Contents
1. Introduction .. 3
2. Single Port RAM Primitives ... 3
 2.1. User Primitive SB_SPRAM256KA ... 3
 2.2. SPRAM Port Definitions and GUI Options ... 4
3. Power Save States for SPRAM ... 6
 3.1. Normal State .. 6
 3.2. Standby State .. 6
 3.3. Sleep State ... 6
 3.4. Power Off State ... 6
4. Use Cases for User Primitive SB_SPRAM256KA .. 7
 4.1. Instantiating Memories .. 7
 4.2. Inferring Memories ... 7
 4.3. Output Pipeline Registers ... 7
 4.4. Cascading Memories .. 8
 4.4.1. Address Cascading (or Depth Cascading) ... 8
 4.4.2. Data Cascading (or Width Cascading) .. 9
Technical Support Assistance ... 10
Revision History .. 11

Figures
Figure 2.1. SB_SPRAM256KA SPRAM Primitive ... 3
Figure 4.1. Address/Depth Cascading Example for 32K x 16 SPRAM using Primitive 8
Figure 4.2. Data/Width Cascading Example for 16K x 32 SPRAM using Primitive ... 9

Tables
Table 2.1. SB_SPRAM256KA RAM Port Definitions .. 4
1. Introduction
The Lattice Semiconductor iCE40™ family of ultra-low power FPGAs features Single Port RAM (SPRAM). This document provides guidance to software engineers on integrating the SPRAM using iCEcube2 software. The iCE40 family has four 256 kb memory blocks available, that is total 1024 kb of Single Port memory.

2. Single Port RAM Primitives
The iCE40 devices offer four embedded memory blocks of SPRAM. Each of these blocks can be configured only in 16K x 16 mode. Depending on design requirements, a wrapper is created that instantiates the primitive and connects the ports. These RAM blocks can be cascaded to create larger memories, see the Cascading Memories section.

2.1. User Primitive SB_SPRAM256KA
Each of the four 256 kb blocks of RAM is configured in 16K x 16 Single Port RAM. Figure 2.1 shows the block diagram of the primitive for the 16K x 16 SPRAM block – SB_SPRAM256KA.
2.2. SPRAM Port Definitions and GUI Options

Table 2.1 shows the port definitions and the GUI options for the SPRAM.

Table 2.1. SB_SPRAM256KA RAM Port Definitions

<table>
<thead>
<tr>
<th>User Primitive Port Name</th>
<th>Test Primitive Port Name</th>
<th>Primitive Port Width</th>
<th>HW Port Name</th>
<th>HW Port Width</th>
<th>Pin Name</th>
<th>Default Value</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>-</td>
<td>[13:0]</td>
<td>ADR</td>
<td>[13:0]</td>
<td>Address Input</td>
<td>14b'0000000000000000</td>
<td>This Address Input port is used to address the location to be written during the write cycle and read during the read cycle.</td>
<td>-</td>
</tr>
<tr>
<td>DATAIN</td>
<td>-</td>
<td>[15:0]</td>
<td>D</td>
<td>[15:0]</td>
<td>Data Input</td>
<td>16b'00000000000000000</td>
<td>The Data Input bus is used to write the data into the memory location specified by Address input port during the write cycle.</td>
<td>-</td>
</tr>
<tr>
<td>MASKWREN</td>
<td>-</td>
<td>[3:0]</td>
<td>WEM</td>
<td>[15:0]</td>
<td>Maskable Write Enable</td>
<td>4b'1111</td>
<td>It includes the Bit Write feature where selective write to individual I/Os can be done using the Maskable WriteEnable signals. When the memory is in write cycle, one can write selectively on some I/Os.</td>
<td>1, 2</td>
</tr>
<tr>
<td>WREN</td>
<td>-</td>
<td>[0:0]</td>
<td>WE</td>
<td>[0:0]</td>
<td>Write Enable Input</td>
<td>1b'0</td>
<td>When the Write Enable input is Logic High, the memory is in the write cycle. When the Write Enable input is Logic Low, the memory is in the read cycle.</td>
<td>-</td>
</tr>
<tr>
<td>CHIPSELECT</td>
<td>-</td>
<td>[0:0]</td>
<td>ME</td>
<td>[0:0]</td>
<td>Memory enable input</td>
<td>1b'0</td>
<td>When the memory enable input is Logic High, the memory is enabled and read/write operations can be performed. When memory enable input is logic Low, the memory is deactivated.</td>
<td>-</td>
</tr>
<tr>
<td>CLOCK</td>
<td>-</td>
<td>[0:0]</td>
<td>CLK</td>
<td>[0:0]</td>
<td>Clock Input</td>
<td>-</td>
<td>This is the external clock for the memory.</td>
<td>-</td>
</tr>
<tr>
<td>STANDBY</td>
<td>-</td>
<td>[0:0]</td>
<td>LS</td>
<td>[0:0]</td>
<td>Light Sleep Input</td>
<td>1b'0</td>
<td>When this pin is active then memory goes into low leakage mode, there is no change in the output state.</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2.1. SB_SPRAM256KA RAM Port Definitions (Continued)

