iCE40 I2C and SPI Hardened IP Usage Guide

Technical Note

FPGA-TN-02010-1.7

August 2020
Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2016-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
Contents

1. Introduction .. 5
2. I²C IP Core Overview ... 6
 2.1. Key Features for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus 6
 2.2. Key Features for iCE40 Ultra Lite ... 6
3. I²C Usage with Module Generation .. 7
 3.1. General Call Enable ... 8
 3.2. Wakeup Enable ... 8
 3.3. Master Clock (Desired) .. 8
 3.4. Master Clock (Actual) .. 8
 3.5. I²C Addressing ... 8
 3.5.1. FIFO Mode CLK Stretch Enable ... 8
6. Interrupts .. 8
 6.1. Arbitration Lost Interrupts ... 9
 6.2. TX/RX Ready ... 9
 6.3. Overrun or NACK ... 9
 6.4. General Call Interrupts .. 9
3.7. FIFO Interrupts .. 9
 3.7.1. General Call ... 9
 3.7.2. Receive NACK .. 9
 3.7.3. Mater Read Complete ... 9
 3.7.4. Arbitration Lost Interrupts .. 9
 3.7.5. TX FIFO SYNC .. 9
 3.7.6. TX FIFO Underflow ... 10
 3.7.7. TX FIFO Overflow .. 10
3.8. Include I/O Buffers ... 10
4. SB_I2C Hard IP Macro Ports and Wrapper Connections ... 11
5. I²C Usage Cases .. 13
6. SPI IP Core Overview ... 14
 6.1. Key Features ... 14
7. SPI Usage with Module Generation .. 15
 7.1. SPI Mode (Enable Slave Interface) ... 15
 7.2. SPI Mode (Enable Master Interface) ... 15
 7.3. Master Clock Rate (Desired) .. 15
 7.4. Master Clock Rate (Actual) ... 16
 7.5. LSB First .. 16
 7.6. Inverted Clock ... 16
 7.7. Phase Adjust .. 16
 7.8. Slave Handshake Mode .. 16
 7.9. Master Chip Selects ... 16
 7.10. SPI Controller Interrupts .. 17
 7.10.1. TX Ready ... 17
 7.10.2. RX Ready ... 17
 7.10.3. TX Overrun .. 17
 7.10.4. RX Overrun ... 17
 7.11. Wakeup Enable ... 17
 7.12. Include I/O Buffers ... 17
8. SB_SPI Hard IP Macro Ports and Wrapper Connections ... 19
9. iCE40LM, iCE40 Ultra, and iCE40 UltraPlus SPI Usage Cases .. 20
10. Module Generator ... 22
 10.1. Key Features .. 22
 10.1.1. Enable Left I²C ... 23
 10.1.2. Enable Right I²C ... 23

© 2016-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
10.1.3. Enable Left SPI
10.1.4. Enable Right SPI
10.1.5. System Clock
10.1.6. Configuration Clock Source

Technical Support Assistance
Revision History

Figures
Figure 1.1. IP Block Diagram for iCE40LM, iCE40 Ultra, and ICE40 UltraPlus ...5
Figure 1.2. IP Block Diagram for iCE40 UltraLite ...5
Figure 3.1. I2C Module GUI for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus ...7
Figure 3.2. I2C Module GUI for iCE40 UltraLite ...7
Figure 3.3. I2C I/O Buffers ...10
Figure 3.4. I2C I/O Connections ...10
Figure 5.1. I2C Circuit ...13
Figure 7.1. SPI Module GUI for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus ...15
Figure 7.2. SPI I/O Buffers included ...17
Figure 7.3. SPI I/O Buffers included ...18
Figure 9.1. External Master SPI Device Accessing the Slave User SPI ...20
Figure 9.2. iCE40LM, iCE40 Ultra and iCE40 UltraPlus User SPI Master Accessing One or Multiple External Slave SPI Devices ...21
Figure 10.1. Soft IP Block Diagram ...22
Figure 10.2. Module Generator ...23

Tables
Table 4.1. Pins for the Hard I2C IP for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus ...11
Table 4.2. Pins for the Hard I2C IP for iCE40 UltraLite ...12
Table 8.1. Pins for the Hard SPI IP ...19
1. Introduction

The iCE40™ family of devices is an ultra-low power FPGA and sensor manager designed for ultra-low power mobile applications, such as smartphones, tablets and hand-held devices. The iCE40LM, iCE40 Ultra™ and iCE40 UltraPlus™ include integrated SPI and I2C blocks, while the iCE40 UltraLite™ includes an I2C block only, to interface with virtually all mobile sensors and application processors.

The key components available for iCE40LM, iCE40 Ultra and iCE40 UltraPlus:

- Two I2C IP cores located at the upper left corner and upper right corner of the chip
- Two SPI IP cores located at lower left corner and lower right corner of the chip

The key components available for iCE40 UltraLite:

- Two I2C IP cores located at the lower left corner and lower right corner of the chip

Each device uses a System Bus to connect its Hard IP to the fabric. The device does not preload the Hard IP registers during configuration, thus, a soft IP is required. Using Module Generator to generate the IP is recommended because Module Generator generates the corresponding soft IP as well. For details, refer to Module Generator section.

