
Lattice Synthesis Engine Tutorial

October 2013

ii Lattice Synthesis Engine Tutorial

Copyright
Copyright © 2013 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device,
DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman,
iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD,
ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA,
ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager,
ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE,
sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for
Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are
either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best
Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

Lattice Synthesis Engine Tutorial iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv Lattice Synthesis Engine Tutorial

Lattice Synthesis Engine Tutorial v

Contents

Learning Objectives 1

Time to Complete This Tutorial 2

System Requirements 2

Accessing Online Help 2

About the Tutorial Design 2

Task 1: Specify LSE as the Synthesis Tool 2
Opening the Project 2
Specifying LSE 3

Task 2: Adjust the Design Code for LSE 3
Inferring RAM 3
Inferring I/O 4

Task 3: Add LSE Constraints 5

Task 4: Create an SDC File 6
Switching to the Modified top.v File 6
Creating an SDC File 7
Checking the Constraints 9

Task 5: Set Options for LSE 9

Task 6: Run Synthesis through the Main Window 10
Running Synthesis 10
Reading the Synthesis Report 10
Checking the Output Files of LSE 11

Task 7: Merge the .lpf Files 12

Summary of Accomplishments 13

Recommended References 13

CONTENTS

vi Lattice Synthesis Engine Tutorial

Lattice Synthesis Engine Tutorial 1

Lattice Synthesis Engine
Tutorial

This tutorial leads you through the basic steps for using Lattice Synthesis
Engine (LSE) as the synthesis tool including:

 Setting up Lattice Diamond™

 Adjusting design source files

 Running synthesis

 Finding the output files and preparing to work with them further

Before starting this tutorial, you should already be familiar with the basic
workflow of Diamond.

Learning Objectives
When you have completed this tutorial, you should be able to do the following:

 Specify LSE for a project.

 Optimize design code for LSE.

 Get information on LSE attributes and directives and add them to a design.

 Get information on Synopsys Design Constraints (SDC) and create an
SDC file for LSE.

 Get information on LSE options and set them in a strategy.

 Run synthesis with LSE using the Diamond main window and read the
resulting synthesis report.

 Find the output files of LSE including the timing report and the Verilog
netlist that LSE produces for post-synthesis simulation.

 Merge SDC constraints into the active Lattice preference (.lpf) file to be
used with the map and place-and-route stages of implementing a design.

LATTICE SYNTHESIS ENGINE TUTORIAL : Time to Complete This Tutorial

2 Lattice Synthesis Engine Tutorial

Time to Complete This Tutorial
The time to complete this tutorial is about 45 minutes.

System Requirements
The Lattice Diamond software is required to complete the tutorial.

Accessing Online Help
You can find online help information on any tool included in the tutorial at any
time by choosing Help > Lattice Diamond Help or by pressing F1.

About the Tutorial Design
The design in this tutorial is a simple Verilog design targeted to MachXO2™.
The design consists of a counter, using the EFB module from IPexpress™,
and RAM, using the distributed_SPRAM module. At regular intervals the
counter produces a signal that causes the RAM to write from the data port.

Two versions of the source file are available:

 top.v, the initial version that you start the tutorial with

 top_b.v, a version with all the modifications completed

You can study the modified version to see how the modifications should be
done or use the modified version instead of entering the modifications
yourself.

Task 1: Specify LSE as the Synthesis Tool
We’ll start by telling Diamond to use LSE as the synthesis tool for this project.
First we’ll need to open the project.

Opening the Project

To open the project:

1. If you haven’t already, start Diamond by doing one of the following:

 On Windows, choose Start > Programs > Lattice Diamond >

Lattice Diamond.

 On Linux, enter the following on a command line:

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 2: Adjust the Design Code for LSE

Lattice Synthesis Engine Tutorial 3

<diamond_install_path>/bin/lin/diamond

2. In Diamond, choose File > Open > Project.

The Open Project dialog box opens.