<table>
<thead>
<tr>
<th>User Primitive Port Name</th>
<th>Test Primitive Port Name</th>
<th>Primitive Port Width</th>
<th>HW Port Name</th>
<th>HW Port Width</th>
<th>Pin Name</th>
<th>Default Value</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEEP</td>
<td>—</td>
<td>[0:0]</td>
<td>DS</td>
<td>[0:0]</td>
<td>Deep Sleep Input</td>
<td>1b’0</td>
<td>This pin shuts down power to periphery and maintains memory contents. The outputs of the memory are pulled low.</td>
<td>3</td>
</tr>
<tr>
<td>POWEROFF</td>
<td>—</td>
<td>[0:0]</td>
<td>—</td>
<td>[0:0]</td>
<td>Power Off Input</td>
<td>1b’1</td>
<td>This pin turns off the power to the memory core. Note that there is no memory data retention when this is driven low.</td>
<td>4</td>
</tr>
<tr>
<td>DATAOUT</td>
<td>—</td>
<td>[15:0]</td>
<td>Q</td>
<td>[15:0]</td>
<td>Data Output bus</td>
<td>—</td>
<td>This pin outputs the contents of the memory location addressed by the address input signals.</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:

1. MASKWREN includes the nibble write masks for the DATAIN.
 The hardware port, WEM allows write mask for individual bits of DATAIN.
 For external user primitive level, this mask is available for each nibble (4-bits). Thus the MASKWREN has to map to WEM as follows:

 MASKWREN(3) => WEM(15)
 MASKWREN(3) => WEM(14)
 MASKWREN(3) => WEM(13)
 MASKWREN(3) => WEM(12)
 MASKWREN(2) => WEM(11)
 MASKWREN(2) => WEM(10)
 MASKWREN(2) => WEM(9)
 MASKWREN(2) => WEM(8)
 MASKWREN(1) => WEM(7)
 MASKWREN(1) => WEM(6)
 MASKWREN(1) => WEM(5)
 MASKWREN(1) => WEM(4)
 MASKWREN(0) => WEM(3)
 MASKWREN(0) => WEM(2)
 MASKWREN(0) => WEM(1)
 MASKWREN(0) => WEM(0)

2. The default value of each MASKWREN is 1. In order to mask a nibble of DATAIN, the MASKWREN needs to be pulled low (0).
 The following shows which MASKWREN bits enable the mask for the DATAIN nibbles:

 MASKWREN(3) enables mask for DATAIN(15:12)
 MASKWREN(2) enables mask for DATAIN(11:8)
 MASKWREN(1) enables mask for DATAIN(7:4)
 MASKWREN(0) enables mask for DATAIN(3:0)

3. STANDBY, SLEEP signals are mutually exclusive. Refer to the Logic Truth Table (Power Modes) section in the datasheet for valid values for these signals in different states.

4. POWEROFF is a signal that controls the built in power switch in each memory block. This signal when driven low (1’b0), shuts down the power to the memory. During the off state, there is no memory data retention.
 When POWEROFF is driven high (1’b1), the SPRAM is powered on.

There are no special attributes needed for SB_SPRAM256KA because it has fixed configuration of 16,384 addresses and 16 data width, running in Normal mode. The inputs (ADDRESS and DATAIN) are always registered. DATAOUT has no registers.

SB_SPRAM256KA RAM does not support initialization through device configuration.
3. **Power Save States for SPRAM**

The iCE40 provides a capability to place the SPRAM in a different power state, when not in use. There are three user signals that control the power states of the RAM.

3.1. **Normal State**

Normal State is the normal operation of the memory. During this state, all three of the power save signals (STANDBY, SLEEP and SHUTDOWN) are being driven Low. This is also the higher power consumption state of the SPRAM.

3.2. **Standby State**

Standby State is achieved when the STANDBY signal is driven High. When active, the memory goes in a low leakage mode. The state of the outputs does not change when the RAM is placed in Standby State.