![Figure 1.1. IP Block Diagram for iCE40LM, iCE40 Ultra, and ICE40 UltraPlus](image1)

![Figure 1.2. IP Block Diagram for iCE40 UltraLite](image2)
2. I²C IP Core Overview

The I²C hard IP provides industry standard two pin communication interface that conforms to V2.1 of the I²C bus specification. It could be configured as either master or slave port. In master mode, it supports configurable data transfer rate and performs arbitration detection to allow it to operate in multi-master systems. It supports clock stretching in both master and slave modes with enable/disable capability. It supports both 7 bits and 10 bits addressing in slave mode with configurable slave address. It supports general call address detection in both master and slave mode. It provides interrupt logic for easy communicating with host. It also provides configurable digital delay at SDA output for reliably generating start/stop condition.

2.1. Key Features for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus

- Configurable Master and Slave mode
- Support for 7-bit or 10-bit configurable Slave Address
- Multi-master Arbitration support
- Clock stretching to ensure data setup time
- Up to 400 kHz Data Transfer Speed; also support 100 kHz, 50 kHz modes
- General Call Support
- Master clock source from System Bus clock
- Communication with custom logic through 8-bit wide data bus
- Programmable 5 MSB bits for 7 bits Slave Address or 8 MSB bits for 10 bits Slave Address for user logic Slave I²C port.
- I²C port and all System Bus addressable registers are reset upon Power On Reset (POR)
- 30 ns analog delay required at SDA input for reliable START, STOP condition detection
- Interface to customer logic through the System Bus Interface

2.2. Key Features for iCE40 Ultra Lite

- Configurable Master and Slave mode
- Support for 7-bit or 10-bit configurable Slave Address
- Multi-master Arbitration support
- Clock stretching to ensure data setup time
- Up to 1000 kHz Data Transfer Speed, also supports 400 kHz, 100 kHz, 50 kHz modes
- General Call Support
- Optional delaying input or output data, or both
- Optional FIFO mode
- Transmit FIFO size is 10 bits x 16 bytes, receive FIFO size is 10 bits x 32 bytes
3. **I²C Usage with Module Generation**

The Module generator is the recommended flow for using the I²C Hard IP block. Please see the Module Generator section for more information.

When the I²C portion of the Hard IP block is disabled, all settings on the I²C tab shall be disabled.

![I²C Module GUI for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus](image1)

Figure 3.1. I²C Module GUI for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus

![I²C Module GUI for iCE40 UltraLite](image2)

Figure 3.2. I²C Module GUI for iCE40 UltraLite
3.1. General Call Enable
This setting enables the I2C General Call response (addresses all devices on the bus using the I2C address 0) in Slave mode. This setting can be modified dynamically by enabling the GCEN bit in the I2C Control Register I2CCR1.

3.2. Wakeup Enable
Turns on the I2C wakeup on address match. Enables the Wakeup port. The WKUPEN bit in the I2CCR1 can be modified dynamically allowing the Wake Up function to be enabled or disabled.

3.3. Master Clock (Desired)
This edit box allows the user to specify a desired master clock frequency. A calculation is then made to determine a divider value to generate a clock close to this value from the input clock. The frequency of the input System Bus clock is specified on the main/general tab. The divider value is rounded to the nearest integer after dividing the input System Bus clock by the value entered in this field.

3.4. Master Clock (Actual)
Since it is not always possible to divide the input System Bus clock to the exact value requested by the user, the actual value will be returned in this read-only field. When both the desired I2C clock and System Bus clock fields contain valid data and either is updated, the Master Clock field returns the value \(\frac{\text{FREQ}_\text{SB}}{\text{L2C}_\text{CLK}_\text{DIVIDER}} \), rounded to an integer as shown in the example below. FREQ_SB is the System Bus Clock Frequency customer will enter in the Module Generator. I2C_CLK_DIVIDER will be a factor to be calculated as in the example below.

Master Clock Calculation Example:
1. Divider = I2C_CLK_DIVIDER = FREQ_SB / I2C_CLK_FREQ
2. Master Clock (Actual) = FREQ_SB / DividerInteger
 For example: FREQ_SB = 42.5 MHz, I2C_BUS_PERF = 400 KHZ
 1. Divider = I2C_CLK_DIVIDER = FREQ_SB / I2C_BUS_PERF
 Divider = 42500 / 400 = 106.25
 Therefore ROUND DividerInteger = 106
 2. Master Clock (Actual) = FREQ_SB / DividerInteger
 Actual frequency = 42500 / 106 = 400.9 kHz

In this example, if the user sees that an I2C_CLK_FREQ of 400 kHz cannot be generated, the user may choose to use the actual value or change the System Bus Clock. For this reason, the user needs to enter a frequency and the actual frequency will be displayed. This value may then be adjusted if desired.

