通过提供集成离散逻辑的功能，如I/O扩展器、电平和总线桥接转换器、电压调节器、时钟源和配置器件，使所有这些功能都在同一器件上，因此可编程逻辑器件拥有系统集成的优
点。可编程逻辑器件节省空间的封装，如TQFP和csBGA缩小了总的电路板的面积，降低了总的系统成本。

远程现场升级

对使用在现场的器件的逻辑进行更新的重要性不断增长，因为它使设计人员能够灵活地应对不断变化的标准、查找错误、对现有设备进行升级，并能尽量减少系统停机时间。一些可编程逻辑器件通过使用单芯片上Flash和SRAM技术来支持这种功能。器件的SRAM控制器的配置，同时以后台模式更新Flash。器件编程期间通常保持I/O的状态，以便实现无缝过渡，同时从SRAM至闪存更新逻辑。

图3 用可编程逻辑器件实现远程现场升级

可编程逻辑器件非常适合于平台管理

与ASIC和ASSP相比较，可编程逻辑器件提供了能使产品快速上市和设计灵活性的优点，使它们非常适合于平台管理的应用。ASIC需要高的非重复性工程（NRE）成本和很长的开发时间，如果他们的功能不正确，或者如果由于行业标准的变化或市场的需求，产品需要改变，则必须进行新的设计。这种重新设计导致很高的非重复性工程成本，其中包括工程资源，新的掩膜和软件。ASSP的非重复性工程成本较低，因为许多用户使用ASSP，但它们限制了设计人员使他们的产品在市场上呈现差异化的可能。

可编程逻辑器件使设计人员能够开发、测试和进行设计更改，而不会带来任何掩膜费用或设计费用。由于可编程逻辑器件可以重复编程，即使器件已经安装在现场，设计人员可以使用软件设计工具在最后一分钟改变设计和进行产品升级。

加速设计开发和样机试制时间
为了加速在设计中实施控制和接口桥接功能所需的开发时间，开发工具套件和参考
设计为设计人员提供了制作样机的途径，并用硬件实现设计。开发工具套件通常包
括拥有可编程逻辑器件及外围器件的评估板，如存储器、时钟源、编程电缆和设计
演示。参考设计为实际的设计提供了一个良好的起点。大多数参考设计的代码都是
用硬件描述语言的，其中包括可下载的信息，如文件、项目文件和源代码。参考设
计通常可以从可编程逻辑器件供应商的网站免费下载。

瞬时上电非易失性可编程逻辑器件的实例—MachXO可编程逻辑器件系列

如上所述，莱迪思的MachXO系列可编程逻辑器件非常适合于平台管理功能。低成
本嵌入式闪存处理技术与优化的查找表（LUT的）架构相结合，针对低密度应
用，瞬时启动、易于使用的MachXO器件是最通用的非易失性可编程逻辑器件。
Flash和SRAM在同一器件中相结合为远程现场升级，以及瞬时启动非易失工作提
供了明显的优势。上电后SRAM配置位加载到器件的非易失存储器，在上电后不到
1毫秒后立即运作。

表1展示了MachXO可编程逻辑器件系列的主要特点和优势。

<table>
<thead>
<tr>
<th>主要特点</th>
<th>优点</th>
</tr>
</thead>
<tbody>
<tr>
<td>瞬时启动、非易失性</td>
<td>上电不到1毫秒，系统启动期间能够精确控制</td>
</tr>
<tr>
<td>单3.3V核心电压</td>
<td>可运行于典型的3.3V辅助电压，无需稳压器</td>
</tr>
<tr>
<td>单芯片</td>
<td>无需外部配置存储器，降低了系统成本</td>
</tr>
<tr>
<td>小尺寸</td>
<td>节省面积的小尺寸cSPGA封装</td>
</tr>
<tr>
<td>嵌入式与分布式存储器</td>
<td>有效的节约成本的数据缓冲</td>
</tr>
<tr>
<td>内置PLL和振荡器</td>
<td>降低系统总成本的集成时钟管理</td>
</tr>
<tr>
<td>灵活的高性能I/O</td>
<td>与多种电压接口并能使关键功能加速</td>
</tr>
<tr>
<td>睡眠模式</td>
<td>待机功耗降低到<100uA</td>
</tr>
<tr>
<td>TransFR技术</td>
<td>能够进行远程现场升级，同时设备继续运行</td>
</tr>
</tbody>
</table>