3. Browse to <install_path>/docs/tutorial/LSE_tutor.

4. Select LSE_tutor.ldf.

5. Click Open.

Specifying LSE

To specify LSE as the synthesis tool:

1. Choose Project > Active Implementation > Select Synthesis Tool.

The Project Properties dialog box opens with the active implementation
selected.

2. In the dialog box, double-click the Synthesis Tool row in the Value column.

A menu drops down.

3. Choose Lattice LSE.

4. Click OK.

Task 2: Adjust the Design Code for LSE
You may want to adjust the design source code to get the best results with
LSE. In this design, there is a block of RAM that we want LSE to infer rather
than using an IPexpress module. We also want to check that I/O will be
inferred. If the design were in VHDL, we would also make some other checks
of the code because LSE applies the VHDL specification more strictly than
some other synthesis tools.

For more information, open the online Help and see Entering the Design >
HDL Design Entry > Coding Tips for Lattice Synthesis Engine (LSE).

Inferring RAM

To infer the RAM:

1. Open the File List view. By default this is on the left side of the main
window. If the File List view is not open, choose View > Show Views >
File List.

2. In the File List view, look under Base > Input Files. “Base” is the active
(and only) implementation of the design. Double-click source/top.v.

Source Editor opens showing the Verilog source code for the design.

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 2: Adjust the Design Code for LSE

4 Lattice Synthesis Engine Tutorial

3. Place the cursor at the bottom of the file, below the endmodule statement.

4. Add the code in Figure 1 at the end of the file. (You can copy and paste
from the PDF file.)

This code defines a simple, single-port RAM block in a way that LSE can
recognize. The comments point out the keys to making the RAM
recognizable:

 Defined as an indexed memory array.

 Controlled with a clock edge.

 Controlled with a write enable.

5. Choose File > Save top.v.

6. In the File List view, under Input Files, right-click
source/RAM_single_port/RAM_single_port.ipx.

A drop-down menu appears.

7. From the drop-down menu, choose Exclude from Implementation.

The selected file is grayed out. This prevents the RAM module created
with IPexpress from being used. The file can be restored later by
right-clicking it and choosing Include in Implementation.

Inferring I/O

To infer I/O:

1. In Source Editor, find the beginning of the I/O definitions. Look for the
following comment, near the beginning of the code:

// Define bidirectional port for data.

Figure 1: Simple, Single-Port RAM in Verilog

// RAM that can be inferred by LSE.
module RAM_single_port (Address, Data, Clock, WE, ClockEn, Q);

parameter addr_width = 5;
parameter data_width = 8;
input [addr_width-1:0] Address;
input [data_width-1:0] Data, Q;
input WE, Clock, ClockEn;
reg [data_width-1:0] mem [(1<<addr_width)-1:0];
// Define RAM as an indexed memory array.

always @(posedge Clock) // Control with a clock edge.
begin
if (ClockEn)

if (WE) // And control with a write enable.
mem[(Address)] <= Data;

end
assign Q = mem[Address];

endmodule

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 3: Add LSE Constraints

Lattice Synthesis Engine Tutorial 5

2. If the online Help is not already open, choose Help > Lattice Diamond
Help.

3. In the online Help, go to Entering the Design > HDL Design Entry >
Coding Tips for Lattice Synthesis Engine (LSE) > Inferring I/O.

4. In the “Inferring I/O” topic, click Verilog.

The Verilog section expands showing models for different kinds of ports.

5. Compare the bidirectional port definition in top.v to the model in the Help.
Does the definition in top.v need to be changed to be inferred by LSE?

No. The port is good as it is.

Task 3: Add LSE Constraints
While the source file is open we can also add some constraints to control the
LSE synthesis process. We’ll set constraints in the source code for the
following purposes:

 Make sure the global set/reset (GSR) signal can be used.

 Force the RAM block to use the device’s RAM instead of programmable
function units (PFU).

For more information about these and other LSE constraints, open the online
Help and see Constraints Reference Guide > Lattice Synthesis Engine (LSE)
Constraints > HDL Attributes and Directives.