3.5. I2C Addressing
This option allows the user to set 7-bit or 10-bit addressing and define the Hard I2C address.

3.5.1. FIFO Mode CLK Stretch Enable
Used in FIFO mode only. To ensure data setup time. If disabled, then overflow and underflow error flag must be monitored.

3.6. Interrupts
When any of the interrupts are enabled, the I2C port is also enabled.
3.6.1. Arbitration Lost Interrupts
An interrupt which indicates I²C lost arbitration. This interrupt is bit IRQARBL of the register I2CIRQ. When enabled, it indicates that ARBL is asserted. Writing a ‘1’ to this bit clears the interrupt. This option can be changed dynamically by modifying the bit IRQARBLEN in the register I2CIRQEN.

3.6.2. TX/RX Ready
An interrupt which indicates that the I²C transmit data register (I2CTXDR) is empty or that the receive data register (I2CRXDR) is full. The interrupt bit is IRQTRRDY of the register I2CIRQ. When enabled, it indicates that TRRDY is asserted. Writing a ‘1’ to this bit clears the interrupt. This option can be changed dynamically by modifying the bit IRQTRRDYEN in the register I2CIRQEN.

3.6.3. Overrun or NACK
An interrupt which indicates that the I2CRXDR received new data before the previous data. The interrupt is bit IRQROE of the register I2CIRQ. When enabled, it indicates that ROE is asserted. Writing a ‘1’ to this bit clears the interrupt. This option can be changed dynamically by modifying the bit IRQROEEN in the register I2CIRQEN.

3.6.4. General Call Interrupts
An interrupt which indicates that a general call has occurred. The interrupt is bit IRQHGC of the register I2CIRQ. When enabled, it indicates that ROE is asserted. Writing a ‘1’ to this bit clears the interrupt. This option can be changed dynamically by modifying the bit IRQHGCEN in the register I2CIRQEN.

3.7. FIFO Interrupts

3.7.1. General Call
An interrupt which indicates that a general call has occurred. The interrupt is bit IRQHGC of I2CFIFOIRQ. This bit can be changed by modifying the bit IRQHGCEN in the register I2CFIFOIRQEN.

3.7.2. Receive NACK
An interrupt which indicates that a NACK has received. This is bit IRQRNACK of register I2CFIFOIRQ. This bit can be changed by modifying the bit IRQRNACKEN in register I2CFIFOIRQEN.

3.7.3. Mater Read Complete
A transaction is considered complete when 1) the specified number of data bytes from the slave have been received in the RX FIFO; or 2) the Master terminates the read transaction before the specified number of data bytes received. This is bit IRQMRDCMPL of register I2CFIFOIRQ. This bit can be changed by modifying the bit IRQMRDCMPLEN in register I2CFIFOIRQEN.

3.7.4. Arbitration Lost Interrupts
An interrupt which indicates I²C lost arbitration. This interrupt is bit IRQARBL of the register I2CFIFOIRQ. When enabled, it indicates that ARBL is asserted. Writing a 1 to this bit clears the interrupt. This option can be changed dynamically by modifying the bit IRQARBLEN in the register I2CFIFOIRQEN.

3.7.5. TX FIFO SYNC
An interrupt which indicates I²C TXFIFO Synchronization Error. Synchronization error happens when there are back-to-back commands in the FIFO. The previous command is overwritten. This interrupt is bit IRQTXSERR of register I2CFIFOIRQ. This option can be changed dynamically by modifying the bit IRQTXSERREN in the register I2CFIFOIRQEN.
3.7.6. TX FIFO Underflow

FIFO TX underflow interrupt. mutually exclusive with clock stretching function. This interrupt is bit IRQTXUNDERF of register I2CFIFOIRQ. This option can be changed dynamically by modifying the bit IRQTXUNDERFEN in the register I2CFIFOIRQEN.

3.7.7. TX FIFO Overflow

FIFO RX overflow interrupt. mutually exclusive with clock stretching function. This interrupt is bit IRQRXOVERF of register I2CFIFOIRQ. This option can be changed dynamically by modifying the bit IRQRXOVERFEN in the register I2CFIFOIRQEN.

3.8. Include I/O Buffers

Includes buffers for the I2C pins.

![Figure 3.3. I2C I/O Buffers](image)

![Figure 3.4. I2C I/O Connections](image)
4. SB_I2C Hard IP Macro Ports and Wrapper Connections

When the I²C Hard IP is enabled, the necessary signals are included in the generated module.