It is to be noted that Standby State is referred to as “Light Sleep” state in the RAM datasheet. The name STANDBY has been chosen to match and be consistent with the power states for the Lattice Power Management Unit (PMU).

3.3. **Sleep State**

Sleep State is achieved when the SLEEP signal is driven High. This signal shuts down the power to the periphery of the memory and maintains the memory contents. The outputs in this case are all pulled Low.

Sleep State is referred to as “Deep Sleep” state in the RAM datasheet. The name SLEEP has been chosen to match and be consistent with the power states for the Lattice Power Management Unit (PMU).

3.4. **Power Off State**

Each RAM block has a power switch associated with it, and that power switch controls the SD signal of the RAM. Users will be interfacing through CIB to the Power Switch and that will power down the memory.

Shut Down or Power Off State is achieved when the POWEROFF signal is driven Low. This signal shuts down the power to the periphery of the memory and the memory core. In this state, there is no data retention of the memory. The outputs in this case are all pulled low.
4. Use Cases for User Primitive SB_SPRAM256KA

This section describes the use cases of the SB_SPRAM256KA RAM blocks while instantiating, inferring, and cascading these blocks.

4.1. Instantiating Memories

SB_SPRAM256KA primitive can be directly instantiated using both Verilog and VHDL at the top level. An example of instantiating SB_SPRAM256KA RAM using Verilog:

```verilog
// spram256 user modules //
SB_SPRAM256KA ramfn_inst1(
    .DATAIN(DATAIN),
    .ADDRESS(ADDRESS),
    .MASKWREN(MASKWREN),
    .WREN(WREN),
    .CHIPSELECT(CHIPSELECT),
    .CLOCK(CLOCK),
    .STANDBY(STANDBY),
    .SLEEP(SLEEP),
    .POWEROFF(POWEROFF),
    .DATAOUT(DATAOUT_A)
)
SB_SPRAM256KA ramfn_inst2(
    .DATAIN(DATAIN),
    .ADDRESS(ADDRESS),
    .MASKWREN(MASKWREN),
    .WREN(WREN),
    .CHIPSELECT(CHIPSELECT),
    .CLOCK(CLOCK),
    .STANDBY(STANDBY),
    .SLEEP(SLEEP),
    .POWEROFF(POWEROFF),
    .DATAOUT(DATAOUT_B)
)
```

4.2. Inferring Memories

The memory also supports memory inferring where a behavioral code for the SPRAM is synthesized in iCEcube2 to create the RAM using the RAM primitives of ICE40 device. In order to use SB_SPRAM256KA RAM blocks, users can use `syn_ramstyle` attribute.

The power save states (Standby, Sleep, and Power Off States) are not available when inferring the RAM. When implementing the inferred RAM using SB_SPRAM256KA primitives, software should tie off the STANDBY, SLEEP and SHUTDOWN ports to “0”. If power save features are desired, then users should use the method of instantiation and connect these ports as per design requirements.

4.3. Output Pipeline Registers

The SB_SPRAM256KA does not include output registers.
When desired, pipeline registers are required to be implemented in the fabric. While inferring the RAM, the software should implement the output pipeline registers in the fabric.
4.4. Cascading Memories

Each SPRAM block is 256 kb, supporting configuration that are 16K x 16. These memories are cascaded to form larger memory based on the user requirements. The memories can be cascaded in two ways:

- Address Cascading
- Data Cascading.

The following sections provide examples of how each cascading type is achieved, and the connection of the signals required. User can instantiate the RAM primitive and connect them using this as guidance to create larger memory blocks.

Auto cascading is supported while inferring a RAM. Any additional logic required will be implemented in the device fabric for creating larger memories.

4.4.1. Address Cascading (or Depth Cascading)

Address/Depth cascading is useful when the memories are required to have the capacity of storing “more” words while keeping the data width the same. In this case additional user logic is needed to decode the address.

Figure 4.1 shows an example of the depth cascading of a 32K x 16 SPRAM. Additional logic is required that will guide the data to the correct memory block using Muxes and Demuxes. The rest of the signals (that are not shown), should be connected to both the memory blocks without any other logic requirements.
4.4.2. Data Cascading (or Width Cascading)

Data/Width cascading is useful when the memories are required to have the capacity of storing “longer” words while keeping the address depth the same. In this case, very minimal user logic is needed, essentially for concatenating words from individual SPRAM blocks.

Figure 4.2 shows an example of the Width cascading of a 16k x 32 SPRAM. The rest of the signals (that are not shown), should be connected to both the memory blocks without any other logic requirements.
Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2016</td>
<td>1.0</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>