ECP5™ and ECP5-5G FPGA Families

Low-Cost, Low-Power, Small Form Factor

Designers of equipment for many emerging high volume applications are blending FPGAs with ASICs and ASSPs to rapidly build flexible systems that meet tight cost, power and form factor constraints. In developing the ECP5™ FPGA family, Lattice breaks the rule that all FPGAs should be big, power hungry, and expensive. With a focus on compact, high volume applications, Lattice optimized the ECP5 architecture for low cost, small form factor and low power consumption. These characteristics make the ECP5/ECP5-5G devices ideal for delivering programmable connectivity solutions to complement ASICs and ASSPs.

Key Features and Benefits

- **Cost Optimized Architecture**
 - Focused on providing best value below 100K LUTs.
 - Smart ball depopulation simplifies package integration with existing PCB technology.
 - Double Data Rate capability improves DSP block utilization.

- **Small Packages with High Functional Density**
 - 85K LUTs in 10x10 mm, 0.5 mm pitch package with SERDES.

- **Low Power Consumption**
 - Single channel SERDES functions below 0.25W.
 - Quad channel SERDES functions below 0.5W.

Product Family Overview

With up to 85K LUTs, 3.7Mbits embedded memory, 156 sysDSP blocks with DDR support, four 3.2Gbps/5Gbps SERDES channels and 365 user IO, the ECP5/ECP5-5G devices provide a low-cost solution that meets the common connectivity requirements for complementing ASICs and ASSPs. A broad range of interface standards are supported including DDR3, LPDDR3, XGMII and 7:1 LVDS, PCI Express, Ethernet (XAUI, Gbe, SGMII) and CPRI. The devices are offered in multiple package options, and also include support for encryption and dual boot capabilities. Smart depopulation of balls simplifies PCB board routing and reduces cost by utilizing fewer layers. Low power enhancements include stand-by mode operation of the individual blocks including SERDES, dynamic IO bank controllers and reduced operating voltage. The ECP5 family is supported by the Lattice Diamond™ design software, the leading-edge design and implementation tool optimized for cost sensitive, low-power Lattice FPGA architectures.
End Market Application Examples

- **Low-Cost Connectivity for Small Cell Wireless Base Stations**
 - Flexible interfacing options to Digital Front End (DFE) including CPRI, ORI and compressed CPRI.
 - DFE augment processing for pico cells such as multi-carrier DUC/DDC and CFR.
 - Flexible interfacing options to analog front end including LVDS, JESD207, and JESD204B.

- **Low-Power Integration for Industrial Video Cameras**
 - Direct interfacing capability with single or multiple image sensors (MIPI CSI-2, sub-LVDS, HiSPI, Parallel).
 - High-performance Wide Dynamic Range (WDR) and Image Signal Processing capabilities supported by Embedded Block RAM (EBR), and embedded DSP blocks.
 - Flexible video interfacing options including integrated high-speed SERDES channels, LVDS, PCIe, and GigE.

- **Small Form Factor Solution for Smart SFPs**
 - Smart SFP solution with integrated Operation and Maintenance (OAM) for remote control.
 - ECP5/ECP5-5G in a 10x10 package enables small form factor solution for optical modules.
 - SERDES and triple speed MAC for low-cost, low-power connectivity.

- **Automotive Infotainment Solution**
 - Flexibility driving single or multiple displays for dashboard, instrument cluster displays and rear-seat entertainment applications.
 - High-speed SERDES channels provide video interfaces to Open LDI, LVDS FPD-Link, eDP, PCIe, and GigE.
 - Control peripheral functions and power sequencing of displays using GPIO.

Table: Device Specifications

<table>
<thead>
<tr>
<th>Device</th>
<th>LFE5UM-25</th>
<th>LFE5UM2G-25</th>
<th>LFE5UM-45</th>
<th>LFE5UM2G-45</th>
<th>LFE5UM-85</th>
<th>LFE5UM2G-85</th>
<th>LAE5UM-25</th>
<th>LAE5UM-45*</th>
<th>LFE5U-25</th>
<th>LFE5U-45</th>
<th>LFE5U-85</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTs (K)</td>
<td>24</td>
<td>44</td>
<td>84</td>
<td>12</td>
<td>24</td>
<td>44</td>
<td>84</td>
<td>108</td>
<td>208</td>
<td>108</td>
<td>208</td>
</tr>
<tr>
<td>sysMEM Blocks (16 Kbits)</td>
<td>56</td>
<td>108</td>
<td>208</td>
<td>32</td>
<td>56</td>
<td>108</td>
<td>208</td>
<td>108</td>
<td>208</td>
<td>108</td>
<td>208</td>
</tr>
<tr>
<td>Embedded Memory (Kbits)</td>
<td>1,008</td>
<td>1,944</td>
<td>3,744</td>
<td>3,744</td>
<td>1,008</td>
<td>1,944</td>
<td>3,744</td>
<td>1,944</td>
<td>3,744</td>
<td>1,944</td>
<td>3,744</td>
</tr>
<tr>
<td>Distributed RAM Bits (Kbits)</td>
<td>194</td>
<td>351</td>
<td>669</td>
<td>97</td>
<td>194</td>
<td>351</td>
<td>669</td>
<td>351</td>
<td>669</td>
<td>351</td>
<td>669</td>
</tr>
<tr>
<td>18x18 Multipliers</td>
<td>28</td>
<td>72</td>
<td>156</td>
<td>28</td>
<td>28</td>
<td>72</td>
<td>156</td>
<td>72</td>
<td>156</td>
<td>72</td>
<td>156</td>
</tr>
<tr>
<td>SERDES (Dual/Channel)</td>
<td>1/2</td>
<td>2/4</td>
<td>2/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Packages and SERDES Channels/I/O Combinations

285 csfBGA (10x10 mm, 0.5 mm) 2/118 2/118 2/118 0/118 0/118 0/118 0/118
256 caBGA (14x14 mm, 0.8 mm) 0/197 0/197 0/197 0/197 0/197 0/197 0/197
381 caBGA (17x17 mm, 0.8 mm) 2/197* 4/203* 4/205 0/197* 0/197 0/203 0/205
554 caBGA (23x23 mm, 0.8 mm) 4/245 4/259 0/245 0/259 0/245 0/259 0/259
756 caBGA (27x27 mm, 0.8 mm) 4/365 0/365 0/365 0/365 0/365 0/365 0/365

* Automotive grade.

Diagrams

- **ECP5/ECP5-5G FPGA**
- **Low-Cost Connectivity for Small Cell Wireless Base Stations**
- **Low-Power Integration for Industrial Video Cameras**
- **Small Form Factor Solution for Smart SFPs**
- **Automotive Infotainment Solution**

Applications Support

www.latticesemi.com/support

Copyright © 2017 Lattice Semiconductor Corporation. Lattice Semiconductor, L (stylized) Lattice Semiconductor Corp., and Lattice (design), ECP5™, and Lattice Diamond™ are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

March 2018
Order #: I0242 - Rev E