Table 4.1. Pins for the Hard I²C IP for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBCLKi</td>
<td>I</td>
<td>System clock input</td>
</tr>
<tr>
<td>SBWRi</td>
<td>I</td>
<td>System Read/Write input. R=0, W=1</td>
</tr>
<tr>
<td>SBSTBi</td>
<td>I</td>
<td>System Strobe Signal</td>
</tr>
<tr>
<td>SBADRI[7:0]</td>
<td>I</td>
<td>System Bus Control Registers Address</td>
</tr>
<tr>
<td>SBDATi[7:0]</td>
<td>I</td>
<td>System Data Input</td>
</tr>
<tr>
<td>SBDATO[7:0]</td>
<td>O</td>
<td>System Data Output</td>
</tr>
<tr>
<td>SBACKo</td>
<td>O</td>
<td>System Acknowledgement</td>
</tr>
<tr>
<td>I2CPIRQ</td>
<td>O</td>
<td>Interrupt request output signal of the I²C core – The intended use of this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>signal is for it to be connected to a Master controller (such as a microcontroller or state machine) and request an interrupt when a specific condition is met.</td>
</tr>
<tr>
<td>I2CPWKUP</td>
<td>O</td>
<td>Wake-up signal – The signal is enabled only if the Wakeup Enable feature is set.</td>
</tr>
<tr>
<td>I2Cx_SCL*</td>
<td>Bi-directional</td>
<td>Open drain clock line of the I²C core – The signal is an output if the I²C core is performing a Master operation. The signal is an input for Slave operations. This signal can use a dedicated I/O pin.</td>
</tr>
<tr>
<td>I2Cx_SDA1</td>
<td>Bi-directional</td>
<td>Open drain data line of the I²C core – The signal is an output when data is transmitted from the I²C core. The signal is an input when data is received into the I²C core. This signal can use dedicated I/O pin.</td>
</tr>
</tbody>
</table>

*Note: x indicates the I²C: x=1 for the left I²C; x=2 for the right I²C.
Table 4.2. Pins for the Hard I²C IP for iCE40 UltraLite

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBCSi</td>
<td>I</td>
<td>This chip select signal activates the IP to allow system bus or fabric interface to communicate with the IP.</td>
</tr>
<tr>
<td>SBCLKi</td>
<td>I</td>
<td>System clock input</td>
</tr>
<tr>
<td>SBWRi</td>
<td>I</td>
<td>System Read/Write input. R=0, W=1</td>
</tr>
<tr>
<td>SBSTBi</td>
<td>I</td>
<td>System Strobe Signal. When asserted, indicates that the slave component is selected.</td>
</tr>
<tr>
<td>SBADR[i:3:0]</td>
<td>I</td>
<td>System Bus Control Registers Address</td>
</tr>
<tr>
<td>SBDAT[i:9:0]</td>
<td>I</td>
<td>System Data Input [7:0] for register mode; [9:0] for FIFO mode</td>
</tr>
<tr>
<td>SBDATo[i:9:0]</td>
<td>O</td>
<td>System Data Output [7:0] for register mode; [9:0] for FIFO mode</td>
</tr>
<tr>
<td>SBACKo</td>
<td>O</td>
<td>System Acknowledgement</td>
</tr>
<tr>
<td>SBSRWo</td>
<td>O</td>
<td>Slave read/write signal. A “1” indicates a slave transmitting (external master receiving). A “0” means slave receiving (external master transmitting).</td>
</tr>
<tr>
<td>I2CIRQ</td>
<td>O</td>
<td>Interrupt request output signal of the I²C core – The intended use of this signal is for it to be connected to a Master controller (such as a microcontroller or state machine) and request an interrupt when a specific condition is met.</td>
</tr>
<tr>
<td>I2CPWKUP</td>
<td>O</td>
<td>Wake-up signal – The signal is enabled only if the Wakeup Enable feature is set.</td>
</tr>
<tr>
<td>FIFO_RST</td>
<td>I</td>
<td>Reset for the FIFO logic</td>
</tr>
<tr>
<td>TXFIFO_AE</td>
<td>O</td>
<td>TXFIFO almost empty status signal coming from TXFIFO, indicating user-defined almost empty threshold value is reached.</td>
</tr>
<tr>
<td>TXFIFO_E</td>
<td>O</td>
<td>TXFIFO empty signal coming from TXFIFO</td>
</tr>
<tr>
<td>TXFIFO_F</td>
<td>O</td>
<td>TXFIFO full signal</td>
</tr>
<tr>
<td>RXFIFO_E</td>
<td>O</td>
<td>RXFIFO is empty. It can be served as an active low DATA RDY signal.</td>
</tr>
<tr>
<td>RXFIFO_AF</td>
<td>O</td>
<td>RXFIFO almost full signal, indicating user-defined almost full threshold value is reached.</td>
</tr>
<tr>
<td>RXFIFO_F</td>
<td>O</td>
<td>RXFIFO full signal</td>
</tr>
<tr>
<td>MRDCMPL</td>
<td>O</td>
<td>Master Read Complete – This is only valid for Master Read Mode. A transaction is considered complete when 1) the specified number of data bytes from the slave have been received in the RX FIFO; or 2) the Master terminates the read transaction before the specified number of data bytes received.</td>
</tr>
<tr>
<td>I2Cx_SCL*</td>
<td>Bi-directional</td>
<td>Open drain clock line of the I²C core – The signal is an output if the I²C core is performing a Master operation. The signal is an input for Slave operations. This signal can use a dedicated I/O pin.</td>
</tr>
<tr>
<td>I2Cx_SDA*</td>
<td>Bi-directional</td>
<td>Open drain data line of the I²C core – The signal is an output when data is transmitted from the I²C core. The signal is an input when data is received into the I²C core. This signal can use dedicated I/O pin.</td>
</tr>
</tbody>
</table>

*Note: x indicates the I²C: x=1 for the left I²C; x=2 for the right I²C.
5. **I²C Usage Cases**

The I²C usage cases described below refer to **Figure 5.1**.