To add LSE constraints:

1. Find the line starting with “module top.” It’s near the start of the file.

2. Place the cursor just before the semi-colon (;) at the end of the line and
type in a space and the following:

/* synthesis GSR=“ENABLED” */

The result should look like:

module top (addr, data, clk, clock_en, read_en)
/* synthesis GSR=“ENABLED” */;

This constraint enables GSR for the whole top module.

3. Choose File > Save top.v.

4. In Source Editor, find the lines that instantiate the RAM:

// Instantiate RAM.
RAM_single_port memory (.Address(addr), .Data(data_in), .Clock(clk),

.WE(read_write), .ClockEn(clock_en), .Q(data_out));

5. Place the cursor just before the semi-colon (;) at the end of the line and
type in a return and the following:

/* synthesis syn_ramstyle=”block_ram” */

The result should look like:

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 4: Create an SDC File

6 Lattice Synthesis Engine Tutorial

// Instantiate RAM.
RAM_single_port memory (.Address(addr), .Data(data_in), .Clock(clk),

.WE(read_write), .ClockEn(clock_en), .Q(data_out))
/* synthesis syn_ramstyle=”block_ram” */;

This constraint forces this instance of the RAM to use the device’s
dedicated RAM resources.

6. Choose File > Save top.v.

7. Close Source Editor by clicking the red box in its tab.

Task 4: Create an SDC File
A Synopsys Design Constraint (SDC) file can be used to supply timing
constraints used in the static timing analysis. Also, these constraints drive
optimization of the design if LSE’s Optimization Goal is set for timing (as it will
be in the next task). After synthesis, the SDC constraints become preferences
added to the Lattice preference (.lpf) file. So they’ll be available to the map
and place-and-route stages too.

We’ll add constraints so that static timing analysis assumes:

 A clock signal with our desired frequency of 250 MHz (a period of 4.0 ns)

 Input signals reach the device after a delay of 1.2 ns

 Output signals reach other components on the board after a delay of
1.2 ns

The clock signal will be applied to the design’s CLK port. The delays will be
relative to the CLK signal. The input and output delays model the interface of
the device with other components on the board. We could apply different
delays to different signals, but to start we’ll just apply the same value to them
all.

For more information about these and other SDC constraints, open the online
Help and see Constraints Reference Guide > Lattice Synthesis Engine (LSE)
Constraints > Synopsys Design Constraints (SDC).

Switching to the Modified top.v File
If you have worked through all of the preceding tasks, your top.v file is ready
to compile, which is required for this task. If you have not, there is another file
that already has the modifications made.

To use the already modified file:

1. In the File List view, right-click source/top.v.

2. In the drop-down menu, choose Open Containing Folder.

A window opens showing the contents of
<install_path>/docs/tutorial/LSE_tutor/source.

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 4: Create an SDC File

Lattice Synthesis Engine Tutorial 7

3. Rename top.v as top_a.v.

4. Rename top_b.v as top.v.

Creating an SDC File
An SDC file is a text file and can be created with any text editor including
Diamond’s Source Editor, which includes templates for all supported
constraints. However, when using LSE, the preferred tool is Diamond’s LDC
Editor, which this procedure demonstrates.

With LDC Editor you don’t have to know the syntax for the constraints.
Instead, you specify the kind of constraint and parameter values in a
spreadsheet format with each row representing one constraint. In most cases,
values are chosen from drop-down menus. However, you still need to be
familiar with the kind of constraints available and the functions of the
parameters.

To open a new .ldc file:

1. Choose File > New > File.

The New File dialog box opens.

2. In the Source Files box, select LDC Files.

3. Enter a base name for the new file, such as timing. Do not add an
extension. That’s included automatically.

The rest of the fields are good as they are so don’t change them. They
specify that the new .ldc file be placed in the project folder and be part of
the active implementation.

4. Click New.

LDC Editor opens with an empty timing.ldc file. Also, in the File List view,
the .ldc file is added to the list of Synthesis Constraint Files for the Base
implementation.