表1 MachXO可编程逻辑器件的主要功能和优点

MachXO可编程逻辑器件有两种电源可供选择。较高的电压或“C”型器件支持
1.8、2.5和3.3V的Vcc。较低的电压或“E”型器件支持1.2V的Vcc。对于
这种器件的两种类型，Vccaux是3.3V辅助电源，它提供了更高的内部参考电压，
以优化器件的性能。Vccio用于普通用途的I/O分组，对应于不同的I/O标准，Vccio
是用户可选择的电压。
MachXO的“C”型可编程逻辑器件的运行可用单个3.3V的电压供电。MachXO可编程逻辑器件的核心供电电压（Vcc）是独立于I/O电压（Vccio）的。MachXO可编程逻辑器件的每个I/O分组可以配置成运行于需要与逻辑器件接口的独特电压。此外，I/O分组可与各种各样的标准接口，包括LVCMOS、LVTTL、BLVDS、LVPECL和PCI。

MachXO可编程逻辑器件有商业、工业和汽车等级，拥有256至2280个查找表（LUT），多达271个用户I/O，支持薄型四方扁平（TQFP封装），薄微间距BGA（fpBGA）和节省面积的100个到324个引脚的芯片级BGA（csBGA）封装。

用莱迪思的TransFRTM技术，MachXO可编程逻辑器件中的闪存可以在后台进行编程，同时器件继续工作。新的配置文件可以加载到SRAM逻辑，进行远程现场升级，并减少系统的停机时间。另外，切换MachXO可编程逻辑器件中的睡眠引脚（SLEEPN）的状态可用来加载一个新的配置文件到SRAM逻辑，而不必采用电源循环工作方法。在功耗敏感的应用中，睡眠引脚也是很有用的，能够控制关断电源或使器件处于休眠状态。若用睡眠引脚，MachXO可编程逻辑器件的静态功耗小于100微安。

图3 用MachXO可编程逻辑器件进行TransFR操作

MachXO迷你开发工具套件和参考设计

针对用MachXO可编程逻辑器件的评估和设计，MachXO迷你开发工具套件提供了一个易于使用的和低成本的平台。电路板配备MachXO可编程器件预编程的系统级芯片（迷你SOC）的演示设计，集成了多个莱迪思的参考设计，包括LatticeMico8（LM8）微控制器、Wishbone互连和针对SPI、SRAM和I2C接口的外设控制器。电路板的特点是有外围器件，如一个I2C连接的温度传感器、
一个可编程的SPI闪存和SRAM内存。可以用开关控制电路板，以及一个通过Windows或RS-232/USB连接的Linux终端程序菜单驱动接口。

图4 - MachXO迷你开发套件和评估板框图

一整套经优化的针对控制和接口桥接应用的流行参考设计可以免费从莱迪思网站下载。现有的参考设计包括支持流行的协议和连接标准，如I2C、SPI、UART和PCI。表2列出了针对MachXO可编程逻辑器件系列的参考设计清单。

<table>
<thead>
<tr>
<th>控制应用</th>
<th>连接应用</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDLC 控制器</td>
<td>PCI 主 32位-33MHz</td>
</tr>
<tr>
<td>LatticeMico8微控制器</td>
<td>针对串行EEPROM 的I2C总线控制器</td>
</tr>
<tr>
<td>SDRAM控制器</td>
<td>用WISHBONE总线接口的I2C总线主控制</td>
</tr>
<tr>
<td>BSCAN1 (多扫描端口寻址缓冲器)</td>
<td>I2C主控制</td>
</tr>
<tr>
<td>BSCAN2 (多扫描端口连接程序)</td>
<td>LatticeMico8 至 WISHBONE 接口适配器</td>
</tr>
<tr>
<td>Compact Flash存储器控制器</td>
<td>UART</td>
</tr>
<tr>
<td>快速页模式DRAM控制器</td>
<td>WISHBONE UART</td>
</tr>
<tr>
<td>LPC总线控制器</td>
<td>读与写用户码</td>
</tr>
<tr>
<td>SPI总线控制器</td>
<td>PCI 至 NOR Flash</td>
</tr>
<tr>
<td>SRAM控制器</td>
<td></td>
</tr>
</tbody>
</table>

表2 针对MachXO可编程器件系列的优化参考设计

根据不同的应用要求，可以对参考设计源代码，包括硬件描述语言、固件和设计工具进行修改。欲了解更多有关参考设计的信息，请访问www.latticesemi.com/ip

总结
对实现平台管理功能而言，瞬时启动、非易失性可编程逻辑器件是一个理想的选择，因为通过提供节约成本的、灵活的和单芯片解决方案，他们克服了ASIC和ASSP的局限性。MachXO可编程逻辑器件能够完美地实现这些功能，如上电控制、通用I/O扩展、电平转换和电信基础设施接口中的接口桥接、服务器和工业应用。它们提供了多种关键的系统集成的优点，最终降低了总系统成本。迷你MachXO开发工具套餐，以及免费下载的参考设计为设计人员提供了一个完整的和易于使用的低成本解决方案，从而使设计人员能够迅速和有效地启动他们的设计。

###