1. **Master iCE40 I²C Accessing Slave External I²C Devices**
 a. A System Bus Master is implemented in the iCE40 logic.
 b. I²C devices 1, 2, and 3 are all Slave devices.
 c. The Master performs bus transactions to the left I²C controller to access external Slave I²C Device 1 on Bus A.
 d. The Master performs bus transactions to the right I²C controller to access the external Slave I²C Devices number 2 or 3 on Bus B.

2. **External Master I²C Device Accessing Slave iCE40 I²C**
 a. The I²C devices 1, 2, and 3 are I²C Master devices.
 b. The external master I²C Device 1 on Bus A performs I²C memory cycles to access the left I²C controller using address yyyxxxxx01.
 c. The external master I²C Device 2 or 3 on Bus B performs I²C memory cycles to access the right I²C User with the address yyyxxxxx10.
 d. A Master in the iCE40 fabric must manage data reception and transmission. The Master can use interrupts or polling techniques to manage data transfer, and to prevent data overrun conditions.

![Figure 5.1. I²C Circuit](image-url)
6. SPI IP Core Overview

The SPI hard IP provide industry standard four-pin communication interface with 8 bit wide System Bus to communicate with System Host. It could be configured as Master or Slave SPI port with separate Chip Select Pin. In master mode, it provides programmable baud rate, and supports CS HOLD capability for multiple transfers. It provides variety status flags, such as Mode Fault Error flag, Transmit/Receive status flag etc. for easy communicate with system host.

6.1. Key Features

Configurable Master and slave mode
- Full-Duplex data transfer
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- LSB First or MSB First Data Transfer
- Communicate with custom logic through 8 bit wide System Bus
- Maximum 4 Slave select output could be routed to any I/O through fabric for Master mode
- Slave chip select pin could be routed to any I/O through fabric for custom logic
- Clock source for Master clock (MCLK) generation come from System Bus clock
- Optionally send out status byte to inform remote SPI master the slave receiving register status during slave write.
- Optionally enable the Slow Response Mode for slave SPI read, which will automatically deploy the Lattice specific protocol to resolve the issue that caused by the slow initial respond of the System host at high SPI clock rate.
- The SPI port and all System Bus addressable registers will be reset upon Power On Reset (POR)
- Interface to customer logic through the System Bus Interface
7. SPI Usage with Module Generation

The Module generator is the recommended flow for using the SPI Hard IP block. See the Module Generator section for more information.

When the SPI portion of the Hard IP block is disabled, all settings on the SPI tab shall be disabled.

![Figure 7.1. SPI Module GUI for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus](image)

7.1. SPI Mode (Enable Slave Interface)

This option allows the user to enable Slave Mode interface for the initial state of the SPI block. By default, Slave Mode interface is enabled. Options and ports that are applicable to only one mode will be disabled when the other is chosen.

7.2. SPI Mode (Enable Master Interface)

This option allows the user to enable Master Mode interface for the initial state of the SPI block. This option can be updated dynamically by modifying the MSTR bit of the register SPICR2. Options and ports that are applicable to only one mode will be disabled when the other is chosen.

7.3. Master Clock Rate (Desired)

("Enable Master Interface” only) This edit box allows the user to specify a desired master clock frequency. A calculation is then made to determine a divider value to generate a clock close to this value from the input clock. The frequency of the input System Bus clock is specified on the main/general tab. The divider value is rounded to the nearest integer after dividing the input System Bus clock by the value entered in this field.
7.4. Master Clock Rate (Actual)

(“Enable Master Interface” only) Since it is not always possible to divide the input System Bus clock exactly to that requested by the user, the actual value will be returned in this read-only field. When both the desired SPI clock and System Bus clock fields have valid data and either is updated, this field returns the value (FREQ_SB/SPI_CLK_DIVIDER), rounded to two decimal places as shown in the example below. FREQ_SB is the System Bus Clock Frequency that the customer enters in the Module Generator. SPI_CLK_DIVIDER is a factor to be calculated, which is also shown in the example below.

Master Clock Calculation Example:

1. Divider = SPI_CLK_DIVIDER = FREQ_SB / SPI_CLK_FREQ
2. Master Clock (Actual) = FREQ_SB / DividerInteger

For example: FREQ_SB = 66 MHz, SPI_CLK_FREQ = 25 MHZ

1. Divider = SPI_CLK_DIVIDER = FREQ_SB / SPI_CLK_FREQ
 Divider = 66 / 25 = 2.64
 Therefore ROUND DividerInteger = 3
2. Master Clock (Actual) = FREQ_SB / DividerInteger
 Actual frequency = 66 / 3 = 22 MHz

In this example, if the user sees that an SPI_CLK_FREQ of 25 MHz cannot be generated, the user may choose to use the actual value or change the System Bus Clock. For this reason, the user needs to enter a frequency and the actual frequency will be displayed. This value may then be adjusted as desired.