As LDC Editor opens it runs a preliminary compile of the design. This is
not synthesizing the design but creating a netlist for use in the editor. With
the tutorial’s design, compiling takes a few seconds. For a large design,
compiling would take several minutes.

To specify a clock signal:

1. Click the Clocks tab.

Use the Clocks tab for the create_clock constraint.

2. Double-click in the cell under Source.

Note

SDC files that are intended for LSE are called “LDC” files in Diamond and use an .ldc
filename extension. This is to clearly identify them from the .sdc files created for other
tools such as Synplify Pro.

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 4: Create an SDC File

8 Lattice Synthesis Engine Tutorial

3. In the drop-down menu, choose clk.

4. Click in the Clock Name column and type a name for the clock signal,
such as Clock.

5. Click in the Period(ns) column and type 4.

To specify delays for input signals:

1. Click the Inputs/Outputs tab.

Use the Inputs/Outputs tab for the set_input_delay and set_output_delay
constraints.

The Delay Paths tab is for the set_max_delay, set_multicycle_path, and
set_false_path constraints. But we will not be using them in this tutorial.

2. Double-click in the Port column.

The Port cell changes to a drop-down menu.

3. Choose [all_inputs].

“Input” appears in the Type column.

4. Double-click in the Clock column.

The Clock cell changes to a drop-down menu.

5. Choose clk.

6. Click in the Value(ns) column and type 1.2.

To specify delays for output signals:

1. In the next row of the Inputs/Outputs tab, double-click in the Port column.

The Port cell changes to a drop-down menu.

2. Choose [all_outputs].

A warning icon appears in the Port cell and “Input” appears in the Type
column.

3. Double-click in the Type column.

The Type cell changes to a drop-down menu.

4. Choose Output and then click anywhere.

The warning icon disappears.

5. Double-click in the Clock column.

The Clock cell changes to a drop-down menu.

6. Choose clk.

7. Click in the Value(ns) column and type 1.2.

8. Choose File > Save timing.ldc.

9. Close LDC Editor by clicking the red box in its tab.

In the drop-down menu, the file name is in bold text to indicate that the file is
active and will be used when synthesis is run.

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 5: Set Options for LSE

Lattice Synthesis Engine Tutorial 9

Checking the Constraints
After creating the .ldc file, you can see, and modify, the actual constraint
statements using Source Editor or any other text editor.

To check the constraint code:

1. In the File List view, right-click timing.ldc.

2. In the drop-down menu, choose Open With.

3. In the Open With dialog box, select Source Editor.

LDC files can also be created with Source Editor or any text editor. You
can change the default editor for .ldc files in this dialog box. For now we’ll
leave the default alone and just take a look at the code that LDC Editor
created.

4. Click OK.

Source Editor opens with the timing.ldc file.

5. You should see the following:

create_clock -period 4.000000 -name Clock [get_ports clk]
set_input_delay 1.200000 -clock [get_ports clk] [all_inputs]
set_output_delay 1.200000 -clock [get_ports clk] [all_outputs]

If you don’t, you can modify the code in Source Editor.

6. Close Source Editor by clicking the red box in its tab.

Task 5: Set Options for LSE
One of the things to do before running synthesis is to set options for the
synthesis tool. Usually the default settings are good, at least to start. So we’ll
change just a few options to set:

 Optimization efforts that focus on timing goals

 Producing a logical preference file based on the SDC file

For more information about these and other strategy options for LSE, open
the online Help and see Strategy Reference Guide > LSE Options. Also, for
information on optimizing a strategy for area or timing, see Implementing the
Design > Synthesizing the Design > Optimizing LSE for Area and Speed.

To set LSE options:

1. Choose Project > Active Strategy > LSE Settings.

The Strategies dialog box opens showing the list of LSE options.

2. Select Optimization Goal.

At the bottom of the dialog box a brief description of the option appears.

3. Press F1 to open the help with a longer description of the option (and all
the other options as well).

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 6: Run Synthesis through the Main Window

10 Lattice Synthesis Engine Tutorial

4. Double-click in the Value column.

The Value cell changes to a drop-down menu.

5. Choose Timing.

6. Select Output Preference File and double-click in the Value column.

The Value cell changes to a drop-down menu.

7. Choose True.

8. Click OK.

Task 6: Run Synthesis through the Main Window
At this point you are ready to run synthesis with LSE. Afterward we’ll examine
the LSE report and merge LSE’s .lpf file into the project’s .lpf file.

Running Synthesis

To run synthesis:

1. Go to the Process view in Diamond. By default this is on the left side of the
main window. If the Process view is not open, choose View > Show
Views > Process.

2. Notice that under Synthesize Design it says “Lattice Synthesis Engine”
and that the Translate Design stage is gone. LSE combines the synthesis
and translate stages.

3. Double-click Synthesize Design.

4. When synthesis completes, check the Error and Warning tabs of the
Output view. You may have warnings but there should be no errors.

Reading the Synthesis Report

To read the synthesis report:

1. If the Reports view is not already open, choose View > Reports.

2. In the Reports view, click Lattice LSE. (It’s under Process Reports.)

The “Synthesis and Ngdbuild Report” appears.

3. Double-click Lattice LSE to expand the hierarchy tree. These are
actually links to different sections of the report.

We’ll skip the “Synthesis Options” section, which details the target device
and the synthesis options.

4. Click Compile Design.

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 6: Run Synthesis through the Main Window

Lattice Synthesis Engine Tutorial 11

The display jumps down to the “Compile Design” section, which
summarizes the steps taken while synthesizing the design including
output file names. This section also includes the area and clock reports.

5. Scroll down to the “Area Report” section. Check how the design will use
the device resources. This is just a top-level summary. A more detailed
report is also available in the implementation folder. It’s described in the
next section.

6. Scroll down to the “Clock Report” section. See how it details the clock
nets. You can also see how heavily loaded are the nets with the highest
fanout.

7. Go to the “Timing Report Summary” section of the report. This section
summarizes how well the synthesized design meets the timing
constraints.

For more details, see the full timing report: top_lse.twr in the Base
implementation folder. To access the report, see the next section.

Checking the Output Files of LSE
You can take a closer look at the files produced by LSE if you go to the
implementation folder:

1. In the File List view, right-click Base.

2. In the drop-down menu, choose Open Containing Folder.

A window opens showing the contents of
<install_path>/docs/tutorial/LSE_tutor/Base.

This folder holds the files specifically associated with the Base
implementation. The files produced by running LSE include:

 automake.log, a record of messages from LSE as it was running; the
same information that is in the Output view

 LSE_tutor_Base.arearep, the area, or resources, report that is
summarized in the synthesis report

 LSE_tutor_Base.lpf, the Lattice preference (.lpf) file based on the .ldc file

 LSE_tutor_Base.lsedata, lists of pins and nets for each module

 LSE_tutor_Base.ngd, the native generic database that will be used by the
Map Design stage of implementing the design

 LSE_tutor_Base_lattice.synproj, the arguments used by the
synthesis -f command, which runs LSE

 synthesis.log, a record of messages from LSE as it was running; basically
the same information that is in the synthesis report

 synthesis_lse.html, the synthesis report

 top_drc.log, results of the design rule check, which are also shown in the
Output view

 top_for_lpf.sdc, an .sdc file based on the .ldc file

LATTICE SYNTHESIS ENGINE TUTORIAL : Task 7: Merge the .lpf Files

12 Lattice Synthesis Engine Tutorial

 top_lse.twr, the timing report that is summarized in the synthesis report

 top_prim.v, the Verilog netlist that can be used by a simulator

Four files are of special interest.

Open LSE_tutor_Base.arearep with a text editor. You will see many more
details on how the synthesized design uses the device’s resources. Besides
resources used by the total design, the report also shows resources used by
each module.

Open top_lse.twr with a text editor. You will see many more details on how
well the synthesized design meets the timing constraints.

Open top_prim.v with a text editor or a Verilog simulator. You will see how the
design was expanded and implemented by LSE. The <top_module>_prim.v
file produced by LSE can be used in a simulator to further test the synthesized
design before going on with the rest of the implementation process.