7.5. LSB First

This setting specifies the order of the serial shift of a byte of data. The data order (MSB or LSB first) is programmable within the SPI core. This option can be updated dynamically by modifying the LSBF bit in the register SPICR2.

7.6. Inverted Clock

The inverts the clock polarity used to sample and output data is programmable for the SPI core. When selected the edge changes from the rising to the falling clock edge. This option can be updated dynamically by accessing the CPOL bit of register SPICR2.

7.7. Phase Adjust

An alternate clock-data relationship is available for SPI devices with particular requirements. This option allows the user to specify a phase change to match the application. This option can be updated dynamically by accessing the CPHA bit in the register SPICR2.

7.8. Slave Handshake Mode

Enables Lattice proprietary extension to the SPI protocol. For use when the internal sup-port circuit (e.g. WISHBONE host) cannot respond with initial data within the time required, and to make the Slave read out data predictably available at high SPI clock rates. This option can be updated dynamically by accessing the SDBRE bit in the register SPICR2.

7.9. Master Chip Selects

(“Enable Master Interface” only) The core has the ability to provide up to 4 individual chip select outputs for master operation. This field allows the user to prevent extra chip selects from being brought out of the core. This option can be updated dynamically by modifying the register SPICSR.
7.10. SPI Controller Interrupts

7.10.1. TX Ready
An interrupt which indicates the SPI transmit data register (SPITXDR) is empty. The interrupt bit is IRQTRDY of the register SPIIRQ. When enabled, indicates TRDY was asserted. Write a ‘1’ to this bit to clear the interrupt. This option can be change dynamically by modifying the bit IRQTRDYEN in the register SPIIRQEN.

7.10.2. RX Ready
An interrupt which indicates the receive data register (SPIRXDR) contains valid receive data. The interrupt is bit IRQRRDY of the register SPIIRQ. When enabled, indicates RRDY was asserted. Write a ‘1’ to this bit to clear the interrupt. This option can be change dynamically by modifying the bit IRQRRDYEN in the register SPICSR.

7.10.3. TX Overrun
An interrupt which indicates the Slave SPI chip select (SPI_SCSN) was driven low while a SPI Master. The interrupt is bit IRQMDF of the register SPIIRQ. When enabled, indicates MDF (Mode Fault) was asserted. Write a ‘1’ to this bit to clear the interrupt. This option can be change dynamically by modifying the bit IRQMDFEN in the register SPIIRQEN.

7.10.4. RX Overrun
An interrupt which indicates SPIRXDR received new data before the previous data. The interrupt is bit IRQROE of the register SPIIRQ. When enabled, indicates ROE was asserted. Write a ‘1’ to this bit to clear the interrupt. This option can be change dynamically by modifying the bit IRQROEEN in the register SPIIRQEN.

7.11. Wakeup Enable
The core can optionally provide a wakeup signal to the device to resume from low power mode. This option can be updated dynamically by modifying the bit WKUPEN_USER in the register SPICR1.

7.12. Include I/O Buffers
Includes buffers for the SPI pins.

![SPI I/O Buffers included](Figure 7.2)
Figure 7.3. SPI I/O Buffers included
8. SB_SPI Hard IP Macro Ports and Wrapper Connections

When the SPI Hard IP is enabled, the necessary signals will be included in the generated module.

Table 8.1. Pins for the Hard SPI IP

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBCLKi</td>
<td>I</td>
<td>System clock input</td>
</tr>
<tr>
<td>SBWRi</td>
<td>O</td>
<td>System Read/Write input. R=0, W=1</td>
</tr>
<tr>
<td>SBSTBi</td>
<td>O</td>
<td>System Strobe Signal</td>
</tr>
<tr>
<td>SBADRI[7:0]</td>
<td>I</td>
<td>System Bus Control Registers Address</td>
</tr>
<tr>
<td>SBDATi[7:0]</td>
<td>I</td>
<td>System Data Input</td>
</tr>
<tr>
<td>SBDATo[7:0]</td>
<td>O</td>
<td>System Data Output</td>
</tr>
<tr>
<td>SBACKo</td>
<td>O</td>
<td>System Acknowledgement</td>
</tr>
<tr>
<td>SPIPIRQ</td>
<td>O</td>
<td>Interrupt request output signal of the I²C core – The intended use of this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>signal is for it to be connected to a Master controller (i.e. a microcontroller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or state machine) and request an interrupt when a specific condition is met.</td>
</tr>
<tr>
<td>SPIPWKUP</td>
<td>O</td>
<td>Wake-up signal – The signal is enabled only if the Wakeup Enable feature has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>been set.</td>
</tr>
<tr>
<td>SPx_SCK*</td>
<td>Bi-directional</td>
<td>The signal is an output if the SPI core is in Master mode (MCLK). The signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is an input if the SPI core is in Slave mode (CCLK). This signal could use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dedicated I/O pin.</td>
</tr>
<tr>
<td>SPx_MOSI*</td>
<td>Bi-directional</td>
<td>The signal is an output if the SPI core is in Master mode (SISPI). The signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is an input if the SPI core is in Slave mode (SI). This signal could use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dedicated I/O pin.</td>
</tr>
<tr>
<td>SPx_MISO*</td>
<td>Bi-directional</td>
<td>The signal is an input if the SPI core is in Master mode (SPISO). The signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is an output if the SPI core is in Slave mode (SO). This signal could use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dedicated I/O pin.</td>
</tr>
<tr>
<td>SPx_SCSN*</td>
<td>I</td>
<td>User Slave Chip Select (Active Low). An external SPI Master controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>asserts this signal to transfer data to/from the SPI Controllers Transmit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data/Receive Data registers. This signal could use dedicated I/O pin. The</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dedicated pin is shared with SPI_MCSN[0].</td>
</tr>
<tr>
<td>SPx_MCSN[3:0]*</td>
<td>O</td>
<td>Master Chip Select (Active Low). Up to 4 independent slave SPI devices can</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be accessed using the SPI Controller when it is in Master SPI mode. Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPI_MCSN[0] could use dedicated I/O pin.</td>
</tr>
</tbody>
</table>

*Note: x indicates the SPI: x=1 for the left SPI; x=2 for the right SPI.
9. iCE40LM, iCE40 Ultra, and iCE40 UltraPlus SPI Usage Cases

The SPI usage cases described below refer to Figure 9.1 and Figure 9.2.

1. External Master SPI Device Accessing the Slave iCE40LM, iCE40 Ultra and iCE40 UltraPlus User SPI
 a. The External Master SPI is connected to the iCE40LM, iCE40 Ultra and iCE40 UltraPlus using the dedicated SI, SO, CCLK pins. The spi_scsn is placed on any Generic I/O. The SPI Mode is set to Slave only.
 b. A Master controller is implemented in the general purpose logic array. The master controller monitors the availability to transmit or receive data by polling the SPI status registers, or by responding to interrupts generated by the SPI Controller.

2. iCE40LM, iCE40 Ultra and iCE40 UltraPlus user SPI Master accessing one or multiple External Slave SPI devices
 a. The iCE40LM, iCE40 Ultra and iCE40 UltraPlus Master is connected to External SPI Slave devices. The Chip Selects are configured as follows:
 i. The iCE40LM, iCE40 Ultra and iCE40 UltraPlus SPI Master Chip Select spi_mcsn[0] is placed on the dedicated CSSPIN and connected to the External Slave Chip Select.
 ii. The iCE40LM, iCE40 Ultra and iCE40 UltraPlus SPI Master Chip Select spi_mcsn[1] is placed on any I/O and connected to another External Slave Chip Select.
 iii. Up to 4 External Slave SPIs can be connected using spi_mcsn[3:0].
 b. A Master controller is implemented in the iCE40LM, iCE40 Ultra and iCE40 UltraPlus general logic. It controls transfers to the slave SPI devices. It can use a polling method, or it can use SPI Controller interrupts to manage transfer and reception of data.
Figure 9.2. iCE40LM, iCE40 Ultra and iCE40 UltraPlus User SPI Master Accessing One or Multiple External Slave SPI Devices
10. Module Generator
The iCE40LM, iCE40 Ultra and iCE40 UltraPlus use a System Bus to connect its Hard IP to the fabric. The System bus is connected to two SPI and two I\(^2\)C Hard IPs. The iCE40LM, iCE40 Ultra and iCE40 UltraPlus devices do not preload the Hard IP registers during configuration, so a soft IP will be required.

10.1. Key Features
- Module Generator will generate the Soft IP which is a wrapper around the Hard IP.
- Soft IP will release the System Bus after the Hard IPs have been configured.
- The Register file will be [9:256].
 - The address size is 256 bits which encompasses all address of the Hard IPs.
 - The data size is 9 bits with the format [W, Register Data]. When W=1 the state machine will write the corresponding Hard IP address with data.

See Advanced iCE40 I\(^2\)C and SPI Hardened IP Usage Guide (FPGA-TN-02011) for more information.

Notes: Only SPI_MCSN[1:0] have dedicated pins
IPDONE = 1 when Hard IP Configuration is complete, IPDONE = 0 during configuration
IPLOAD is an input signal which is used to begin configuration on a positive edge

![Figure 10.1. Soft IP Block Diagram](image-url)
10.1.1. Enable Left I²C
This option allows the user to enable left I²C on the I²C Tab

10.1.2. Enable Right I²C
This option allows the user to enable right I²C on the I²C Tab

10.1.3. Enable Left SPI
This option allows the user to enable left SPI on the SPI Tab

10.1.4. Enable Right SPI
This option allows the user to enable right SPI on the SPI Tab

10.1.5. System Clock
User setting which is used to set the divider settings of the I²C and SPI

10.1.6. Configuration Clock Source
User will select to use the HSSG/SB_HFOSC or the CLKCONF (User provided clock). For details, refer to iCE40LM On-Chip Strobe Generator Usage Guide (FPGA-TN-02212) for HSSG and iCE40 Oscillator Usage Guide (FPGA-TN-02088) for SB_HFOSC.
Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
Revision History

Revision 1.7, August 2020

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_I2C Hard IP Macro Ports and Wrapper Connections</td>
<td>Changed pin direction of SBWRi and SBSTBi in Table 4.1. Pins for the Hard I2C IP for iCE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
</tbody>
</table>

Revision 1.6, May 2020.