For using LSE_tutor_Base.lpf, go to the next task.

Task 7: Merge the .lpf Files
LSE produces a Lattice preference (.lpf) file based on the .ldc file. This .lpf file
has preferences equivalent to the .ldc file’s constraints. If these preferences
are added to the active .lpf, created while developing the design, they will also
affect the map and place-and-route stages of design implementation.

The file created by LSE can be recognized by the form of its file name:
<project>_<implementation>_lse.lpf.

You can use any text editor to modify the .lpf file, but the following procedure
uses Diamond’s Source Editor.

To merge LSE’s .lpf into the active .lpf:

1. Go to the File List view.

2. Under Base > LPF Constraint Files, double-click LSE_tutor.lpf.

Source Editor opens with the .lpf file. This is a previously created .lpf file.
The first two lines with BLOCK preferences were added by default. The
third line was added manually.

3. In the main window, choose File > Open > File.

4. In the Open File dialog box, in the “Files of type” drop-down menu at the
bottom, choose Preference Files.

5. Browse to the Base implementation folder and select
LSE_tutor_Base.lpf.

6. Click Open.

Source Editor opens a second view with the .lpf file. This is the .lpf created
by LSE. Besides the preferences based on the SDC constraints, the .lpf

LATTICE SYNTHESIS ENGINE TUTORIAL : Summary of Accomplishments

Lattice Synthesis Engine Tutorial 13

file automatically includes the same BLOCK preferences seen in the
active .lpf.

7. Choose Window > Split Tab Group.

The tools area of the main window splits into two groups. You should have
LSE_tutor.lpf on one side and LSE_tutor_Base.lpf on the other side. If
they are both on the same side, select the tab of one and drag it to the
other side.

8. In LSE_tutor_Base.lpf, select everything from line 3 down. This is
everything except the first two BLOCK preferences.

9. Press Ctrl-c to copy the selected preferences.

10. Go to LSE_tutor.lpf and place the cursor at the bottom of the file, in a
blank line beneath all the text.

11. Press Ctrl-v to paste in the new preferences.

12. Save the LSE_tutor.lpf file and close both files.

Summary of Accomplishments
You have completed the Lattice Synthesis Engine Tutorial tutorial. In this
tutorial, you have learned how to:

 Specify LSE for a project

 Adjust the design code for LSE

 Set constraints for LSE

 Adjust LSE options in a strategy

 Run synthesis with LSE using the Diamond main window

 Find the output files of LSE

 Merge the .lpf files

Recommended References
You can find additional information on the subjects covered by this tutorial in
the online Help:

 Managing Projects > Setting Options for Synthesis and Simulation

 Strategy Reference Guide > LSE Options

 Entering the Design > HDL Design Entry > Coding Tips for Lattice
Synthesis Engine (LSE)

Note

If the active .lpf file already has preferences from a previous run of LSE, paste the
new preferences over the old version. Do not create multiple copies of the same
preferences.

LATTICE SYNTHESIS ENGINE TUTORIAL : Recommended References

14 Lattice Synthesis Engine Tutorial

 Constraints Reference Guide > Lattice Synthesis Engine (LSE)
Constraints

 Implementing the Design > Synthesizing the Design

	Learning Objectives
	Time to Complete This Tutorial
	System Requirements
	Accessing Online Help
	About the Tutorial Design
	Task 1: Specify LSE as the Synthesis Tool
	Opening the Project
	Specifying LSE

	Task 2: Adjust the Design Code for LSE
	Inferring RAM
	Inferring I/O

	Task 3: Add LSE Constraints
	Task 4: Create an SDC File
	Switching to the Modified top.v File
	Creating an SDC File
	Checking the Constraints

	Task 5: Set Options for LSE
	Task 6: Run Synthesis through the Main Window
	Running Synthesis
	Reading the Synthesis Report
	Checking the Output Files of LSE

	Task 7: Merge the .lpf Files
	Summary of Accomplishments
	Recommended References