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimers</td>
<td>Added this section.</td>
</tr>
<tr>
<td>SB_I2C Hard IP Macro Ports and Wrapper Connections</td>
<td>Changed SBWRi and SBSTBi pin direction to Input in Table 4.2. Pins for the Hard I2C IP for ICE40 UltraLite.</td>
</tr>
<tr>
<td>All</td>
<td>• Updated document number of referenced technical note.</td>
</tr>
<tr>
<td></td>
<td>• Updated format of revision history and back cover.</td>
</tr>
<tr>
<td></td>
<td>• Minor adjustments in styles.</td>
</tr>
</tbody>
</table>

Revision 1.5, August 2017

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>• Changed document number from TN1274 to FPGA-TN-02010.</td>
</tr>
<tr>
<td></td>
<td>• Updated document template.</td>
</tr>
<tr>
<td></td>
<td>• Updated document numbers of referenced technical notes.</td>
</tr>
<tr>
<td>Acronyms in This Documents</td>
<td>Added this section.</td>
</tr>
</tbody>
</table>

Revision 1.4, June 2016

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added support for iCE40 UltraPlus.</td>
</tr>
<tr>
<td>Disclaimers</td>
<td>Updated Introduction section.</td>
</tr>
<tr>
<td></td>
<td>• Revised introductory paragraph and description of key components.</td>
</tr>
<tr>
<td></td>
<td>• Revised figure caption to Figure 1.1. IP Block Diagram for ICE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
<tr>
<td>I2C IP Core Overview</td>
<td>Updated I2C IP Core Overview section. Revised heading to Key Features for ICE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
<tr>
<td>I2C Usage with Module Generation</td>
<td>Updated I2C Usage with Module Generation section.</td>
</tr>
<tr>
<td></td>
<td>• Revised figure caption to Figure 3.1. I2C Module GUI for ICE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
<tr>
<td></td>
<td>• Revised figure caption to Figure 3.2. I2C Module GUI for ICE40 UltraLite.</td>
</tr>
<tr>
<td>SB_I2C Hard IP Macro Ports and Wrapper Connections</td>
<td>Updated SB_I2C Hard IP Macro Ports and Wrapper Connections section.</td>
</tr>
<tr>
<td></td>
<td>• Revised table caption to Table 4.1. Pins for the Hard I2C IP for ICE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
<tr>
<td></td>
<td>• Revised table caption to Table 4.2. Pins for the Hard I2C IP for ICE40UltraLite</td>
</tr>
<tr>
<td>SPI Usage with Module Generation</td>
<td>Updated SPI Usage with Module Generation section.</td>
</tr>
<tr>
<td></td>
<td>• Revised figure caption to Figure 7.1. SPI Module GUI for ICE40LM, ICE40 Ultra, and ICE40 UltraPlus.</td>
</tr>
<tr>
<td></td>
<td>• Revised section heading to include ICE40 UltraPlus.</td>
</tr>
<tr>
<td></td>
<td>• Revised use cases to include ICE40 UltraPlus.</td>
</tr>
<tr>
<td></td>
<td>• Added ICE40 UltraPlus to Figure 9.1. External Master SPI Device Accessing the Slave User SPI.</td>
</tr>
<tr>
<td></td>
<td>• Added ICE40 UltraPlus to Figure 9.2. ICE40LM, ICE40 Ultra and ICE40 UltraPlus User SPI Master Accessing One or Multiple External Slave SPI Devices</td>
</tr>
<tr>
<td>Module Generator</td>
<td>Updated Module Generator section. Added ICE40 UltraPlus to introductory paragraph and Key Features.</td>
</tr>
<tr>
<td>Section</td>
<td>Change Summary</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Technical Support Assistance</td>
<td>Updated Technical Support Assistance section.</td>
</tr>
</tbody>
</table>

Revision 1.3, January 2015

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Added support for iCE40 UltraLite.</td>
</tr>
</tbody>
</table>

Revision 1.2, June 2014

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
</table>
| All | - Changed document title to iCE40 I²C and SPI Hardened IP Usage Guide.
| | - Added support for iCE40 Ultra. |

Revision 1.1, November 2013

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Changed hard IP pin names.</td>
</tr>
<tr>
<td>Module Generator</td>
<td>Updated screen captures of Module Generator user interface.</td>
</tr>
</tbody>
</table>

Revision 1.0, October 2013

<table>
<thead>
<tr>
<th>Section</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>